0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
89HPES12N3A1ZCBCG

89HPES12N3A1ZCBCG

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    BGA324

  • 描述:

    IC INTFACE SPECIALIZED 324CABGA

  • 数据手册
  • 价格&库存
89HPES12N3A1ZCBCG 数据手册
89HPES12N3A Data Sheet 12-lane 3-Port PCI Express® Switch ® Device Overview Flexible Architecture with Numerous Configuration Options – Automatic per port link width negotiation to x4, x2 or x1 – Automatic lane reversal on all ports – Automatic polarity inversion on all lanes – Ability to load device configuration from serial EEPROM ◆ Legacy Support – PCI compatible INTx emulation – Bus locking ◆ Highly Integrated Solution – Requires no external components – Incorporates on-chip internal memory for packet buffering and queueing – Integrates twelve 2.5 Gbps embedded SerDes with 8B/10B encoder/decoder (no separate transceivers needed) ◆ Reliability, Availability, and Serviceability (RAS) Features – Supports ECRC and Advanced Error Reporting – Internal end-to-end parity protection on all TLPs ensures data integrity even in systems that do not implement end-to-end CRC (ECRC) – Supports PCI Express Native Hot-Plug, Hot-Swap capable I/O – Compatible with Hot-Plug I/O expanders used on PC and server motherboards ◆ The 89HPES12N3A is a member of the IDT PRECISE™ family of PCI Express® switching solutions. The PES12N3A is a 12-lane, 3-port peripheral chip that performs PCI Express packet switching with a feature set optimized for high performance applications such as servers, storage, and communications/networking. It provides connectivity and switching functions between a PCI Express upstream port and two downstream ports and supports switching between downstream ports. Features ◆ High Performance PCI Express Switch – Twelve 2.5Gbps PCI Express lanes – Three switch ports – Upstream port configurable up to x4 – Downstream ports configurable up to x4 – Low-latency cut-through switch architecture – Support for Max Payload Sizes up to 2048 bytes – One virtual channel – Eight traffic classes – PCI Express Base Specification Revision 1.1 compliant Block Diagram 3-Port Switch Core Frame Buffer Scheduler Scheduler Transaction Layer Transaction Layer Transaction Layer Data Link Layer Data Link Layer Data Link Layer Multiplexer/Demultiplexer Phy Logical Layer Port Arbitration Route Table Phy Logical Layer Phy Logical Layer Phy Logical Layer SerDes SerDes SerDes SerDes Multiplexer/Demultiplexer Phy Logical Layer Multiplexer/Demultiplexer Phy Logical Layer Phy Logical Layer Phy Logical Layer SerDes SerDes SerDes SerDes SerDes SerDes SerDes SerDes Phy Logical Layer Phy Logical Layer Phy Logical Layer Phy Logical Layer 12 PCI Express Lanes One x4 Upstream Port and Two x4 Downstream Ports Figure 1 Internal Block Diagram IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc. 1 of 31 April 9, 2010 DSC 6922 IDT 89HPES12N3A Data Sheet Power Management – Utilizes advanced low-power design techniques to achieve low typical power consumption – Supports PCI Power Management Interface specification (PCI-PM 1.1) • Supports device power management states: D0, D3hot and D3cold – Unused SerDes are disabled ◆ Testability and Debug Features – Ability to read and write any internal register via the SMBus ◆ Eight General Purpose Input/Output Pins – Each pin may be individually configured as an input or output – Each pin may be individually configured as an interrupt input – Some pins have selectable alternate functions ◆ Packaged in 19x19mm 324-ball BGA with 1mm ball spacing ◆ Product Description Utilizing standard PCI Express interconnect, the PES12N3A provides the most efficient I/O connectivity solution for applications requiring high throughput, low latency, and simple board layout with a minimum number of board layers. It provides connectivity for up to 3 ports across 12 integrated serial lanes. Each lane provides 2.5 Gbps of bandwidth in both directions and is fully compliant with PCI Express Base specification revision 1.1. SMBus Interface The PES12N3A contains two SMBus interfaces. The slave interface provides full access to the configuration registers in the PES12N3A, allowing every configuration register in the device to be read or written by an external agent. The master interface allows the default configuration register values of the PES12N3A to be overridden following a reset with values programmed in an external serial EEPROM. The master interface is also used by an external Hot-Plug I/O expander. Bit Slave SMBus Address Master SMBus Address 4 0 MSMBADDR[4] 5 SSMBADDR[5] 1 6 1 0 7 1 1 Table 1 Master and Slave SMBus Address Assignment As shown in Figure 2, the master and slave SMBuses may be used in a unified or split configuration. In the unified configuration, shown in Figure 2(a), the master and slave SMBuses are tied together and the PES12N3A acts both as a SMBus master as well as a SMBus slave on this bus. This requires that the SMBus master or processor that has access to PES12N3A registers supports SMBus arbitration. In some systems, this SMBus master interface may be implemented using general purpose I/O pins on a processor or micro controller, and may not support SMBus arbitration. To support these systems, the PES12N3A may be configured to operate in a split configuration as shown in Figure 2(b). In the split configuration, the master and slave SMBuses operate as two independent buses and thus multi-master arbitration is never required. The PES12N3A supports reading and writing of the serial EEPROM on the master SMBus via the slave SMBus, allowing in system programming of the serial EEPROM. Six pins make up each of the two SMBus interfaces. These pins consist of an SMBus clock pin, an SMBus data pin, and 4 SMBus address pins. In the slave interface, these address pins allow the SMBus address to which the device responds to be configured. In the master interface, these address pins allow the SMBus address of the serial configuration EEPROM from which data is loaded to be configured. The SMBus address is set up on negation of PERSTN by sampling the corresponding address pins. When the pins are sampled, the resulting address is assigned as shown in Table 1. Bit Slave SMBus Address Master SMBus Address 1 SSMBADDR[1] MSMBADDR[1] 2 SSMBADDR[2] MSMBADDR[2] 3 SSMBADDR[3] MSMBADDR[3] Table 1 Master and Slave SMBus Address Assignment 2 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet PES12N3A Processor SMBus Master Serial EEPROM ... Other SMBus Devices PES12N3A SSMBCLK SSMBDAT SSMBCLK SSMBDAT MSMBCLK MSMBDAT MSMBCLK MSMBDAT Processor SMBus Master ... Other SMBus Devices Serial EEPROM (b) Split Configuration and Management Buses (a) Unified Configuration and Management Bus Figure 2 SMBus Interface Configuration Examples Hot-Plug Interface The PES12N3A supports PCI Express Hot-Plug on each downstream port. To reduce the number of pins required on the device, the PES12N3A utilizes an external I/O expander, such as that used on PC motherboards, connected to the SMBus master interface. Following reset and configuration, whenever the state of a Hot-Plug output needs to be modified, the PES12N3A generates an SMBus transaction to the I/O expander with the new value of all of the outputs. Whenever a Hot-Plug input changes, the I/O expander generates an interrupt which is received on the IOEXPINTN input pin (alternate function of GPIO) of the PES12N3A. In response to an I/O expander interrupt, the PES12N3A generates an SMBus transaction to read the state of all of the Hot-Plug inputs from the I/O expander. General Purpose Input/Output The PES12N3A provides eight General Purpose Input/Output (GPIO) pins that may be used by the system designer as bit I/O ports. Each GPIO pin may be configured independently as an input or output through software control. Some GPIO pins are shared with other on-chip functions. These alternate functions may be enabled via software, SMBus slave interface, or serial configuration EEPROM. The PES12N3A is based on a flexible and efficient layered architecture. The PCI Express layer consists of SerDes, Physical, Data Link and Transaction layers in compliance with PCI Express Base specification Revision 1.1. The PES12N3A can operate either as a store and forward or cutthrough switch and is designed to switch memory and I/O transactions. It supports eight Traffic Classes (TCs) and one Virtual Channel (VC) with sophisticated resource management to enable efficient switching and I/O connectivity for servers, storage, and embedded applications. Processor North Bridge PES12N3A PCI Express Slots PES12N3A I/O Dual GbE I/O Dual GbE Memory Memory Memory Memory PES12N3A I/O SATA I/O SATA Figure 3 I/O Expansion Application 3 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet Pin Description The following tables list the functions of the pins provided on the PES12N3A. Some of the functions listed may be multiplexed onto the same pin. The active polarity of a signal is defined using a suffix. Signals ending with an “N” are defined as being active, or asserted, when at a logic zero (low) level. All other signals (including clocks, buses, and select lines) will be interpreted as being active, or asserted, when at a logic one (high) level. Note: In the PES12N3A, the two downstream ports are labeled port 2 and port 4. Signal Type Name/Description PE0RP[3:0] PE0RN[3:0] I PCI Express Port 0 Serial Data Receive. Differential PCI Express receive pairs for port 0. PE0TP[3:0] PE0TN[3:0] O PCI Express Port 0 Serial Data Transmit. Differential PCI Express transmit pairs for port 0. PE2RP[3:0] PE2RN[3:0] I PCI Express Port 2 Serial Data Receive. Differential PCI Express receive pairs for port 2. PE2TP[3:0] PE2TN[3:0] O PCI Express Port 2 Serial Data Transmit. Differential PCI Express transmit pairs for port 2. PE4RP[3:0] PE4RN[3:0] I PCI Express Port 4 Serial Data Receive. Differential PCI Express receive pairs for port 4. PE4TP[3:0] PE4TN[3:0] O PCI Express Port 4 Serial Data Transmit. Differential PCI Express transmit pairs for port 4. PEREFCLKP[2:1] PEREFCLKN[2:1] I PCI Express Reference Clock. Differential reference clock pair input. This clock is used as the reference clock by on-chip PLLs to generate the clocks required for the system logic and on-chip SerDes. The frequency of the differential reference clock is determined by the REFCLKM signal. REFCLKM I PCI Express Reference Clock Mode Select. This signal selects the frequency of the reference clock input. 0x0 - 100 MHz 0x1 - 125 MHz Table 2 PCI Express Interface Pins Signal Type Name/Description MSMBADDR[4:1] I Master SMBus Address. These pins determine the SMBus address of the serial EEPROM from which configuration information is loaded. MSMBCLK I/O Master SMBus Clock. This bidirectional signal is used to synchronize transfers on the master SMBus. It is active and generating the clock only when the EEPROM or I/O Expanders are being accessed. MSMBDAT I/O Master SMBus Data. This bidirectional signal is used for data on the master SMBus. SSMBADDR[5,3:1] I SSMBCLK I/O Slave SMBus Clock. This bidirectional signal is used to synchronize transfers on the slave SMBus. SSMBDAT I/O Slave SMBus Data. This bidirectional signal is used for data on the slave SMBus. Slave SMBus Address. These pins determine the SMBus address to which the slave SMBus interface responds. Table 3 SMBus Interface Pins 4 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet Signal Type Name/Description GPIO[0] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P2RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 2 GPIO[1] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P4RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 4 GPIO[2] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: IOEXPINTN0 Alternate function pin type: Input Alternate function: I/O Expander interrupt 0 input GPIO[3] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[4] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: IOEXPINTN2 Alternate function pin type: Input Alternate function: I/O Expander interrupt 2 input GPIO[5] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[6] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[7] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: GPEN Alternate function pin type: Output Alternate function: General Purpose Event (GPE) output Table 4 General Purpose I/O Pins Signal Type Name/Description CCLKDS I Common Clock Downstream. When the CCLKDS pin is asserted, it indicates that a common clock is being used between the downstream device and the downstream port. CCLKUS I Common Clock Upstream. When the CCLKUS pin is asserted, it indicates that a common clock is being used between the upstream device and the upstream port. MSMBSMODE I Master SMBus Slow Mode. The assertion of this pin indicates that the master SMBus should operate at 100 KHz instead of 400 KHz. This value may not be overridden. Table 5 System Pins (Part 1 of 2) 5 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet Signal Type Name/Description PERSTN I Fundamental Reset. Assertion of this signal resets all logic inside the PES12N3A and initiates a PCI Express fundamental reset. RSTHALT I Reset Halt. When this signal is asserted during a PCI Express fundamental reset, the PES12N3A executes the reset procedure and remains in a reset state with the Master and Slave SMBuses active. This allows software to read and write registers internal to the device before normal device operation begins. The device exits the reset state when the RSTHALT bit is cleared in the SWCTL register by an SMBus master. SWMODE[3:0] I Switch Mode. These configuration pins determine the PES12N3A switch operating mode. These pins should be static and not change after the negation of PERSTN. 0x0 - Normal switch mode 0x1 - Normal switch mode with Serial EEPROM initialization 0x2 - through 0xF Reserved Table 5 System Pins (Part 2 of 2) Signal Type Name/Description JTAG_TCK I JTAG Clock. This is an input test clock used to clock the shifting of data into or out of the boundary scan logic or JTAG Controller. JTAG_TCK is independent of the system clock with a nominal 50% duty cycle. JTAG_TDI I JTAG Data Input. This is the serial data input to the boundary scan logic or JTAG Controller. JTAG_TDO O JTAG Data Output. This is the serial data shifted out from the boundary scan logic or JTAG Controller. When no data is being shifted out, this signal is tri-stated. JTAG_TMS I JTAG Mode. The value on this signal controls the test mode select of the boundary scan logic or JTAG Controller. JTAG_TRST_N I JTAG Reset. This active low signal asynchronously resets the boundary scan logic and JTAG TAP Controller. An external pull-up on the board is recommended to meet the JTAG specification in cases where the tester can access this signal. However, for systems running in functional mode, one of the following should occur: 1) actively drive this signal low with control logic 2) statically drive this signal low with an external pull-down on the board Table 6 Test Pins Signal Type Name/Description VDDCORE I Core VDD. Power supply for core logic. VDDIO I I/O VDD. LVTTL I/O buffer power supply. VDDPE I PCI Express Digital Power. PCI Express digital power used by the digital power of the SerDes. Table 7 Power and Ground Pins 6 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet Signal Type Name/Description VDDAPE I PCI Express Analog Power. PCI Express analog power used by the PLL and bias generator. VTTPE I PCI Express Termination Power. VSS I Ground. Table 7 Power and Ground Pins 7 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet Pin Characteristics Note: Some input pads of the PES12N3A do not contain internal pull-ups or pull-downs. Unused inputs should be tied off to appropriate levels. This is especially critical for unused control signal inputs which, if left floating, could adversely affect operation. Also, any input pin left floating can cause a slight increase in power consumption. Function PCI Express Interface SMBus Type Buffer I/O Type PE0RN[3:0] I CML Serial link PE0RP[3:0] I PE0TN[3:0] O PE0TP[3:0] O PE2RN[3:0] I PE2RP[3:0] I PE2TN[3:0] O PE2TP[3:0] O PE4RN[3:0] I PE4RP[3:0] I PE4TN[3:0] O PE4TP[3:0] O PEREFCLKN[2:1] I PEREFCLKP[2:1] I LVPECL/ CML Diff. Clock Input REFCLKM I LVTTL Input pull-down MSMBADDR[4:1] I LVTTL Input pull-up Pin Name 2 Internal Resistor1 Notes Refer to Table 9 MSMBCLK I/O STI pull-up on board MSMBDAT I/O STI pull-up on board I Input SSMBCLK I/O STI pull-up on board SSMBDAT I/O STI pull-up on board General Purpose I/O GPIO[7:0] I/O LVTTL High Drive pull-up System Pins CCLKDS I LVTTL Input pull-up CCLKUS I pull-up MSMBSMODE I pull-down PERSTN I RSTHALT I pull-down SWMODE[3:0] I pull-down SSMBADDR[5,3:1] pull-up Table 8 Pin Characteristics (Part 1 of 2) 8 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet Type Buffer I/O Type Internal Resistor1 JTAG_TCK I LVTTL STI pull-up JTAG_TDI I STI pull-up JTAG_TDO O JTAG_TMS I STI pull-up JTAG_TRST_N I STI pull-up Function JTAG Pin Name Notes External pull-down Table 8 Pin Characteristics (Part 2 of 2) 1. Internal resistor values under typical operating conditions are 54K Ω for pull-up and 251K Ω for pull-down. 2. Schmitt Trigger Input (STI). 9 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet Logic Diagram — PES12N3A PE0TP[0] PE0TN[0] PE0RP[1] PE0RN[1] PE0TP[1] PE0TN[1] ... PE0RP[0] PE0RN[0] PE0RP[3] PE0RN[3] PE0TP[3] PE0TN[3] PE2RP[0] PE2RN[0] PE2TP[0] PE2TN[0] PE2RP[1] PE2RN[1] PE2TP[1] PE2TN[1] ... PCI Express Switch SerDes Input Port 2 2 ... PCI Express Switch SerDes Input Port 0 2 PEREFCLKP PEREFCLKN REFCLKM ... Reference Clocks PE2RP[3] PE2RN[3] PES12N3A PE4TP[0] PE4TN[0] PE4TP[1] PE4TN[1] PE4RP[1] PE4RN[1] ... ... PE4RP[3] PE4RN[3] Master SMBus Interface Slave SMBus Interface System Functions MSMBADDR[4:1] MSMBCLK MSMBDAT SSMBADDR[5,3:1] SSMBCLK SSMBDAT MSMBSMODE CCLKDS CCLKUS RSTHALT PERSTN SWMODE[3:0] PCI Express Switch SerDes Output Port 2 PE2TP[3] PE2TN[3] PE4RP[0] PE4RN[0] PCI Express Switch SerDes Input Port 4 PCI Express Switch SerDes Output Port 0 PCI Express Switch SerDes Output Port 4 PE4TP[3] PE4TN[3] 4 8 GPIO[7:0] JTAG_TCK JTAG_TDI JTAG_TDO JTAG_TMS JTAG_TRST_N 4 VDDCORE VDDIO VDDPE VDDAPE VSS 4 General Purpose I/O JTAG Power/Ground VTTPE Figure 4 PES12N3A Logic Diagram 10 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet System Clock Parameters Values based on systems running at recommended supply voltages and operating temperatures, as shown in Tables 13 and 14. Parameter Description Min RefclkFREQ Input reference clock frequency range 100 RefclkDC2 Duty cycle of input clock 40 TR, TF Rise/Fall time of input clocks VSW Differential input voltage swing4 Tjitter Input clock jitter (cycle-to-cycle) RT Termination Resistor Typical 50 0.6 Max Unit 1251 MHz 60 % 0.2*RCUI RCUI3 1.6 V 125 ps 110 Ohms Table 9 Input Clock Requirements 1. The input clock frequency will be either 100 or 125 MHz depending on signal REFCLKM. 2. ClkIn must be AC coupled. Use 0.01 — 0.1 µF ceramic capacitors. 3. RCUI (Reference Clock Unit Interval) refers to the reference clock period. 4. AC coupling required. AC Timing Characteristics Parameter Description Min1 Typical1 Max1 Units 399.88 400 400.12 ps 0.7 .9 PCIe Transmit UI Unit Interval TTX-EYE Minimum Tx Eye Width TTX-EYE-MEDIAN-toMAX-JITTER Maximum time between the jitter median and maximum deviation from the median TTX-RISE, TTX-FALL D+ / D- Tx output rise/fall time 50 TTX- IDLE-MIN Minimum time in idle 50 TTX-IDLE-SET-TO- Maximum time to transition to a valid Idle after sending an Idle ordered set 20 UI IDLE TTX-IDLE-TO-DIFF- Maximum time to transition from valid idle to diff data 20 UI 500 1300 ps 400 400.12 ps UI 0.15 90 UI ps UI DATA TTX-SKEW Transmitter data skew between any 2 lanes PCIe Receive UI Unit Interval 399.88 TRX-EYE (with jitter) Minimum Receiver Eye Width (jitter tolerance) 0.4 UI Table 10 PCIe AC Timing Characteristics (Part 1 of 2) 11 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet Max1 Units Max time between jitter median & max deviation 0.3 UI Unexpected Idle Enter Detect Threshold Integration Time 10 ms Lane to lane input skew 20 ns Parameter Min1 Description TRX-EYE-MEDIUM TO Typical1 MAX JITTER TRX-IDLE-DET-DIFFENTER TIME TRX-SKEW Table 10 PCIe AC Timing Characteristics (Part 2 of 2) 1. Minimum, Typical, and Maximum values meet the requirements under PCI Specification 1.1 Signal Symbol Reference Min Max Unit Edge Timing Diagram Reference GPIO GPIO[7:0]1 Tpw_13b2 None 50 — ns Table 11 GPIO AC Timing Characteristics 1. GPIO signals must meet the setup and hold times if they are synchronous or the minimum pulse width if they are asynchronous. 2. The values for this symbol were determined by calculation, not by testing. GPIO (synchronous output) Tpw_13b GPIO (asynchronous input) 12 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet Signal Symbol Reference Edge Min Max Unit Timing Diagram Reference Tper_16a none 50.0 — ns See Figure 5. 10.0 25.0 ns 2.4 — ns 1.0 — ns — 20 ns — 20 ns 25.0 — ns JTAG JTAG_TCK Thigh_16a, Tlow_16a JTAG_TMS1, JTAG_TDI Tsu_16b JTAG_TCK rising Thld_16b JTAG_TDO Tdo_16c Tdz_16c JTAG_TRST_N JTAG_TCK falling 2 Tpw_16d2 none Table 12 JTAG AC Timing Characteristics 1. The JTAG specification, IEEE 1149.1, recommends that JTAG_TMS should be held at 1 while the signal applied at JTAG_TRST_N changes from 0 to 1. Otherwise, a race may occur if JTAG_TRST_N is deasserted (going from low to high) on a rising edge of JTAG_TCK when JTAG_TMS is low, because the TAP controller might go to either the Run-Test/Idle state or stay in the Test-Logic-Reset state. 2. The values for this symbol were determined by calculation, not by testing. Tlow_16a Tper_16a Thigh_16a JTAG_TCK Thld_16b Tsu_16b JTAG_TDI Thld_16b Tsu_16b JTAG_TMS Tdo_16c Tdz_16c JTAG_TDO Tpw_16d JTAG_TRST_N Figure 5 JTAG AC Timing Waveform 13 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet Recommended Operating Supply Voltages Symbol Parameter Minimum Typical Maximum Unit VDDCORE Internal logic supply 0.9 1.0 1.1 V VDDI/O I/O supply except for SerDes LVPECL/CML 3.0 3.3 3.6 V VDDPE PCI Express Digital Power 0.9 1.0 1.1 V VDDAPE PCI Express Analog Power 0.9 1.0 1.1 V VTTPE PCI Express Serial Data Transmit Termination Voltage 1.425 1.5 1.575 V VSS Common ground 0 0 0 V Table 13 PES12N3A Operating Voltages Power-Up Sequence This section describes the sequence in which various voltages must be applied to the part during power-up to ensure proper functionality. For the PES12N3A, the power-up sequence must be as follows: 1. VDDI/O — 3.3V 2. VDDCore, VDDPE, VDDAPE — 1.0V 3. VTTPE — 1.5V When powering up, each voltage level must ramp and stabilize prior to applying the next voltage in the sequence to ensure internal latch-up issues are avoided. There are no maximum time limitations in ramping to valid power levels. The power-down sequence must be in the reverse order of the power-up sequence. Recommended Operating Temperature Grade Temperature Commercial 0°C to +70°C Ambient Industrial -40°C to +85°C Ambient Table 14 PES12N3A Operating Temperatures Power Consumption Typical power is measured under the following conditions: 25°C Ambient, 35% total link usage on all ports, typical voltages defined in Table 13 (and also listed below). Maximum power is measured under the following conditions: 70°C Ambient, 85% total link usage on all ports, maximum voltages defined in Table 13 (and also listed below). 14 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet Core Supply PCIe Digital Supply PCIe Analog Supply PCIe Termination Supply Typ 1.0V Max 1.1V Typ 1.0V Max 1.1V Typ 1.0V Max 1.1V Typ 1.5V Max 1.575V Typ 3.3V Max 3.6V Typ Power Max Power mA 723 928 578 693 223 251 291 345 1 1 1.96W 2.6W Watts 0.72 1.02 0.58 0.76 0.22 0.28 0.44 0.54 0.004 0.004 mA 618 746 398 458 207 223 142 160 1 1 1.44W 1.8W Watts 0.62 0.82 0.4 0.5 0.21 0.25 0.21 0.25 0.003 0.003 Number of active Lanes per Port 4/4/4 4/1/1 I/O Supply Total Table 15 PES12N3A Power Consumption Thermal Considerations This section describes thermal considerations for the PES12N3A (19mm2 BCG324 package). The data in Table 16 below contains information that is relevant to the thermal performance of the PES12N3A switch. Symbol Parameter Value Units Conditions TJ(max) Junction Temperature 125 oC Maximum 70 oC Maximum for commercial-rated products 21.8 oC/W Zero air flow 15.1 oC/W 1 m/S air flow 13.9 oC/W 2 m/S air flow TA(max) θJA(effective) Ambient Temperature Effective Thermal Resistance, Junction-to-Ambient θJB Thermal Resistance, Junction-to-Board 11.4 oC/W θJC Thermal Resistance, Junction-to-Case 5.1 oC/W P Power Dissipation of the Device 2.6 Watts Maximum Table 16 Thermal Specifications for PES12N3A, 19x19 mm BCG324 Package Note: The parameter θJA(eff) is not the absolute thermal resistance for the package as defined by JEDEC (JESD-51). Because resistance can vary with the number of board layers, size of the board, and airflow, θJA(eff) is the effective thermal resistance. The values for effective θJA given above are based on a 10-layer, standard height, full length (4.3”x12.2”) PCIe add-in card. Heat Sink Table 17 lists heat sink requirements for the PES12N3A under three common usage scenarios. As shown in this table, a heat sink is not required in most cases. Air Flow Board Size Board Layers Heat Sink Requirement Zero 4.3”x12.2” (standard height, full length form factor) or larger 4 or more No heat sink required Zero Any 6 or more No heat sink required 1 m/S or more Any Any No heat sink required Table 17 Heat Sink Requirements Based on Air Flow and Board Characteristics 15 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet Thermal Usage Examples The junction-to-ambient thermal resistance is a measure of a device’s ability to dissipate heat from the die to its surroundings in the absence of a heat sink. The general formula to determine θJA is: θJA = (TJ - TA)/P Thermal reliability of a device is generally assured when the actual value of TJ in the specific system environment being considered is less than the maximum TJ specified for the device. Using an ambient temperature of 70oC and assuming a system with 1m/S airflow, the actual value of TJ is: TJ(actual) = TA + P * θJA(eff) = 70oC + 2.6W * 9.9W/oC = 96oC The actual TJ of 96oC is well below the maximum TJ of 125oC specified for the device (shown in Table 16). Therefore, no heat sink is needed in this scenario. The formula is also useful from a system design perspective. It can be used to determine if a heat sink should be added to the device based on some desired value of TJ. For example, if for reliability purposes the desired TJ is 100oC, then the maximum allowable TA is: TA(allowed) = TJ(desired) - (P * θJA(effective)) TA(allowed) = 100oC - (2.6W * 9.9W/oC) = 100oC - 26oC = 74oC An appropriate level of increased air flow and/or a heat sink can be added to achieve this lower ambient temperature Please contact ssdhelp@idt.com for further assistance. 16 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet DC Electrical Characteristics Values based on systems running at recommended supply voltages, as shown in Table 13. Note: See Table 8, Pin Characteristics, for a complete I/O listing. I/O Type Parameter Serial Link PCIe Transmit Min1 Description Typ1 Max1 Unit 800 1200 mV -3 -4 dB 3.7 V VTX-DIFFp-p Differential peak-to-peak output voltage VTX-DE-RATIO De-emphasized differential output voltage VTX-DC-CM DC Common mode voltage VTX-CM-ACP RMS AC peak common mode output voltage 20 mV VTX-CM-DC- Abs delta of DC common mode voltage between L0 and idle 100 mV 25 mV delta Abs delta of DC common mode voltage between D+ and D- VTX-Idle-DiffP Electrical idle diff peak output 20 mV VTX-RCV-Detect Voltage change during receiver detection 600 mV RLTX-DIFF Transmitter Differential Return loss 12 dB RLTX-CM Transmitter Common Mode Return loss 6 dB ZTX-DEFF-DC DC Differential TX impedance 80 100 120 Ω ZOSE Single ended TX Impedance 40 50 60 Ω Transmitter Eye Diagram TX Eye Height (De-emphasized bits) 505 650 mV Transmitter Eye Diagram TX Eye Height (Transition bits) 800 950 mV VRX-DIFFp-p Differential input voltage (peak-to-peak) 175 VRX-CM-AC Receiver common-mode voltage for AC coupling RLRX-DIFF Receiver Differential Return Loss 15 dB RLRX-CM Receiver Common Mode Return Loss 6 dB ZRX-DIFF-DC Differential input impedance (DC) 80 100 120 Ω ZRX-COMM-DC Single-ended input impedance 40 50 60 Ω ZRX-COMM-HIGH- 200k 350k Z-DC Powered down input common mode impedance (DC) VRX-IDLE-DET- Electrical idle detect threshold 65 Input Capacitance 1.5 active-idle-delta VTX-CM-DC-line- -0.1 1 Conditions PCIe Receive 1200 mV 150 mV Ω 175 mV DIFFp-p PCIe REFCLK CIN — pF Table 18 DC Electrical Characteristics (Part 1 of 2) 17 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet I/O Type Min1 Typ1 Max1 Unit Conditions IOL — 2.5 — mA VOL = 0.4v IOH — -5.5 — mA VOH = 1.5V IOL — 12.0 — mA VOL = 0.4v IOH — -20.0 — mA VOH = 1.5V Parameter Description Other I/Os LOW Drive Output High Drive Output Schmitt Trigger Input (STI) VIL -0.3 — 0.8 V — VIH 2.0 — VDDIO + 0.5 V — Input VIL -0.3 — 0.8 V — VIH 2.0 — VDDIO + 0.5 V — Capacitance CIN — — 8.5 pF — Leakage Inputs — — + 10 μA VDDI/O (max) I/OLEAK W/O Pull-ups/downs — — + 10 μA VDDI/O (max) I/OLEAK WITH Pull-ups/downs — — + 80 μA VDDI/O (max) Table 18 DC Electrical Characteristics (Part 2 of 2) 1. Minimum, Typical, and Maximum values meet the requirements under PCI Specification 1.0a. 18 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet Package Pinout — 324-BGA Signal Pinout for PES12N3A The following table lists the pin numbers and signal names for the PES12N3A device. Pin Function Alt Pin Function Alt Pin Function Alt Pin Function A1 VSS E10 VDDPE K1 VDDCORE P10 VDDIO A2 VSS E11 VSS K2 VSS P11 VDDIO A3 PE0RP03 E12 VDDPE K3 VTTPE P12 VDDIO A4 VDDCORE E13 VSS K4 VDDCORE P13 VDDIO A5 PE0TN03 E14 VDDCORE K5 VDDPE P14 VDDIO A6 VDDCORE E15 VDDAPE K6 VSS P15 VSS A7 PE0TP02 E16 VSS K7 VSS P16 VTTPE A8 VDDCORE E17 PE4TP03 K8 VSS P17 VSS A9 PE0RN02 E18 PE4TN03 K9 VSS P18 VDDCORE A10 VDDCORE F1 VDDCORE K10 VSS R1 PE2TN03 A11 PE0RP01 F2 VSS K11 VSS R2 PE2TP03 A12 VDDCORE F3 VDDCORE K12 VSS R3 VSS A13 PE0TP01 F4 VDDAPE K13 VSS R4 VDDIO A14 VDDCORE F5 VSS K14 VSS R5 VSS A15 VDDCORE F6 VDDCORE K15 VDDPE R6 VDDCORE A16 PE0TN00 F7 VSS K16 VTTPE R7 MSMBDAT A17 VSS F8 VDDCORE K17 VSS R8 SSMBADDR_5 A18 VSS F9 VSS K18 VDDCORE R9 NC B1 VDDCORE F10 VDDCORE L1 PE2RN02 R10 SWMODE_2 B2 VDDCORE F11 VSS L2 PE2RP02 R11 RSTHALT B3 PE0RN03 F12 VSS L3 VSS R12 GPIO_04 B4 VSS F13 VDDPE L4 VDDPE R13 VDDCORE B5 PE0TP03 F14 VSS L5 VSS R14 VSS B6 VSS F15 VDDIO L6 VDDCORE R15 VDDIO B7 PE0TN02 F16 VSS L7 VDDCORE R16 VSS B8 VSS F17 VSS L8 VDDCORE R17 PE4TP00 B9 PE0RP02 F18 VDDCORE L9 VDDCORE R18 PE4TN00 B10 VSS G1 PE2TP01 L10 VDDCORE T1 VDDCORE B11 PE0RN01 G2 PE2TN01 L11 VDDCORE T2 VSS B12 VSS G3 VSS L12 VDDCORE T3 VSS B13 PE0TN01 G4 VDDPE L13 VDDCORE T4 JTAG_TCK B14 VSS G5 VDDAPE L14 VSS T5 JTAG_TDO B15 VSS G6 VSS L15 VDDPE T6 MSMBADDR_1 B16 PE0TP00 G7 VSS L16 VSS T7 MSMBCLK Alt 1 Table 19 PES12N3A 324-pin Signal Pin-Out (Part 1 of 3) 19 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet Pin Function Alt Pin Function Alt Pin Function Alt Pin Function Alt B17 VDDCORE G8 VDDIO L17 PE4RP01 T8 SSMBADDR_2 B18 VDDCORE G9 VSS L18 PE4RN01 T9 CCLKDS C1 PE2RP00 G10 VDDIO M1 VDDCORE T10 SWMODE_1 C2 PE2RN00 G11 VSS M2 VSS T11 PERSTN C3 VSS G12 VDDCORE M3 VSS T12 GPIO_03 C4 VDDCORE G13 VSS M4 VDDAPE T13 GPIO_07 C5 VSS G14 VDDAPE M5 VSS T14 VSS C6 VTTPE G15 VDDPE M6 VDDCORE T15 REFCLKM C7 VSS G16 VSS M7 VSS T16 VSS C8 VTTPE G17 PE4TN02 M8 VSS T17 VSS C9 VSS G18 PE4TP02 M9 VDDCORE T18 VDDCORE C10 VTTPE H1 VDDCORE M10 VDDCORE U1 PE2RP03 C11 VSS H2 VSS M11 VSS U2 PE2RN03 C12 VTTPE H3 VTTPE M12 VSS U3 VSS C13 VDDCORE H4 VDDAPE M13 VDDCORE U4 JTAG_TDI C14 PE0RP00 H5 VSS M14 VSS U5 JTAG_TMS C15 PE0RN00 H6 VSS M15 VDDAPE U6 MSMBADDR_2 C16 VDDCORE H7 VDDCORE M16 VSS U7 MSMBADDR_4 C17 PE4RN03 H8 VSS M17 VSS U8 SSMBADDR_3 C18 PE4RP03 H9 VDDCORE M18 VDDCORE U9 CCLKUS D1 VDDCORE H10 VDDCORE N1 PE2TP02 U10 SWMODE_0 D2 VSS H11 VSS N2 PE2TN02 U11 NC D3 VSS H12 VDDCORE N3 VTTPE U12 GPIO_00 1 D4 VDDCORE H13 VSS N4 VDDAPE U13 GPIO_02 1 D5 VSS H14 VDDAPE N5 VSS U14 GPIO_06 D6 VDDAPE H15 VDDPE N6 VSS U15 MSMBSMODE D7 VSS H16 VTTPE N7 VSS U16 VSS D8 VDDAPE H17 VSS N8 VSS U17 PE4RN00 D9 VSS H18 VDDCORE N9 VSS U18 PE4RP00 D10 VDDAPE J1 PE2RP01 N10 VSS V1 VDDCORE D11 VSS J2 PE2RN01 N11 VSS V2 VSS D12 VDDAPE J3 VSS N12 VSS V3 PEREFCLKP1 D13 VSS J4 VDDPE N13 VSS V4 PEREFCLKN1 D14 VDDCORE J5 VSS N14 VSS V5 JTAG_TRST_N D15 VSS J6 VDDCORE N15 VDDAPE V6 MSMBADDR_3 D16 VSS J7 VSS N16 VTTPE V7 SSMBADDR_1 D17 VSS J8 VSS N17 PE4TN01 V8 SSMBCLK 1 Table 19 PES12N3A 324-pin Signal Pin-Out (Part 2 of 3) 20 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet Pin Function Alt Pin Function Alt Pin Function Alt Pin Function D18 VDDCORE J9 VDDCORE N18 PE4TP01 V9 SSMBDAT E1 PE2TN00 J10 VDDCORE P1 VDDCORE V10 NC E2 PE2TP00 J11 VSS P2 VSS V11 SWMODE_3 E3 VDDCORE J12 VSS P3 VTTPE V12 VDDIO E4 VSS J13 VDDCORE P4 VSS V13 GPIO_01 E5 VDDCORE J14 VSS P5 VDDIO V14 GPIO_05 E6 VSS J15 VDDCORE P6 VDDIO V15 PEREFCLKP2 E7 VSS J16 VSS P7 VDDIO V16 PEREFCLKN2 E8 VDDPE J17 PE4RP02 P8 VDDIO V17 VSS E9 VSS J18 PE4RN02 P9 VDDIO V18 VDDCORE Alt 1 Table 19 PES12N3A 324-pin Signal Pin-Out (Part 3 of 3) Alternate Signal Functions Pin GPIO Alternate U12 GPIO_00 P2RSTN V13 GPIO_01 P4RSTN U13 GPIO_02 IOEXPINTN0 R12 GPIO_04 IOEXPINTN2 T13 GPIO_07 GPEN Table 20 PES12N3A Alternate Signal Functions 21 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet Power Pins VDDCore VDDCore VDDCore VDDIO VDDPE VDDAPE VTTPE A4 F3 L8 F15 E8 D6 C6 A6 F6 L9 G8 E10 D8 C8 A8 F8 L10 G10 E12 D10 C10 A10 F10 L11 P5 F13 D12 C12 A12 F18 L12 P6 G4 E15 H3 A14 G12 L13 P7 G15 F4 H16 A15 H1 M1 P8 H15 G5 K3 B1 H7 M6 P9 J4 G14 K16 B2 H9 M9 P10 K5 H4 N3 B17 H10 M10 P11 K15 H14 N16 B18 H12 M13 P12 L4 M4 P3 C4 H18 M18 P13 L15 M15 P16 C13 J6 P1 P14 N4 C16 J9 P18 R4 N15 D1 J10 R6 R15 D4 J13 R13 V12 D14 J15 T1 D18 K1 T18 E3 K4 V1 E5 K18 V18 E14 L6 F1 L7 Table 21 PES12N3A Power Pins 22 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet Ground Pins Vss Vss Vss Vss Vss A1 D15 G11 K10 N8 A2 D16 G13 K11 N9 A17 D17 G16 K12 N10 A18 E4 H2 K13 N11 B4 E6 H5 K14 N12 B6 E7 H6 K17 N13 B8 E9 H8 L3 N14 B10 E11 H11 L5 P2 B12 E13 H13 L14 P4 B14 E16 H17 L16 P15 B15 F2 J3 M2 P17 C3 F5 J5 M3 R3 C5 F7 J7 M5 R5 C7 F9 J8 M7 R14 C9 F11 J11 M8 R16 C11 F12 J12 M11 T2 D2 F14 J14 M12 T3 D3 F16 J16 M14 T14 D5 F17 K2 M16 T16 D7 G3 K6 M17 T17 D9 G6 K7 N5 U3 D11 G7 K8 N6 U16 D13 G9 K9 N7 V2 V17 Table 22 PES12N3A Ground Pins 23 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet Signals Listed Alphabetically Signal Name I/O Type Location Signal Category CCLKDS I T9 System CCLKUS I U9 GPIO_00 I/O U12 GPIO_01 I/O V13 GPIO_02 I/O U13 GPIO_03 I/O T12 GPIO_04 I/O R12 GPIO_05 I/O V14 GPIO_06 I/O U14 GPIO_07 I/O T13 JTAG_TCK I T4 JTAG_TDI I U4 JTAG_TDO O T5 JTAG_TMS I U5 JTAG_TRST_N I V5 MSMBADDR_1 I T6 MSMBADDR_2 I U6 MSMBADDR_3 I V6 MSMBADDR_4 I U7 MSMBCLK I/O T7 MSMBDAT I/O R7 I U15 System NC R9 PCI Express NC U11 NC V10 MSMBSMODE PE0RN00 I C15 PE0RN01 I B11 PE0RN02 I A9 PE0RN03 I B3 PE0RP00 I C14 PE0RP01 I A11 PE0RP02 I B9 PE0RP03 I A3 PE0TN00 O A16 General Purpose Input/Output JTAG SMBus Table 23 PES12N3A Alphabetical Signal List (Part 1 of 3) 24 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet Signal Name I/O Type Location Signal Category PE0TN01 O B13 PCI Express (cont.) PE0TN02 O B7 PE0TN03 O A5 PE0TP00 O B16 PE0TP01 O A13 PE0TP02 O A7 PE0TP03 O B5 PE2RN00 I C2 PE2RN01 I J2 PE2RN02 I L1 PE2RN03 I U2 PE2RP00 I C1 PE2RP01 I J1 PE2RP02 I L2 PE2RP03 I U1 PE2TN00 O E1 PE2TN01 O G2 PE2TN02 O N2 PE2TN03 O R1 PE2TP00 O E2 PE2TP01 O G1 PE2TP02 O N1 PE2TP03 O R2 PE4RN00 I U17 PE4RN01 I L18 PE4RN02 I J18 PE4RN03 I C17 PE4RP00 I U18 PE4RP01 I L17 PE4RP02 I J17 PE4RP03 I C18 PE4TN00 O R18 PE4TN01 O N17 PE4TN02 O G17 PE4TN03 O E18 PE4TP00 O R17 Table 23 PES12N3A Alphabetical Signal List (Part 2 of 3) 25 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet Signal Name I/O Type Location Signal Category PE4TP01 O N18 PCI Express (cont.) PE4TP02 O G18 PE4TP03 O E17 PEREFCLKN1 I V4 PEREFCLKN2 I V16 PEREFCLKP1 I V3 PEREFCLKP2 I V15 PERSTN I T11 System REFCLKM I T15 PCI Express RSTHALT I R11 System SSMBADDR_1 I V7 SMBus SSMBADDR_2 I T8 SSMBADDR_3 I U8 SSMBADDR_5 I R8 SSMBCLK I/O V8 SSMBDAT I/O V9 SWMODE_0 I U10 SWMODE_1 I T10 SWMODE_2 I R10 SWMODE_3 I V11 SMBus System VDDCORE, VDDAPE, VDDIO, VDDPE, VTTPE See Table 21 for a listing of power pins. VSS See Table 22 for a listing of ground pins. Table 23 PES12N3A Alphabetical Signal List (Part 3 of 3) 26 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet PES12N3A Pinout — Top View 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 A B C D E F G H J K L M N P R T U V VDDCore (Power) VTTPE (Power) VDDI/O (Power) VDDPE (Power) Vss (Ground) Signals No Connection VDDAPE (Power) 27 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet PES12N3A Package Drawing — 324-Pin BC324/BCG324 28 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet PES12N3A Package Drawing — Page Two 29 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet Revision History February 8, 2007: Initial publication. April 4, 2007: In Table 3, revised description for MSMBCLK signal. May 30, 2007: Added ZG device revision to Ordering Information. November 14, 2007: Added new parameter, Termination Resistor, to Table 9, Input Clock Requirements. March 27, 2008: In Table 16, Thermal Specifications, added θJB and θJC parameters and revised the values for θJA. August 7, 2008: Added revision 1ZC to Ordering Information page. February 19, 2009: Added industrial temperature to Table 14 and to Order page. April 9, 2010: Revised package drawing on pages 28 and 29. 30 of 31 April 9, 2010 IDT 89HPES12N3A Data Sheet Ordering Information NN A AAA NNAN AA Product Family Operating Voltage Device Family Product Detail Device Revision AA Legend A = Alpha Character N = Numeric Character A Package Temp Range Blank I Commercial Temperature (0°C to +70°C Ambient) Industrial Temperature (-40° C to +85° C Ambient) BC BC324 324-ball CABGA BCG BCG324 324-ball CABGA, Green ZC ZG 1ZC ZC revision ZG revision 1ZC revision 12N3A 12-lane, 3-port PES PCI Express Switch H 1.0V +/- 0.1V Core Voltage 89 Serial Switching Product Valid Combinations 89HPES12N3AZCBC 324-pin BC324 package, Commercial Temp. 89HPES12N3AZCBCI 324-pin BC324 package, Industrial Temp. 89HPES12N3AZGBC 324-pin BC324 package, Commercial Temp. 89HPES12N3AZGBCI 324-pin BC324 package, Industrial Temp. 89HPES12N3A1ZCBC 324-pin BC324 package, Commercial Temp. 89HPES12N3A1ZCBCI 324-pin BC324 package, Industrial Temp. 89HPES12N3AZCBCG 324-pin Green BC324 package, Commercial Temp. 89HPES12N3AZCBCGI 324-pin Green BC324 package, Industrial Temp. 89HPES12N3AZGBCG 324-pin Green BC324 package, Commercial Temp. 89HPES12N3AZGBCGI 324-pin Green BC324 package, Industrial Temp. 89HPES12N3A1ZCBCG 324-pin Green BC324 package, Commercial Temp. 89HPES12N3A1ZCBCGI 324-pin Green BC324 package, Industrial Temp. ® CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com 31 of 31 for Tech Support: email: ssdhelp@idt.com phone: 408-284-8208 April 9, 2010 IMPORTANT NOTICE AND DISCLAIMER RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products. (Rev.1.0 Mar 2020) Corporate Headquarters Contact Information TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/ Trademarks Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. © 2020 Renesas Electronics Corporation. All rights reserved.
89HPES12N3A1ZCBCG 价格&库存

很抱歉,暂时无法提供与“89HPES12N3A1ZCBCG”相匹配的价格&库存,您可以联系我们找货

免费人工找货