0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISL8282MFRZ-T1

ISL8282MFRZ-T1

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    SMD83 模块

  • 描述:

    DC DC CONVERTER 0.5-5V 15A

  • 数据手册
  • 价格&库存
ISL8282MFRZ-T1 数据手册
DATASHEET ISL8282M 15A High Efficiency Hybrid Digital Step-Down Power Module The ISL8282M is a PMBus enabled DC/DC single channel step-down power supply featuring the proprietary Renesas R4™ Technology. The module supports a wide 4.5V to 16.5V input voltage range and a wide 0.5V to 5V output range capable of delivering up to 15A of continuous current. The ISL8282M achieves up to 95% conversion efficiency and is optimized for high power density. Integrated LDOs provide module bias voltage allowing for single supply operation. The ISL8282M includes a SMBus/PMBus/I2C interface for device configuration, telemetry (VIN, VOUT, IOUT, and temperature), and fault reporting. The proprietary Renesas R4 control scheme has extremely fast transient performance, accurately regulated frequency control, and all internal compensation. An efficiency enhancing PFM mode greatly improves light-load efficiency. The ISL8282M’s serial bus allows for easy R4 loop optimization that results in fast transient performance across a wide range of applications including all ceramic output filters. The ISL8282M has four 8-bit configuration pins that provide very flexible configuration options (such as frequency, VOUT, and AV gain) without the need for built-in NVM memory. As a result, the design flow closely matches traditional analog modules while still offering the design flexibility and feature set of a digital SMBus/PMBus/I2C interface. The ISL8282M features remote voltage sensing, completely eliminates any potential difference between remote and local ground, and improves regulation and protection accuracy. A precision enable input coordinates the startup of the ISL8282M with other voltage rails and is especially useful for power sequencing. The ISL8282M integrates all power and most passive components to minimize the external components and significantly reduce design complexity and board space. The ISL8282M is available in a low-profile, thermally enhanced, compact 12mmx11mmx5.3mm fully encapsulated HDA package. Applications FN9365 Rev.1.00 Feb 14, 2019 Features • Proprietary Renesas R4 Technology • Linear control loop for optimal transient response • Variable frequency and duty cycle control during load transient for fastest possible response • Inherent voltage feed-forward for wide range input • Input voltage range: 4.5V to 16.5V • Output voltage range: 0.5V to 5V • ±1.5% load/line/temperature regulation with remote sense • Supports all ceramic solutions • Integrated LDOs for single input rail solution • SMBus/PMBus/I2C compatible up to 1.25MHz • 256 boot-up voltage levels with a configuration pin • Seven switching frequency options from 300kHz to 1MHz • PFM operation option for improved light-load efficiency • Startup into precharged load • Power-good monitor for soft-start and fault detection • Comprehensive fault protection for high system reliability • Over-temperature protection • Output overcurrent and short-circuit protection • Output overvoltage and undervoltage protection • Open remote sense protection • Input UVLO and power sequence, fault reset • Compatible with Renesas PowerNavigator™ software • Thermally enhanced 12mmx11mmx5.3mm HDA package • Servers, telecom, storage, and datacom Related Literature • Industrial/ATE and networking equipment For a full list of related documents, visit our website: • Graphics cards • ISL8282M device page • General purpose power for ASIC, FPGA, DSP, and memory FN9365 Rev.1.00 Feb 14, 2019 Page 1 of 51 ISL8282M Contents 1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1 1.2 1.3 1.4 1.5 2. Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 5 7 8 Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 2.2 2.3 2.4 3. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 11 12 12 Typical Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1 3.2 3.3 3.4 3.5 4. Efficiency Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Voltage Ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Load Transient Response Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Startup and Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Derating Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 17 19 20 21 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 Configuring Internal Bias and LDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Enabling and Disabling the ISL8282M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programming the Resistor Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Soft-Starting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Boot-Up Voltage Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Monitoring and Compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fault Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PGOOD Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PFM Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SMBus, PMBus, and I2C Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 23 24 27 28 35 36 38 38 38 5. Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6. Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 7. Package Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.1 7.2 7.3 7.4 PCB Layout Pattern Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Vias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stencil Pattern Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reflow Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FN9365 Rev.1.00 Feb 14, 2019 47 47 47 48 Page 2 of 51 ISL8282M 8. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 9. Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 FN9365 Rev.1.00 Feb 14, 2019 Page 3 of 51 ISL8282M 1. 1.1 1. Overview Overview Typical Application Circuit ,6/0 9WR9,QSXW 9287 9,1 &,1 P) &,1 [P) 9WR9 2XWSXW  5 9,1 3+$6( (1 9/'2 &287 [P) P) NŸ 39&& Ÿ 3*22' 96(1 39&& 5*1' 9'' &6(1 Ÿ P) 5 5 5 5 5 5 5 5 5 352* &6571 352* 17& 352* 6&/ 352* 6'$ NŸ 39&& 30%XV ,QWHUIDFH 6$/57 ,287 P) 6*1' 3*1' 3*1' • • • • For VOUT = 3.3V, minimum VIN is 5.5V; for VOUT = 5V, minimum VIN is 8V. R35: see Table 2 on page 9. R2 and R3: to program output voltage, see Table 4 on page 25 for typical VOUT. R10 and R11: to program PFM/PWM mode, temperature compensation, and PMBus address, see Table 5 on page 25 for typical applications. • R8 and R9: to program fSW, AV gain, OCP retry/latch off, and ultrasonic PFM enable, see Table 6 on page 26 for typical applications. • R5 and R6: to program soft-start ramp rate, RR impedance, and AV gain multiplier (1x or 2x), see Table 7 on page 27 for typical applications. • R14: IOUT pull-up resistor. See Table 2 on page 9. Figure 1. Wide Range Input and Output Application 5.3mm 11mm 12mm Figure 2. Small Package for High Power Density FN9365 Rev.1.00 Feb 14, 2019 Page 4 of 51 ISL8282M 3*1' 3*1' 6*1' 9/'2 6$/(57 6'$ 6&/ 352* 352* Block Diagram 352* 1.2 1. Overview &RQWUROOHU 6ZLWFKLQJ )UHTXHQF\ 39&& P) 9'' 7(03 9,1 9287 P) 9/'2 9,1 9/'2 0RGXODWRU 73 'ULYHU 5*1' 96(1 9,1 P) 2&3 273 (1 ,287 60%XV30%XV,& ,QWHUIDFH 6RIW6WDUW DQG)DXOW /RJLF P) *DWH&RQWURO /RJLF 17& 9,1 'ULYHU 3+$6( ,287 P) &XUUHQW6HQVHDQG 7HPSHUDWXUH &RPSHQVDWLRQ 2YHUFXUUHQWDQG 2YHU7HPSHUDWXUH P) P+ 9287 &6(1 73 ,QWHUQDO&RPSHQVDWLRQ $PSOLILHUDQG5HIHUHQFH 9ROWDJH&LUFXLW 2YHUYROWDJH 8QGHUYROWDJH 352* 5*1' 96(1 &6571 1.3 Ordering Information Part Number (Notes 2, 3) Part Marking Temp Range (°C) Tape and Reel (Units) (Note 1) Package (RoHS Compliant) Pkg. Dwg. # ISL8282MFRZ ISL8282M -40 to +125 - 83 Ld 12x11 HDA Module Y83.12x11 ISL8282MFRZ-T ISL8282M -40 to +125 720 83 Ld 12x11 HDA Module Y83.12x11 ISL8282MFRZ-T1 ISL8282M -40 to +125 100 83 Ld 12x11 HDA Module Y83.12x11 ISL8282MEVAL1Z Evaluation Board Notes: 1. See TB347 for details about reel specifications. 2. These plastic packaged products are RoHS compliant by EU exemption 7C-I and employ special Pb-free material sets; molding compounds/die attach materials and NiPdAu plate - e4 termination finish which is compatible with both SnPb and Pbfree soldering operations. RoHS compliant products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 3. For Moisture Sensitivity Level (MSL), see the ISL8282M device page. For more information about MSL, see TB363. FN9365 Rev.1.00 Feb 14, 2019 Page 5 of 51 ISL8282M 1. Overview Table 1. Key Differences Between Family of Parts Parameters ISL8282M ISL8280M ISL8212M ISL8210M Load Current (A) 15 10 15 10 Minimum VIN (V) 4.5 4.5 4.5 4.5 Maximum VIN (V) 16.5 16.5 16.5 16.5 Minimum VOUT (min) (V) 0.5 0.5 0.5 0.5 Maximum VOUT (V) 5 5 5 5 Peak Efficiency (%) 95.2 95.2 95.2 95.2 POR Yes Yes Yes Yes Minimum Switching Frequency (kHz) 255 255 255 255 Maximum Switching Frequency (kHz) 1130 1130 1130 1130 Control Type R4 R4 R4 R4 Sync Capability No No No No Load Sharing No No No No PMBus Yes Yes No No FN9365 Rev.1.00 Feb 14, 2019 Page 6 of 51 ISL8282M 1.4 1. Overview Pin Configuration 83 Ld 12x11 HDA Top View        $ 6&/. 9'' (1 (1 1& 1& 1& % SALERT & 6'$ ' 5*1' ( 96(1 7VLDO 9,1 39&&      PGND2 PGND2 PGND2 PGND2 PGND2 PGND2 PGND2 PGND2 9,1 PHASE 73 PGND1 73 PGOOD 6*1' 6*1' 6*1' ) CSRTN 6*1' 6*1' 6*1' * &6(1 ,287 PROG3 PROG1 9,1 9,1 9,1 PHASE PGND1 PGND1 + 17& PROG4 PROG2 9,1 9,1 9,1 PHASE PGND1 PGND1 9,1 9,1 9,1 PHASE PGND1 PGND1 - 9,1 . 9287 9287 9287 9287 9287 PHASE PHASE PHASE PHASE PHASE PGND1 / 9287 9287 9287 9287 9287 PHASE PHASE PHASE PHASE PHASE PGND1 FN9365 Rev.1.00 Feb 14, 2019 Page 7 of 51 ISL8282M 1.5 1. Overview Functional Pin Descriptions Pin Number Symbol A5, A6, A7 NC No connection pads. The pads dissipate the inductor heat and provide good thermal performance. Do not connect to any other circuits. A9, A10, A11, A12, B9, B10, B11, B12 PGND2 Power ground. The pads are connected to the source of the low-side MOSFET inside the module. F7, F9, G7, G8, G9, H7, H8, H9, J7, J8, J9 VIN F10, G10, H10, J10, K7, K8, K9, K10, K11, L7, L8, L9, L10, L11 PHASE Phase node connection. The pads are connected to the junction of the high-side MOSFET’s source, output filter inductor, low-side MOSFET’s drain, and return path for the UGATE high-side MOSFET driver. F12, G11, G12, H11, H12, J11, J12, K12, L12 PGND1 Power ground. The pads are the sources of the lower MOSFET inside the module and should be connected to the (-) terminals of the external input capacitors and output capacitors. K1, K2, K3, K4, K5, L1, L2, L3, L4, L5 VOUT Regulated power module output. Apply the output load between VOUT and PGND1. A1 SCLK SMBus/PMBus/I2C synchronous clock signal input. A pull-up resistor is required for this application. A2 VDD Logic bias supply. Connect the pin externally to the PVCC rail. A3, A4 EN B1 Description Power input. Connect the pads directly to an input rail in the range of 4.5V to 16.5V. Connect the input ceramic capacitors between VIN and PGND1 as close as possible to the module. Precision enable input. Pulling EN above the rising threshold voltage initiates the soft-start sequence. Pulling EN below the failing threshold voltage suspends module operation. SALERT Output pin for transferring the active low signal driven asynchronously from the module to SMBus/PMBus. A pull-up resistor is required for this application. I/O pin for transferring data signals between the SMBus/PMBus/I2C host and the module. A pull-up resistor is required for this application. C1 SDA C4 7VLDO C5 VIN1 Input voltage pin for the R4 loop (5V) and LDO (7V). Place a high quality low ESR ceramic capacitor (1.0μF, X7R) in close proximity to the pin. C6 PVCC Output of the 5V LDO to bias internal control circuits and MOSFETs drivers of ISL8282M. Place a high quality low ESR ceramic capacitor (4.7μF, X7R) in close proximity to the pin. C7 TP1 D1 RGND Monitors the negative rail of the module output. Connect to ground at the point of regulation. E1 VSEN Monitors the positive rail of the module output. Connect to the point of regulation. E2 PGOOD Open-drain indicator output. The PGOOD signal is asserted when the output voltage is within ±12.5% of the nominal set output voltage and is deasserted when the output voltage is outside of the stated range or the EN pin is pulled low. E3, E4, E5, F3, F4, F5 SGND Signal ground pads. The small-signal ground is common to all control circuitry and all voltage levels are measured with respect to this pin. Tie SGND to a solid low noise GND plane. F2 CSRTN Monitors the negative flow of output current for overcurrent protection and telemetry. F11 TP2 7V LDO used to bias the current sensing amplifier. Test pad. Leave this pin open. Test pad. Leave this pin open. G2 CSEN Monitors the positive flow of output current for overcurrent protection and telemetry. G4 IOUT Output current monitor pin. An internal resistor sets the gain and an internal capacitor provides the averaging function; an external pull-up resistor to VDD is recommended to calibrate the no load offset. G5 PROG3 FN9365 Rev.1.00 Feb 14, 2019 Programming pin for ultrasonic PFM operation, fault behavior, switching frequency, and R4 (AV) control loop gain. Page 8 of 51 ISL8282M 1. Overview Pin Number Symbol Description G6 PROG1 H2 NTC Input pin for temperature measurement. An NTC thermistor and a decoupling capacitor inside the module are connected between this pin and SGND. Connect this pin through a resistor (1.54kΩ)to a VDD pad externally. The voltage at this pin is inversely proportional to the module temperature. H5 PROG4 Programming pin for modulator (R4) RR impedance and output slew rate during soft-start (SS). This pin also sets the AV gain multiplier to 1x or 2x and determines the AV gain on PROG3. H6 PROG2 Programming pin for PWM/PFM mode, temperature compensation, and serial bus (SMBus/PMBus/I2C) address. Programming pin for boot-up voltage. Table 2. ISL8282M Design Guide Matrix of Typical Applications VOUT (V) VIN (V) Frequency (kHz) AV Gain RR (Ω) TCOMP (°C) R14 (MΩ) R35 (Ω) 0.5 5 400 49 200k 5 1.2 0 0.6 0.75 10 2 12 2 15 3 5 400 49 200k 5 10 2 12 2 15 3 5 400 49 200k 5 10 0.9 1 1.2 1.5 1.8 FN9365 Rev.1.00 Feb 14, 2019 1.2 1.2 3 15 open 400 49 200k 5 1.2 10 3 12 open 15 open 5 400 49 200k 5 1.2 10 3 12 open 15 open 5 400 26 200k 5 1.2 10 3 12 open 15 open 5 500 26 200k 5 1.2 10 3 12 open 15 open 5 0 3 12 5 0 500 26 200k 5 1.2 10 3 12 open 15 open 0 0 0 0 0 Page 9 of 51 ISL8282M 1. Overview Table 2. ISL8282M Design Guide Matrix of Typical Applications (Continued) VOUT (V) VIN (V) Frequency (kHz) AV Gain RR (Ω) TCOMP (°C) R14 (MΩ) R35 (Ω) 2.5 5 600 26 200k 5 1.2 0 10 3 12 open 15 3.3 5.5 open 700 26 200k 5 10 3 12 open 15 5 1.2 8 850 26 200k 5 0 open 121 (Note 4) 0.909 0 10 1.2 12 4.02 15 open 121 (Note 4) Note: 4. A 121Ω resistor is needed only when OCP behavior is set to Retry. When a 121Ω resistor is connected between VIN and VIN1, the READ_VIN command in PowerNavigator reads back the VIN1 voltage. FN9365 Rev.1.00 Feb 14, 2019 Page 10 of 51 ISL8282M 2. 2. Specifications Specifications 2.1 Absolute Maximum Ratings Parameter Minimum Maximum Unit VDD, PVCC, VSEN -0.3 +7 V Module Input Voltage, VIN -0.3 +20 V Module Input Voltage, VIN1 -0.3 +20 V 7VLDO -0.3 +7.75 V Output Voltage, VOUT -0.3 +5.5 V BOOT Voltage (VBOOT-GND) -0.3 +30 V BOOT to PHASE Voltage (VBOOT-PHASE) (DC) -0.3 +7 V BOOT to PHASE Voltage (VBOOT-PHASE) ( UVLO Bias UVLO VDD, PVCC, 7VLDO UVLO Shut down and recover when Bias > UVLO Startup OVP Higher than VBOOT. See “Electrical Specifications” on page 12. Output OVP Rising = 116%; Falling = 100% Latch OFF, reset by VDD or toggling Enable (including the EN pin and/or OPERATION command based on the ON_OFF_CONFIG setting) Output UVP 74% of VOUT, Latch OFF Short-Circuit and OCP Protection Peak load current = 18.8A typical Latch OFF, reset by VDD or toggling Enable (including the EN pin and/or OPERATION command based on the ON_OFF_CONFIG setting), or retry every 9ms; option is programmable by PROG3 or D3[0] OTP Rising = 22.31%VDD (~+136°C) Falling = 27.79%VDD (~+122°C) Shut down above +136°C and recover when temperature drops below +122°C FN9365 Rev.1.00 Feb 14, 2019 Page 36 of 51 ISL8282M 4. Functional Description Input UVLO and OTP faults respond to the current state with hysteresis. Output OVP and output UVP faults are latch events. Output OCP and output short-circuit faults can be latch or retry events depending on the PROG3 or D3[0] setting. All fault latch events can be reset by VDD cycling, toggling the EN pin, or with the serial bus OPERATION command based on the ON_OFF_CONFIG setting. The OCP retry event has a hiccup time of 9ms and the module can be recovered when the fault is removed. 4.7.1 Overvoltage Protection The Overvoltage Protection (OVP) fault detection circuit triggers when the voltage between VSEN+ and VSEN- is above the rising overvoltage threshold. When an OVP fault is declared, the module latches off and the PGOOD pin is asserted low. The fault remains latched and can be reset by VDD cycling, toggling the EN pin, and/or the serial bus OPERATION command based on the ON_OFF_CONFIG setting. Although the module latches off in response to an OVP fault, the Low-Side Gate Driver (LGATE) retains the ability to toggle the low-side MOSFET on and off in response to the output voltage transversing the OVP rising and falling thresholds. The LGATE turns on the low-side MOSFET to discharge the output voltage, protecting the load. The LGATE turns off the low-side MOSFET when the sensed output voltage is lower than the falling overvoltage threshold (typically 100%). If the output voltage rises again, the LGATE turns on the low-side MOSFET when the output voltage is above the rising overvoltage threshold (typically 120%). This process protects the load when there is a consistent overvoltage condition. In addition to normal OVP operation, the startup OVP circuits are enabled to protect against OVP events 5.5ms (typical, worst 6.5ms) after all rails (VDD, PVCC, 7VLDO, VIN) POR and before the end of soft-start while the OVP level is set higher than VBOOT. See “Electrical Specifications” on page 12. 4.7.2 Undervoltage Protection The Undervoltage Protection (UVP) fault detection circuit triggers if the output voltage is below the undervoltage threshold (typically 74% of DAC). When an UVP fault is declared, the module latches off, forcing the LGATE and High-Side Gate Driver (UGATE) outputs low, and the PGOOD pin is asserted low. The fault remains latched and can be reset by VDD cycling, toggling the EN pin, and/or with the serial bus OPERATION command based on the ON_OFF_CONFIG setting. 4.7.3 Overcurrent and Short-Circuit Protection Inductor DCR sensing is used for current sense and senses current continuously for fast response. The current sense amplifier uses the CSEN and CSRTN inputs to reproduce a signal proportional to the inductor current, IL. The reproduced signal is used for current reporting and overcurrent protection. The Overcurrent Protection (OCP) is triggered when the load current is typically 18.8A. OCP protects inductor saturation from short-circuit events and provides a more robust power train and system protection. When an OCP or short-circuit fault is declared, the module latches off, forcing the both the high-side and low-side gate driver outputs low, or it retries with a hiccup time of 9ms. The fault response is programmable by PROG3 or D3[0]. However, the latched off event can be reset by VDD cycling, toggling the EN pin, and/or with the serial bus OPERATION command based on the ON_OFF_CONFIG setting. 4.7.4 Over-Temperature Protection An NTC inside the module senses the inductor temperature for both over-temperature and current sense temperature compensation. The NTC is connected to the NTC pin and SGND pad and results in lower NTC pin voltage at higher temperatures. A comparator with hysteresis compares the NTC pin voltage to the threshold set. At +136°C (typical), Over-Temperature Protection (OTP) is triggered and the ISL8282M operation is disabled. When the sensed temperature is around +122.4°C, the ISL8282M resumes normal operation. When an OTP fault is declared, the module forces the LGATE and UGATE outputs low. FN9365 Rev.1.00 Feb 14, 2019 Page 37 of 51 ISL8282M 4.8 4. Functional Description PGOOD Monitor The PGOOD pin indicates when the converter is capable of supplying regulated voltage. PGOOD is asserted low if there is a fault condition of a rail’s (VDD, PVCC, 7VLDO, or VIN) UVLO, output Overcurrent (OCP), output Overvoltage (OVP), output Undervoltage (UVP), or Over-Temperature (OTP). Note: the PGOOD pin is an undefined impedance with insufficient VDD (typically VOUT_MAX, or VOUT OPEN SENSE) Page 42 of 51 ISL8282M 4. Functional Description Table 12. SMBus, PMBus, and I2C Supported Commands (Continued) Command Code Access Word Length (Byte) 88h[15:0] R Two READ_VIN Input voltage (N = - 4, Max = 31.9375V) VIN (V) = HEX2DEC(88 hex data - E000h) x 0.0625V 8Bh[15:0] R Two READ_VOUT Module output voltage, resolution = 7.8125mV = 2-7 VOUT (V) = HEX2DEC(8B hex data) x 2-7 8Ch[15:0] R Two READ_IOUT Module output current (N = -3, IMAX = 63.875A) IOUT (A) = HEX2DEC(8C hex data-E800) x 0.125A when IOUT pin voltage = 2.5V at 63.875A load. 8Dh[15:0] R Two READ_TEMP Module temperature 98h[7:0] R One 02h Default Value Command Name PMBUS_REVISION Indicates PMBus revision 1.2 AD[15:0] Block R Two 0xD000 AE[15:0] Block R Two 0x000A D0[0:0] R/W One PROG2[7:7] ENABLE_PFM PFM OPERATION 0h = PFM Enabled 1h = PFM Disabled (always CCM mode) D1[1:0] R/W One PROG2[6:5] TEMP_COMP Thermal compensation: 0h = +30°C 01h = +15°C 02h = +5°C 03h = OFF D2[0:0] R/W One PROG3[7:7] D3[0:0] R/W One PROG3[6:6] OCP_BEHAVIOR D4[2:0] R/W One PROG3[2:0] AV_GAIN D5{2:0] R/W One PROG4[7:5] RAMP_RATE FN9365 Rev.1.00 Feb 14, 2019 IC_DEVICE_ID Description ISL8282M device ID IC_DEVICE_REVISION ISL8282M device revision ENABLE_ULTRASONIC Ultrasonic PFM enable 0h = 25kHz clamp disabled 1h = 25kHz clamp enabled Set latch or infinite retry for OCP fault: 0h = Retry every 9ms 01 = Latch-OFF R4 AV GAIN (PROG4, AV Gain Multiplier = 2x) 0h = 84 1h = 73 2h = 61 3h = 49 4h = 38 5h = 26 6h = 14 7h = 2 R4 AV GAIN (PROG4, AV Gain Multiplier = 1x) 0h = 42 1h = 36.5 2h = 30.5 3h = 29.5 4h = 19 5h = 13 6h = 7 7h = 1 Soft-start rate (mV/µs) 0h = 1.25 1h = 2.5 2h = 5 3h = 10 5h = 0.157 6h = 0.315 7h = 0.625; Page 43 of 51 ISL8282M 4. Functional Description Table 12. SMBus, PMBus, and I2C Supported Commands (Continued) Command Code D6[1:0] Access Word Length (Byte) Default Value Command Name R/W One PROG4[4:3] SET_RR Description Sets RR 0h = 200k 01h = 400k 02h = 600k 03h = 800k DC[7:0] R One READ_PROG1 Reads PROG1 DD{7:0] R One READ_PROG2 Reads PROG2 DE[7:0] R One READ_PROG3 Reads PROG3 DF[7:0] R One READ_PROG4 Reads PROG4 Note: Serial bus communication is valid 5.5ms (typical, worst 6.5ms) after VDD, VIN, 7VLDO, and PVCC above POR. The telemetry update rate is 108µs. FN9365 Rev.1.00 Feb 14, 2019 Page 44 of 51 ISL8282M 5. 5. Layout Guidelines Layout Guidelines Careful attention to layout requirements is necessary for a successful implementation of the ISL8282M power module. The ISL8282M switches at a very high frequency. Therefore, the switching times are very short. At these switching frequencies, even the shortest trace has significant impedance. The peak gate drive current also rises significantly in an extremely short time. Current transition from one MOSFET to another causes voltage spikes across the interconnecting impedances and parasitic circuit elements. The voltage spikes can degrade efficiency, generate EMI, and increase MOSFET voltage stress and ringing. Careful component selection and proper PCB layout minimize the magnitude of these voltage spikes. Use the ISL8282MEVAL1Z as a example and reference for the PCB layout. The following are layout considerations: • Renesas recommends using a six-layer PCB board. Use the top and bottom layer to route VIN and VOUT. Use a full ground plane in the internal layers (underneath the module) with shared SGND and PGND to simplify the layout design. Use another full ground plane directly above the bottom layer. Use the other internal layers to route the remote sense, PGOOD, SCL, SDA, and SALERT signals. • Place the input capacitors and high frequency decoupling ceramic capacitors between VIN and PGND as close to the module as possible. The loop formed by the input capacitors, VIN, and PGND must be as small as possible to minimize high frequency noise. Place the output ceramic capacitors close to VOUT. Use a copper plane to connect the output ceramic capacitors to the load to avoid any parasitic inductances and resistances. An example layout is illustrated in Figures 50 and 51. • Use large copper planes for power paths (VIN, VOUT, and PGND) to minimize conduction loss and thermal stress. Also, use multiple vias to connect the power planes in different layers. • Do not oversize the copper planes for the PHASE planes. Because the PHASE planes are subjected to very high dv/dt, the parasitic capacitor formed between these planes and the surrounding circuitry tends to couple the switching noise. Ensure that none of the sensitive signal traces are routed close to the PHASE plane. • Place the PVCC and VIN1 bypass capacitors underneath the PVCC and VIN1 pins and connect their grounds to the SGND. For the external pin-strap resistor dividers connected to PROG1, PROG2, PROG3, and PROG4, connect the low side dividers’ ground to the SGND. If a local decoupling capacitor is used to bias these resistor dividers, place the decoupling capacitor close to the dividers, and connect the capacitor’s ground to the SGND. An example layout is illustrated in Figure 51. • Connect remote sensing traces to the regulation point to achieve a tight output voltage regulation. Route the remote sensing traces in parallel underneath the PGND layer and avoid routing the sensing trace near noisy planes such as PHASE. Place 2Ω resistors close to VSEN and RGND, respectively, to dampen the noise on the traces. Figure 50. Layout Example - Top Layer FN9365 Rev.1.00 Feb 14, 2019 Figure 51. Layout Example - Bottom Layer Page 45 of 51 ISL8282M 6. 6. Thermal Considerations Thermal Considerations Use the experimental power loss and θJA from thermal modeling analysis to evaluate the thermal consideration for the module. The derating curves are derived from the maximum power allowed while maintaining the temperature below the maximum junction temperature of +125°C. The derating curves are derived based on tests of the ISL8282M evaluation board, which is a 6-layer board 3 x 3.4 inches in size with 2oz Cu on all layers and multiple via interconnects. In the actual application, other heat sources and design margins should be considered. FN9365 Rev.1.00 Feb 14, 2019 Page 46 of 51 ISL8282M 7. 7. Package Description Package Description The structure of the ISL8282M belongs to the High Density Array no-lead package (HDA). The HDA package has good thermal and electrical conductivity, low weight, and small size and is applicable for surface mounting technology that is being more readily used in the industry. The ISL8282M contains several types of devices, including resistors, capacitors, inductors, MOSFETs, and control ICs. The ISL8282M is a copper leadframe-based package with exposed copper thermal pads that have good electrical and thermal conductivity. The copper leadframe and multicomponent assembly is overmolded with a polymer mold compound to protect these devices. The package outline, typical Printed Circuit Board (PCB) layout pattern design, and typical stencil pattern design are shown in the “Package Outline Drawing” on page 50. The module has a small size of 12mmx11mmx5.3mm. 7.1 PCB Layout Pattern Design The bottom of the ISL8282M is a leadframe footprint attached to the PCB by a surface mounting process. The PCB layout pattern is shown in the “Package Outline Drawing” on page 50. The PCB layout pattern is an array of solder mask defined PCB lands that align with the perimeters of the HDA exposed pads and I/O termination dimensions. The thermal lands on the PCB layout also feature an array of solder mask defined lands and should match 1:1 with the package exposed die pad perimeters. The exposed solder mask defined PCB land area should be 50-80% of the available module I/O area. 7.2 Thermal Vias A grid of 1.0mm to 1.2mm pitch thermal vias drops down and connects to buried copper plane(s). Place the grid under the thermal land. The vias should be about 0.3mm to 0.33mm in diameter with the barrel plated to about 1.0 oz. of copper. Although adding more vias (by decreasing via pitch) improves the thermal performance, increasing the number of vias eventually yields diminishing returns. Use as many vias as practical for the thermal land size allowed by your board design rules. 7.3 Stencil Pattern Design Reflowed solder joints on the perimeter I/O lands should have about a 50µm to 75µm (2mil to 3mil) standoff height. The solder paste stencil design is the first step in developing optimized, reliable solder joints. The stencil aperture size to solder mask defined PCB land size ratio should typically be 1:1. The aperture width can be reduced slightly to help prevent solder bridging between adjacent I/O lands. A typical solder stencil pattern is shown in the “Package Outline Drawing” on page 50. Consider the symmetry of the whole stencil pattern when designing its pads. A laser cut, stainless steel stencil with electropolished trapezoidal walls is recommended. Electropolishing “smooths” the aperture walls resulting in reduced surface friction and better paste release, which reduces voids. Using a Trapezoidal Section Aperture (TSA) also promotes paste release and forms a brick-like paste deposit that assists in firm component placement. A 0.1mm to 0.15mm stencil thickness is recommended for this large pitch HDA. FN9365 Rev.1.00 Feb 14, 2019 Page 47 of 51 ISL8282M 7.4 7. Package Description Reflow Parameters Due to the low mount height of the HDA, “No-Clean” Type 3 solder paste per ANSI/J-STD-005 is recommended. A nitrogen purge is also recommended during reflow. A system board reflow profile depends on the thermal mass of the entire populated board, so it is not practical to define a specific soldering profile just for the HDA. The profile given in Figure 52 is a guideline that can be adapted for varying manufacturing practices and applications. 300 Peak Temperature ~+245°C; Typically 60s-150s Above +217°C Keep Less Than 30s Within 5°C of Peak Temp. Temperature (°C) 250 200 Slow Ramp (3°C/s Max) and Soak from +150°C to +200°C for 60s~180s 150 100 Ramp Rate 1.5°C from +70°C to +90°C 50 0 0 100 150 200 250 300 350 Duration (s) Figure 52. Typical Reflow Profile FN9365 Rev.1.00 Feb 14, 2019 Page 48 of 51 ISL8282M 8. 8. Revision History Revision History Rev. Date 1.00 Feb 14, 2019 Updated Title on page 1. Updated VOUT, SALERT, and SDA pin descriptions on page 8. Updated Figure 28 label on page 20. Updated the ENABLE_PFM command description on page 43. Removed subheading on page 45. Updated Disclaimer. 0.00 Dec 14, 2018 Initial release. FN9365 Rev.1.00 Feb 14, 2019 Description Page 49 of 51 Package Outline Drawing Y83.12x11 83 I/O 12mmx11mmx5.3mm HDA Module Rev 0, 3/18 For the most recent package outline drawing, see Y83.12x11. ISL8282M FN9365 Rev.1.00 Feb 14, 2019 9. 9. Package Outline Drawing Page 50 of 51 1RWLFH  'HVFULSWLRQVRIFLUFXLWVVRIWZDUHDQGRWKHUUHODWHGLQIRUPDWLRQLQWKLVGRFXPHQWDUHSURYLGHGRQO\WRLOOXVWUDWHWKHRSHUDWLRQRIVHPLFRQGXFWRUSURGXFWV DQGDSSOLFDWLRQH[DPSOHV
ISL8282MFRZ-T1 价格&库存

很抱歉,暂时无法提供与“ISL8282MFRZ-T1”相匹配的价格&库存,您可以联系我们找货

免费人工找货