0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISL97694AIRTZ

ISL97694AIRTZ

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    VFQFN20

  • 描述:

    IC LED DRIVER RGLTR DIM 20TQFN

  • 数据手册
  • 价格&库存
ISL97694AIRTZ 数据手册
DATASHEET ISL97692, ISL97693, ISL97694A FN7839 Rev.6.00 Sep 8, 2017 Single or Multiple Cell Li-ion Battery Powered 4-Channel and 6-Channel LED Drivers The ISL97692, ISL97693, ISL97694A are Intersil’s highly integrated 4- and 6-channel LED drivers for display backlighting. These parts maximize battery life by featuring only 1mA quiescent current, and by operating down to 2.4V input voltage, with no need for higher voltage supplies. Features The ISL97692 has four channels and provides 8-bit PWM dimming with adjustable dimming frequency up to 30kHz. The ISL97693 has six channels with Direct PWM dimming control. The ISL97694A has 6 channels and provides 8-, 10-, or 12-bit PWM dimming with adjustable dimming frequency up to 30kHz, 7.5kHz, or 1.875kHz, respectively, controlled with I2C or PWM input. • 90% efficient at 6P5S, 3.7V and 20mA (ISL97693, ISL97694A) The ISL97692 and ISL97694A feature phase shifting that may be enabled optionally, providing an optimized phase delay between channels. In the ISL97692 and ISL97694A, phase shifting can multiply the effective dimming frequency by four and six allowing above audio-band PWM dimming with 10-bit dimming resolution. The ISL97692, ISL97693, ISL97694A employ adaptive boost architecture, which keeps the headroom voltage as low as possible to maximize battery life while allowing ultra low dimming duty cycle as low as 0.005% at 100Hz dimming frequency in Direct PWM mode. The ISL97692, ISL97693, ISL97694A incorporate extensive protection functions including string open and short circuit detections, OVP, and OTP. The ISL97692 and ISL97693 are offered in the 16 Ld 3x3mm TQFN package, and a 16 bump 1.7x1.7mm WLCSP for the ISL97692. The ISL97694A is offered in the 20 Ld 3x4mm TQFN package. All parts operate in the ambient temperature range of -40°C to +85°C. L1 VIN: 2.4V~5.5V 4.7µF 10 D1 10µH • 2.4V minimum input voltage, supports single cell applications • 4 channels, up to 40mA each (ISL97692) or 6 channels, up to 30mA each (ISL97693, ISL97694A) • Low 0.8mA quiescent current • PWM dimming control with internally generated clock - 8-bit resolution with adjustable dimming frequency up to 30kHz (ISL97692, ISL97694A) - 12-bit resolution with adjustable dimming frequency up to 1.875kHz (ISL97694A) - Optional automatic channel phase shift (ISL97692, ISL97694A) - Linear dimming from 0.025%~100% up to 5kHz or 0.4%~100% up to 30kHz (ISL97692, ISL97694A) • Direct PWM dimming with 0.005% minimum duty cycle at 100Hz • ±2.5% output current matching • Adjustable switching frequency from 400kHz to 1.5MHz Applications • Tablet, Notebook PC and Smart Phone Displays LED Backlighting Related Literature • For a full list of related documents, visit our website - ISL97692, ISL97693, ISL97694A product pages VOUT: 24.5V, 6 x 20mA 4.7µF 4.7µF 10 VIN LX COMP 15nF 12k 100pF 470k OVP 2.2nF ISL97694A 23.7k ISET 53k AGND 1 PGND ILED (mA) 1µF 0.1 0.01 SDA/PWMI SCL CH1 EN CH2 fPWM: 200Hz 0.001 CH3 FPWM 291k FSW CH5 CH6 143k FIGURE 1. ISL97694A TYPICAL APPLICATION DIAGRAM FN7839 Rev.6.00 Sep 8, 2017 fPWM: 100Hz CH4 0.0001 0.001 0.01 0.1 1 INPUT DIMMING DUTY CYCLE (%) FIGURE 2. ULTRA LOW PWM DIMMING LINEARITY Page 1 of 32 10 ISL97692, ISL97693, ISL97694A Table of Contents Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 PWM Boost Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Dimming Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Direct PWM Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Phase Shift Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 PWM Dimming Frequency Adjustment (ISL97692, ISL97694A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Current Matching and Current Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Dynamic Headroom Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Soft-Start and Power ON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Power-OFF Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Operation with Input Voltage Greater than 5.5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 SMBus/I2C Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Write Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Read Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Slave Device Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 SMBus/I2C Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Component Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Capacitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overvoltage Protection (OVP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Boost Output Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inductor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schottky Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 21 21 21 22 22 22 22 22 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unused LED Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dimming Mode Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High Current Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 22 22 22 PCB Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 PCB Layout with TQFN and WLCSP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 General Power PAD Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Fault Protection and Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short Circuit Protection (SCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Circuit Protection (OCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overvoltage Protection (OVP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Over-Temperature Protection (OTP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 26 26 26 26 26 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 FN7839 Rev.6.00 Sep 8, 2017 Page 2 of 32 ISL97692, ISL97693, ISL97694A Typical Application Circuits L1 V IN: 2 .4V ~5.5V 4.7 µF 10 D1 10µH VOUT : 24 .5V , 4 x 20 mA 4.7µF 4.7µF VIN 1µF LX COMP 15nF 12k OVP 100pF 470 k 2 .2nF 23 .7k ISL97692 ISET PGND 53k AGND ENPS CH1 PWMI CH2 EN CH3 FPWM 291 k CH4 FSW 143 k FIGURE 3. ISL97692 TYPICAL APPLICATION DIAGRAM - 4P7S L1 V IN: 2 .4V ~5.5V 4.7 µF 10 D1 10µH VOUT : 24.5V, 6 x 20mA 4.7µF 4.7µF VIN 1µF LX COMP 15nF 100pF 470 k OVP 2 .2nF 12k 23 .7k ISL97693 ISET 53k AGND PGND PWMI EN CH1 CH2 CH3 FSW 143 k CH4 CH5 CH6 FIGURE 4. ISL97693 TYPICAL APPLICATION DIAGRAM - 6P7S FN7839 Rev.6.00 Sep 8, 2017 Page 3 of 32 ISL97692, ISL97693, ISL97694A Typical Application Circuits (Continued) L1 V IN: 2 .4V ~5.5V D1 10µH 4.7µF 4.7µF 4.7 µF 10 VOUT : 24.5V, 6 x 20mA VIN 1µF LX COMP 15nF 100 pF 470k OVP 2.2nF 12k 23.7k ISL97694A ISET 53k AGND PGND SDA/PWMI SCL EN CH1 CH2 CH3 FPWM 291 k FSW CH4 CH5 CH6 143 k FIGURE 5. ISL97694A TYPICAL APPLICATION DIAGRAM- 6P7S FN7839 Rev.6.00 Sep 8, 2017 Page 4 of 32 ISL97692, ISL97693, ISL97694A Block Diagrams 24V, 4x40mA VIN: 2.4V TO 5.5V OPTIONAL FUSE 10µH VIN EN FSW LX O/P SHORT REG INTERNAL BIAS OVP OVP OSC & RAMP COMP PWM/ PFM LOGIC FET DRIVERS IMAX ILIMIT PGND COMP ISET GM AMP + - 8-BIT DAC HIGHEST VF STRING DETECT DYNAMIC HEADROOM CONTROL OPEN CKT, SHORT CKT DETECTION 1 + - REF GEN CH1 CH2 CH3 CH4 2 3 REF_OVP REF_VSC + - PWMI 8-BIT DIGITIZER FPWM ENPS 4 DIRECT PWM DETECT PHASE SHIFT & PWM DIMMING CONTROLLER ISL97692 TEMP SENSOR FIGURE 6. ISL97692 BLOCK DIAGRAM FN7839 Rev.6.00 Sep 8, 2017 Page 5 of 32 ISL97692, ISL97693, ISL97694A Block Diagrams (Continued) 24V, 6x30mA VIN: 2.4V TO 5.5V OPTIONAL FUSE 10µH VIN EN FSW LX O/P SHORT INTERNAL BIAS REG OVP OVP OSC & RAMP COMP IMAX ILIMIT PWM/ PFM LOGIC FET DRIVERS PGND GM AMP COMP ISET + - 8-BIT DAC HIGHEST VF STRING DETECT DYNAMIC HEADROOM CONTROL + - REF GEN OPEN CKT, SHORT CKT DETECTION 1 CH1 CH2 CH3 CH4 CH5 2 CH6 3 4 5 REF_OVP REF_VSC + - PWMI 6 PWM DIMMING CONTROLLER ISL97693 TEMP SENSOR FIGURE 7. ISL97693 BLOCK DIAGRAM FN7839 Rev.6.00 Sep 8, 2017 Page 6 of 32 ISL97692, ISL97693, ISL97694A Block Diagrams (Continued) 24V, 6x30mA VIN: 2.4V TO 5.5V 10µH OPTIONAL FUSE VIN EN FSW LX O/P SHORT REG INTERNAL BIAS OVP OVP OSC & RAMP COMP IMAX ILIMIT PWM/ PFM LOGIC FET DRIVERS PGND GM AMP COMP ISET + - 8-BIT DAC HIGHEST VF STRING DETECT DYNAMIC HEADROOM CONTROL + - REF GEN OPEN CKT, SHORT CKT DETECTION 1 CH1 CH2 CH3 CH4 CH5 2 CH6 3 4 5 REF_OVP REF_VSC SCL SDA/PWMI + - I2C CONTROLLER FPWM DIRECT PWM DETECT 6 PHASE SHIFT & PWM DIMMING CONTROLLER ISL97694A TEMP SENSOR FIGURE 8. ISL97694A BLOCK DIAGRAM FN7839 Rev.6.00 Sep 8, 2017 Page 7 of 32 ISL97692, ISL97693, ISL97694A Pin Configurations s ISL97692 (1.7x1.7x0.53mm, 16 BALL, 0.4mm PITCH WLCSP) TOP VIEW CH3 CH2 CH1 15 14 13 16 CH4 ISL97692 (16 LD TQFN) TOP VIEW AGND 1 FPWM EN LX A COMP PWMI VIN PGND B AGND ISET FSW OVP C CH4 CH3 CH2 CH1 D 4 3 2 1 12 OVP COMP 2 ISET 3 ENPS 11 FSW Thermal PAD FPWM 8 VIN 7 EN 6 9 LX PWMI 5 ENPS 4 10 PGND ISL97694A (20 LD TQFN) TOP VIEW CH4 CH3 CH2 1 6 16 CH1 12 OVP AGND 2 15 OVP 11 FSW COMP 3 14 FSW 13 NC Thermal PAD 4 SCL 5 12 PGND NC 6 11 LX 7 8 9 10 FPWM ISET VIN VIN 8 9 LX EN 7 17 CH6 10 PGND COMP 4 PWMI 6 18 EN Thermal PAD ISET 5 19 SDA/PWMI CH6 2 FN7839 Rev.6.00 Sep 8, 2017 CH5 CH1 CH5 1 AGND 3 20 13 CH2 14 CH3 15 16 CH4 ISL97693 (16 LD TQFN) TOP VIEW Page 8 of 32 ISL97692, ISL97693, ISL97694A Pin Descriptions ISL97692 PIN NAME TQFN WLCSP ISL97693 ISL97694A AGND 1 C4 3 2 Analog Ground for precision circuits. CH5 - - 1 20 Channel 5 current sink and channel monitoring. Tie pin to GND if channel unused. CH6 - - 2 1 Channel 6 current sink and channel monitoring. Tie pin to GND if channel unused. COMP 2 B4 4 3 External compensation. Fit a series RC comprising 12kΩ and 15nF from COMP to GND. ISET 3 C3 5 4 Channel current setting. The LED channel current is adjusted from 2mA to 40mA (ISL97692) or to 30mA with (ISL97693, ISL97694A) resistor RSET from ISET pin to GND. ENPS 4 A4 - - Enable Phase Shift PWM Dimming Control. High = Enable. Low = Disable. PWMI 5 B3 6 - PWM Input Signal for ISL97692/3 for brightness control. SCL (ISL97694A) - - - 5 I2C serial clock input. Mode selection to PWMI input when tied to GND for ISL97694A. SDA/PWMI (ISL97694A) - - - 7 I2C serial data input and output. PWMI input when SCL tied to GND for ISL97694A. EN 6 A2 7 8 Enable Input. High = Normal operation. Low = Shutdown. DESCRIPTION VIN 7 B2 8 9 Input Supply Voltage. FPWM 8 A3 - 10 Tie FPWM to VIN to select Direct PWM mode. In Direct PWM mode, the channel outputs follow the PWMI pin’s frequency and pulse width. Connect resistor RFPWM from FPWM to GND to select PWM dimming frequency adjustment. In this mode, the channel outputs follow the PWMI pin’s PWM duty, and the LED PWM dimming frequency is set by the value of resistor RFPWM. LX 9 A1 9 11 Input to boost switch. PGND 10 B1 10 12 Power ground (LX, CIN, and COUT Power return). FSW 11 C2 11 14 Switching Frequency Adjustment. The boost switching frequency is adjusted from 400kHz to 1.5MHz with resistor RFSW from FSW pin to GND. OVP 12 C1 12 15 Overvoltage protection input. CH1 13 D1 13 16 Channel 1 current sink and channel monitoring. Tie pin to GND if channel unused. CH2 14 D2 14 17 Channel 2 current sink and channel monitoring. Tie pin to GND if channel unused. CH3 15 D3 15 18 Channel 3 current sink and channel monitoring. Tie pin to GND if channel unused. CH4 16 D4 16 19 Channel 4 current sink and channel monitoring. Tie pin to GND if channel unused. NC - - - 6, 13 PAD FN7839 Rev.6.00 Sep 8, 2017 - Not connected internally. Connect to PGND and refer to Figure 32 in the General Power PAD Design Considerations. Page 9 of 32 ISL97692, ISL97693, ISL97694A Ordering Information PART NUMBER (Note 5) PART MARKING TEMP RANGE (°C) PACKAGE (RoHS Compliant PKG. DWG. # ISL97692IRTZ (Notes 1, 3) 7692 -40 to +85 16 Ld 3x3x0.75mm TQFN L16.3x3D ISL97692IIZ-T (Notes 2, 4) 7692 -40 to +85 16 Bump 1.7x1.7mm, 0.4mm Pitch WLCSP W4x4.16B ISL97693IRTZ (Notes 1, 3) 7693 -40 to +85 16 Ld 3x3x0.75mm TQFN L16.3x3D ISL97694AIRTZ (Notes 1, 3) 694A -40 to +85 20 Ld 3x4x0.8mm TQFN L20.3x4A NOTES: 1. Add “-T” suffix for for 6k unit or “-TK” suffix for 1k unit tape and reel options. Refer to TB347 for details on reel specifications. 2. Add “-T” suffix for for 3k unit tape and reel option. Refer to TB347 for details on reel specifications. 3. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 4. These Intersil Pb-free WLCSP packaged products employ special Pb-free material sets; molding compounds/die attach materials and SnAgCu - e1 solder ball terminals, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free WLCSP packaged products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 5. For Moisture Sensitivity Level (MSL), see the product information page for ISL97692, ISL97693, ISL97694A. For more information on MSL, see TB363. FN7839 Rev.6.00 Sep 8, 2017 Page 10 of 32 ISL97692, ISL97693, ISL97694A Absolute Maximum Ratings Thermal Information (Note 6) VIN, ISET, COMP, OVP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6V PWMI, FPWM, FSW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6V EN, ENPS, SCL, SDA/PWMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6V CH1 to CH6, LX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 28V PGND, AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +0.3V Maximum Average Current Into LX Pin for TQFN . . . . . . . . . . . . . . . . . .2.6A Maximum Average Current Into LX Pin for CSP . . . . . . . . . . . . . . . . . . . . 1A ESD Ratings Human Body Model (Tested per JESD22-A114F) (ISL97692, ISL97693) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2kV Human Body Model (Tested per JESD22-A114F) (ISL97694A) . . .2.5kV Machine Model (Tested per JESD22-A115C) . . . . . . . . . . . . . . . . . . 200V Charged Device Model (JESD22-C101E) . . . . . . . . . . . . . . . . . . . . . . . 2kV Latch-Up (Tested per JESD-78B; Class 2, Level A) . . . . . . . . . . . . . . 100mA Thermal Resistance (Typical) JA (°C/W) JC (°C/W) 16 Ld TQFN (Notes 7, 8) . . . . . . . . . . . . . . . 51 4.6 20 Ld TQFN (Notes 7, 8) . . . . . . . . . . . . . . . 45 3.0 16 Bump WLCSP (Note 7) . . . . . . . . . . . . . . 82 N/A Thermal Characterization (Typical) (Note 9) PSIJT (°C/W) 16 Ld TQFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.11 20 Ld TQFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.1 Thermal Characterization (Typical) PSIJB (°C/W) 16 Bump WLCSP (Note 10). . . . . . . . . . . . . . . . . . . . . . . 22 Maximum Continuous Junction Temperature . . . . . . . . . . . . . . . . .+125°C Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493 Recommended Operating Conditions Input Voltage (VIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4V to 5.5V Output Voltage (VOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Up to 26V Ambient Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 6. Voltage Ratings are all with respect to the AGND pin. 7. JA is measured in free air with the component mounted on a high-effective thermal conductivity test board with “direct attach” features. See TB379. 8. For JC, the “case temp” location is the center of the exposed metal pad on the package underside. 9. PSIJT is the PSI junction-to-top thermal characterization parameter. If the package top temperature can be measured with this rating then the die junction temperature can be estimated more accurately than the JC and JC thermal resistance ratings. 10. PSIJB is the PSI junction-to-board thermal characterization parameter. Electrical Specifications range, -40°C to +85°C. PARAMETER VIN = EN = 3.3V, TA = +25°C unless otherwise noted. Boldface limits apply over the operating temperature DESCRIPTION CONDITION MIN (Note 11) TYP MAX (Note 11) UNIT GENERAL VIN Backlight Supply Voltage, (Notes 12, 13) TA = +25°C 2.4 5.5 V Standby current EN = Low, LDO disabled 1 µA VIN Active Current, ILED = 40mA (ISL97692) 30mA (ISL97693/(ISL97694A) All channels 100% duty 2.5 mA All channels 0% duty 0.8 mA VOUT Output Voltage VIN ≥ 2.7V, ILED = 40mA (ISL97692) 30mA (ISL97693/4A) VUVLO Undervoltage Lockout Threshold VUVLO_HYS Undervoltage Lockout Hysteresis IVIN_Standby IVIN ENLow EN Input Low Voltage ENHi EN Input High Voltage 2 2.15 26 V 2.35 V 150 mV 0.5 1.5 V V BOOST SWITCHING REGULATOR SS SWILimit rDS(ON) Soft-start 100% LED Duty Cycle Boost FET Current Limit for QFN Boost FET Current Limit for CSP 2.7V < VIN < 5.5V, fSW = 600kHz, L = 10µH, TA ≤ +55°C Internal Boost Switch ON-Resistance TA = +25°C FN7839 Rev.6.00 Sep 8, 2017 7 ms 2.45 2.8 1.2A 1.6A 3.2 A 212 mΩ Page 11 of 32 A ISL97692, ISL97693, ISL97694A Electrical Specifications range, -40°C to +85°C. (Continued) PARAMETER Eff_peak DMAX VIN = EN = 3.3V, TA = +25°C unless otherwise noted. Boldface limits apply over the operating temperature DESCRIPTION Peak Efficiency Boost Maximum Duty Cycle DMIN Boost Minimum Duty Cycle fSW Boost Switching Frequency CONDITION MIN (Note 11) TYP VIN = 5.5V, VOUT = 21V, TA = +25°C, RFSW = 144kΩ, ICH1-CH6 = 20mA, L = 10µH with DCR 150mΩ 90 % VIN = 2.7V, VOUT = 21V, TA = +25°C, RFSW = 144kΩ, ICH1-CH6 = 20mA, L = 10µH with DCR 150mΩ 76 % FSW = 400kHz 93.5 % FSW = 1.5MHz 93 % FSW = 400kHz 11 FSW = 1.5MHz RFSW = 216kΩ 360 RFSW = 72.1kΩ RFSW = 57.7kΩ ILX_leakage MAX (Note 11) UNIT 400 15 % 440 kHz 1.2 1.35 1.5 % MHz 1.65 MHz 10 µA LX Leakage Current LX = 26V Channel-to-Channel DC Current Matching ILED = 20mA -2.5 +2.5 % Current Accuracy ILED = 20mA -3 +3 % 9.25 V REFERENCE IMATCH IACC FAULT DETECTION VSC Channel Short Circuit Threshold Vtemp Over-Temperature Threshold VOVPlo Overvoltage Limit on OVP Pin OVPfault 6.75 8 150 1.180 OVP Short Detection Fault Level 1.22 °C 1.245 V 75 mV ILED = 20mA TA = +25°C 300 (Note 14) mV ILED = 20mA, TA = +25°C 65 mV CURRENT SOURCES Vheadroom Dominant Channel Current Source Headroom at CH Pin VHEADROOM_RANGE Dominant Channel Current Sink Headroom Range at CHx Pin ILED(max) Maximum LED Current per Channel 2.7V < VIN < 5.5V, VOUT = 21V (ISL97692 QFN) 40 mA 2.7V < VIN < 5.5V, VOUT = 21V (ISL97692 WLCSP, ISL97693, and ISL97694A) 30 mA PWM GENERATOR VIL Guaranteed Range for PWM Input Low Voltage VIH Guaranteed Range for PWM Input High Voltage FPWMI PWMI Input and Output Frequency Range 0.5 1.5 8-bit Dimming Resolution 100 10-bit Dimming Resolution 12-bit Dimming Resolution V V 30,000 Hz 100 7.5 kHz 100 1.87 kHz DPWMACC Direct PWM Dimming Output Resolution (ISL97692, ISL97693 and ISL97694A) 80 ns tDPWM_ON_MIN Direct PWM Dimming Minimum On-Time (ISL97692, ISL97693 and ISL97694A) 350 ns PWMACC PWM Dimming with Adjustable Dimming Frequency Output Resolution FN7839 Rev.6.00 Sep 8, 2017 (ISL97692, ISL97694A) 8 bit ISL97694A, En10Bit = 1 10 bit ISL97694A, En12Bit = 1 12 bit Page 12 of 32 ISL97692, ISL97693, ISL97694A Electrical Specifications range, -40°C to +85°C. (Continued) PARAMETER FPWM VIN = EN = 3.3V, TA = +25°C unless otherwise noted. Boldface limits apply over the operating temperature DESCRIPTION CONDITION Generated PWM Dimming Frequency Range (ISL97692, ISL97694A) MIN (Note 11) 100 TYP MAX (Note 11) UNIT 30,000 Hz 0.5 V VDD V 0.17 V 10 µA SMBus/I2C INTERFACE (ISL97694A only) VIL Guaranteed Range for Data, Clock Input Low Voltage VIH Guaranteed Range for Data, Clock Input High Voltage VOL SMBus/I2C Output Data Line Logic Low Voltage IPULLUP = 4mA Input Leakage On SDA/SCL Measured at 4.8V ILEAK 1.5 -10 SMBus/I2C TIMING SPECIFICATIONS (ISL97694A only) tEN-SMBus/I2C Minimum Time between VIN>UVLO and SMBus/I2C Enabled FSCL SCL Clock Frequency tBUF Bus Free Time Between Stop and Start Condition 2 ms 400 kHz 1.3 µs 0.6 µs tHD:STA Hold Time After (Repeated) START Condition tSU:STA Repeated Start Condition Setup Time 0.6 µs tSU:STO Stop Condition Setup Time 0.6 µs tHD:DAT Data Hold Time 300 ns tSU:DAT Data Setup Time 100 ns tHIGH Low Period of SCL Clock 1.3 µs tLOW High Period of SCL Clock 0.6 µs After this Period, the First Clock is Generated tF Clock/data Fall Time 300 ns tR Clock/data Rise Time 300 ns NOTES: 11. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested. 12. At maximum VIN of 5.5V, minimum VOUT is 6V. Minimum VOUT can be lower at lower VIN. 13. Limits established by characterization and are not production tested. 14. Varies within the range specified by VHEADROOM_RANGE. FN7839 Rev.6.00 Sep 8, 2017 Page 13 of 32 ISL97692, ISL97693, ISL97694A Typical Performance Curves 95 92 6P5S LEDs 85 6P6S LEDs 86 84 EFFICIENCY (%) EFFICIENCY (%) 88 6P7S LEDs 82 70 65 78 55 3.7 4.2 4.7 50 5.2 6P7S LEDs 75 60 3.2 6P6S LEDs 80 80 76 2.7 6P5S LEDs 90 90 0 20 40 60 80 100 PWM DIMMING (%) INPUT VOLTAGE (V) FIGURE 9. EFFICIENCY vs VIN (ICH: 20mA, fDIM: 200Hz, FOR LEDs: 6P5S, 6P6S, 6P7S) FIGURE 10. EFFICIENCY vs PWM DIMMING (VIN: 3.7V, ICH: 20mA, fDIM: 200Hz, FOR LEDs: 6P5S, 6P6S, 6P7S) 2.5 MATCHING ACCURACY (%) LED CURRENT (mA) 20 15 10 5 0 0 20 40 60 80 100 1.5 IC#3 0.5 -0.5 IC#2 -1.5 -2.5 IC#1 0 FIGURE 11. PWM DIMMING LINEARITY (VIN: 3.7V, VOUT: 21V FOR 6P7S, fDIM: 200Hz) IL VOUT VOUT VLX VLX VCH VCH FN7839 Rev.6.00 Sep 8, 2017 2 3 4 5 6 7 FIGURE 12. CHANNEL MATCHING ACCURACY (VIN: 3.7V, VOUT: 21V FOR 6P7S, ICH: 20mA) IL FIGURE 13. START-UP (100% DIRECT PWM DIMMING, VIN: 3.7V, ICH: 20mA, LEDs: 6P7S, fDIM: 200Hz) 1 CHANNEL NUMBER INPUT DIMMING DUTY CYCLE (%) FIGURE 14. START-UP (100% DECODED PWM DIMMING, VIN: 3.7V, ICH: 20mA, LEDs: 6P7S, fDIM: 200Hz) Page 14 of 32 ISL97692, ISL97693, ISL97694A Typical Performance Curves (Continued) IL IL VOUT VOUT VLX VLX VCH VCH FIGURE 15. START-UP (50% DIRECT PWM DIMMING, VIN: 3.7V, ICH: 20mA, LEDs: 6P7S, fDIM: 200Hz) FIGURE 16. START-UP (50% DECODED PWM DIMMING, VIN: 3.7V, ICH: 20mA, LEDs: 6P7S, fDIM: 200Hz) S:Start R/W A A A P:Stop SCL PWM INPUT ICH SDA Slave address:01011010 Command code (8bit) Brightness(100%): 11111111 I_CH FIGURE 17. MINIMUM DIMMING DUTY CYCLE (0.003% DIRECT PWM DIMMING MODE, fDIM: 100Hz) FIGURE 18. I2C CONTROL TIMING AND CHANNEL CURRENT (100% DIMMING, ISL97694A) IL IL I_L VLX V_LX V LX V_CH1 VCH1 VCH2 V_CH2 FIGURE 19. DECODED PWM DIMMING WITH PHASE SHIFT (VIN: 3.7V, ICH: 20mA, DIM: 17%, fDIM: 250Hz, LEDs: 6P6S) FN7839 Rev.6.00 Sep 8, 2017 V CH 1 V CH 2 FIGURE 20. DIRECT PWM DIMMING WITHOUT PHASE SHIFT (VIN: 3.7V, ICH: 20mA, DIM: 17%, fDIM: 250Hz, LEDs: 6P6S) Page 15 of 32 ISL97692, ISL97693, ISL97694A Theory of Operation For example, for a 200Hz input PWM frequency, the minimum duty cycle is: PWM Boost Converter The current mode PWM boost converter produces the minimal voltage needed to enable the LED stack with the highest forward voltage drop to run at the programmed current. The ISL97692, ISL97693, ISL97694A employs current mode control boost architecture that has a fast current sense loop and a slow voltage feedback loop. This architecture achieves the fast transient response, which is essential for portable product backlight applications where the backlight must not flicker when the power source is changed from a drained battery to an AC/DC adapter. The number of LEDs that can be driven by ISL97692, ISL97693, ISL97694A depends on the type of LED chosen in the application. The maximum output is 26V at 40mA from 2.7V input. Enable Take the EN input high to enable the ISL97692, ISL97693, ISL97694A for normal operation and low to enter low-power shutdown, which immediately turns off LED channels and the boost regulator. Dimming Controls The ISL97692, ISL97693, ISL97694A allows the LED current to be programmed in the range 2mA to 40mA (ISL97692) or 2mA to 30mA (ISL97693, ISL97694A) by RSET per Equation 1: 1066 I LEDmax = --------------R SET (EQ. 1) (EQ. 4) The resolution is calculated by Equation 5 according to the input PWM frequency, and the fixed 80ns resolution of ISL97692, ISL97693, ISL97694A. 1 PWM Resolution = ------------------------------------------------------------------------------80ns  Input PWM Frequency (EQ. 5) Thus the effective resolution at 200Hz is 15.9 bits: 1 PWM Resolution = -------------------------------------- = 62500 = 15.9bits 80ns  200Hz (EQ. 6) Phase Shift Control The ISL97692, ISL97694A are capable of delaying the phase of each current source. Conventional LED drivers exhibit the worst load transients to the boost circuit by turning on all channels simultaneously, as shown in Figures 21 and 23. In contrast, the ISL97692, ISL97694A phase shift each channel by turning them on once during each PWM dimming period, as shown in Figures 22 and 24. At each dimming duty cycle (except at 100%) the sum of the phase shifted total current will be less than a conventional LED drivers’ total current. For the ISL97692, ISL97694A, the channels are separated by 360°/N, where N is number of channels enabled. For example, if three channels are enabled, they will be separated by 120°. If the channels are combined for higher current application, the phase shift function must be disabled by connecting the ENPS pin to ground. Where: - 1066 is a constant determined by design - RSET is the resistor from ISET pin to GND (Ω) - ILEDmax is the peak current set by resistor RSET (A) For example, if the required LED current (ILEDmax) is 40mA, then the RSET value needed is: R SET = 1066  0.04 = 26.65k Min Duty Cycle = 350ns  200Hz = 0.007% (EQ. 2) ILED1-20mA ILED2-20mA ILED3-20mA ILED4-20mA Choose the nearest standard resistor: 26.65kΩ, 0.1% ILED_Total_80mA Direct PWM Dimming The ISL97693 always operates in Direct PWM dimming mode. The ISL97692 and ISL97694A can be selected to operate in Direct PWM dimming mode by connecting the FPWM pin to VIN and the SCL pin of ISL97694A must be tied to GND. 5 10 TIME (ms) 15 FIGURE 21. CONVENTIONAL 4-CH LED DRIVER WITH 10% PWM DIMMING CHANNEL CURRENT (UPPER) AND TOTAL CURRENT (LOWER) With Direct PWM, the channel outputs follow the input PWM signal frequency and pulse width, as provided to the PWMI pin. When PWMI is high, all channels sink the current set by the RSET resistor. When PWMI is low, all channels are high-Z. The maximum allowed input PWM frequency at PWMI is 30kHz. The minimum duty is calculated by Equation 3 according to the input PWM frequency, and is set by the minimum channel on-time of 350ns. Min Duty Cycle = 350ns  Input PWM Frequency FN7839 Rev.6.00 Sep 8, 2017 (EQ. 3) Page 16 of 32 ISL97692, ISL97693, ISL97694A PWMI ILED1-20mA 60% 40% tPWMIN tFPWM (tPWMOUT) tOFF tON 40% 60% ILED2-20mA ILED1 ILED3-20mA ILED2 ILED4-20mA ILED3 ILED_Total_20mA ILED4 5 10 TIME (ms) FIGURE 22. ISL97692 PHASE SHIFT 4-CHANNELS LED DRIVER WITH 10% PWM DIMMING CHANNEL CURRENT (UPPER) AND TOTAL CURRENT (LOWER) ILED1 FIGURE 25. ISL97692 4 -CHANNELS PHASE SHIFT TIMING ILLUSTRATION PWM Dimming Frequency Adjustment (ISL97692, ISL97694A) ILED4-20mA The ISL97692 and ISL97694A can use an internal oscillator to generate the PWM dimming frequency. In this mode, the duty of the signal at PWMI pin is measured with 8-, 10- or 12-bit resolution, and applied to the internally generated PWM dimming frequency. The dimming frequency is set by an external resistor RFPWM at the FPWM pin for ISL97692 and ISL97694A, per Equation 7: ILED3-20mA ILED2-20mA ILED1-20mA ILED_Total_80mA R0 R FPWM = ----------------F PWM 5 10 TIME (ms) FIGURE 23. CONVENTIONAL LED DRIVER PWM DIMMING CHANNEL AND TOTAL CURRENT AT 50% DUTY CYCLE ILED4-20mA ILED3-20mA Where: - R0 is determined by design - R0 = 58.1 X 106 for 8-bit - R0 = 14.5 X 106 for 10-bit - R0 = 36.2 X 105 for 12-bit - FPWM is the required PWM dimming frequency (Hz) - RFPWM is the resistor from FPWM pin to GND (Ω) For example, to set the PWM dimming frequency to 480Hz at 8-bit resolution: 6 58.1 10 R FPWM = ------------------------ = 121k 480 ILED2-20mA ILED1-20mA (EQ. 8) The maximum allowed input and output PWM dimming frequency varies according to the PWM resolution, per Table 1. This is configurable for the ISL97694A by the En12Bit and En10Bit bits in register 0x01. ILED_Total_40mA 5 10 TIME (ms) FIGURE 24. ISL97692 PHASE SHIFT LED DRIVER PWM DIMMING CHANNEL AT 50% DUTY CYCLE TABLE 1. MAX PWM DIMMING FREQUENCY SET BY RFPWM PART ISL97692 ISL97694A FN7839 Rev.6.00 Sep 8, 2017 (EQ. 7) MAX FREQUENCY (kHz) PWM RESOLUTION (BIT MODE) 30 8 30 8 7.5 10 1.875 12 Page 17 of 32 ISL97692, ISL97693, ISL97694A Current Matching and Current Accuracy Each channel of the LED current is regulated by a current sink circuit. The LED peak current is set by the external RSET resistor according to Equation 1. The current sink MOSFETs in each LED driver channel output are designed to operate within a range at about 300mV to optimize power loss versus accuracy requirements. The sources of errors of the channel-to-channel current matching come from internal amplifier offsets, internal layout and reference accuracy. These parameters are optimized for current matching and absolute current accuracy. Absolute accuracy is also determined by the external resistor RSET, and so a 0.1% tolerance resistor is recommended. Dynamic Headroom Control The ISL97692, ISL97693, ISL97694A features a proprietary Dynamic Headroom Control circuit that detects the highest forward voltage string or effectively the lowest voltage on any of the channel pins. When this lowest channel voltage is lower than the short circuit threshold, VSC, such voltage will be used as the feedback signal for the boost regulator. The boost makes the output to the correct level, such that the lowest channel pin is at the target headroom voltage. Since all LED stacks are connected to the same output voltage, the other channel pins will have a higher voltage, but the regulated current source circuit on each channel will ensure that each channel has the same current. The output voltage will regulate cycle-by-cycle and it is always referenced to the highest forward voltage string in the architecture. Soft-Start and Power ON Once the ISL97692, ISL97693, ISL97694A are powered up and the EN pin is taken high, the boost regulator will begin to switch and the current in the inductor will ramp-up. The current in the boost power switch is monitored and the switching is terminated in any cycle where the current exceeds the current limit. The ISL97692, ISL97693, ISL97694A includes a soft-start feature where this current limit starts at a low value (350mA). This is stepped up to the final 2.8A current limit in seven further steps of 350mA. These steps will happen over typically 7ms, and will be extended at low LED PWM frequencies if the LED duty cycle is low. This allows the output capacitor to be charged to the required value at a low current limit and prevents high input current for systems that have only a low to medium output current requirement. UVLO VIN (RISING) VO SOFT-START (7ms) FEEDBACK REGULATION ESTABLISHED EN PWMI ICHn Power-OFF Sequence VIN VO VUVLO - 150mV BOOST CONVERTER TURNED OFF tOFF AFTER REACHING {VUVLO - 150mV} EN DEPENDS ON APPLICATION PWMI ICHn Operation with Input Voltage Greater than 5.5V The ISL97692, ISL97693, ISL97694A boost regulator can operate from an input voltage higher than 5.5V, and up to 23V, as long as an additional supply voltage between 2.4V and 5.5V is available for the VIN pin. Please refer to Figure 26 for a typical application schematic adopting this solution. Note that there will be also an initial in-rush current to COUT when VIN is applied. This is determined by the ramp rate of VIN and the values of COUT and L FN7839 Rev.6.00 Sep 8, 2017 Page 18 of 32 ISL97692, ISL97693, ISL97694A L1 V BATT : 2.4 V~21 .8V D1 10 µH 4.7µF 4.7µF 4.7µF 2.4V~5.5 V V OUT: 24 .5V , 6 x 20 mA VIN LX COMP 15 nF 100 pF 470 k OVP 2.2nF 12k 23 .7k ISL97694A ISET 53 k AGND PGND SDA/PWMI SCL EN CH1 CH2 CH3 FPWM 291k FSW CH4 CH5 CH6 143k FIGURE 26. LED DRIVER OPERATION WITH INPUT VOLTAGE UP TO 26V SMBus/I2C Communications Slave Device Address The ISL97694A is controlled by SMBus/I2C for PWM dimming, and The slave address contains 7 MSB plus one LSB as R/W bit, but these 8 bits are usually called Slave Address bytes. As shown in Figure 27, the high nibble of the Slave Address byte is 0x5 or b’0101’ to denote the “backlight controller class”. Bit 0 is always the R/W bit, as specified by the SMBus/I2C protocol. If the device is in the write mode where bit 0 is 0, the slave address byte is 0x5A or b’01011010’. If the device is in the read mode where bit 0 is 1, the slave address byte is 0x5B or b’01011011’. powers up in the shutdown state. The ISL97694A is enabled when both the EN pin is high and the BL_CTL bit in register 0x01 is programmed to 1. Write Byte The Write Byte protocol is only three bytes long. The first byte starts with the slave address followed by the “command code,” which translates to the “register index” being written. The third byte contains the data byte that must be written into the register selected by the “command code”. A shaded label is used on cycles during which the slaved backlight controller “owns” or “drives” the Data line. All other cycles are driven by the “host master.” MSB 0 1 0 1 1 0 1 R/W FN7839 Rev.6.00 Sep 8, 2017 EB DEVICE ADDRESS /W R IT DEVICE IDENTIFIER RE AD As shown in Figure 30, the four byte long Read Byte protocol starts out with the slave address followed by the “command code”, which translates to the “register index.” Subsequently, the bus direction turns around with the rebroadcast of the slave address with bit 0 indicating a read (“R”) cycle. The fourth byte contains the data being returned by the backlight controller. That byte value in the data byte reflects the value of the register being queried at the “command code” index. Note the bus directions, which are highlighted by the shaded label that is used on cycles during which the slaved backlight controller “owns” or “drives” the Data line. All other cycles are driven by the “host master.” IT Read Byte FIGURE 27. SLAVE ADDRESS BYTE DEFINITION Page 19 of 32 ISL97692, ISL97693, ISL97694A SMBus/I2C Register Definitions When the ISL97694A is configured to 10-bit or 12-bit operation, write the PWM Brightness Control Register LSB (address 0x02) first. The subsequent write of PWM Brightness Control Register MSB (address 0x00) updates the contents of both registers to the PWM engine. The backlight controller registers are Byte wide and accessible via the SMBus/I2C Read/Write Byte protocols. Their bit assignments are provided in Figures 29 and 30 with reserved bits containing a default value of “0”. SMBCLK tF tR tLOW VIH VIL tHIGH tHD:DAT tHD:STA tSU:STA tSU:DAT tSU:STO SMBDAT VIH VIL P tBUF S P S NOTES: SMBus/I2C DESCRIPTION S = START CONDITION P = STOP CONDITION A = ACKNOWLEDGE A = NOT ACKNOWLEDGE R/W = READ ENABLE AT HIGH; WRITE ENABLE AT LOW FIGURE 28. SMBUS/I2C INTERFACE for ISL97694A 1 7 1 1 8 1 8 1 1 S SLAVE ADDRESS W A COMMAND CODE A DATA BYTE A P MASTER TO SLAVE SLAVE TO MASTER FIGURE 29. WRITE BYTE PROTOCOL for ISL97694A 1 7 1 1 8 1 1 8 1 1 8 1 1 S SLAVE ADDRESS W A COMMAND CODE A S SLAVE ADDRESS R A DATA BYTE A P MASTER TO SLAVE SLAVE TO MASTER FIGURE 30. READ BYTE PROTOCOL for ISL97694A FN7839 Rev.6.00 Sep 8, 2017 Page 20 of 32 ISL97692, ISL97693, ISL97694A TABLE 2. I2C REGISTER ALL LOCATIONS FOR ISL97694A ADDRESS REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 DEFAULT VALUE SMBUS/I2C PROTOCOL 0x00 PWM Brightness Control Register MSB BRT11 BRT10 BRT9 BRT8 BRT7 BRT6 BRT5 BRT4 0xFF Read and Write 0x01 Device Control Register - - - - PS_EN BL_CTL 0x00 Read and Write 0x02 PWM Brightness Control Register LSB BRT3 BRT2 BRT1 BRT0 - - 0xF0 Read and Write En12Bit En10Bit - - TABLE 3. I2C REGISTER FUNCTIONS FOR ISL97694A ADDRESS REGISTER DATA BIT DESCRIPTIONS 0x00 PWM Brightness Control Register MSB BRT[11..4] = DPWM duty cycle brightness control In 8 bit PWM data mode, PWM data is BRT[11..4] In 10 bit PWM data mode, PWM data is BRT[11..2] In 12 bit PWM data mode, PWM data is BRT[11..0] 0x01 Device Control Register PS_EN = Phase shift On/Off (1: Phase shift enabled, 0: Phase shift disabled) BL_CTL = Backlight On/Off (1: driver enabled if EN pin is high, 0 = driver shutdown) {En12Bit, En10Bit} = {0,0} to select 8 bit PWM data mode {En12Bit, En10Bit} = {0,1} to select 10 bit PWM data mode {En12Bit, En10Bit} = {1,0} to select 12 bit PWM data mode 0x02 PWM Brightness Control Register LSB BRT[3.0] = DPWM duty cycle brightness control (10 and 12 bit PWM data modes only). Note: this data is saved, but the PWM engine is only updated with BRT[11..0] or BRT[11..2] when the PWM Brightness Control Register MSB 0x00 is written Component Selection The design of the boost converter is simplified by an internal compensation scheme allowing easy design without complicated calculations. Please select your component values using the following recommendations. Input Capacitor It is recommended that a 4.7µF to 10µF X5R/X7R or equivalent ceramic input capacitor is used. Overvoltage Protection (OVP) The integrated OVP circuit monitors the boost output voltage, VOUT, and keeps the voltage at a safe level. The OVP threshold is set as Equation 9: R1 + R2 V OVP  min  = 1.22V  ---------------------R2 (EQ. 9) Where: - 1.22V is the intended bandgap voltage by design - VOVP is the maximum boost output voltage, VOUT (V) - R1 is the resistor from OVP pin to the boost output (Ω) - R2 is the resistor from OVP pin to GND (WΩ). The total R1 plus R2 series resistance should be high to minimize power loss through the resistor network. For example, choosing R1 = 470kΩ and R2 = 23.7kΩ per the Typical Application Circuits on page 3 and Block Diagrams on page 5. Set VOVP(typ) to 25.41V (Equation 10). 470 + 23.7 V OVP  typ  = 1.22V  ---------------------------- = 25.41V 23.7 FN7839 Rev.6.00 Sep 8, 2017 (EQ. 10) The OVP threshold, R1, and R2 tolerances should also be taken into account (Equations 11 and 12). R1min + R2max V OVP  min  = 1.18V  ---------------------------------------------R2max (EQ. 11) R1max + R2min V OVP  max  = 1.24V  ---------------------------------------------R2min (EQ. 12) Calculating VOVP using the OVP threshold range (1.18V to 1.24V) and 0.1% resistor tolerances gives an actual VOVP range of 24.53V to 25.88V for the 25.4V previous example (Equations 13 and 14).  470  0.999  +  23.7  1.001  V OVP  min  = 1.18V  -------------------------------------------------------------------------------- = 24.53V  23.7  1.001  (EQ. 13)  470  1.001  +  23.7  0.999   max  = 1.24V  -------------------------------------------------------------------------------- = 25.88V  23.7  0.999  (EQ. 14) V OVP It is recommended that parallel capacitors are placed across the OVP resistors such that R1/R2 = C2/C1. Using a C1 value of at least 30pF is recommended. These capacitors reduce the AC impedance of the OVP node, which reduces noise susceptibility when using high value resistors. Boost Output Voltage Range The working range of the boost output voltage, VOUT is from 40% to 100% of the maximum output voltage, VOVP, set by resistors R1 and R2, as described in the previous section. The target applications should be considered carefully to ensure that VOVP is not set unnecessarily high. For example, using R = 470kΩ and R2 = 23.7kΩ per the “Typical Application Circuits” on page 3 sets VOVP to between 24.53V to 25.88V when tolerances are considered. Page 21 of 32 ISL97692, ISL97693, ISL97694A The minimum voltage, VOVP(min) = 24.53V, sets the maximum number of LEDs per channel because this is the worst case minimum voltage that the boost converter is guaranteed to supply. Output Capacitor The maximum voltage, VOVP(max) = 25.88V, sets the minimum number of LEDs per channel because it sets the lowest voltage that the boost converter is guaranteed to reach: 40% x 25.88V = 10.35V. Schottky Diode Using LEDs with a VF tolerance of 3V to 4V, this VOVP example is suitable for strings of 4 to 6 LEDs. If fewer than 4 LEDs per channel are specified, VOVP must be reduced. Compensation Switching Frequency The boost switching frequency is adjusted by resistor RFSW (Equation 15): 10  8.65 10  f SW = -------------------------------R FSW (EQ. 15) Where: - 8.65x1010 is determined by design - fSW is the desirable boost switching frequency (Hz) - RFSW is resistor from FSW pin to GND (Ω) It is recommended that a two of 4.7µF X5R/X7R or equivalent ceramic output capacitor is used. The Schottky diode should be rated for at least the same forward current as the inductor, and for a reverse voltage equal to at least the maximum output voltage, OVP. The ISL97692, ISL97693, ISL97694A are boost regulator uses a current mode control architecture with a standardized external compensation network connected to the COMP pin. The component values shown in the “Typical Application Circuits” on page 3, are ideal for most typical applications. The network comprises a series RC of 12kΩ and 15nF from COMP to GND. Applications Unused LED Channels Connect unused LED channels to GND. Dimming Mode Setting Inductor TABLE 5. DIMMING MODE SETTING OF ISL97694A Choose the inductance according to Table 4: TABLE 4. INDUCTOR SELECTION BOOST FREQUENCY INDUCTANCE (µH) 400kHz to 700kHz 10 to 15 700kHz to 1MHz 6.8 to 10 1MHz to 1.5MHz 4.7 to 8.2 1.5MHz 3.3 to 4.7 (EQ. 16) Where: - IL is the minimum inductor saturation current rating (A) - VOUT is the maximum output voltage set by OVP (V) - ILED is the sum of the channel currents (A) - VIN is the minimum input voltage (V) If the calculation produces a current rating higher than the 3.08A maximum boost switch current limit, then a 3A inductor current rating is adequate. For example, for a system using 4 LED channels with 30mA per channel and a maximum output voltage (OVP) of 24.53V with an input supply of 2.7V minimum as shown by Equation 17: 1.35  24.53   4  0.03  I L = ----------------------------------------------------------------- = 1.47A 2.7 FN7839 Rev.6.00 Sep 8, 2017 SCL SDA /PWMI Direct PWM GND PWM VIN Phase shift PWM GND PWM Connect a resistor FPWM pin to GND I2C Control SCL SDA Connect a resistor FPWM pin to GND FPWM High Current Applications The inductor saturation current rating should be as provided by Equation 16: 1.35  V OUT  I LED I L = ----------------------------------------------------V IN DIMMING MODE (EQ. 17) Each channel of the ISL97692 supports 40mA continuous sink current. Each channel of the ISL97693, ISL97694A supports 30mA continuous sink current. For applications that need higher current, multiple channels can be ganged together (Tables 6 and 7). TABLE 6. GANGED ISL97692 CHANNELS FOR HIGHER CURRENT TOTAL CHANNELS CHANNEL CURRENT CHANNEL CONNECTIONS 4 40mA per channel CH1, CH2, CH3, CH4 2 80mA per channel {CH1 & CH2}, {CH3 & CH4} 1 160mA {CH1 & CH2 & CH3 & CH4} TABLE 7. GANGED ISL97693, ISL97694A CHANNELS FOR HIGHER CURRENT TOTAL CHANNELS CHANNEL CURRENT CHANNEL CONNECTIONS 6 30mA per channel CH1, CH2, CH3, CH4, CH5, CH6 3 60mA per channel {CH1, CH2}, {CH3, CH4}, {CH5, CH6} 2 90mA per channel {CH1, CH2, CH3}, {CH4, CH5, CH6} 1 180mA {CH1, CH2, CH3, CH4, CH5, CH6} Page 22 of 32 ISL97692, ISL97693, ISL97694A Figure 31 shows CH1 and CH2 ganged for a high current application. output capacitors and away from the higher dv/dt traces. The OVP connection then needs to be as short as possible to the pin. The AGND connection of the lower OVP components is critical for good regulation. 8. The COMP network and the rest of the analog components (on ISET, FPWM, FSW, etc.) should be reference to AGND. CH1 CH2 FIGURE 31. PCB Layout Considerations PCB Layout with TQFN and WLCSP Package Figures 33 and 34 shows the example of the PCB layout of ISL97694A and ISL97692 WLCSP. This type of layout is particularly important for this type of product, resulting in high-current flow in the main loop’s traces. Careful attention should be focused in the following layout details: 1. The typical application diagram (Figures 3, 4 and 5 on pages 3, and 4) the separation of PGND and AGND is essential, keeping the AGND referenced only local to the chip. This minimizes switching noise injection to the feedback sensing and analog areas, as well as eliminating DC errors form high-current flow in resistive PC board traces. 2. Boost input capacitors, output capacitors, inductor and Schottky diode should be placed together in a nice tight layout. Keeping the grounds of the input, and output connected with low impedance and wide metal is very important to keep these nodes closely coupled. 3. If possible, try to maintain central ground node on the board and use the input capacitors to avoid excessive input ripple for high output current supplies. The filtering capacitors should be placed close by the VIN pin. 4. Careful consideration should be taken with any traces carrying high di/dt pulsating signals. Traces carrying high di/dt pulsating signals should be kept as short and as tight as possible. The current loop generates a magnetic field which can couple to another conductor inducing unwanted voltage. Components should be placed such that current flows through them in a straight line as much as possible. This will help reduce size of loops and reduce the EMI from the PCB. 9. The heat of the chip is mainly dissipated through the exposed thermal pad so maximizing the copper area around is a good idea. A solid ground is always helpful for the thermal and EMI performance. 10. The inductor and input and output capacitors should be mounted as tight as possible, to reduce the audible noise and inductive ringing. 11. For WLCSP, the solder pad on the PCB should not be larger than the solder mask opening for the ball pad on the package. The optimal solder joint strength, it is recommended a 1:1 ratio for the two pads. Generally, vias should not be used to route highcurrent paths. 12. The amount of copper that should be poured (thickness) depends upon the power requirement of the system. Insufficient copper will increase resistance of the PCB, which will increase heat dissipation. 13. While designing the layout of switched controllers, do not use the auto routing function of the PCB layout software. The auto routing connects the nets with same electrical name and does not account for ideal trace lengths and positioning. General Power PAD Design Considerations Figures 32 show an example of how to use vias to reduce the heat from the IC. For optimal thermal performance, use vias to distribute heat away from the IC and to a system power plane. Fill the thermal pad area with vias that are spaced 3x their radius (typically), centerto-center, from each other. The via diameters should be kept small, but they should be large enough to allow solder wicking during reflow. To optimize heat transfer efficiency, do not connect vias using “thermal relief” patterns. The vias should be directly connected to the plane with plated through-holes. Connect all vias to the correct voltage potential (power plane) indicated in the datasheet. For the ISL97692, ISL97693, ISL97694A, the thermal pad can be connected to ground (GND). 5. If trace lengths are long, the resistance of the trace increases and can cause some reduction in IC efficiency, and can also cause system instability. Traces carrying power should be made wide and short. 6. In discontinuous conduction mode, the direction of the current is interrupted every few cycles. This may result in large di/dt (transient load current). When injected in the ground plane the current may cause voltage drops, which can interfere with sensitive circuitry. The analog ground and power ground of the IC should be connected very close to the IC to mitigate this issue ISL97692, ISL97693 TQFN ISL97694A TQFN FIGURE 32. VIA PATTERN 7. For optimum load regulation and true VOUT sensing, the OVP resistors should be connected independently to the top of the FN7839 Rev.6.00 Sep 8, 2017 Page 23 of 32 ISL97692, ISL97693, ISL97694A PCB Layout ISL97694A INDUCTOR CH1‐6 PVIN DIODE OVP RESISTORS COUT CIN COUT TOP LAYER(PGND) PGND PGND BOTTOM LAYER(AGND) PVOUT TOP VIEW BOTTOM VIEW FIGURE 33. EXAMPLE OF PCB LAYOUT of ISL97694A FN7839 Rev.6.00 Sep 8, 2017 Page 24 of 32 ISL97692, ISL97693, ISL97694A PCB Layout (Continued) PVOUT D1 PGND_OUT RU RL COUT1 COUT2 L1 PGND_OUT ISL97692 PVIN CIN1 CIN2 PGND_IN PGND_IN and PGND_OUT  connected via bottom layer AGND of analog setting components  very close to AGND pin FIGURE 34. EXAMPLE OF PCB LAYOUT of ISL97692 WLCSP FN7839 Rev.6.00 Sep 8, 2017 Page 25 of 32 ISL97692, ISL97693, ISL97694A Fault Protection and Monitoring Overvoltage Protection (OVP) The ISL97692, ISL97693, ISL97694A features extensive protection functions to handle failure conditions automatically. Refer to Figure 35 and Table 8 for details of the fault protections. The integrated OVP circuit monitors the boost output voltage, VOUT, and keeps the voltage at a safe level. The OVP threshold is set as Equation 18: The LED failure mode is either open or short circuit. An open circuit failure of an LED only results in the loss of one channel of LEDs without affecting other channels. Similarly, a short circuit condition on a channel that results in that channel being turned off does not affect other channels. OVP = 1.22V   R UPPER + R LOWER   R LOWER Due to the lag in boost response to any load change at its output, certain transient events (such as LED current steps or significant step changes in LED duty cycle) can transiently look like LED fault modes. The ISL97692, ISL97693, ISL97694A use feedback from the LEDs to determine when it is in a stable operating region and prevents apparent faults during these transient events from allowing any of the LED stacks to fault out. See Table 8 for more details. Short Circuit Protection (SCP) The short circuit detection circuit monitors the voltage on each channel and disables faulty channels, which are above the short circuit protection threshold, nominally 8V (the action taken is described in Table 8). Open Circuit Protection (OCP) When one of the LEDs becomes open circuit, it can behave as either an infinite resistance or a gradually increasing finite resistance. The ISL97692, ISL97693, ISL97694A monitors the current in each channel such that any string, which reaches the intended output current is considered “good”. Should the current subsequently fall below the target, the channel will be considered an “open circuit”. Furthermore, should the boost output of the ISL97692, ISL97693, ISL97694A reaches the VOVP limit, all channels which are not “good” will immediately be considered as “open circuit”. (EQ. 18) Where: - 1.22V is the intended bandgap voltage by design - VOVP is the maximum boost output voltage, VOUT (V) - RUPPER is resistor from OVP pin to the boost output (Ω) - RLOWER is resistor from OVP pin to GND (Ω) Undervoltage Lockout If the input voltage falls below the VUVLO level of ~2V, the ISL97692, ISL97693, ISL97694A will stop switching and be reset. Operation will restart only if the VIN is back in the normal operating range. Over-Temperature Protection (OTP) The ISL97692, ISL97693, ISL97694A have an over-temperature protection threshold set to +150°C. If this threshold is reached, the boost stops switching and the ISL97692, ISL97693, ISL97694A output current sinks are switched off. The ISL97692, ISL97693, ISL97694A can be restarted by toggling VIN to below the VUVLO level of ~2V, then back up to the normal input voltage level, or by power recycling VIN. Detection of an “open circuit” channel will result in a time-out before disabling of the affected channel. FN7839 Rev.6.00 Sep 8, 2017 Page 26 of 32 ISL97692, ISL97693, ISL97694A LX VIN IMAX LX FAULT DRIVER ILIMIT VOUT O/P SHORT OVP FET DRIVER LOGIC VSC CH1 FAULT FLAG CHx THRM SHDN REF OTP T2 TEMP SENSOR T1 FAULT DETECT LOGIC DC1 PWM/OC1/SC1 PWM GENERATOR Q1 DC2 Qx PWM/OCx/SCx FIGURE 35. ISL97692, ISL97693, ISL97694A SIMPLIFIED FAULT PROTECTIONS TABLE 8. ISL97692, ISL97693, ISL97694A PROTECTIONS TABLE CASE FAILURE MODE DETECTION MODE FAILED CHANNEL ACTION VOUT REGULATED BY OTHER CHANNELS ACTION 1 CH1 Short Circuit Upper Over-Temperature Protection limit (OTP) not triggered and CH1 < 8V CH1 ON and burns power. 2 CH1 Short Circuit OTP triggered Boost converter and channels are shut down until VIN is cycled - 3 CH1 Short Circuit OTP not triggered, CH1 > 8V CH1 disabled after 6 PWM cycle time-out Normal Operation Highest LED string VF of other channels 4 CH1 Open Circuit with OTP not triggered, infinite resistance CH1 < 8V VOUT will ramp to OVP. CH1 will time-out after 6 PWM cycles and switch off. VOUT will then reduce to normal level Normal Operation Highest LED string VF of other channels 5 Output LED stack voltage too high Any channel that is below the target current will time-out after 6 PWM Highest LED string VF cycles while VOUT is regulated at VOVP, and VOUT will then return to the of channels above target current normal regulation voltage required for other channels FN7839 Rev.6.00 Sep 8, 2017 VOUT = VOVP Normal Operation Highest LED string VF of other channels Page 27 of 32 ISL97692, ISL97693, ISL97694A Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the website to make sure that you have the latest revision. DATE REVISION CHANGE September 8, 2017 FN7839.6 Applied new header/footer. Updated Related Literature on page 1. Updated Ordering Information table and notes. Added VHEADROOM_RANGE spec to Electrical Specifications table. Added corresponding Note 14. In the Current Matching and Current Accuracy section - updated 2nd sentence in paragraph 2 for clarification. Updated About Intersil section. May 1, 2014 FN7839.5 Electrical Spec table under“Boost FET Current Limit for CSP” on page 11: Changed the Min from 1.20 to 1.2A and Typ from 1.6 to 1.6A, removed the Max 2.0 value. November 27, 2013 Electrical spec table on page 12 under FPWMI: Added 8- bit, 10-bit and 12-bit dimming resolution. Electrical spec table on page 12 under PWMACC frequency output resolution: Added ISL97694A with frequency range 10-bit and 12-bit. Updated Equation 7 on page 17: From 58.1x106 to R0 and added R0 for 10-bit and 12-bit of ISL97694A. November 6, 2013 - Updated Equation 6 on page 16: From 350ns to 80ns and the effective resolution at 200Hz from 13.50 bits to 15.9 bits October 28, 2013 Ordering information table on page 10: Changed part marking for Part number ISL97692IIZ-T from TBD to 7692. Electrical Spec Table on “BOOST SWITCHING REGULATOR” on page 11: Added “Boost FET Current Limit for CSP”. September 19, 2013 - Added ISL97692 WLCSP to pin description, pin configuration, package diagram. - Replaced “Operating Conditions” to “Recommended Operating Conditions” on page 11. - Added part number ISL97692IIZ-T and ISL97693IRT-EVZ to Ordering information on page 10. - Added Maximum Average Current into LX pin for WLCSP in Absolute Maximum Ratings on page 11. - Added Boost FET current limit for WLCSP on page 11. - Added LED max current for WLCSP on page 12. - Updated Equation 6 on page 16. - Thermal Information table on page 11: Added 16 Bump WLSCP to thermal resistance and thermal characterization sections. - PCB layout considerations updated on page 23. - Example of WLCSP PCB layout added in Figure 35 on page 26. - Added POD W4x4.16B “16 Ball Wafer Level Chip Scale Package (WLCSP)” to data sheet. November 30, 2012 FN7839.4 Changed HBM from 2kV to 2.5kV. September 7, 2012 FN7839.3 Changed CDM from 1kV to 2kV. June 28, 2012 FN7839.2 - Modified title on page 1 - IVIN typ lowered to 0.8mA - tENLow typ removed - Added “Operation with Input Voltage Greater than 5.5V” on page 18. - Updated Figure 20 - Added Figure 26, “LED DRIVER OPERATION WITH INPUT VOLTAGE UP TO 26V,” on page 19. -Removed “Coming Soon” from ISL97694A parts in “Ordering Information” on page 10. May 25, 2012 FN7839.1 Corrected LX pin connection in Figures 1, 3, 4 and 5. Moved tie point in between L1 and D1. Changed Title in Figure 12 from “Accuracy vs WPM Dimming” to “Channel Matching Accuracy” Revised Figures 9 and 10. April 16, 2012 FN7839.0 Initial release. FN7839 Rev.6.00 Sep 8, 2017 Page 28 of 32 ISL97692, ISL97693, ISL97694A About Intersil Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products address some of the largest markets within the industrial and infrastructure, mobile computing, and high-end consumer markets. For the most updated datasheet, application notes, related documentation, and related parts, see the respective product information page found at www.intersil.com. For a listing of definitions and abbreviations of common terms used in our documents, visit www.intersil.com/glossary. You can report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask. Reliability reports are also available from our website at www.intersil.com/support. © Copyright Intersil Americas LLC 2012-2017. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners. For additional products, see www.intersil.com/en/products.html Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com FN7839 Rev.6.00 Sep 8, 2017 Page 29 of 32 ISL97692, ISL97693, ISL97694A Package Outline Drawing For the most recent package outline drawing, see W4x4.16B. W4x4.16B 4x4 ARRAY 16 BALL WAFER LEVEL CHIP SCALE PACKAGE (WLCSP) Rev 2, 8/13 PIN 1 (A1 CORNER) X 1.200 0.400 1.655±0.03 Y D 0.400 16X 0.265±0.035 C 1.200 1.655±0.03 B 0.228 A (4X) 4 0.10 TOP VIEW 3 2 1 0.295 0.200 0.228 BOTTOM VIEW Z PACKAGE OUTLINE 0.10 Z SEATING PLANE 3 0.290 2 0.265±0.035 Ø0.10 M Z X Y Ø0.05 M Z 4 0.400 0.240 6 NSMD TYPICAL RECOMMENDED LAND PATTERN 0.200±0.030 0.500±0.050 SIDE VIEW NOTES: 1. Dimensions and tolerance and tolerance per ASMEY 14.5 - 1994. 2. Dimension is measured at the maximum bump diameter parallel to primary datum Z. 3. Primary datum Z and seating plane are defined by the spherical crowns of the bump. 4. Bump position designation per JESD 95-1, SPP-010. 5. All dimensions are in millimeters. 6. NSMD refers to non-solder mask defined pad design per Intersil Techbrief www.intersil.com/data/tb/tb451.pdf FN7839 Rev.6.00 Sep 8, 2017 Page 30 of 32 ISL97692, ISL97693, ISL97694A Package Outline Drawing For the most recent package outline drawing, see L16.3x3D. L16.3x3D 16 LEAD THIN QUAD FLAT NO-LEAD PLASTIC PACKAGE Rev 0, 3/10 4X 1.50 3.00 A 12X 0.50 B 13 6 PIN 1 INDEX AREA 16 6 PIN #1 INDEX AREA 12 3.00 1 1.60 SQ 4 9 (4X) 0.15 0.10 M C A B 5 8 16X 0.40±0.10 TOP VIEW 4 16X 0.23 ±0.05 BOTTOM VIEW SEE DETAIL “X” 0.10 C 0.75 ±0.05 C 0.08 C SIDE VIEW (12X 0.50) (2.80 TYP) ( 1.60) (16X 0.23) C 0 . 2 REF 5 0 . 02 NOM. 0 . 05 MAX. (16X 0.60) TYPICAL RECOMMENDED LAND PATTERN DETAIL "X" NOTES: 1. Dimensions are in millimeters. Dimensions in ( ) for Reference Only. 2. Dimensioning and tolerancing conform to ASME Y14.5m-1994. 3. Unless otherwise specified, tolerance : Decimal ± 0.05 4. Dimension applies to the metallized terminal and is measured between 0.15mm and 0.25mm from the terminal tip. 5. Tiebar shown (if present) is a non-functional feature. 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be 7. JEDEC reference drawing: MO-220 WEED. either a mold or mark feature. FN7839 Rev.6.00 Sep 8, 2017 Page 31 of 32 ISL97692, ISL97693, ISL97694A Package Outline Drawing For the most recent package outline drawing, see L20.3x4A. L20.3x4A 20 LEAD THIN QUAD FLAT NO-LEAD PLASTIC PACKAGE Rev 0, 6/10 3.00 0.10 M C A B 0.05 M C 4 20x 0.25 +0.05 17 -0.07 A B A 16x 0.50 6 PIN #1 INDEX AREA 20 16 1 6 PIN 1 INDEX AREA 4.00 2.65 +/0.10 -0.15 11 0.10 (4X) A 10 VIEW "A-A" TOP VIEW 6 20x 0.40+/-0.10 1.65 +0.10 -0.15 7 BOTTOM VIEW SEE DETAIL "X" 0.10 C SEATING PLANE 0.08 C 0.80 MAX C SIDE VIEW (3.80) (2.65) (16x 0.50) (20x 0.25) (20x 0.60) C 0 . 2 REF (1.65) (2.80) 0 . 00 MIN. 0 . 05 MAX. TYPICAL RECOMMENDED LAND PATTERN DETAIL "X" NOTES: 1. Dimensions are in millimeters. Dimensions in ( ) for Reference Only. 2. Dimensioning and tolerancing conform to ASME Y14.5m-1994. 3. Unless otherwise specified, tolerance : Decimal ± 0.05 4. Dimension applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. 5. Tiebar shown (if present) is a non-functional feature. 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be 7. JEDEC reference drawing: MO-220VEGD-NJI. either a mold or mark feature. FN7839 Rev.6.00 Sep 8, 2017 Page 32 of 32
ISL97694AIRTZ 价格&库存

很抱歉,暂时无法提供与“ISL97694AIRTZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货