0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
R7FA2E1A53CFJ#AA0

R7FA2E1A53CFJ#AA0

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    LQFP32

  • 描述:

    MCU

  • 数据手册
  • 价格&库存
R7FA2E1A53CFJ#AA0 数据手册
Datasheet R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 RA2E1 Group Renesas Microcontrollers Ultra low power 48 MHz Arm® Cortex®-M23 core, up to 128-KB code flash memory, 16-KB SRAM, Capacitive Sensing Unit 2 (CTSU), 12-bit A/D Converter, Security and Safety features. Features ■ Arm Cortex-M23 Core ● ● ● ● ● Armv8-M architecture Maximum operating frequency: 48 MHz Arm Memory Protection Unit (Arm MPU) with 8 regions Debug and Trace: DWT, FPB, CoreSight™ MTB-M23 CoreSight Debug Port: SW-DP ■ Memory ● ● ● ● ● Up to 128-KB code flash memory 4-KB data flash memory (100,000 program/erase (P/E) cycles) 16-KB SRAM Memory protection units 128-bit unique ID ■ Connectivity ● Serial Communications Interface (SCI) × 4 – Asynchronous interfaces – 8-bit clock synchronous interface – Simple IIC – Simple SPI – Smart card interface ● Serial Peripheral Interface (SPI) × 1 ● I2C bus interface (IIC) × 1 ■ Analog ● 12-bit A/D Converter (ADC12) ● Low-Power Analog Comparator (ACMPLP) × 2 ● Temperature Sensor (TSN) ■ Timers ● ● ● ● ● IWDT-dedicated on-chip oscillator (15 kHz) ● Clock out support ■ Up to 56 pins for general I/O ports ● 5-V tolerance, open drain, input pull-up, switchable driving ability ■ Operating Voltage ● VCC: 1.6 to 5.5 V ■ Operating Temperature and Packages ● Ta = -40℃ to +85℃ – 64-pin LQFP (14 mm × 14 mm, 0.8 mm pitch) – 64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch) – 64-pin BGA (4 mm × 4 mm, 0.4 mm pitch) – 48-pin LQFP (7 mm × 7 mm, 0.5 mm pitch) – 48-pin HWQFN (7 mm × 7 mm, 0.5 mm pitch) – 36-pin LGA (4 mm × 4 mm, 0.5 mm pitch) – 32-pin LQFP (7 mm × 7 mm, 0.8 mm pitch) – 32-pin HWQFN (5 mm × 5 mm, 0.5 mm pitch) – 25-pin WLCSP (2.14 mm × 2.27 mm, 0.4 mm pitch) ● Ta = -40℃ to +105℃ – 64-pin LQFP (14 mm × 14 mm, 0.8 mm pitch) – 64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch) – 64-pin BGA (4 mm × 4 mm, 0.4 mm pitch) – 48-pin LQFP (7 mm × 7 mm, 0.5 mm pitch) – 48-pin HWQFN (7 mm × 7 mm, 0.5 mm pitch) – 36-pin LGA (4 mm × 4 mm, 0.5 mm pitch) – 32-pin LQFP (7 mm × 7 mm, 0.8 mm pitch) – 32-pin HWQFN (5 mm × 5 mm, 0.5 mm pitch) – 25-pin WLCSP (2.14 mm × 2.27 mm, 0.4 mm pitch) General PWM Timer 32-bit (GPT32) × 1 General PWM Timer 16-bit (GPT16) × 6 Low Power Asynchronous General Purpose Timer (AGT) × 2 Watchdog Timer (WDT) ■ Safety ● ● ● ● ● ● ● ● ● ● ● ● SRAM parity error check Flash area protection ADC self-diagnosis function Clock Frequency Accuracy Measurement Circuit (CAC) Cyclic Redundancy Check (CRC) calculator Data Operation Circuit (DOC) Port Output Enable for GPT (POEG) Independent Watchdog Timer (IWDT) GPIO readback level detection Register write protection Main oscillator stop detection Illegal memory access detection ■ Security and Encryption ● AES128/256 ● True Random Number Generator (TRNG) ■ System and Power Management ● ● ● ● ● ● ● ● Low power modes Switching regulator Realtime Clock (RTC) Event Link Controller (ELC) Data Transfer Controller (DTC) Key Interrupt Function (KINT) Power-on reset Low Voltage Detection (LVD) with voltage settings ■ Human Machine Interface (HMI) ● Capacitive Sensing Unit 2 (CTSU) ■ Multiple Clock Sources ● ● ● ● ● ● Main clock oscillator (MOSC) (1 to 20 MHz) Sub-clock oscillator (SOSC) (32.768 kHz) High-speed on-chip oscillator (HOCO) (24/32/48/64 MHz) Middle-speed on-chip oscillator (MOCO) (8 MHz) Low-speed on-chip oscillator (LOCO) (32.768 kHz) Clock trim function for HOCO/MOCO/LOCO R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 1 of 112 RA2E1 Datasheet 1. 1. Overview Overview The MCU integrates multiple series of software- and pin-compatible Arm®-based 32-bit cores that share a common set of Renesas peripherals to facilitate design scalability. The MCU in this series incorporates an energy-efficient Arm Cortex®-M23 32-bit core, that is particularly well suited for cost-sensitive and low-power applications, with the following features: ● Up to 128-KB code flash memory ● 16-KB SRAM ● 12-bit A/D Converter (ADC12) ● Security features 1.1 Table 1.1 Function Outline Arm core Feature Functional description Arm Cortex-M23 core Table 1.2 ● Maximum operating frequency: up to 48 MHz ● Arm Cortex-M23 core: – Revision: r1p0-00rel0 – Armv8-M architecture profile – Single-cycle integer multiplier – 19-cycle integer divider ● Arm Memory Protection Unit (Arm MPU): – Armv8 Protected Memory System Architecture – 8 protect regions ● SysTick timer: – Driven by SYSTICCLK (LOCO) or ICLK Memory Feature Functional description Code flash memory Maximum 128-KB of code flash memory. Data flash memory 4-KB of data flash memory. Option-setting memory The option-setting memory determines the state of the MCU after a reset. SRAM On-chip high-speed SRAM with parity bit. Table 1.3 System (1 of 2) Feature Functional description Operating modes Two operating modes: ● Single-chip mode ● SCI boot mode Resets The MCU provides 12 resets (RES pin reset, power-on reset, independent watchdog timer reset, watchdog timer reset, voltage monitor 0/1/2 resets, SRAM parity error reset, bus master/slave MPU error resets, CPU stack pointer error reset, software reset). Low Voltage Detection (LVD) The Low Voltage Detection (LVD) module monitors the voltage level input to the VCC pin. The detection level can be selected by register settings. The LVD module consists of three separate voltage level detectors (LVD0, LVD1, LVD2). LVD0, LVD1, and LVD2 measure the voltage level input to the VCC pin. LVD registers allow your application to configure detection of VCC changes at various voltage thresholds. Clocks R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 ● ● ● ● ● ● ● Main clock oscillator (MOSC) Sub-clock oscillator (SOSC) High-speed on-chip oscillator (HOCO) Middle-speed on-chip oscillator (MOCO) Low-speed on-chip oscillator (LOCO) IWDT-dedicated on-chip oscillator Clock out support Page 2 of 112 RA2E1 Datasheet Table 1.3 1. Overview System (2 of 2) Feature Functional description Clock Frequency Accuracy Measurement Circuit (CAC) The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be measured (measurement target clock) within the time generated by the clock selected as the measurement reference (measurement reference clock), and determines the accuracy depending on whether the number of pulses is within the allowable range.When measurement is complete or the number of pulses within the time generated by the measurement reference clock is not within the allowable range, an interrupt request is generated. Interrupt Controller Unit (ICU) The Interrupt Controller Unit (ICU) controls which event signals are linked to the Nested Vector Interrupt Controller (NVIC), and the Data Transfer Controller (DTC) modules. The ICU also controls non-maskable interrupts. Key Interrupt Function (KINT) The key interrupt function (KINT) is generated a key interrupt by detecting a valid edge on the key interrupt input pin. Low power modes Power consumption can be reduced in multiple ways, including setting clock dividers, stopping modules, selecting power control mode in normal operation, and transitioning to low power modes. Register write protection The register write protection function protects important registers from being overwritten due to software errors. The registers to be protected are set with the Protect Register (PRCR). Memory Protection Unit (MPU) The MCU has four Memory Protection Units (MPUs) and a CPU stack pointer monitor function are provided. Watchdog Timer (WDT) The Watchdog Timer (WDT) is a 14-bit down counter that can be used to reset the MCU when the counter underflows because the system has run out of control and is unable to refresh the WDT. In addition, the WDT can be used to generate a non-maskable interrupt or an underflow interrupt or watchdog timer reset. Independent Watchdog Timer (IWDT) The Independent Watchdog Timer (IWDT) consists of a 14-bit down counter that must be serviced periodically to prevent counter underflow. The IWDT provides functionality to reset the MCU or to generate a non-maskable interrupt or an underflow interrupt. Because the timer operates with an independent, dedicated clock source, it is particularly useful in returning the MCU to a known state as a fail-safe mechanism when the system runs out of control. The IWDT can be triggered automatically by a reset, underflow, refresh error, or a refresh of the count value in the registers. Table 1.4 Event link Feature Functional description Event Link Controller (ELC) The Event Link Controller (ELC) uses the event requests generated by various peripheral modules as source signals to connect them to different modules, allowing direct link between the modules without CPU intervention. Table 1.5 Direct memory access Feature Functional description Data Transfer Controller (DTC) A Data Transfer Controller (DTC) module is provided for transferring data when activated by an interrupt request. Table 1.6 Timers (1 of 2) Feature Functional description General PWM Timer (GPT) The General PWM Timer (GPT) is a 32-bit timer with GPT32 × 1 channel and a 16-bit timer with GPT16 × 6 channels. PWM waveforms can be generated by controlling the up-counter, downcounter, or the up- and down-counter. In addition, PWM waveforms can be generated for controlling brushless DC motors. The GPT can also be used as a general-purpose timer. Port Output Enable for GPT (POEG) The Port Output Enable (POEG) function can place the General PWM Timer (GPT) output pins in the output disable state Low power Asynchronous General Purpose Timer (AGT) The low power Asynchronous General Purpose Timer (AGT) is a 16-bit timer that can be used for pulse output, external pulse width or period measurement, and counting external events. This timer consists of a reload register and a down counter. The reload register and the down counter are allocated to the same address, and can be accessed with the AGT register. R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 3 of 112 RA2E1 Datasheet Table 1.6 1. Overview Timers (2 of 2) Feature Functional description Realtime Clock (RTC) The RTC has two operation modes, normal operation mode and low-consumption clock mode. In each of the operation mode, the RTC has two counting modes, calendar count mode and binary count mode, that are used by switching register settings. For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and automatically adjusts dates for leap years. For binary count mode, the RTC counts seconds and retains the information as a serial value. Binary count mode can be used for calendars other than the Gregorian (Western) calendar. Table 1.7 Communication interfaces Feature Functional description Serial Communications Interface (SCI) The Serial Communications Interface (SCI) × 4 channels have asynchronous and synchronous serial interfaces: ● Asynchronous interfaces (UART and Asynchronous Communications Interface Adapter (ACIA)) ● 8-bit clock synchronous interface ● Simple IIC (master-only) ● Simple SPI ● Smart card interface The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and transmission protocol. SCIn (n = 0) has FIFO buffers to enable continuous and full-duplex communication, and the data transfer speed can be configured independently using an on-chip baud rate generator. I2C bus interface (IIC) The I2C bus interface (IIC) has 1 channel. The IIC module conforms with and provides a subset of the NXP I2C (Inter-Integrated Circuit) bus interface functions. Serial Peripheral Interface (SPI) The Serial Peripheral Interface (SPI) provides high-speed full-duplex synchronous serial communications with multiple processors and peripheral devices. Table 1.8 Analog Feature Functional description 12-bit A/D Converter (ADC12) A 12-bit successive approximation A/D converter is provided. Up to 13 analog input channels are selectable. Temperature sensor output and internal reference voltage are selectable for conversion. Temperature Sensor (TSN) The on-chip Temperature Sensor (TSN) determines and monitors the die temperature for reliable operation of the device. The sensor outputs a voltage directly proportional to the die temperature, and the relationship between the die temperature and the output voltage is fairly linear. The output voltage is provided to the ADC12 for conversion and can be further used by the end application. Low-Power Analog Comparator (ACMPLP) The Low-Power Analog Comparator (ACMPLP) compares a reference input voltage with an analog input voltage. Comparator channels ACMPLP0 and ACMPLP1 are independent of each other. The comparison result of the reference input voltage and analog input voltage can be read by software. The comparison result can also be output externally. The reference input voltage can be selected from either an input to the CMPREFi (i = 0, 1) pin or from the internal reference voltage (Vref) generated internally in the MCU. The ACMPLP response speed can be set before starting an operation. Setting high-speed mode decreases the response delay time, but increases current consumption. Setting low-speed mode increases the response delay time, but decreases current consumption. Table 1.9 Human machine interfaces Feature Functional description Capacitive Sensing Unit 2 (CTSU) The Capacitive Sensing Unit 2 (CTSU) measures the electrostatic capacitance of the sensor. Changes in the electrostatic capacitance are determined by software that enables the CTSU to detect whether a finger is in contact with the sensor. The electrode surface of the sensor is usually enclosed with a dielectric film so that a finger does not come into direct contact with the electrode. R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 4 of 112 RA2E1 Datasheet Table 1.10 1. Overview Data processing Feature Functional description Cyclic Redundancy Check (CRC) calculator The Cyclic Redundancy Check (CRC) calculator generates CRC codes to detect errors in the data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first communication. Additionally, various CRC-generation polynomials are available. The snoop function allows monitoring of reads from and writes to specific addresses. This function is useful in applications that require CRC code to be generated automatically in certain events, such as monitoring writes to the serial transmit buffer and reads from the serial receive buffer. Data Operation Circuit (DOC) The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. When a selected condition applies, 16-bit data is compared and an interrupt can be generated. R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 5 of 112 RA2E1 Datasheet 1.2 1. Overview Block Diagram Figure 1.1 shows a block diagram of the MCU superset. Some individual devices within the group have a subset of the features. Memory 128 KB code flash Bus Arm Cortex-M23 MPU MPU System MOSC/SOSC 4 KB data flash Reset NVIC 16 KB SRAM (H/M/L) OCO Mode control System timer Power control DMA Test and DBG Interface DTC Timers Clocks POR/LVD Communication interfaces ICU CAC KINT Register write protection Human machine interfaces CTSU GPT32 × 1 GPT16 × 6 SCI × 4 AGT × 2 IIC × 1 RTC SPI × 1 WDT/IWDT Event link Data processing ELC CRC Security DOC Analogs ADC12 TSN ACMPLP × 2 AES + TRNG Note: Not available on all parts Figure 1.1 1.3 Block diagram Part Numbering Figure 1.2 shows the product part number information, including memory capacity and package type. Table 1.11 shows a list of products. R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 6 of 112 RA2E1 Datasheet 1. Overview R 7 F A2 E 1 A9 3 C F M Package type FM:LQFP 64 pins 0.5 mm pitch FK:LQFP 64 pins 0.8 mm pitch BU:BGA 64 pins 0.4 mm pitch FL:LQFP 48 pins 0.5 mm pitch LM:LGA 36 pins 0.5 mm pitch FJ:LQFP 32 pins 0.8 mm pitch NH:HWQFN 32 pins 0.5 mm pitch BV:WLCSP 25 pins 0.4 mm pitch NE : HWQFN 48 pins 0.5 mm pitch Quality ID C: Industrial applications D: Consumer applications Operating temperature 2: -40°C to +85°C 3: -40°C to +105°C Code flash memory size 9:128KB 7:64KB 5:32KB Feature set A: Standard and security Group name E1: Low Power group Core 2: Arm Cortex-M23 RA Family (Renesas Advanced) Flash memory Renesas microcontroller unit Renesas Figure 1.2 Part numbering scheme R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 7 of 112 RA2E1 Datasheet Table 1.11 1. Overview Product list (1 of 2) Product part number Package code Code flash Data flash SRAM Operating temperature R7FA2E1A93CFM PLQP0064KB-C 128 4 16 -40 to +105°C R7FA2E1A93CFK PLQP0064GA-A R7FA2E1A93CFL PLQP0048KB-B R7FA2E1A93CFJ PLQP0032GB-A R7FA2E1A93CNH R7FA2E1A93CBU R7FA2E1A93CLM R7FA2E1A93CBV R7FA2E1A93CNE R7FA2E1A92DFM PLQP0064KB-C R7FA2E1A92DFK PLQP0064GA-A R7FA2E1A92DFL PLQP0048KB-B R7FA2E1A92DFJ PLQP0032GB-A -40 to +85°C R7FA2E1A92DNH R7FA2E1A92DBU R7FA2E1A92DLM R7FA2E1A92DBV R7FA2E1A92DNE R7FA2E1A73CFM PLQP0064KB-C R7FA2E1A73CFK PLQP0064GA-A R7FA2E1A73CFL PLQP0048KB-B R7FA2E1A73CFJ PLQP0032GB-A 64 4 16 -40 to +105°C R7FA2E1A73CNH R7FA2E1A73CBU R7FA2E1A73CLM R7FA2E1A73CBV R7FA2E1A73CNE R7FA2E1A72DFM PLQP0064KB-C R7FA2E1A72DFK PLQP0064GA-A R7FA2E1A72DFL PLQP0048KB-B R7FA2E1A72DFJ PLQP0032GB-A -40 to +85°C R7FA2E1A72DNH R7FA2E1A72DBU R7FA2E1A72DLM R7FA2E1A72DBV R7FA2E1A72DNE R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 8 of 112 RA2E1 Datasheet Table 1.11 1. Overview Product list (2 of 2) Product part number Package code Code flash Data flash SRAM Operating temperature R7FA2E1A53CFL PLQP0048KB-B 32 4 16 -40 to +105°C R7FA2E1A53CFJ PLQP0032GB-A R7FA2E1A53CNH R7FA2E1A53CLM R7FA2E1A53CBV R7FA2E1A53CNE R7FA2E1A52DFL PLQP0048KB-B R7FA2E1A52DFJ PLQP0032GB-A -40 to +85°C R7FA2E1A52DNH R7FA2E1A52DLM R7FA2E1A52DBV R7FA2E1A52DNE R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 9 of 112 RA2E1 Datasheet Function Comparison Pin count 64 48 36 32 25 Package LQFP/BGA LQFP/HWQFN LGA LQFP/HWQFN WLCSP Code flash memory 128 KB 64 KB 128 KB 64 KB 32 KB 128 KB 64 KB 32 KB 128 KB 64 KB 32 KB 128 KB 64 KB Data flash memory 4 KB 4 KB 4 KB 4 KB 4 KB SRAM(Parity) 16 KB 16 KB 16 KB 16 KB 16 KB CPU clock 48 MHz 48 MHz 48 MHz 48 MHz 48 MHz Sub clock oscillator Yes Yes Yes Yes No ICU Yes Yes Yes Yes Yes System R7FA2E1A53CBV R7FA2E1A73CBV R7FA2E1A93CBV R7FA2E1A53CFJ R7FA2E1A53CNH R7FA2E1A73CFJ R7FA2E1A73CNH R7FA2E1A93CFJ R7FA2E1A93CNH R7FA2E1A53CLM R7FA2E1A73CLM R7FA2E1A93CLM R7FA2E1A53CFL R7FA2E1A53CNE R7FA2E1A73CFL R7FA2E1A73CNE Parts number R7FA2E1A93CFL R7FA2E1A93CNE Function Comparison R7FA2E1A73CFM R7FA2E1A73CFK R7FA2E1A73CBU Table 1.12 R7FA2E1A93CFM R7FA2E1A93CFK R7FA2E1A93CBU 1.4 1. Overview 32 KB KINT 8 5 4 4 4 Event control ELC Yes Yes Yes Yes Yes DMA DTC Yes Yes Yes Yes Yes Timers GPT32 1 (PWM outputs: 2) 1 (PWM outputs: 2) 1 (PWM outputs: 2) 1 (PWM outputs: 2) 1 (PWM outputs: 2) GPT16 6 (PWM outputs: 12) 6 (PWM outputs: 12) 6 (PWM outputs: 8) 6 (PWM outputs: 7) 6 (PWM outputs: 9) AGT 2 2 2 2 2 RTC Yes Yes Yes Yes Yes (Clock source: LOCO only) WDT/IWDT Yes Yes Yes Yes Yes Communicat SCI ion IIC 4 4 3 3 3 1 1 1 1 1 SPI 1 1 1 1 1 ADC12 13 13 12 10 8 ACMPLP 2 2 2 2 2 Yes Yes Yes Yes Yes Analog TSN HMI CTSU 30 (CFC:18) 20 (CFC:15) 14 (CFC:12) 11 (CFC:11) 10 (CFC:9) Data processing CRC Yes Yes Yes Yes Yes DOC Yes Yes Yes Yes Yes AES & TRNG AES & TRNG AES & TRNG AES & TRNG AES & TRNG Security R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 10 of 112 RA2E1 Datasheet 1.5 1. Overview Pin Functions Table 1.13 Pin functions (1 of 3) Function Signal I/O Description Power supply VCC Input Power supply pin. Connect it to the system power supply. Connect this pin to VSS by a 0.1-µF capacitor. Place the capacitor close to the pin. VCL I/O Connect this pin to the VSS pin by the smoothing capacitor used to stabilize the internal power supply. Place the capacitor close to the pin. VSS Input Ground pin. Connect it to the system power supply (0 V). XTAL Output EXTAL Input Pins for a crystal resonator. An external clock signal can be input through the EXTAL pin. XCIN Input XCOUT Output CLKOUT Output Clock output pin Operating mode control MD Input Pin for setting the operating mode. The signal level on this pin must not be changed during operation mode transition on release from the reset state. System control RES Input Reset signal input pin. The MCU enters the reset state when this signal goes low. CAC CACREF Input Measurement reference clock input pin On-chip debug SWDIO I/O Serial wire debug data input/output pin SWCLK Input Serial wire clock pin NMI Input Non-maskable interrupt request pin IRQ0 to IRQ7 Input Maskable interrupt request pins GTETRGA, GTETRGB Input External trigger input pins GTIOCnA (n = 0, 4 to 9), GTIOCnB (n = 0, 4 to 9) I/O Input capture, output compare, or PWM output pins GTIU Input Hall sensor input pin U GTIV Input Hall sensor input pin V GTIW Input Hall sensor input pin W GTOUUP Output 3-phase PWM output for BLDC motor control (positive U phase) GTOULO Output 3-phase PWM output for BLDC motor control (negative U phase) GTOVUP Output 3-phase PWM output for BLDC motor control (positive V phase) GTOVLO Output 3-phase PWM output for BLDC motor control (negative V phase) GTOWUP Output 3-phase PWM output for BLDC motor control (positive W phase) GTOWLO Output 3-phase PWM output for BLDC motor control (negative W phase) AGTEE0, AGTEE1 Input External event input enable signals AGTIO0, AGTIO1 I/O External event input and pulse output pins AGTO0, AGTO1 Output Pulse output pins AGTOA0, AGTOA1 Output Output compare match A output pins AGTOB0, AGTOB1 Output Output compare match B output pins RTCOUT Output Output pin for 1-Hz or 64-Hz clock Clock Interrupt GPT AGT RTC R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Input/output pins for the sub-clock oscillator. Connect a crystal resonator between XCOUT and XCIN. Page 11 of 112 RA2E1 Datasheet Table 1.13 1. Overview Pin functions (2 of 3) Function Signal I/O Description SCI SCKn (n = 0 to 2, 9) I/O Input/output pins for the clock (clock synchronous mode) RXDn (n = 0 to 2, 9) Input Input pins for received data (asynchronous mode/clock synchronous mode) TXDn (n = 0 to 2, 9) Output Output pins for transmitted data (asynchronous mode/clock synchronous mode) CTSn_RTSn (n = 0 to 2, 9) I/O Input/output pins for controlling the start of transmission and reception (asynchronous mode/clock synchronous mode), activelow. SCLn (n = 0 to 2, 9) I/O Input/output pins for the IIC clock (simple IIC mode) SDAn (n = 0 to 2, 9) I/O Input/output pins for the IIC data (simple IIC mode) SCKn (n = 0 to 2, 9) I/O Input/output pins for the clock (simple SPI mode) MISOn (n = 0 to 2, 9) I/O Input/output pins for slave transmission of data (simple SPI mode) MOSIn (n = 0 to 2, 9) I/O Input/output pins for master transmission of data (simple SPI mode) SSn (n = 0 to 2, 9) Input Chip-select input pins (simple SPI mode), active-low SCLn (n = 0) I/O Input/output pins for the clock SDAn (n = 0) I/O Input/output pins for data RSPCKA I/O Clock input/output pin SSLA0 I/O Input or output pin for slave selection SSLA1 to SSLA3 Output Output pins for slave selection MOSIA I/O Input or output pins for data output from the master MISOA I/O Input or output pins for data output from the slave AVCC0 Input Analog power supply pin for the ADC12 AVSS0 Input Analog ground pin for the ADC12 VREFH0 Input Analog reference voltage supply pin for the ADC12. Connect this pin to AVCC0 when not using the ADC12. VREFL0 Input Analog reference ground pin for the ADC12. Connect this pin to AVSS0 when not using the ADC12. AN000 to AN010, AN017 to AN022 Input Input pins for the analog signals to be processed by the A/D converter. ADTRG0 Input Input pin for the external trigger signals that start the A/D conversion, active-low. VCOUT Output Comparator output pin CMPREF0, CMPREF1 Input Reference voltage input pins CMPIN0, CMPIN1 Input Analog voltage input pins IIC SPI Analog power supply ADC12 ACMPLP CTSU KINT TS00, TS02-CFC, TS04 Input to TS07, TS08-CFC to TS16-CFC, TS17, TS18, TS21 to TS25, TS26-CFC to TS28-CFC, TS30-CFC to TS34-CFC Capacitive touch detection pins (touch pins) TSCAP — Secondary power supply pin for the touch driver KR00 to KR07 Input Key interrupt input pins R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 12 of 112 RA2E1 Datasheet Table 1.13 1. Overview Pin functions (3 of 3) Function Signal I/O Description I/O ports P000 to P004, P010 to P015 I/O General-purpose input/output pins P100 to P113 I/O General-purpose input/output pins P200 Input General-purpose input pin P201, P204 to P208, P212, P213 I/O General-purpose input/output pins P214, P215 Input General-purpose input pins P300 to P304 I/O General-purpose input/output pins P400 to P403, P407 to P411 I/O General-purpose input/output pins P500 to P502 I/O General-purpose input/output pins P913 to P915 I/O General-purpose input/output pins R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 13 of 112 RA2E1 Datasheet 1.6 1. Overview Pin Assignments P100 P101 P102 P103 P104 P105 P106 P107 VSS VCC P113 P112 P111 P110 P109 P108/SWDIO 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 Figure 1.3 and Figure 1.8 show the pin assignments from the top view. AVSS0 57 24 P204 P011/VREFL0 58 23 P205 P010/VREFH0 59 22 P206 P004 60 21 P207 P003 61 20 P208 P002 62 19 P913 P001 63 18 P914 P000 64 17 P915 Figure 1.3 16 RES P407 25 15 56 P408 AVCC0 14 P201/MD P409 26 13 55 P410 P012 12 P200 P411 27 11 54 VCC P013 10 P304 P212/EXTAL 28 9 53 P213/XTAL P014 8 P303 VSS 29 7 52 P214/XCOUT P015 6 P302 P215/XCIN 30 5 51 VCL P502 4 P301 P403 31 3 50 P402 P501 2 P300/SWCLK P401 32 1 49 P400 P500 Pin assignment for LQFP 64-pin (top view) R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 14 of 112 RA2E1 Datasheet 1. Overview A B C D E F G H 8 P100 P101 P102 VSS VCC P112 P108/ SWDIO P300/ SWCLK 8 7 P015 P500 P103 P104 P113 P111 P110 P301 7 6 P014 P013 P501 P105 P106 P107 P109 P302 6 5 AVCC0 P012 P502 P207 P206 P205 P304 P303 5 4 AVSS0 P011/ VREFL0 P004 P914 P913 P208 P201/MD P200 4 3 P010/ VREFH0 P003 P000 P915 P213/ XTAL P411 RES P204 3 2 P002 P001 P402 P403 P212/ EXTAL P410 P409 P408 2 1 P400 P401 VCL P215/ XCIN P214/ XCOUT VSS VCC P407 1 A B C D E F G H Figure 1.4 Pin assignment for BGA 64-pin (top view, pad side down) R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 15 of 112 P100 P101 P102 P103 P104 VSS VCC P112 P111 P110 P109 P108/SWDIO 35 34 33 32 31 30 29 28 27 26 25 1. Overview 36 RA2E1 Datasheet AVSS0 43 18 P206 P011/VREFL0 44 17 P207 P010/VREFH0 45 16 P208 P002 46 15 P913 P001 47 14 P914 P000 48 13 P915 Figure 1.5 12 RES P407 19 11 42 P408 AVCC0 10 P201/MD P409 20 9 41 VCC P012 8 P200 P212/EXTAL 21 7 40 P213/XTAL P013 6 P302 VSS 22 5 39 P214/XCOUT P014 4 P301 P215/XCIN 23 3 38 VCL P015 2 P300/SWCLK P401 24 1 37 P400 P500 Pin assignment for LQFP/QFN 48-pin (top view) R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 16 of 112 RA2E1 Datasheet Figure 1.6 1. Overview A B C D E F 6 P015 P100 P112 P111 P108/ SWDIO P300/ SWCLK 6 5 P014 P013 P101 P110 P200 P207 5 4 AVCC0 P012 P102 P109 P201/MD P208 4 3 AVSS0 P011/ VREFL0 P103 P213/ XTAL RES P913 3 2 P010/ VREFH0 P000 P001 P212/ EXTAL P407 P914 2 1 VCL P215/ XCIN P214/ XCOUT VSS VCC P915 1 A B C D E F Pin assignment for LGA 36-pin (top view, pad side down) R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 17 of 112 P108/SWDIO 17 P109 18 P110 19 P112 20 P103 21 P102 22 23 24 28 13 RES AVCC0 29 12 P207 AVSS0 30 11 P208 P011/VREFL0 31 10 P913 P010/VREFH0 32 9 P914 P407 VCC 8 P012 7 P201/MD 6 14 P212/EXTAL 27 5 P013 P213/XTAL P200 4 15 VSS 26 3 P014 P214/XCOUT P300/SWCLK 2 16 P215/XCIN 25 1 P015 VCL Figure 1.7 P101 1. Overview P100 RA2E1 Datasheet Pin assignment for LQFP/QFN 32-pin (top view) R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 18 of 112 RA2E1 Datasheet Figure 1.8 1. Overview A B C D E 5 P110 P112 P102 P103 P101 5 4 P300/ SWCLK P109 P100 P014 P015 4 3 RES P108/ SWDIO P200 VCC VSS 3 2 P204 P201/MD VCL P011/ VREFL0 P010/ VREFH0 2 1 P407 P212/ EXTAL P213/ XTAL P401 P400 1 A B C D E Pin assignment for WLCSP 25-pin (top view, pad side down) R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 19 of 112 RA2E1 Datasheet Pin Lists Pin list (1 of 2) — — E1 2 B1 2 — — 3 C2 — — 4 D2 — 5 C1 6 D1 7 Interru pt 1 HMI GTIOC9A_ A — SCK0_B/ SCK1_B SCL0_A — — — — IRQ0_A D1 P401 — GTETRGA _B GTIOC9B_ A — CTS0_RTS 0_B/ SS0_B/ TXD1_B/ MOSI1_B/ SDA1_B SDA0_A — — — — IRQ5 — — P402 AGTIO0_E/ AGTIO1_D — — — RxD1_B/ MISO1_B/ SCL1_B — — — — TS18 IRQ4 — — — P403 AGTIO0_F/ AGTIO1_E — — — CTS1_RTS 1_B/SS1_B — — — — TS17 — 3 A1 1 C2 VCL — — — — — — — — — — — 4 B1 2 — XCIN P215 — — — — — — — — — — — E1 5 C1 3 — XCOUT P214 — — — — — — — — — — — 8 F1 6 D1 4 E3 VSS — — — — — — — — — — — 9 E3 7 D3 5 C1 XTAL P213 — GTETRGA _D GTIOC0A_ D — TXD1_A/ MOSI1_A/ SDA1_A — — — — — IRQ2_B 10 E2 8 D2 6 B1 EXTAL P212 AGTEE1 GTETRGB _D GTIOC0B_ D — RxD1_A/ MISO1_A/ SCL1_A — — — — — IRQ3_B 11 G1 9 E1 7 D3 VCC — — — — — — — — — — — 12 F3 — — — — P411 AGTOA1 GTOVUP_ B — — TXD0_B/ MOSI0_B/ SDA0_B — MOSIA_B — — TS7 IRQ4_B 13 F2 — — — — P410 AGTOB1 GTOVLO_ B — — RxD0_B/ MISO0_B/ SCL0_B — MISOA_B — — TS6 IRQ5_B 14 G2 10 — — — P409 — GTOWUP_ B — — — — — — — TS5 IRQ6_B 15 H2 11 — — — P408 — GTOWLO_ B — — CTS1_RTS 1_D/SS1_D SCL0_C — — — TS4 IRQ7_B 16 H1 12 E2 8 A1 P407 AGTIO0_C — — RTCOUT CTS0_RTS 0_D/SS0_D SDA0_B — ADTRG0_B — — — 17 D3 13 F1 — — P915 — — — — — — — — — — — 18 D4 14 F2 9 — P914 AGTOA1_A GTETRGB _F — — — — — — — — — 19 E4 15 F3 10 — P913 AGTIO1_F GTETRGA _F — — — — — — — — — 20 F4 16 F4 11 — P208 AGTOB0_A — — — — — — — — — — 21 D5 17 F5 12 — P207 — — — — — — — — — — — 22 E5 18 — — — P206 — GTIU_A — — RxD0_D/ MISO0_D/ SCL0_D — — — — — IRQ0 23 F5 — — — — CLKOUT_A P205 AGTO1 GTIV_A — — TXD0_D/ MOSI0_D/ SDA0_D/ CTS9_RTS 9_A/SS9_A — — — — — IRQ1 24 H3 — — — A2 CACREF_ A P204 AGTIO1_A GTIW_A — — SCK0_D/ SCK9_A SCL0_B — — — TS0 — 25 G3 19 E3 13 A3 RES   — — — — — — — — — — — 26 G4 20 E4 14 B2 MD P201 — — — — — — — — — — — 27 H4 21 E5 15 C3   P200 — — — — — — — — — — NMI 28 G5 — — — —   P304 — — — — — — — — — — — 29 H5 — — — —   P303 — — — — — — — — — TS2-CFC — 30 H6 22 — — —   P302 — GTOUUP_ A GTIOC7A_ A — TXD2_A/ MOSI2_A/ SDA2_A — — — — TS8-CFC IRQ5_A 31 H7 23 — — —   P301 AGTIO0_D GTOULO_ A GTIOC7B_ A — RxD2_A/ MISO2_A/ SCL2_A/ CTS9_RTS 9_D/SS9_D — — — — TS9-CFC IRQ6_A R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 SPI IIC SCI RTC ADC — CACREF_ C GPT AGTIO1_C LQFP 64-pin P400 BGA 64-pin AGT WLCSP 25-pin A1 Analogs I/O ports LGA 36-pin LQFP/QF N 32-pin LQFP/QF N 48-pin 1 Power, System, Clock, Debug, CAC Communication interfaces CTSU Timers Pin number ACMPL P Table 1.14 GPT_O PS, POEG 1.7 1. Overview Page 20 of 112 RA2E1 Datasheet Table 1.14 1. Overview Pin list (2 of 2) Pin number Timers F6 16 A4 SWCLK P300 — GTOUUP_ C GTIOC0A_ A — — — — — — — — 33 G8 25 E6 17 B3 SWDIO P108 — GTOULO_ C GTIOC0B_ A — CTS9_RTS 9_B/SS9_B — — — — — — 34 G6 26 D4 18 B4 CLKOUT_B P109 — GTOVUP_ A GTIOC4A_ A — SCK1_E/ TXD9_B/ MOSI9_B/ SDA9_B — — — — TS10-CFC — 35 G7 27 D5 19 A5   P110 — GTOVLO_ A GTIOC4B_ A — CTS2_RTS 2_B/ SS2_B/ RxD9_B/ MISO9_B/ SCL9_B — — — VCOUT TS11-CFC IRQ3_A 36 F7 28 D6 — —   P111 AGTOA0 — GTIOC6A_ A — SCK2_B/ SCK9_B — — — — TS12-CFC IRQ4_A 37 F8 29 C6 20 B5   P112 AGTOB0 — GTIOC6B_ A — SCK1_D/ TXD2_B/ MOSI2_B/ SDA2_B — — — — TSCAP — 38 E7 — — — —   P113 — — — — — — — — — TS27-CFC — 39 E8 30 — — — VCC   — — — — — — — — — — — 40 D8 31 — — — VSS   — — — — — — — — — — — 41 F6 — — — —   P107 — — — — — — — — — — KR07 42 E6 — — — —   P106 — — — — — — SSLA3_A — — — KR06 43 D6 — — — —   P105 — GTETRGA _C GTIOC4A_ B — — — SSLA2_A — — TS34-CFC KR05/ IRQ0_B 44 D7 32 — — —   P104 — GTETRGB _B GTIOC4B_ B — RxD0_C/ MISO0_C/ SCL0_C — SSLA1_A — — TS13-CFC KR04/ IRQ1_B 45 C7 33 C3 21 D5   P103 — GTOWUP_ A GTIOC5A_ A — CTS0_RTS 0_A/SS0_A — SSLA0_A AN019*1 CMPREF1 TS14-CFC KR03 46 C8 34 C4 22 C5   P102 AGTO0 GTOWLO_ A GTIOC5B_ A — SCK0_A/ TXD2_D/ MOSI2_D/ SDA2_D — RSPCKA_ A ADTRG0_A /AN020*1 CMPIN1 TS15-CFC KR02 47 B8 35 C5 23 E5   P101 AGTEE0 GTETRGB _A GTIOC8A_ A — TXD0_A/ MOSI0_A/ SDA0_A/ CTS1_RTS 1_A/SS1_A SDA0_C MOSIA_A AN021*1 CMPREF0 TS16-CFC KR01/ IRQ1_A 48 A8 36 B6 24 C4   P100 AGTIO0_A GTETRGA _A GTIOC8B_ A — RxD0_A/ MISO0_A/ SCL0_A/ SCK1_A SCL0_D MISOA_A AN022*1 CMPIN0 TS26-CFC KR00/ IRQ2_A 49 B7 37 — — —   P500 — GTIU_B GTIOC5A_ B — — — — — — — 50 C6 — — — —   P501 — GTIV_B GTIOC5B_ B — TXD1_C/ MOSI1_C/ SDA1_C — — AN017 — — — 51 C5 — — — —   P502 — GTIW_B — — RxD1_C/ MISO1_C/ SCL1_C — — AN018 — — — 52 A7 38 A6 25 E4   P015 — — — — — — — AN010 — TS28-CFC IRQ7_A 53 A6 39 A5 26 D4   P014 — — — — — — — AN009 — — — 54 B6 40 B5 27 —   P013 — — — — — — — AN008 — TS33-CFC — 55 B5 41 B4 28 —   P012 — — — — — — — AN007 — TS32-CFC — 56 A5 42 A4 29 — AVCC0   — — — — — — — — — — — 57 A4 43 A3 30 — AVSS0   — — — — — — — — — — — 58 B4 44 B3 31 D2 VREFL0 P011 — — — — — — — AN006 — TS31-CFC — 59 A3 45 A2 32 E2 VREFH0 P010 — — — — — — — AN005 — TS30-CFC — 60 C4 — — — —   P004 — — — — — — — AN004 — TS25 IRQ3 61 B3 — — — —   P003 — — — — — — — AN003 — TS24 — 62 A2 46 — — —   P002 — — — — — — — AN002 — TS23 IRQ2 63 B2 47 C2 — —   P001 — — — — — — — AN001 — TS22 IRQ7 64 C3 48 B2 — —   P000 — — — — — — — AN000 — TS21 IRQ6 Note: CTSU ADC SPI IIC SCI AGT Interrupt GPT 24 ACMPLP GPT_OPS, POEG H8 RTC WLCSP 25-pin 32 I/O ports LGA 36-pin LQFP/QF N 32-pin HMI LQFP/QF N 48-pin Analogs LQFP 64-pin Communication interfaces BGA 64-pin Power, System, Clock, Debug, CAC Several pin names have the added suffix of _A, _B, _C, _D, _E and _F. The suffix can be ignored when assigning functionality. R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 21 of 112 RA2E1 Datasheet 1. Overview Note 1. Unsupport in 64-pin product R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 22 of 112 RA2E1 Datasheet 2. 2. Electrical Characteristics Electrical Characteristics Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions: VCC*1 = AVCC0 = 1.6 to 5.5 V, VREFH0 = 1.6 V to AVCC0 VSS = AVSS0 = VREFL0 = 0 V, Ta = Topr Note 1. The typical condition is set to VCC = 3.3 V. Figure 2.1 shows the timing conditions. For example, P300 C VOH = VCC × 0.7, VOL = VCC × 0.3 VIH = VCC × 0.7, VIL = VCC × 0.3 Load capacitance C = 30 pF Figure 2.1 Input or output timing measurement conditions The measurement conditions of the timing specifications for each peripheral are recommended for the best peripheral operation. However, make sure to adjust driving abilities for each pin to meet the conditions of your system. Each function pin used for the same function must select the same drive ability. If the I/O drive ability of each function pin is mixed, the AC characteristics of each function are not guaranteed. 2.1 Absolute Maximum Ratings Table 2.1 Absolute maximum ratings (1 of 2) Parameter Symbol Value Unit Power supply voltage VCC -0.5 to +6.5 V 5V-tolerant ports*1 Vin -0.3 to +6.5 V P000 to P004, P010 to P015 Vin -0.3 to AVCC0 + 0.3 V Others Vin -0.3 to VCC + 0.3 V Reference power supply voltage VREFH0 -0.3 to +6.5 V Analog power supply voltage AVCC0 -0.5 to +6.5 V VAN -0.3 to AVCC0 + 0.3 V -0.3 to VCC + 0.3 V -40 to +85 -40 to +105 °C Input voltage Analog input voltage When AN000 to AN010 are used When AN017 to AN022 are used Operating temperature*2 *3 *4 R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Topr Page 23 of 112 RA2E1 Datasheet Table 2.1 2. Electrical Characteristics Absolute maximum ratings (2 of 2) Parameter Symbol Value Unit Storage temperature Tstg -55 to +125 °C Note 1. Ports P400, P401, and P407 are 5V-tolerant. Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up might cause malfunction and the abnormal current that passes in the device at this time might cause degradation of internal elements. Note 2. See section 2.2.1. Tj/Ta Definition. Note 3. Contact Renesas Electronics sales office for information on derating operation under Ta = +85°C to +105°C. Derating is the systematic reduction of load for improved reliability. Note 4. The upper limit of the operating temperature is 85°C or 105°C, depending on the product. Caution: Permanent damage to the MCU may result if absolute maximum ratings are exceeded. To preclude any malfunctions due to noise interference, insert capacitors with high frequency characteristics between the VCC and VSS pins, between the AVCC0 and AVSS0 pins, and between the VREFH0 and VREFL0 pins when VREFH0 is selected as the high potential reference voltage for the ADC12. Place capacitors of the following value as close as possible to every power supply pin and use the shortest and heaviest possible traces: ● VCC and VSS: about 0.1 µF ● AVCC0 and AVSS0: about 0.1 µF ● VREFH0 and VREFL0: about 0.1 µF Also, connect capacitors as stabilization capacitance. Connect the VCL pin to a VSS pin by a 4.7 µF capacitor. Each capacitor must be placed close to the pin. Table 2.2 Recommended operating conditions Parameter Symbol Min Typ Max Unit Power supply voltages VCC*1 *2 1.6 — 5.5 V VSS — 0 — V AVCC0*1 *2 1.6 — 5.5 V AVSS0 — 0 — V 1.6 — AVCC0 V — 0 — Analog power supply voltages VREFH0 When used as ADC12 Reference VREFL0 V Note 1. Use AVCC0 and VCC under the following conditions: AVCC0 = VCC Note 2. When powering on the VCC and AVCC0 pins, power them on at the same time or the VCC pin first and then the AVCC0 pins. When powering off the VCC and AVCC0 pins, power them off at the same time or the AVCC0 pin first and then the VCC pins. 2.2 DC Characteristics 2.2.1 Table 2.3 Tj/Ta Definition DC characteristics Conditions: Products with operating temperature (Ta) -40 to +105°C Parameter Symbol Typ Max Unit Test conditions Permissible junction temperature Tj — 125 °C High-speed mode Middle-speed mode Low-speed mode Subosc-speed mode 105*1 Note: Make sure that Tj = Ta + θja × total power consumption (W), where total power consumption = (VCC - VOH) × ΣIOH + VOL × ΣIOL + ICCmax × VCC. Note 1. The upper limit of operating temperature is 85°C or 105°C, depending on the product. If the part number shows the operation temperature at 85°C, then the maximum value of Tj is 105°C, otherwise it is 125°C. R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 24 of 112 RA2E1 Datasheet 2.2.2 2. Electrical Characteristics I/O VIH, VIL Table 2.4 I/O VIH, VIL Conditions: VCC = AVCC0 = 1.6 to 5.5 V Symbol Min Typ Max Unit Test Conditions VIH VCC × 0.7 — 5.8 V — VIL — — VCC × 0.3 RES, NMI Other peripheral input pins excluding IIC VIH VCC × 0.8 — — VIL — — VCC × 0.2 IIC (SMBus)*2 VIH 2.2 — — VCC = 3.6 to 5.5 V VIH 2.0 — — VCC = 2.7 to 3.6 V VIL — — 0.8 VCC = 3.6 to 5.5 V VIL — — 0.5 VCC = 2.7 to 3.6 V VIH VCC × 0.8 — 5.8 — VIL — — VCC × 0.2 VIH AVCC0 × 0.8 — — VIL — — AVCC0 × 0.2 VIH VCC × 0.8 — — VIL — — VCC × 0.2 Parameter Schmitt trigger input voltage Input voltage (except for Schmitt trigger input pin) IIC (except for SMBus)*1 5V-tolerant ports*3 P000 to P004, P010 to P015 EXTAL Input ports pins except for P000 to P004, P010 to P015 Note 1. SCL0_A, SDA0_A, SDA0_B (total 3 pins) Note 2. SCL0_A, SCL0_B, SCL0_C, SDA0_A, SDA0_B, SCL0_D, SDA0_D (total 7 pins) Note 3. P400, P401, P407 (total 3 pins) 2.2.3 Table 2.5 I/O IOH, IOL I/O IOH, IOL (1 of 6) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Permissible output current (max value per pin) Symbol Min Typ Max Unit Ports P000 to P004, P010 to P015, P212, P213, P400, P401, P407 IOH — — -4.0 mA IOL — — 8.0 mA Other output pins*1 IOH — — -4.0 mA IOL — — 20.0 mA R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Test conditions Page 25 of 112 RA2E1 Datasheet Table 2.5 2. Electrical Characteristics I/O IOH, IOL (2 of 6) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Permissible output current (max value total pins)*2 64 pin products Total of ports P000 to P004, P010 to P015 Symbol Min Typ Max Unit Test conditions ΣIOH (max) — — -30 mA AVCC0 = 2.7 to 5.5 V — — -8 AVCC0 = 1.8 to 2.7 V — — -4 AVCC0 = 1.6 to 1.8 V — — 50 AVCC0 = 2.7 to 5.5 V — — 4 AVCC0 = 1.8 to 2.7 V — — 2 AVCC0 = 1.6 to 1.8 V — — -8 — — -2 ΣIOL (max)   Total of ports P212, P213 ΣIOH (max) Total of ports P100 to P113, P201, P300 to P304, P500 to P502 Total of all output pin R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 VCC = 2.7 to 5.5 V VCC = 1.8 to 2.7 V — — -1 VCC = 1.6 to 1.8 V — — 16.0 VCC = 2.7 to 5.5 V — — 1.2 VCC = 1.8 to 2.7 V — — 0.6 VCC = 1.6 to 1.8 V — — -30 — — -8 VCC = 1.8 to 2.7 V — — -4 VCC = 1.6 to 1.8 V — — 50 VCC = 2.7 to 5.5 V — — 4 VCC = 1.8 to 2.7 V — — 2 VCC = 1.6 to 1.8 V — — -30 — — -8 VCC = 1.8 to 2.7 V — — -4 VCC = 1.6 to 1.8 V — — 50 VCC = 2.7 to 5.5 V — — 4 VCC = 1.8 to 2.7 V — — 2 VCC = 1.6 to 1.8 V ΣIOH (max) — — -60 ΣIOL (max) — — 100 ΣIOL (max) Total of ports P204 to P208, P400 to P403, P407 to P411, P913 to P915 mA ΣIOH (max) ΣIOL (max) ΣIOH (max) ΣIOL (max) mA mA mA VCC = 2.7 to 5.5 V VCC = 2.7 to 5.5 V     Page 26 of 112 RA2E1 Datasheet Table 2.5 2. Electrical Characteristics I/O IOH, IOL (3 of 6) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Permissible output current (max value total pins)*2 48 pin products Total of ports P000 to P002, P010 to P015 Symbol Min Typ Max Unit Test conditions ΣIOH (max) — — -30 mA AVCC0 = 2.7 to 5.5 V — — -8 AVCC0 = 1.8 to 2.7 V — — -4 AVCC0 = 1.6 to 1.8 V — — 50 AVCC0 = 2.7 to 5.5 V — — 4 AVCC0 = 1.8 to 2.7 V — — 2 AVCC0 = 1.6 to 1.8 V — — -8 — — -2 VCC = 1.8 to 2.7 V — — -1 VCC = 1.6 to 1.8 V — — 16.0 VCC = 2.7 to 5.5 V — — 1.2 VCC = 1.8 to 2.7 V — — 0.6 VCC = 1.6 to 1.8 V — — -30 — — -8 VCC = 1.8 to 2.7 V — — -4 VCC = 1.6 to 1.8 V — — 50 VCC = 2.7 to 5.5 V — — 4 VCC = 1.8 to 2.7 V — — 2 VCC = 1.6 to 1.8 V — — -30 — — -8 — — -4 — — 50 VCC = 2.7 to 5.5 V — — 4 VCC = 1.8 to 2.7 V — — 2 VCC = 1.6 to 1.8 V ΣIOH (max) — — -60 ΣIOL (max) — — 100 ΣIOL (max) Total of ports P212, P213 ΣIOH (max) ΣIOL (max) Total of ports P206 to P208, P400, P401, P407 to P409, P913 to P915 Total of ports P100 to P113, P201, P300 to P304, P500 to P502       ΣIOH (max) ΣIOL (max) ΣIOH (max) ΣIOL (max)   Total of all output pin  R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 mA mA mA         mA VCC = 2.7 to 5.5 V VCC = 2.7 to 5.5 V VCC = 2.7 to 5.5 V VCC = 1.8 to 2.7 V VCC = 1.6 to 1.8 V — — Page 27 of 112 RA2E1 Datasheet Table 2.5 2. Electrical Characteristics I/O IOH, IOL (4 of 6) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Permissible output current (max value total pins)*2 36 pin products Total of ports P000, P001, P010 to P015 Symbol Min Typ Max Unit Test conditions ΣIOH (max) — — -30 mA AVCC0 = 2.7 to 5.5 V — — -8 AVCC0 = 1.8 to 2.7 V — — -4 AVCC0 = 1.6 to 1.8 V — — 50 AVCC0 = 2.7 to 5.5 V — — 4 AVCC0 = 1.8 to 2.7 V — — 2 AVCC0 = 1.6 to 1.8 V — — -8 — — -2 VCC = 1.8 to 2.7 V — — -1 VCC = 1.6 to 1.8 V — — 16.0 VCC = 2.7 to 5.5 V — — 1.2 VCC = 1.8 to 2.7 V — — 0.6 VCC = 1.6 to 1.8 V — — -30 — — -20 VCC = 2.7 to 4.0 V — — -12 VCC = 1.8 to 2.7 V — — -6 VCC = 1.6 to 1.8 V — — 50 VCC = 4.0 to 5.5 V — — 20 VCC = 2.7 to 4.0 V — — 8 VCC = 1.8 to 2.7 V — — 4 VCC = 1.6 to 1.8 V ΣIOH (max) — — -60 ΣIOL (max) — — 100 ΣIOL (max) Total of ports P212, P213 ΣIOH (max) ΣIOL (max) Total of other output ports ΣIOH (max) ΣIOL (max) Total of all output pin R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 mA mA mA VCC = 2.7 to 5.5 V VCC = 4.0 to 5.5 V — — Page 28 of 112 RA2E1 Datasheet Table 2.5 2. Electrical Characteristics I/O IOH, IOL (5 of 6) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Permissible output current (max value total pins)*2 32 pin products Total of ports P010 to P015 Symbol Min Typ Max Unit Test conditions ΣIOH (max) — — -24 mA AVCC0 = 2.7 to 5.5 V — — -6 AVCC0 = 1.8 to 2.7 V — — -3 AVCC0 = 1.6 to 1.8 V — — 48 AVCC0 = 2.7 to 5.5 V — — 3.6 AVCC0 = 1.8 to 2.7 V — — 1.8 AVCC0 = 1.6 to 1.8 V — — -8 — — -2 VCC = 1.8 to 2.7 V — — -1 VCC = 1.6 to 1.8 V — — 16.0 VCC = 2.7 to 5.5 V — — 1.2 VCC = 1.8 to 2.7 V — — 0.6 VCC = 1.6 to 1.8 V — — -30 — — -20 VCC = 2.7 to 4.0 V — — -12 VCC = 1.8 to 2.7 V — — -6 VCC = 1.6 to 1.8 V — — 50 VCC = 4.0 to 5.5 V — — 20 VCC = 2.7 to 4.0 V — — 8 VCC = 1.8 to 2.7 V — — 4 VCC = 1.6 to 1.8 V ΣIOH (max) — — -54 ΣIOL (max) — — 98 ΣIOL (max) Total of ports P212, P213 ΣIOH (max) ΣIOL (max) Total of other output ports ΣIOH (max) ΣIOL (max) Total of all output pin R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 mA mA mA VCC = 2.7 to 5.5 V VCC = 4.0 to 5.5 V — — Page 29 of 112 RA2E1 Datasheet Table 2.5 2. Electrical Characteristics I/O IOH, IOL (6 of 6) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Permissible output current (max value total pins)*2 25 pin products Total of ports P010, P011, P014, P015 Symbol Min Typ Max Unit Test conditions ΣIOH (max)   — — -16 mA AVCC0 = 2.7 to 5.5 V — — -4 AVCC0 = 1.8 to 2.7 V — — -2 AVCC0 = 1.6 to 1.8 V — — 32 AVCC0 = 2.7 to 5.5 V — — 2.4 AVCC0 = 1.8 to 2.7 V — — 1.2 AVCC0 = 1.6 to 1.8 V — — -8 — — -2 ΣIOL (max) Total of ports P212, P213 ΣIOH (max) VCC = 1.8 to 2.7 V — — -1 VCC = 1.6 to 1.8 V — 16.0 VCC = 2.7 to 5.5 V — — 1.2 VCC = 1.8 to 2.7 V — — 0.6 VCC = 1.6 to 1.8 V — — -30 — — -20 VCC = 2.7 to 4.0 V — — -12 VCC = 1.8 to 2.7 V — — -6 VCC = 1.6 to 1.8 V — — 50 VCC = 4.0 to 5.5 V — — 20 VCC = 2.7 to 4.0 V — — 8 VCC = 1.8 to 2.7 V — — 4 VCC = 1.6 to 1.8 V ΣIOH (max) — — -46 ΣIOL (max) — — 82 ΣIOH (max) ΣIOL (max) Total of all output pin VCC = 2.7 to 5.5 V — ΣIOL (max) Total of other output ports mA mA mA VCC = 4.0 to 5.5 V — — Note 1. Except for Ports P200, P214, and P215, which are input ports. Note 2. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%). Total output current of pins = (IOH × 0.7)/(n × 0.01) Where n = 80% and IOH = −30.0 mA Total output current of pins = (−30.0 × 0.7)/(80 × 0.01) ≅ −26.2 mA However, the current that is allowed to flow into one pin does not vary depending on the duty factor. Caution: To protect the reliability of the MCU, the output current values should not exceed the values in Table 2.5. R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 30 of 112 RA2E1 Datasheet 2.2.4 Table 2.6 2. Electrical Characteristics I/O VOH, VOL, and Other Characteristics I/O VOH, VOL (1) Conditions: VCC = AVCC0 = 4.0 to 5.5 V Parameter Output voltage Symbol Min Typ Max Unit Test conditions Ports P000 to P004, P010 to P015 VOH AVCC0 - 0.8 — — V IOH = -4.0 mA Output pins except for P000 to P004 and P010 to P015*1 VOH VCC - 0.8 — — IOH = -4.0 mA Ports P000 to P004, P010 to P015 VOL — — 0.8 IOL = 8.0 mA Ports P212, P213, P400, P401, P407 VOL — — 0.8 IOL = 8.0 mA Output pins except for P000 to P004, P010 to P015, P212, P213, P400, P401, and P407*1 VOL — — 1.2 IOL = 20.0 mA Symbol Min Typ Max Unit Test conditions Ports P000 to P004, P010 to P015 VOH AVCC0 - 0.8 — — V IOH = -4.0 mA Output pins except for P000 to P004 and P010 to P015*1 VOH VCC - 0.8 — — IOH = -4.0 mA Ports P000 to P004, P010 to P015 VOL — — 0.8 IOL = 8.0 mA Output pins except for P000 to P004 and P010 to P015*1 VOL — — 0.8 IOL = 8.0 mA Note 1. Except for Ports P200, P214, and P215, which are input ports. Table 2.7 I/O VOH, VOL (2) Conditions: VCC = AVCC0 = 2.7 to 4.0 V Parameter Output voltage Note 1. Except for Ports P200, P214, and P215, which are input ports. Table 2.8 I/O VOH, VOL (3) Conditions: VCC = AVCC0 = 1.6 to 2.7 V Parameter Output voltage Ports P000 to P004, P010 to P015 Output pins except for P000 to P004 and P010 to P015*1 Ports P000 to P004, P010 to P015 Output pins except for P000 to P004 and P010 to P015*1 Symbol Min Typ Max Unit Test conditions VOH AVCC0 - 0.5 — — V IOH = -1.0 mA AVCC0 = 1.8 to 2.7 V AVCC0 - 0.5 — — IOH = -0.5 mA AVCC0 = 1.6 to 1.8 V VCC - 0.5 — — IOH = -1.0 mA VCC = 1.8 to 2.7 V VCC - 0.5 — — IOH = -0.5 mA VCC = 1.6 to 1.8 V — — 0.4 IOL = 0.6 mA AVCC0 = 1.8 to 2.7 V — — 0.4 IOL = 0.3 mA AVCC0 = 1.6 to 1.8 V — — 0.4 IOL = 0.6 mA VCC = 1.8 to 2.7 V — — 0.4 IOL = 0.3 mA VCC = 1.6 to 1.8 V VOH VOL VOL Note 1. Except for Ports P200, P214, and P215, which are input ports. R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 31 of 112 RA2E1 Datasheet Table 2.9 2. Electrical Characteristics I/O other characteristics Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions Input leakage current RES, ports P200, P214, P215 | Iin | — — 1.0 µA Vin = 0 V Vin = VCC Three-state leakage current (off state) 5V-tolerant ports*1 | ITSI | — — 1.0 µA Vin = 0 V Vin = 5.8 V — — 1.0 10 20 100 kΩ Vin = 0 V pF Vin = 0 V f = 1 MHz Ta = 25°C Other ports (except for P200, P214, P215, and 5V-tolerant ports) Input pull-up resistor Input capacitance All ports (except for P200, P214, P215) RU P200 Cin Vin = 0 V Vin = VCC — — 30 — — 15 Symbol Typ*10 Max Unit Test Conditions ICC 4.80 — mA *7 *11 ICLK = 32 MHz 3.45 — ICLK = 16 MHz 2.05 — ICLK = 8 MHz 1.40 — All peripheral clocks ICLK = 48 MHz enabled, code executing from flash*5 — 13.0 *9 *11 All peripheral clocks disabled*5 ICLK = 48 MHz 1.05 — *7 ICLK = 32 MHz 0.85 — *7 ICLK = 16 MHz 0.70 — ICLK = 8 MHz 0.60 — ICLK = 48 MHz 4.15 — *9 ICLK = 32 MHz 3.95 — *8 ICLK = 16 MHz 2.25 — ICLK = 8 MHz 1.35 — 2.1 — Other input pins Note 1. P400, P401, and P407 (total 3 pins) 2.2.5 Table 2.10 Operating and Standby Current Operating and standby current (1) (1 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Supply current*1 Highspeed mode*2 Normal mode Sleep mode All peripheral clocks disabled, CoreMark code executing from flash*5 All peripheral clocks enabled*5 Increase during BGO R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 operation*6 ICLK = 48 MHz *7 — Page 32 of 112 RA2E1 Datasheet Table 2.10 2. Electrical Characteristics Operating and standby current (1) (2 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Symbol Typ*10 Max Unit Test Conditions ICC 2.60 — mA *7 0.90 — All peripheral clocks ICLK = 24 MHz enabled, code executing from flash*5 — 8.1 *8 All peripheral clocks disabled*5 ICLK = 24 MHz 0.70 — *7 ICLK = 4 MHz 0.55 — All peripheral clocks enabled*5 ICLK = 24 MHz 3.05 — ICLK = 4 MHz 0.90 — 1.90 — 0.30 — All peripheral clocks ICLK = 2 MHz enabled, code executing from flash*5 — 2.2 *8 All peripheral clocks disabled*5 ICLK = 2 MHz 0.13 — *7 All peripheral clocks enabled*5 ICLK = 2 MHz 0.31 — *8 Parameter Supply current*1 Middlespeed mode*2 Normal mode Sleep mode All peripheral clocks disabled, CoreMark code executing from flash*5 ICLK = 24 MHz ICLK = 4 MHz Increase during BGO operation*6 Lowspeed mode*3 Normal mode Sleep mode Suboscspeed mode*4 All peripheral clocks disabled, CoreMark code executing from flash*5 ICLK = 2 MHz *8 — mA µA *7 Normal mode All peripheral clocks ICLK = 32.768 kHz enabled, code executing from flash*5 — 530 Sleep mode All peripheral clocks disabled*5 ICLK = 32.768 kHz 1.90 — *8 All peripheral clocks enabled*5 ICLK = 32.768 kHz 4.90 — *8 *8 Note 1. Supply current is the total current flowing into VCC. Supply current values apply when internal pull-up MOSs are in the off state and these values do not include output charge/discharge current from any of the pins. Note 2. The clock source is HOCO. Note 3. The clock source is MOCO. Note 4. The clock source is the sub-clock oscillator. Note 5. This does not include BGO operation. Note 6. This is the increase for programming or erasure of the flash memory for data storage during program execution. Note 7. PCLKB and PCLKD are set to divided by 64. Note 8. PCLKB and PCLKD are the same frequency as that of ICLK. Note 9. PCLKB are set to be divided by 2 and PCLKD is the same frequency as that of ICLK. Note 10. VCC = 3.3 V. Note 11. The prefetch buffer is operating. R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 33 of 112 RA2E1 Datasheet Table 2.11 2. Electrical Characteristics Operating and standby current (2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Symbol Typ*3 Max Unit Test conditions ICC 0.25 1.3 µA — Ta = 55°C 0.55 3.7 Ta = 85°C 1.95 12 Ta = 105°C 3.90 42 Ta = 25°C 0.25 1.3 Ta = 55°C 0.55 3.7 Ta = 85°C 1.70 12 Ta = 105°C 3.55 42 Increment for RTC operation with low-speed on-chip oscillator*4 0.30 — — Increment for RTC operation in normal operation mode with sub-clock oscillator*4 0.20 — SOMCR.SODRV[1:0] are 11b (Low power mode 3) RCR4.ROPSEL is 0 (RTC operation in normal operation mode) 0.95 — SOMCR.SODRV[1:0] are 00b (normal mode) RCR4.ROPSEL is 0 (RTC operation in normal operation mode) 0.11 — SOMCR.SODRV[1:0] are 11b (Low power mode 3) RCR4.ROPSEL is 1 (RTC operation in lowconsumption clock mode) 0.90 — SOMCR.SODRV[1:0] are 00b (normal mode) RCR4.ROPSEL is 1 (RTC operation in lowconsumption clock mode) Parameter Supply Software Peripheral current*1 Standby modules stop mode*2 All SRAMs (0x2000_0000 to 0x2000_7FFF) are on Only 8KB SRAM (0x2000_4000 to 0x2000_5FFF) is on Ta = 25°C Increment for RTC operation in low-consumption clock mode with sub-clock oscillator*4 Note 1. Supply current is the total current flowing into VCC. Supply current values apply when internal pull-up MOSs are in the off state and these values do not include output charge/discharge current from any of the pins. Note 2. The IWDT and LVD are not operating. Note 3. VCC = 3.3 V. Note 4. Includes the low-speed on-chip oscillator or sub-oscillation circuit current. Table 2.12 Operating and standby current (3) (1 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Analog power supply current Reference power supply current Symbol Min Typ Max Unit Test conditions IAVCC0 — — 1.44 mA — During 12-bit A/D conversion (at low-power conversion) — — 0.78 mA — Waiting for 12-bit A/D conversion (all units)*1 — — 1.0 µA — — — 120 µA — — — 60 nA — — 95 — µA — During 12-bit A/D conversion (at high-speed conversion) During 12-bit A/D conversion IREFH0 Waiting for 12-bit A/D conversion Temperature Sensor (TSN) operating current R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 ITNS Page 34 of 112 RA2E1 Datasheet Table 2.12 2. Electrical Characteristics Operating and standby current (3) (2 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Low-power Analog Comparator (ACMPLP) operating current Symbol Min Typ Max Unit Test conditions ICMPLP — 12 — µA — Comparator (high-speed mode) — 6.4 — µA — Comparator (low-speed mode) — 1.8 — µA — Window comparator (high-speed mode) Note 1. When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (ADC120 module-stop bit) is in the module-stop state. 2.2.6 VCC Rise and Fall Gradient and Ripple Frequency Table 2.13 Rise and fall gradient characteristics Conditions: VCC = AVCC0 = 0 to 5.5 V Parameter Power-on VCC rising gradient Voltage monitor 0 reset disabled at startup Voltage monitor 0 reset enabled at Symbol Min Typ Max Unit Test conditions SrVCC 0.02 — 2 ms/V — — startup*1 *2 2 SCI boot mode*2 Note 1. When OFS1.LVDAS = 0. Note 2. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of OFS1.LVDAS bit. Table 2.14 Rising and falling gradient and ripple frequency characteristics Conditions: VCC = AVCC0 = 1.6 to 5.5 V The ripple voltage must meet the allowable ripple frequency fr(VCC) within the range between the VCC upper limit (5.5 V) and lower limit (1.6 V). When the VCC change exceeds VCC ± 10%, the allowable voltage change rising and falling gradient dt/dVCC must be met. Parameter Symbol Min Typ Max Unit Test conditions Allowable ripple frequency fr(VCC) — — 10 kHz Figure 2.2 Vr (VCC) ≤ VCC × 0.2 — — 1 MHz Figure 2.2 Vr (VCC) ≤ VCC × 0.08 — — 10 MHz Figure 2.2 Vr (VCC) ≤ VCC × 0.06 1.0 — — ms/V When VCC change exceeds VCC ± 10% Allowable voltage change rising and falling gradient dt/dVCC 1 / fr(VCC) VCC Figure 2.2 2.3 Vr(VCC) Ripple waveform AC Characteristics R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 35 of 112 RA2E1 Datasheet 2.3.1 Table 2.15 2. Electrical Characteristics Frequency Operation frequency in high-speed operating mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V Parameter Operation frequency System clock 1.8 to 5.5 V (ICLK)*1*2 Max*4 Unit 0.032768 — 48 MHz Symbol Min f Typ Peripheral module clock (PCLKB) 1.8 to 5.5 V — — 32 Peripheral module clock (PCLKD)*3 1.8 to 5.5 V — — 64 Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. When using ICLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note 2. The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Note 3. The lower-limit frequency of PCLKD is 1 MHz when the ADC12 is in use. Note 4. The maximum value of operation frequency does not include internal oscillator errors. For details on the range for guaranteed operation, see Table 2.19. Table 2.16 Operation frequency in middle-speed mode Conditions: VCC = AVCC0 = 1.6 to 5.5 V Max*4 Unit 0.032768 — 24 MHz 1.6 to 1.8 V 0.032768 — 4 1.8 to 5.5 V — — 24 1.6 to 1.8 V — — 4 1.8 to 5.5 V — — 24 1.6 to 1.8 V — — 4 Parameter Operation frequency 1.8 to 5.5 V System clock (ICLK)*1*2 Peripheral module clock (PCLKB) Peripheral module clock (PCLKD)*3 Symbol Min f Typ Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. When using ICLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note 2. The frequency accuracy of ICLK must be ± 1.0% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Note 3. The lower-limit frequency of PCLKD is 1 MHz when the ADC12 is in use. Note 4. The maximum value of operation frequency does not include internal oscillator errors. For details on the range for guaranteed operation, see Table 2.19. Table 2.17 Operation frequency in low-speed mode Conditions: VCC = AVCC0 = 1.6 to 5.5 V Max*4 Unit 0.032768 — 2 MHz 1.6 to 5.5 V — — 2 1.6 to 5.5 V — — 2 Parameter Operation frequency System clock 1.6 to 5.5 V (ICLK)*1*2 Peripheral module clock (PCLKB) Peripheral module clock (PCLKD)*3 Symbol Min f Typ Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. Note 2. The frequency accuracy of ICLK must be ± 1.0% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Note 3. The lower-limit frequency of PCLKD is 1 MHz when the ADC12 is in use. Note 4. The maximum value of operation frequency does not include internal oscillator errors. For details on the range for guaranteed operation, see Table 2.19. R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 36 of 112 RA2E1 Datasheet Table 2.18 2. Electrical Characteristics Operation frequency in Subosc-speed mode Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Operation frequency System clock 1.6 to 5.5 V (ICLK)*1 Symbol Min Typ Max Unit f 27.8528 32.768 37.6832 kHz Peripheral module clock (PCLKB) 1.6 to 5.5 V — — 37.6832 Peripheral module clock (PCLKD)*2 1.6 to 5.5 V — — 37.6832 Note 1. Programming and erasing the flash memory is not possible. Note 2. The ADC12 cannot be used. 2.3.2 Table 2.19 Clock Timing Clock timing Parameter Symbol Min Typ Max Unit Test conditions EXTAL external clock input cycle time tXcyc 50 — — ns Figure 2.3 EXTAL external clock input high pulse width tXH 20 — — ns EXTAL external clock input low pulse width tXL 20 — — ns EXTAL external clock rising time tXr — — 5 ns EXTAL external clock falling time tXf — — 5 ns EXTAL external clock input wait time*1 tEXWT 0.3 — — µs — EXTAL external clock input frequency fEXTAL — — 20 MHz 1.8 ≤ VCC ≤ 5.5 — — 4 1 — 20 1 — 4 Main clock oscillator oscillation frequency fMAIN 1.6 ≤ VCC < 1.8 MHz 1.8 ≤ VCC ≤ 5.5 1.6 ≤ VCC < 1.8 LOCO clock oscillation frequency fLOCO 27.8528 32.768 37.6832 kHz — LOCO clock oscillation stabilization time tLOCO — — 100 µs Figure 2.4 IWDT-dedicated clock oscillation frequency fILOCO 12.75 15 17.25 kHz — MOCO clock oscillation frequency fMOCO 6.8 8 9.2 MHz — MOCO clock oscillation stabilization time tMOCO — — 1 µs — HOCO clock oscillation frequency*5 fHOCO24 23.76 24 24.24 MHz Ta = -40 to 105°C 1.6 ≤ VCC ≤ 5.5 fHOCO32 31.68 32 32.32 Ta = -40 to 105°C 1.6 ≤ VCC ≤ 5.5 fHOCO48 47.52 48 48.48 Ta = -40 to 105°C 1.6 ≤ VCC ≤ 5.5 fHOCO64 63.36 64 64.64 Ta = -40 to 105°C 1.6 ≤ VCC ≤ 5.5 HOCO clock oscillation stabilization time*3 *4 tHOCO24 tHOCO32 tHOCO48 tHOCO64 — 6.7 7.7 µs Figure 2.5 Sub-clock oscillator oscillation frequency fSUB — 32.768 — kHz — tSUBOSC — 0.5 — s Figure 2.6 Sub-clock oscillation stabilization time*2 Note 1. Time until the clock can be used after the Main Clock Oscillator stop bit (MOSCCR.MOSTP) is set to 0 (operating) when the external clock is stable. Note 2. After changing the setting of the SOSCCR.SOSTP bit to start sub-clock oscillator operation, only start using the sub-clock oscillator after the sub-clock oscillation stabilization wait time elapsed. Use the oscillator wait time value recommended by the oscillator manufacturer. Note 3. This is a characteristic when the HOCOCR.HCSTP bit is set to 0 (oscillation) in the MOCO stop state. When the HOCOCR.HCSTP bit is set to 0 (oscillation) during MOCO oscillation, this specification is shortened by 1 µs. R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 37 of 112 RA2E1 Datasheet 2. Electrical Characteristics Note 4. Check OSCSF.HOCOSF to confirm whether stabilization time has elapsed. Note 5. Accuracy at production test. tXcyc tXH tXL EXTAL external clock input VCC × 0.5 tXr Figure 2.3 tXf EXTAL external clock input timing LOCOCR.LCSTP tLOCO LOCO clock oscillator output Figure 2.4 LOCO clock oscillation start timing HOCOCR.HCSTP tHOCOx*1 HOCO clock Note: Figure 2.5 x = 24, 32, 48, 64 HOCO clock oscillation start timing (started by setting the HOCOCR.HCSTP bit) SOSCCR.SOSTP tSUBOSC Sub-clock oscillator output Figure 2.6 Sub-clock oscillation start timing R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 38 of 112 RA2E1 Datasheet 2.3.3 Table 2.20 2. Electrical Characteristics Reset Timing Reset timing Symbol Min Typ Max Unit Test conditions At power-on tRESWP 10 — — ms Figure 2.7 Not at power-on tRESW 30 — — µs Figure 2.8 tRESWT — 0.9 — ms Figure 2.7 — 0.2 — — 0.9 — ms Figure 2.8 — 0.2 — — 0.9 — ms Figure 2.9 — 0.15 — Parameter RES pulse width Wait time after RES cancellation (at power-on) LVD0 enabled*1 LVD0 disabled*2 Wait time after RES cancellation (during LVD0 enabled*1 powered-on state) LVD0 disabled*2 tRESWT2 Wait time after internal reset LVD0 cancellation (Watchdog timer reset, LVD0 disabled*2 SRAM parity error reset, bus master MPU error reset, bus slave MPU error reset, stack pointer error reset, software reset) tRESWT3 enabled*1 Note 1. When OFS1.LVDAS = 0. Note 2. When OFS1.LVDAS = 1. VCC RES tRESWP Internal reset tRESWT Figure 2.7 Reset input timing at power-on tRESW RES Internal reset tRESWT2 Figure 2.8 Reset input timing (1) R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 39 of 112 RA2E1 Datasheet 2. Electrical Characteristics tRESWIW, tRESWIR Independent watchdog timer reset Software reset Internal reset tRESWT3 Figure 2.9 2.3.4 Table 2.21 Reset input timing (2) Wakeup Time Timing of recovery from low power modes (1) Parameter Recovery time from Software Standby mode*1 Highspeed mode Symbol Min Typ Max Unit Crystal resonator connected to main clock oscillator System clock source is main clock oscillator (20 MHz)*2 tSBYMC — 2 3 ms External clock input to main clock oscillator System clock source is main clock oscillator (20 MHz)*3 tSBYEX — 2.4 3.1 µs System clock source is HOCO (HOCO clock is 32 MHz)*4 tSBYHO — 7.4 9.1 µs System clock source is HOCO (HOCO clock is 48 MHz)*5 tSBYHO — 7.3 8.9 µs System clock source is HOCO (HOCO clock is 64 MHz)*4 tSBYHO — 7.4 9.1 µs System clock source is MOCO (8 MHz) tSBYMO — 4 5 µs Test conditions Figure 2.10 Note 1. The division ratio of ICLK and PCLKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source. Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x05. Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x00. Note 4. The system clock is 32 MHz. Note 5. The system clock is 48 MHz. Table 2.22 Timing of recovery from low power modes (2) (1 of 2) Parameter Symbol Min Typ Max Unit Crystal resonator connected to main clock oscillator System clock source is main clock oscillator (20 MHz)*2 tSBYMC — 2 3 ms External clock input to main clock oscillator System clock source is main clock oscillator (20 MHz)*3 VCC = 1.8 V to 5.5 V tSBYEX — 2.4 3.1 µs R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Test conditions Page 40 of 112 RA2E1 Datasheet Table 2.22 2. Electrical Characteristics Timing of recovery from low power modes (2) (2 of 2) Parameter Symbol System clock source is main clock oscillator (20 MHz)*3 VCC = 1.6 V to 1.8 V Recovery time from Software Standby mode*1 Middlespeed mode System clock source is HOCO*4 VCC = 1.8 V to 5.5 V tSBYHO VCC = 1.6 V to 1.8 V System clock source is MOCO (8 MHz) VCC = 1.8 V to 5.5 V tSBYMO VCC = 1.6 V to 1.8 V Min Typ Max — 11.7 13 — 7.7 9.4 — 15.7 17.9 — 4 5 — 7.2 9 Unit Test conditions µs Figure 2.10 µs Note 1. The division ratio of ICLK and PCLKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source. Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x05. Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x00. Note 4. The system clock is 24 MHz. Table 2.23 Timing of recovery from low power modes (3) Parameter Recovery time from Software Standby mode*1 Symbol Min Typ Max Unit Test conditions System clock source is main clock oscillator (2 MHz)*2 tSBYMC — 2 3 ms Figure 2.10 System clock source is main clock oscillator (2 MHz)*3 tSBYEX — 14.5 16 µs System clock source is MOCO (2 MHz) tSBYMO — 12 15 µs Low-speed Crystal mode resonator connected to main clock oscillator External clock input to main clock oscillator Note 1. The division ratio of ICLK and PCLKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source. Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x05. Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x00. Table 2.24 Timing of recovery from low power modes (4) Parameter Recovery time from Software Standby mode*1 Subosc-speed mode Symbol Min Typ Max Unit Test conditions System clock source is sub-clock oscillator (32.768 kHz) tSBYSC — 0.85 1 ms Figure 2.10 System clock source is LOCO (32.768 kHz) tSBYLO — 0.85 1.2 ms Note 1. The sub-clock oscillator or LOCO itself continues oscillating in Software Standby mode during Subosc-speed mode. R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 41 of 112 RA2E1 Datasheet 2. Electrical Characteristics Oscillator ICLK IRQ Software Standby mode tSBYMC, tSBYEX, tSBYMO, tSBYHO Oscillator ICLK IRQ Software Standby mode tSBYSC, tSBYLO Figure 2.10 Software Standby mode cancellation timing Table 2.25 Timing of recovery from low power modes (5) Parameter Recovery time from Software Standby mode to Snooze mode Symbol Min Typ Max Unit Test conditions High-speed mode System clock source is HOCO tSNZ — 6.6 8.1 µs Figure 2.11 Middle-speed mode System clock source is HOCO (24 MHz) VCC = 1.8 V to 5.5 V tSNZ — 6.7 8.2 µs Middle-speed mode System clock source is HOCO (24 MHz) VCC = 1.6 V to 1.8 V tSNZ — 10.8 12.9 µs Low-speed mode System clock source is MOCO (2 MHz) tSNZ — 6.7 8.0 µs R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 42 of 112 RA2E1 Datasheet 2. Electrical Characteristics Oscillator ICLK (except DTC, SRAM) ICLK (to DTC, SRAM)*1 PCLK IRQ Software Standby mode Snooze mode tSNZ Note 1. When SNZCR.SNZDTCEN bit is set to 1, ICLK is supplied to DTC and SRAM. Figure 2.11 2.3.5 Recovery timing from Software Standby mode to Snooze mode NMI and IRQ Noise Filter Table 2.26 NMI and IRQ noise filter Parameter Symbol Min NMI pulse width tNMIW 200 IRQ pulse width Note: Note: Note 1. Note 2. Note 3. Typ Max Unit Test conditions — — ns NMI digital filter disabled — — 200 — — tNMICK × 3.5*2 — — 200 — — tPcyc × 2*1 — — 200 — — tIRQCK × 3.5*3 — — tPcyc × tIRQW 2*1 tPcyc × 2 ≤ 200 ns tPcyc × 2 > 200 ns NMI digital filter enabled tNMICK × 3 ≤ 200 ns tNMICK × 3 > 200 ns ns IRQ digital filter disabled tPcyc × 2 ≤ 200 ns tPcyc × 2 > 200 ns IRQ digital filter enabled tIRQCK × 3 ≤ 200 ns tIRQCK × 3 > 200 ns 200 ns minimum in Software Standby mode. If the clock source is being switched it is needed to add 4 clock cycle of switched source. tPcyc indicates the PCLKB cycle. tNMICK indicates the cycle of the NMI digital filter sampling clock. tIRQCK indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 7). NMI tNMIW Figure 2.12 NMI interrupt input timing R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 43 of 112 RA2E1 Datasheet 2. Electrical Characteristics IRQ tIRQW Figure 2.13 2.3.6 Table 2.27 IRQ interrupt input timing I/O Ports, POEG, GPT, AGT, KINT, and ADC12 Trigger Timing I/O Ports, POEG, GPT, AGT, KINT, and ADC12 trigger timing Parameter I/O Ports Input data pulse width POEG POEG input trigger pulse width GPT Input capture pulse width 2.7 V ≤ VCC ≤ 5.5 V Symbol Min Max Unit Test conditions tPRW 2 — tPcyc Figure 2.14 2.4 V ≤ VCC < 2.7 V 3 1.6 V ≤ VCC < 2.4 V 4 tPOEW 3 — tPcyc Figure 2.15 tGTICW 1.5 — tPDcyc Figure 2.16 2.5 — 250 — ns Figure 2.17 2000 — ns 100 — ns 800 — ns 62.5 — ns 2.4 V ≤ VCC < 2.7 V 125 — ns 1.8 V ≤ VCC < 2.4 V 250 — ns Single edge Dual edge AGT AGTIO, AGTEE input cycle 1.8 V ≤ VCC ≤ 5.5 V tACYC*1 1.6 V ≤ VCC < 1.8 V AGTIO, AGTEE input high-level width, low-level width 1.8 V ≤ VCC ≤ 5.5 V 1.6 V ≤ VCC < 1.8 V tACKWH, tACKWL AGTIO, AGTO, AGTOA, AGTOB output cycle 2.7 V ≤ VCC ≤ 5.5 V tACYC2 1.6 V ≤ VCC < 1.8 V Figure 2.17 500 — ns ADC12 12-bit A/D converter trigger input pulse width tTRGW 1.5 — tPcyc Figure 2.18 KINT KRn (n = 00 to 07) pulse width tKR 250 — ns Figure 2.19 Note 1. Constraints on AGTIO input: tPcyc × 2 (tPcyc: PCLKB cycle) < tACYC. Port tPRW Figure 2.14 I/O ports input timing R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 44 of 112 RA2E1 Datasheet 2. Electrical Characteristics POEG input trigger tPOEW Figure 2.15 POEG input trigger timing Input capture tGTICW Figure 2.16 GPT input capture timing tACYC tACKWL tACKWH AGTIO, AGTEE (input) tACYC2 AGTIO, AGTO, AGTOA, AGTOB (output) Figure 2.17 AGT I/O timing ADTRG0 tTRGW Figure 2.18 ADC12 trigger input timing R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 45 of 112 RA2E1 Datasheet 2. Electrical Characteristics KRn tKR Note: n = 00 to 07 Figure 2.19 2.3.7 Table 2.28 Key interrupt input timing CAC Timing CAC timing Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter CAC CACREF input pulse width tPcyc*1 ≤ tCAC*2 tPcyc*1 > tCAC*2 Symbol Min Typ Max Unit Test conditions tCACREF 4.5 × tCAC + 3 × tPcyc — — ns — 5 × tCAC + 6.5 × tPcyc — — ns Note 1. tPcyc: PCLKB cycle. Note 2. tCAC: CAC count clock source cycle. R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 46 of 112 RA2E1 Datasheet 2.3.8 2. Electrical Characteristics SCI Timing Table 2.29 SCI timing (1) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter SCI Input clock cycle Asynchronous Clock synchronous Symbol Min Max Unit Test conditions tScyc 125 — ns Figure 2.20 2.4 V ≤ VCC < 2.7 V 250 — 1.8 V ≤ VCC < 2.4 V 500 — 1.6 V ≤ VCC < 1.8 V 1000 — 2.7 V ≤ VCC ≤ 5.5 V 187.5 — 2.4 V ≤ VCC < 2.7 V 375 — 1.8 V ≤ VCC < 2.4 V 750 — 1.6 V ≤ VCC < 1.8 V 1500 — 2.7 V ≤ VCC ≤ 5.5 V Input clock pulse width tSCKW 0.4 0.6 tScyc Input clock rise time tSCKr — 20 ns Input clock fall time tSCKf — 20 ns tScyc 187.5 — ns 2.4 V ≤ VCC < 2.7 V 375 — 1.8 V ≤ VCC < 2.4 V 750 — 1.6 V ≤ VCC < 1.8 V 1500 — 2.7 V ≤ VCC ≤ 5.5 V 125 — 2.4 V ≤ VCC < 2.7 V 250 — 1.8 V ≤ VCC < 2.4 V 500 — 1.6 V ≤ VCC < 1.8 V 1000 — tSCKW 0.4 0.6 tScyc tSCKr — 20 ns — 30 — 20 — 30 — 40 Output clock cycle Asynchronous Clock synchronous 2.7 V ≤ VCC ≤ 5.5 V Output clock pulse width Output clock rise time 1.8 V ≤ VCC ≤ 5.5 V 1.6 V ≤ VCC < 1.8 V Output clock fall time 1.8 V ≤ VCC ≤ 5.5 V tSCKf 1.6 V ≤ VCC < 1.8 V Transmit data delay time (master) Clock synchronous 1.8 V ≤ VCC ≤ 5.5 V 1.6 V ≤ VCC < 1.8 V — 45 Transmit data Clock delay time (slave) synchronous 2.7 V ≤ VCC ≤ 5.5 V — 55 2.4 V ≤ VCC < 2.7 V — 60 1.8 V ≤ VCC < 2.4 V — 100 1.6 V ≤ VCC < 1.8 V — 125 45 — 2.4 V ≤ VCC < 2.7 V 55 — 1.8 V ≤ VCC < 2.4 V 90 — 1.6 V ≤ VCC < 1.8 V 110 — 2.7 V ≤ VCC ≤ 5.5 V 40 — 1.6 V ≤ VCC < 2.7 V 45 — Receive data setup time (master) Clock synchronous 2.7 V ≤ VCC ≤ 5.5 V tTXD tRXS ns ns ns ns Receive data setup time (slave) Clock synchronous Receive data hold time (master) Clock synchronous tRXH 5 — ns Receive data hold time (slave) Clock synchronous tRXH 40 — ns R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Figure 2.21 ns Page 47 of 112 RA2E1 Datasheet 2. Electrical Characteristics tSCKW tSCKr tSCKf SCKn tScyc Note: n = 0 to 2, 9 Figure 2.20 SCK clock input timing SCKn tTXD TXDn tRXS tRXH RXDn Note: n = 0 to 2, 9 Figure 2.21 SCI input/output timing in clock synchronous mode R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 48 of 112 RA2E1 Datasheet Table 2.30 2. Electrical Characteristics SCI timing (2) (1 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Symbol Min Max Unit*1 Test conditions tSPcyc 125 — ns Figure 2.22 2.4 V ≤ VCC < 2.7 V 250 — 1.8 V ≤ VCC < 2.4 V 500 — 1.6 V ≤ VCC < 1.8 V 1000 — 2.7 V ≤ VCC ≤ 5.5 V 187.5 — 2.4 V ≤ VCC < 2.7 V 375 — 1.8 V ≤ VCC < 2.4 V 750 — 1.6 V ≤ VCC < 1.8 V 1500 — Parameter Simple SPI SCK clock cycle output (master) SCK clock cycle input (slave) 2.7 V ≤ VCC ≤ 5.5 V SCK clock high pulse width tSPCKWH 0.4 0.6 tSPcyc SCK clock low pulse width tSPCKWL 0.4 0.6 tSPcyc — 20 ns 1.6 V ≤ VCC < 1.8 V tSPCKr, tSPCKf — 30 2.7 V ≤ VCC ≤ 5.5 V tSU 45 — 2.4 V ≤ VCC < 2.7 V 55 — 1.8 V ≤ VCC < 2.4 V 80 — 1.6 V ≤ VCC < 1.8 V 110 — 2.7 V ≤ VCC ≤ 5.5 V 40 — 1.6 V ≤ VCC < 2.7 V 45 — 33.3 — SCK clock rise and fall time Data input setup time Master Slave Data input hold time 1.8 V ≤ VCC ≤ 5.5 V Master tH 40 — tLEAD 1 — tSPcyc SS input hold time tLAG 1 — tSPcyc tOD — 40 ns 1.6 V ≤ VCC < 1.8 V — 50 2.4 V ≤ VCC ≤ 5.5 V — 65 1.8 V ≤ VCC < 2.4 V — 100 1.6 V ≤ VCC < 1.8 V — 125 -10 — 2.4 V ≤ VCC < 2.7 V -20 — 1.8 V ≤ VCC < 2.4 V -30 — 1.6 V ≤ VCC < 1.8 V -40 — -10 — — 20 1.6 V ≤ VCC < 1.8 V — 30 1.8 V ≤ VCC ≤ 5.5 V — 20 1.6 V ≤ VCC < 1.8 V — 30 Master Slave Data output hold time Master 1.8 V ≤ VCC ≤ 5.5 V 2.7 V ≤ VCC ≤ 5.5 V tOH Slave Data rise and fall time Master Slave R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 1.8 V ≤ VCC ≤ 5.5 V tDr, tDf Figure 2.23 to Figure 2.26 ns SS input setup time Data output delay time Slave ns ns ns Page 49 of 112 RA2E1 Datasheet Table 2.30 2. Electrical Characteristics SCI timing (2) (2 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Symbol Min Max Unit*1 Test conditions tSA — 6 tPcyc Figure 2.26 24 MHz ≤ PCLKB ≤ 32 MHz — 7 PCLKB < 24 MHz — 6 — 6 — 6 24 MHz ≤ PCLKB ≤ 32 MHz — 7 PCLKB < 24 MHz — 6 — 6 Parameter Simple SPI Slave access time 2.4 V ≤ VCC ≤ 5.5 V 1.8 V ≤ VCC < 2.4 V 1.6 V ≤ VCC < 1.8 V Slave output release time 2.4 V ≤ VCC ≤ 5.5 V 1.8 V ≤ VCC < 2.4 V tREL 1.6 V ≤ VCC < 1.8 V tPcyc Note 1. tPcyc: PCLKB cycle. tSPCKr tSPCKWH SCKn master select output VOH VOH VOL tSPCKf VOH VOH VOL tSPCKWL VOL tSPcyc tSPCKr tSPCKWH VIH SCKn slave select input VIH VIL tSPCKf VIH VIL tSPCKWL VIH VIL tSPcyc VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC Note: n = 0 to 2, 9 Figure 2.22 SCI simple SPI mode clock timing R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 50 of 112 RA2E1 Datasheet 2. Electrical Characteristics SCKn CKPOL = 0 output SCKn CKPOL = 1 output tSU MISOn input tH MSB IN DATA tDr, tDf MOSIn output Note: tOH MSB OUT LSB IN MSB IN tOD DATA LSB OUT IDLE MSB OUT n = 0 to 2, 9 Figure 2.23 SCI simple SPI mode timing (master, CKPH = 1) SCKn CKPOL = 1 output SCKn CKPOL = 0 output tSU MISOn input tH MSB IN tOH MOSIn output Note: DATA LSB IN tDr, tDf tOD MSB OUT MSB IN DATA LSB OUT IDLE MSB OUT n = 0 to 2, 9 Figure 2.24 SCI simple SPI mode timing (master, CKPH = 0) R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 51 of 112 RA2E1 Datasheet 2. Electrical Characteristics tTD SSn input tLEAD tLAG SCKn CKPOL = 0 input SCKn CKPOL = 1 input tOH tSA MISOn output MSB OUT tSU MOSIn input Note: tOD DATA tREL LSB OUT MSB IN MSB OUT tDr, tDf tH MSB IN DATA LSB IN MSB IN n = 0 to 2, 9 Figure 2.25 SCI simple SPI mode timing (slave, CKPH = 1) tTD SSn input tLEAD tLAG SCKn CKPOL = 1 input SCKn CKPOL = 0 input tSA tOH tOD LSB OUT (Last data) MISOn output MSB OUT tSU MOSIn input Note: tREL DATA MSB OUT tDr, tDf tH MSB IN LSB OUT DATA LSB IN MSB IN n = 0 to 2, 9 Figure 2.26 SCI simple SPI mode timing (slave, CKPH = 0) R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 52 of 112 RA2E1 Datasheet Table 2.31 2. Electrical Characteristics SCI timing (3) Conditions: VCC = AVCC0 = 2.7 to 5.5 V Parameter Simple IIC (Standard mode) Simple IIC (Fast mode) Symbol Min Max Unit Test conditions SDA input rise time tSr — 1000 ns Figure 2.27 SDA input fall time tSf — 300 ns SDA input spike pulse removal time tSP 0 4 × tIICcyc*1 ns Data input setup time tSDAS 250 — ns Data input hold time tSDAH 0 — ns SCL, SDA capacitive load Cb*2 — 400 pF SDA input rise time tSr — 300 ns SDA input fall time tSf — 300 ns SDA input spike pulse removal time tSP 0 4 × tIICcyc*1 ns Data input setup time tSDAS 100 — ns Data input hold time tSDAH 0 — ns SCL, SDA capacitive load Cb*2 — 400 pF Figure 2.27 Note 1. tIICcyc: Clock cycle selected by the SMR.CKS[1:0] bits. Note 2. Cb indicates the total capacity of the bus line. VIH SDAn VIL tSr tSf tSP SCLn P*1 P*1 Sr*1 S*1 tSDAH tSDAS Test conditions: VIH = VCC × 0.7, VIL = VCC × 0.3 VOL = 0.6 V, IOL = 6 mA Note: n = 0 to 2, 9 Note 1. S, P, and Sr indicate the following conditions: S: Start condition P: Stop condition Sr: Restart condition Figure 2.27 SCI simple IIC mode timing R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 53 of 112 RA2E1 Datasheet 2.3.9 Table 2.32 2. Electrical Characteristics SPI Timing SPI timing (1 of 3) Symbol Min Max Unit*1 tSPcyc 62.5 — ns 2.4 V ≤ VCC < 2.7 V 125 — 1.8 V ≤ VCC < 2.4 V 250 — 1.6 V ≤ VCC < 1.8 V 500 — 2.7 V ≤ VCC ≤ 5.5 V 187.5 — 2.4 V ≤ VCC < 2.7 V 375 — 1.8 V ≤ VCC < 2.4 V 750 — 1.6 V ≤ VCC < 1.8 V 1500 — (tSPcyc tSPCKr tSPCKf) / 2 3 — 3 × tPcyc — (tSPcyc tSPCKr tSPCKf) / 2 3 — 3 × tPcyc — — 10 — 15 1.8 V ≤ VCC ≤ 2.4 V — 20 1.6 V ≤ VCC < 1.8 V — 30 — 1 Parameter SPI RSPCK clock cycle Master Slave RSPCK clock high pulse width 2.7 V ≤ VCC ≤ 5.5 V Master tSPCKWH Slave RSPCK clock low pulse width Master tSPCKWL Slave RSPCK clock rise and fall time Output 2.7 V ≤ VCC ≤ 5.5 V 2.4 V ≤ VCC < 2.7 V Input R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 tSPCKr, tSPCKf Test conditions Figure 2.28 C = 30 pF ns ns ns µs Page 54 of 112 RA2E1 Datasheet Table 2.32 2. Electrical Characteristics SPI timing (2 of 3) Symbol Min Max Unit*1 tSU 10 — ns 30 — 10 — 55 — 8 MHz < PCLKB ≤ 16 MHz 30 — PCLKB ≤ 8 MHz 10 — 1.6 V ≤ VCC < 1.8 V 10 — 2.4 V ≤ VCC ≤ 5.5 V 10 — 1.8 V ≤ VCC < 2.4 V 15 — 1.6 V ≤ VCC < 1.8 V 20 — Parameter SPI Data input setup time Master 2.7 V ≤ VCC ≤ 5.5 V 2.4 V ≤ VCC < 2.7 V 16 MHz < PCLKB ≤ 32 MHz PCLKB ≤ 16 MHz 1.8 V ≤ VCC < 2.4 V 16 MHz < PCLKB ≤ 32 MHz Slave Data input hold time SPI SSL setup time Master (RSPCK is PCLKB/2) tHF 0 — Master (RSPCK is not PCLKB/2) tH tPcyc — Slave tH 20 — tLEAD -30 + N × tSPcyc*2 — -50 + N × tSPcyc*2 — 6 × tPcyc — ns -30 + N × tSPcyc*3 — ns 6 × tPcyc — ns — 14 ns 2.4 V ≤ VCC < 2.7 V — 20 1.8 V ≤ VCC < 2.4 V — 25 1.6 V ≤ VCC < 1.8 V — 30 2.7 V ≤ VCC ≤ 5.5 V — 50 2.4 V ≤ VCC < 2.7 V — 60 1.8 V ≤ VCC < 2.4 V — 85 1.6 V ≤ VCC < 1.8 V — 110 0 — 0 — tSPcyc + 2 × tPcyc 8 × tSPcyc + 2 × tPcyc 6 × tPcyc — Master 1.8 V ≤ VCC ≤ 5.5 V 1.6 V ≤ VCC < 1.8 V Slave SSL hold time Master tLAG Slave Data output delay time Master Slave Data output hold time 2.7 V ≤ VCC ≤ 5.5 V Master tOD tOH Slave Successive Master transmission delay time Slave R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 tTD Test conditions Figure 2.29 to Figure 2.34 C = 30 pF ns ns ns ns Page 55 of 112 RA2E1 Datasheet Table 2.32 2. Electrical Characteristics SPI timing (3 of 3) Symbol Min Max Unit*1 tDr, tDf — 10 ns 2.4 V ≤ VCC < 2.7 V — 15 1.8 V ≤ VCC < 2.4 V — 20 1.6 V ≤ VCC < 1.8 V — 30 — 1 µs — 10 ns — 15 1.8 V ≤ VCC < 2.4 V — 20 1.6 V ≤ VCC < 1.8 V — 30 — 1 µs — 2 × tPcyc + 100 ns 1.8 V ≤ VCC < 2.4 V — 2 × tPcyc + 140 1.6 V ≤ VCC < 1.8 V — 2 × tPcyc + 180 — 2 × tPcyc + 100 1.8 V ≤ VCC < 2.4 V — 2 × tPcyc + 140 1.6 V ≤ VCC < 1.8 V — 2 × tPcyc + 180 Parameter SPI MOSI and MISO rise and fall time Output 2.7 V ≤ VCC ≤ 5.5 V Input SSL rise and Output fall time 2.7 V ≤ VCC ≤ 5.5 V tSSLr, tSSLf 2.4 V ≤ VCC < 2.7 V Input Slave access time Slave output release time 2.4 V ≤ VCC ≤ 5.5 V tSA 2.4 V ≤ VCC ≤ 5.5 V tREL Test conditions Figure 2.29 to Figure 2.34 C = 30 pF Figure 2.33 and Figure 2.34 C = 30 pF ns Note 1. tPcyc: PCLKB cycle. Note 2. N is set as an integer from 1 to 8 by the SPCKD register. Note 3. N is set as an integer from 1 to 8 by the SSLND register. tSPCKr tSPCKWH RSPCKn master select output VOH VOH VOL tSPCKf VOH VOH VOL tSPCKWL VOL tSPcyc tSPCKr tSPCKWH VIH RSPCKn slave select input VIH VIL tSPCKf VIH VIL tSPCKWL VIH VIL tSPcyc VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC Note: n=A Figure 2.28 SPI clock timing R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 56 of 112 RA2E1 Datasheet 2. Electrical Characteristics tTD SSLni output tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU MISOn input tH MSB IN DATA tDr, tDf MOSIn output Note: tOH MSB OUT LSB IN MSB IN tOD DATA LSB OUT IDLE MSB OUT n=A i=0 Figure 2.29 SPI timing (master, CPHA = 0) (bit rate: PCLKB division ratio is set to any value other than 1/2) tTD SSLni output tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU MISOn input tHF MSB IN tDr, tDf MOSIn output Note: tHF tOH MSB OUT LSB IN DATA MSB IN tOD DATA LSB OUT IDLE MSB OUT n=A i=0 Figure 2.30 SPI timing (master, CPHA = 0) (bit rate: PCLKB division ratio is set to 1/2) R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 57 of 112 RA2E1 Datasheet 2. Electrical Characteristics tTD SSLni output tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU MISOn input tH MSB IN tOH LSB IN MSB OUT MSB IN tDr, tDf tOD MOSIn output Note: DATA DATA LSB OUT IDLE MSB OUT n=A i=0 Figure 2.31 SPI timing (master, CPHA = 1) (bit rate: PCLKB division ratio is set to any value other than 1/2) tTD SSLni output tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU MISOn input tHF MSB IN tOH MOSIn output Note: tH DATA LSB IN tDr, tDf tOD MSB OUT MSB IN DATA LSB OUT IDLE MSB OUT n=A i=0 Figure 2.32 SPI timing (master, CPHA = 1) (bit rate: PCLKB division ratio is set to 1/2) R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 58 of 112 RA2E1 Datasheet 2. Electrical Characteristics tTD SSLn0 input tLEAD tLAG RSPCKn CPOL = 0 input RSPCKn CPOL = 1 input tSA tOH MISOn output MSB OUT tSU MOSIn input Note: tOD DATA tREL LSB OUT MSB IN MSB OUT tDr, tDf tH MSB IN DATA LSB IN MSB IN n=A Figure 2.33 SPI timing (slave, CPHA = 0) tTD SSLn0 input tLEAD tLAG RSPCKn CPOL = 0 input RSPCKn CPOL = 1 input tSA tOH tOD LSB OUT (Last data) MISOn output MSB OUT tSU MOSIn input Note: tREL DATA MSB OUT tDr, tDf tH MSB IN LSB OUT DATA LSB IN MSB IN n=A Figure 2.34 SPI timing (slave, CPHA = 1) R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 59 of 112 RA2E1 Datasheet 2.3.10 Table 2.33 2. Electrical Characteristics IIC Timing IIC timing (1 of 2) Conditions: VCC = AVCC0 = 2.7 to 5.5 V Symbol Min*1 Max Unit Test conditions SCL input cycle time tSCL 6 (12) × tIICcyc + 1300 — ns SCL input high pulse width tSCLH 3 (6) × tIICcyc + 300 — ns SCL input low pulse width tSCLL 3 (6) × tIICcyc + 300 — ns SCL, SDA input rise time tSr — 1000 ns SCL, SDA input fall time tSf — 300 ns SCL, SDA input spike pulse removal time tSP 0 1 (4) × tIICcyc ns SDA input bus free time (when wakeup function is disabled) tBUF 3 (6) × tIICcyc + 300 — ns SDA input bus free time (when wakeup function is enabled) tBUF 3 (6) × tIICcyc + 4 × tPcyc + 300 — ns START condition input hold time tSTAH (when wakeup function is disabled) tIICcyc + 300 — ns START condition input hold time (when wakeup function is enabled) tSTAH 1 (5) × tIICcyc + tPcyc + 300 — ns Repeated START condition input setup time tSTAS 1000 — ns STOP condition input setup time tSTOS 1000 — ns Data input setup time tSDAS tIICcyc + 50 — ns Data input hold time tSDAH 0 — ns SCL, SDA capacitive load Cb — 400 pF Parameter IIC (standard mode, SMBus) R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Figure 2.35 Page 60 of 112 RA2E1 Datasheet Table 2.33 2. Electrical Characteristics IIC timing (2 of 2) Conditions: VCC = AVCC0 = 2.7 to 5.5 V Symbol Min*1 Max Unit Test conditions SCL input cycle time tSCL 6 (12) × tIICcyc + 600 — ns SCL input high pulse width tSCLH 3 (6) × tIICcyc + 300 — ns SCL input low pulse width tSCLL 3 (6) × tIICcyc + 300 — ns SCL, SDA input rise time tSr — 300 ns SCL, SDA input fall time tSf — 300 ns SCL, SDA input spike pulse removal time tSP 0 1 (4) × tIICcyc ns SDA input bus free time (When wakeup function is disabled) tBUF 3 (6) × tIICcyc + 300 — ns SDA input bus free time (When wakeup function is enabled) tBUF 3 (6) × tIICcyc + 4 × tPcyc+ 300 — ns START condition input hold time (When wakeup function is disabled) tSTAH tIICcyc + 300 — ns START condition input hold time tSTAH (When wakeup function is enabled) 1 (5) × tIICcyc + tPcyc + 300 — ns Repeated START condition input setup time tSTAS 300 — ns STOP condition input setup time tSTOS 300 — ns Data input setup time tSDAS tIICcyc + 50 — ns Data input hold time tSDAH 0 — ns SCL, SDA capacitive load Cb — 400 pF Parameter IIC (Fast mode) Figure 2.35 Note: tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle Note 1. Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1. VIH SDAn VIL tBUF tSCLH tSTAH tSTAS tSTOS tSP SCLn P*1 tSf P*1 Sr*1 S*1 tSCLL tSr tSCL tSDAS tSDAH Note: n=0 Note 1. S, P, and Sr indicate the following conditions: S: Start condition P: Stop condition Sr: Restart condition Figure 2.35 I2C bus interface input/output timing R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 61 of 112 RA2E1 Datasheet 2.3.11 Table 2.34 2. Electrical Characteristics CLKOUT Timing CLKOUT timing Parameter CLKOUT CLKOUT pin output cycle*1 CLKOUT pin high pulse width*2 CLKOUT pin low pulse width*2 Symbol Min Max Unit Test conditions tCcyc 62.5 — ns Figure 2.36 1.8 V ≤ VCC < 2.7 V 125 — 1.6 V ≤ VCC < 1.8 V 250 — 15 — 1.8 V ≤ VCC < 2.7 V 30 — 1.6 V ≤ VCC < 1.8 V 150 — 15 — 30 — 150 — — 12 1.8 V ≤ VCC < 2.7 V — 25 1.6 V ≤ VCC < 1.8 V — 50 — 12 1.8 V ≤ VCC < 2.7 V — 25 1.6 V ≤ VCC < 1.8 V — 50 2.7 V ≤ VCC ≤ 5.5 V 2.7 V ≤ VCC ≤ 5.5 V tCH 2.7 V ≤ VCC ≤ 5.5 V tCL 1.8 V ≤ VCC < 2.7 V 1.6 V ≤ VCC < 1.8 V CLKOUT pin output rise time CLKOUT pin output fall time 2.7 V ≤ VCC ≤ 5.5 V tCr 2.7 V ≤ VCC ≤ 5.5 V tCf ns ns ns ns Note 1. When the EXTAL external clock input or an oscillator is used with division by 1 (the CKOCR.CKOSEL[2:0] bits are 011b and the CKOCR.CKODIV[2:0] bits are 000b) to output from CLKOUT, specifications in Table 2.34 should be satisfied with 45% to 55% of input duty cycle. Note 2. When MOCO is selected as the clock output source (the CKOCR.CKOSEL[2:0] bits are 001b), set the clock output division ratio to be divided by 2 (the CKOCR.CKODIV[2:0] bits are 001b). tCcyc tCH tCf CLKOUT tCL tCr Test conditions: VOH = VCC × 0.7, VOL = VCC × 0.3, IOH = -1.0 mA, IOL = 1.0 mA, C = 30 pF Figure 2.36 CLKOUT output timing R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 62 of 112 RA2E1 Datasheet 2.4 2. Electrical Characteristics ADC12 Characteristics VREFH0 VREFH0 5.5 5.5 A/D Conversion Characteristics (1) 5.0 A/D Conversion Characteristics (2) 4.0 3.0 2.7 2.4 A/D Conversion Characteristics (3) 2.0 5.0 A/D Conversion Characteristics (4) 4.0 3.0 2.7 2.4 A/D Conversion Characteristics (5) A/D Conversion Characteristics (6) 2.0 1.8 1.6 1.0 A/D Conversion Characteristics (7) 1.0 2.4 2.7 1.0 2.0 3.0 5.5 4.0 1.8 AVCC0 5.0 1.0 2.4 2.7 1.6 2.0 ADCSR.ADHSC = 0 3.0 5.5 4.0 AVCC0 5.0 ADCSR.ADHSC = 1 Figure 2.37 AVCC0 to VREFH0 voltage range Table 2.35 A/D conversion characteristics (1) in high-speed A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = VREFH0 = 4.5 to 5.5 V*5, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions PCLKD (ADCLK) frequency 1 — 64 MHz ADACSR.ADSAC = 0 48 MHz ADACSR.ADSAC = 1 Analog input capacitance*2 Analog input resistance Analog input voltage range Cs — — 9*3 pF High-precision channel — — 10*3 pF Normal-precision channel — — 1.3*3 kΩ High-precision channel — — 5.0*3 kΩ Normal-precision channel 0 — VREFH0 V — — — 12 Bit — Permissible signal source impedance Max. = 0.3 kΩ 0.70 (0.211)*4 — — µs High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x0D ADACSR.ADSAC = 0 1.34 (0.852)*4 — — µs Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x36 ADACSR.ADSAC = 0 Permissible signal source impedance Max. = 0.3 kΩ 0.67 (0.219)*4 — — µs High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1 1.29 (0.844)*4 — — µs Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x28 ADACSR.ADSAC = 1 — ±1.0 ±4.5 LSB High-precision channel ±6.0 LSB Other than specified ±4.5 LSB High-precision channel ±6.0 LSB Other than specified Rs Ain Resolution Conversion time*1 (Operation at PCLKD = 64 MHz) Conversion time*1 (Operation at PCLKD = 48 MHz) Offset error Full-scale error R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 — ±1.0 Page 63 of 112 RA2E1 Datasheet Table 2.35 2. Electrical Characteristics A/D conversion characteristics (1) in high-speed A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = VREFH0 = 4.5 to 5.5 V*5, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions Quantization error — ±0.5 — LSB — Absolute accuracy — ±2.5 ±5.0 LSB High-precision channel ±8.0 LSB Other than specified DNL differential nonlinearity error — ±1.0 — LSB — INL integral nonlinearity error — ±1.5 ±3.0 LSB — Note: Note 1. Note 2. Note 3. Note 4. Note 5. The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Except for I/O input capacitance (Cin), see section 2.2.4. I/O VOH, VOL, and Other Characteristics. Reference data. ( ) lists sampling time. When VREFH0 < AVCC0, the MAX. values are as follows. Absolute accuracy/Offset error/Full-scale error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.75 LSB/V to the Max spec. INL integral non-linearity error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.2 LSB/V to the Max spec. Table 2.36 A/D conversion characteristics (2) in high-speed A/D conversion mode Conditions: VCC = AVCC0 = VREFH0 = 2.7 to 5.5 V*5, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions PCLKD (ADCLK) frequency 1 — 48 MHz — — — 9*3 pF High-precision channel — — 10*3 pF Normal-precision channel — — 1.9*3 kΩ High-precision channel — — 6.0*3 kΩ Normal-precision channel 0 — VREFH0 V — — — 12 Bit — 0.67 (0.219)*4 — — µs High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1 1.29 (0.844)*4 — — µs Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x28 ADACSR.ADSAC = 1 — ±1.0 ±5.5 LSB High-precision channel ±7.0 LSB Other than specified ±5.5 LSB High-precision channel ±7.0 LSB Other than specified Analog input capacitance*2 Analog input resistance Analog input voltage range Cs Rs Ain Resolution Conversion time*1 (Operation at PCLKD = 48 MHz) Permissible signal source impedance Max. = 0.3 kΩ Offset error Full-scale error — ±1.0 Quantization error — ±0.5 — LSB — Absolute accuracy — ±2.5 ±6.0 LSB High-precision channel ±9.0 LSB Other than specified DNL differential nonlinearity error — ±1.0 — LSB — INL integral nonlinearity error — ±1.5 ±3.0 LSB — R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 64 of 112 RA2E1 Datasheet Note: Note 1. Note 2. Note 3. Note 4. Note 5. 2. Electrical Characteristics The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Except for I/O input capacitance (Cin), see section 2.2.4. I/O VOH, VOL, and Other Characteristics. Reference data. ( ) lists sampling time. When VREFH0 < AVCC0, the MAX. values are as follows. Absolute accuracy/Offset error/Full-scale error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.75 LSB/V to the Max spec. INL integral non-linearity error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.2 LSB/V to the Max spec. Table 2.37 A/D conversion characteristics (3) in high-speed A/D conversion mode Conditions: VCC = AVCC0 = VREFH0 = 2.4 to 5.5 V*5, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min PCLKD (ADCLK) frequency Analog input capacitance*2 Analog input resistance Analog input voltage range Cs Rs Ain Resolution time*1 Conversion (Operation at PCLKD = 32 MHz) Permissible signal source impedance Max. = 1.3 kΩ Offset error Full-scale error Max Unit Test conditions 1 — 32 MHz — — — 9*3 pF High-precision channel — — 10*3 pF Normal-precision channel — — 2.2*3 kΩ High-precision channel — — 7.0*3 kΩ Normal-precision channel 0 — VREFH0 V — — — 12 Bit — 1.00 (0.328)*4 — — µs High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1 1.94 (1.266)*4 — — µs Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x28 ADACSR.ADSAC = 1 — ±1.0 ±5.5 LSB High-precision channel ±7.0 LSB Other than specified ±5.5 LSB High-precision channel ±7.0 LSB Other than specified — ±1.0 Quantization error — ±0.5 — LSB — Absolute accuracy — ±2.50 ±6.0 LSB High-precision channel ±9.0 LSB Other than specified DNL differential nonlinearity error — ±1.0 — LSB — INL integral nonlinearity error — ±1.5 ±3.0 LSB — Note: Note 1. Note 2. Note 3. Note 4. Note 5. The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Except for I/O input capacitance (Cin), see section 2.2.4. I/O VOH, VOL, and Other Characteristics. Reference data. ( ) lists sampling time. When VREFH0 < AVCC0, the MAX. values are as follows. Absolute accuracy/Offset error/Full-scale error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.75 LSB/V to the Max spec. INL integral non-linearity error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.2 LSB/V to the Max spec. R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 65 of 112 RA2E1 Datasheet Table 2.38 2. Electrical Characteristics A/D conversion characteristics (4) in low-power A/D conversion mode Conditions: VCC = AVCC0 = VREFH0 = 2.7 to 5.5 V*5, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions PCLKD (ADCLK) frequency 1 — 24 MHz — — — 9*3 pF High-precision channel — — 10*3 pF Normal-precision channel — — 1.9*3 kΩ High-precision channel — — 6*3 kΩ Normal-precision channel 0 — VREFH0 V — — — 12 Bit — 1.58 (0.438)*4 — — µs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1 2.0 (0.854)*4 — — µs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x14 ADACSR.ADSAC = 1 — ±6.0 LSB High-precision channel ±7.5 LSB Other than specified ±6.0 LSB High-precision channel ±7.5 LSB Other than specified Analog input capacitance*2 Analog input resistance Analog input voltage range Cs Rs Ain Resolution Conversion time*1 (Operation at PCLKD = 24 MHz) Permissible signal source impedance Max. = 1.1 kΩ Offset error Full-scale error — ±1.25 ±1.25 Quantization error — ±0.5 — LSB — Absolute accuracy — ±3.25 ±7.0 LSB High-precision channel ±10.0 LSB Other than specified DNL differential nonlinearity error — ±1.5 — LSB — INL integral nonlinearity error — ±1.75 ±4.0 LSB — Note: Note 1. Note 2. Note 3. Note 4. Note 5. The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Except for I/O input capacitance (Cin), see section 2.2.4. I/O VOH, VOL, and Other Characteristics. Reference data. ( ) lists sampling time. When VREFH0 < AVCC0, the MAX. values are as follows. Absolute accuracy/Offset error/Full-scale error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.75 LSB/V to the Max spec. INL integral non-linearity error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.2 LSB/V to the Max spec. Table 2.39 A/D conversion characteristics (5) in low-power A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = VREFH0 = 2.4 to 5.5 V*5, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions PCLKD (ADCLK) frequency 1 — 16 MHz — — — 9*3 pF High-precision channel — — 10*3 pF Normal-precision channel — — 2.2*3 kΩ High-precision channel — — 7*3 kΩ Normal-precision channel Analog input capacitance*2 Analog input resistance Cs Rs R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 66 of 112 RA2E1 Datasheet Table 2.39 2. Electrical Characteristics A/D conversion characteristics (5) in low-power A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = VREFH0 = 2.4 to 5.5 V*5, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Analog input voltage range Ain Resolution Conversion time*1 (Operation at PCLKD = 16 MHz) Permissible signal source impedance Max. = 2.2 kΩ Offset error Full-scale error Min Typ Max Unit Test conditions 0 — VREFH0 V — — — 12 Bit — 2.38 (0.656)*4 — — µs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1 3.0 (1.281)*4 — — µs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x14 ADACSR.ADSAC = 1 — ±6.0 LSB High-precision channel ±7.5 LSB Other than specified ±6.0 LSB High-precision channel ±7.5 LSB Other than specified — ±1.25 ±1.25 Quantization error — ±0.5 — LSB — Absolute accuracy — ±3.25 ±7.0 LSB High-precision channel ±10.0 LSB Other than specified DNL differential nonlinearity error — ±1.5 — LSB — INL integral nonlinearity error — ±1.75 ±4.0 LSB — Note: Note 1. Note 2. Note 3. Note 4. Note 5. The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Except for I/O input capacitance (Cin), see section 2.2.4. I/O VOH, VOL, and Other Characteristics. Reference data. ( ) lists sampling time. When VREFH0 < AVCC0, the MAX. values are as follows. Absolute accuracy/Offset error/Full-scale error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.75 LSB/V to the Max spec. INL integral non-linearity error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.2 LSB/V to the Max spec. Table 2.40 A/D conversion characteristics (6) in low-power A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = VREFH0 = 1.8 to 5.5 V*5, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions PCLKD (ADCLK) frequency 1 — 8 MHz — — — 9*3 pF High-precision channel — — 10*3 pF Normal-precision channel — — 6*3 kΩ High-precision channel — — 14*3 kΩ Normal-precision channel 0 — VREFH0 V — — — 12 Bit — Analog input capacitance*2 Analog input resistance Analog input voltage range Cs Rs Ain Resolution R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 67 of 112 RA2E1 Datasheet Table 2.40 2. Electrical Characteristics A/D conversion characteristics (6) in low-power A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = VREFH0 = 1.8 to 5.5 V*5, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Conversion time*1 (Operation at PCLKD = 8 MHz) Permissible signal source impedance Max. = 5 kΩ Offset error Full-scale error Min Typ Max Unit Test conditions 4.75 (1.313)*4 — — µs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1 6.0 (2.563)*4 — — µs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x14 ADACSR.ADSAC = 1 — ±7.5 LSB High-precision channel ±10.0 LSB Other than specified ±7.5 LSB High-precision channel ±10.0 LSB Other than specified — ±1.25 ±1.5 Quantization error — ±0.5 — LSB — Absolute accuracy — ±3.75 ±9.5 LSB High-precision channel ±13.5 LSB Other than specified DNL differential nonlinearity error — ±2.0 — LSB — INL integral nonlinearity error — ±2.25 ±4.5 LSB — Note: Note 1. Note 2. Note 3. Note 4. Note 5. The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Except for I/O input capacitance (Cin), see section 2.2.4. I/O VOH, VOL, and Other Characteristics. Reference data. ( ) lists sampling time. When VREFH0 < AVCC0, the MAX. values are as follows. Absolute accuracy/Offset error/Full-scale error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.75 LSB/V to the Max spec. INL integral non-linearity error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.2 LSB/V to the Max spec. Table 2.41 A/D conversion characteristics (7) in low-power A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = VREFH0 = 1.6 to 5.5 V*5, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions PCLKD (ADCLK) frequency 1 — 4 MHz — — — 9*3 pF High-precision channel — — 10*3 pF Normal-precision channel — — 12*3 kΩ High-precision channel — — 28*3 kΩ Normal-precision channel 0 — VREFH0 V — — — 12 Bit — 9.5 (2.625)*4 — — µs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1 12.0 (5.125)*4 — µs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x14 ADACSR.ADSAC = 1 Analog input capacitance*2 Analog input resistance Analog input voltage range Cs Rs Ain Resolution Conversion time*1 (Operation at PCLKD = 4 MHz) Permissible signal source impedance Max. = 9.9 kΩ R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 — Page 68 of 112 RA2E1 Datasheet Table 2.41 2. Electrical Characteristics A/D conversion characteristics (7) in low-power A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = VREFH0 = 1.6 to 5.5 V*5, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions Offset error — ±1.25 ±7.5 LSB High-precision channel ±10.0 LSB Other than specified ±7.5 LSB High-precision channel ±10.0 LSB Other than specified Full-scale error — ±1.5 Quantization error — ±0.5 — LSB — Absolute accuracy — ±3.75 ±9.5 LSB High-precision channel ±13.5 LSB Other than specified DNL differential nonlinearity error — ±2.0 — LSB — INL integral nonlinearity error — ±2.25 ±4.5 LSB — Note: Note 1. Note 2. Note 3. Note 4. Note 5. The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Except for I/O input capacitance (Cin), see section 2.2.4. I/O VOH, VOL, and Other Characteristics. Reference data. ( ) lists sampling time. When VREFH0 < AVCC0, the MAX. values are as follows. Absolute accuracy/Offset error/Full-scale error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.75 LSB/V to the Max spec. INL integral non-linearity error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.2 LSB/V to the Max spec. Figure 2.38 shows the equivalent circuit for analog input. MCU Analog input ANn Rs ADC12 Vi Cin Note: Cs Terminal leakage current is not shown in this figure. Figure 2.38 Equivalent circuit for analog input Table 2.42 12-bit A/D converter channel classification Classification Channel Conditions Remarks High-precision channel AN000 to AN010 AVCC0 = 1.6 to 5.5 V Normal-precision channel AN017 to AN022 Pins AN000 to AN010 cannot be used as general I/O, TS transmission, when the A/D converter is in use. Internal reference voltage input channel Internal reference voltage AVCC0 = 1.8 to 5.5 V — Temperature sensor input channel Temperature sensor output AVCC0 = 1.8 to 5.5 V — Input channel from CTSU CTSU TSCAP voltage AVCC0 = 1.6 to 5.5 V — R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 69 of 112 RA2E1 Datasheet Table 2.43 2. Electrical Characteristics A/D internal reference voltage characteristics Conditions: VCC = AVCC0 = VREFH0 = 1.8 to 5.5 V*1 Parameter Min Typ Max Unit Test conditions Internal reference voltage input channel*2 1.42 1.48 1.54 V — PCLKD (ADCLK) frequency*3 1 — 2 MHz — Sampling time*4 5.0 — — µs — Note 1. The internal reference voltage cannot be selected for input channels when AVCC0 < 1.8 V. Note 2. The 12-bit A/D internal reference voltage indicates the voltage when the internal reference voltage is input to the 12-bit A/D converter. Note 3. When the internal reference voltage is selected as the high-potential reference voltage. Note 4. When the internal reference voltage is converted. 0xFFF Full-scale error Integral nonlinearity error (INL) A/D converter output code Ideal line of actual A/D conversion characteristic Actual A/D conversion characteristic Ideal A/D conversion characteristic Differential nonlinearity error (DNL) 1-LSB width for ideal A/D conversion characteristic Differential nonlinearity error (DNL) 1-LSB width for ideal A/D conversion characteristic Absolute accuracy Offset error 0x000 0 Figure 2.39 Analog input voltage VREFH0 (full-scale) Illustration of 12-bit A/D converter characteristic terms Absolute accuracy Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of the analog input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as the analog input voltage. For example, if 12-bit resolution is used and the reference voltage VREFH0 = 3.072 V, then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the analog R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 70 of 112 RA2E1 Datasheet 2. Electrical Characteristics input voltages. If analog input voltage is 6 mV, an absolute accuracy of ±5 LSB means that the actual A/D conversion result is in the range of 0x003 to 0x00D, though an output code of 0x008 can be expected from the theoretical A/D conversion characteristics. Integral nonlinearity error (INL) Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code. Differential nonlinearity error (DNL) Differential nonlinearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics and the width of the actual output code. Offset error Offset error is the difference between the transition point of the ideal first output code and the actual first output code. Full-scale error Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code. 2.5 TSN Characteristics Table 2.44 TSN characteristics Conditions: VCC = AVCC0 = 1.8 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions Relative accuracy — — ± 1.5 — °C 2.4 V or above — ± 2.0 — °C Below 2.4 V Temperature slope — — -3.3 — mV/°C — Output voltage (at 25°C) — — 1.05 — V VCC = 3.3 V Temperature sensor start time tSTART — — 5 µs — Sampling time — 5 — — µs 2.6 OSC Stop Detect Characteristics Table 2.45 Oscillation stop detection circuit characteristics Parameter Symbol Min Typ Max Unit Test conditions Detection time tdr — — 1 ms Figure 2.40 Main clock OSTDSR.OSTDF tdr MOCO clock ICLK Figure 2.40 Oscillation stop detection timing R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 71 of 112 RA2E1 Datasheet 2.7 2. Electrical Characteristics POR and LVD Characteristics Table 2.46 Power-on reset circuit and voltage detection circuit characteristics (1) (1 of 2) Parameter Voltage detection level*1 Power-on reset (POR) Voltage detection circuit (LVD0)*2 Symbol Min Typ Max Unit Test Conditions When power supply rise VPOR 1.47 1.51 1.55 V Figure 2.41 When power supply fall VPDR 1.46 1.50 1.54 When power supply rise Vdet0_0 3.74 3.91 4.06 3.68 3.85 4.00 2.73 2.9 3.01 2.68 2.85 2.96 2.44 2.59 2.70 2.38 2.53 2.64 1.83 1.95 2.07 1.78 1.90 2.02 1.66 1.75 1.88 1.60 1.69 1.82 4.23 4.39 4.55 4.13 4.29 4.45 4.07 4.25 4.39 3.98 4.16 4.30 3.97 4.14 4.29 3.86 4.03 4.18 3.74 3.92 4.06 3.68 3.86 4.00 3.05 3.17 3.29 2.98 3.10 3.22 2.95 3.06 3.17 2.89 3.00 3.11 2.86 2.97 3.08 2.79 2.90 3.01 2.74 2.85 2.96 2.68 2.79 2.90 When power supply fall When power supply rise Vdet0_1 When power supply fall When power supply rise Vdet0_2 When power supply fall When power supply rise Vdet0_3 When power supply fall When power supply rise Vdet0_4 When power supply fall Voltage detection level*1 Voltage detection circuit (LVD1)*3 When power supply rise Vdet1_0 When power supply fall When power supply rise Vdet1_1 When power supply fall When power supply rise Vdet1_2 When power supply fall When power supply rise Vdet1_3 When power supply fall When power supply rise Vdet1_4 When power supply fall When power supply rise Vdet1_5 When power supply fall When power supply rise Vdet1_6 When power supply fall When power supply rise When power supply fall R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Vdet1_7 Figure 2.42 V Figure 2.43 At falling edge VCC V Figure 2.44 At falling edge VCC Page 72 of 112 RA2E1 Datasheet Table 2.46 2. Electrical Characteristics Power-on reset circuit and voltage detection circuit characteristics (1) (2 of 2) Parameter Voltage detection level*1 Voltage detection circuit (LVD1)*3 When power supply rise Symbol Min Typ Max Unit Test Conditions Vdet1_8 2.63 2.75 2.85 V 2.58 2.68 2.78 Figure 2.44 At falling edge VCC 2.54 2.64 2.75 2.48 2.58 2.68 2.43 2.53 2.63 2.38 2.48 2.58 2.16 2.26 2.36 2.10 2.20 2.30 1.88 2 2.09 1.84 1.96 2.05 1.78 1.9 1.99 1.74 1.86 1.95 1.67 1.79 1.88 1.63 1.75 1.84 1.65 1.7 1.78 1.60 1.65 1.73 4.20 4.40 4.57 V 4.11 4.31 4.48 Figure 2.45 At falling edge VCC 4.05 4.25 4.42 3.97 4.17 4.34 3.91 4.11 4.28 3.83 4.03 4.20 3.71 3.91 4.08 3.64 3.84 4.01 When power supply fall When power supply rise Vdet1_9 When power supply fall When power supply rise Vdet1_A When power supply fall When power supply rise Vdet1_B When power supply fall When power supply rise Vdet1_C When power supply fall When power supply rise Vdet1_D When power supply fall When power supply rise Vdet1_E When power supply fall When power supply rise Vdet1_F When power supply fall Voltage detection level*1 Voltage detection circuit (LVD2)*4 When power supply rise Vdet2_0 When power supply fall When power supply rise Vdet2_1 When power supply fall When power supply rise Vdet2_2 When power supply fall When power supply rise Vdet2_3 When power supply fall Note 1. These characteristics apply when noise is not superimposed on the power supply. When a setting causes this voltage detection level to overlap with that of the voltage detection circuit, it cannot be specified whether LVD1 or LVD2 is used for voltage detection. Note 2. # in the symbol Vdet0_# denotes the value of the OFS1.VDSEL1[2:0] bits. Note 3. # in the symbol Vdet1_# denotes the value of the LVDLVLR.LVD1LVL[4:0] bits. Note 4. # in the symbol Vdet2_# denotes the value of the LVDLVLR.LVD2LVL[2:0] bits. Table 2.47 Power-on reset circuit and voltage detection circuit characteristics (2) (1 of 2) Parameter Symbol Min Typ Max Unit Test Conditions Wait time after power-on reset cancellation LVD0: enable tPOR — 4.3 — ms — LVD0: disable tPOR — 3.7 — ms — Wait time after voltage monitor 0, 1, 2 reset cancellation LVD0: enable*1 tLVD0,1,2 — 1.4 — ms — LVD0: disable*2 tLVD1,2 — 0.7 — ms — Power-on reset response delay time*3 tdet — — 500 µs Figure 2.41, Figure 2.42 LVD0 response delay time*3 tdet — — 500 µs Figure 2.43 LVD1 response delay time*3 tdet — — 350 µs Figure 2.44 LVD2 response delay time*3 tdet — — 600 µs Figure 2.45 Minimum VCC down time tVOFF 500 — — µs Figure 2.41, VCC = 1.0 V or above R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 73 of 112 RA2E1 Datasheet Table 2.47 2. Electrical Characteristics Power-on reset circuit and voltage detection circuit characteristics (2) (2 of 2) Parameter Symbol Min Typ Max Unit Test Conditions Power-on reset enable time tW (POR) 1 — — ms Figure 2.42, VCC = below 1.0 V LVD1 operation stabilization time (after LVD1 is enabled) Td (E-A) — — 300 µs Figure 2.44 LVD2 operation stabilization time (after LVD2 is enabled) Td (E-A) — — 1200 µs Figure 2.45 Hysteresis width (POR) VPORH — 10 — mV — Hysteresis width (LVD0, LVD1 and LVD2) VLVH — 60 — mV LVD0 selected — 110 — Vdet1_0 to Vdet1_2 selected — 70 — Vdet1_3 to Vdet1_9 selected — 60 — Vdet1_A to Vdet1_B selected — 50 — Vdet1_C to Vdet1_F selected — 90 — LVD2 selected Note 1. When OFS1.LVDAS = 0. Note 2. When OFS1.LVDAS = 1. Note 3. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels VPOR, Vdet0, Vdet1, and Vdet2 for the POR/LVD. tVOFF VCC VPOR 1.0 V Internal reset signal (active-low) tdet Figure 2.41 tdet tPOR Voltage detection reset timing R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 74 of 112 RA2E1 Datasheet 2. Electrical Characteristics VPOR VCC 1.0 V tw(POR) Internal reset signal (active-low) *1 tdet tPOR Note 1. tw(POR) is the time required for a power-on reset to be enabled while the external power VCC is being held below the valid voltage (1.0 V). When VCC turns on, maintain tw(POR) for 1.0 ms or more. Figure 2.42 Power-on reset timing tVOFF VCC VLVH Vdet0 Internal reset signal (active-low) tdet Figure 2.43 tdet tLVD0 Voltage detection circuit timing (Vdet0) R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 75 of 112 RA2E1 Datasheet 2. Electrical Characteristics tVOFF VCC VLVH Vdet1 LVCMPCR.LVD1E Td(E-A) LVD1 Comparator output LVD1CR0.CMPE LVD1SR.MON Internal reset signal (active-low) When LVD1CR0.RN = 0 tdet tdet tLVD1 When LVD1CR0.RN = 1 tLVD1 Figure 2.44 Voltage detection circuit timing (Vdet1) R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 76 of 112 RA2E1 Datasheet 2. Electrical Characteristics tVOFF VCC VLVH Vdet2 LVCMPCR.LVD2E Td(E-A) LVD2 Comparator output LVD2CR0.CMPE LVD2SR.MON Internal reset signal (active-low) When LVD2CR0.RN = 0 tdet tdet tLVD2 When LVD2CR0.RN = 1 tLVD2 Figure 2.45 2.8 Voltage detection circuit timing (Vdet2) CTSU Characteristics Table 2.48 CTSU characteristics Conditions: VCC = AVCC0 = 1.8 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions External capacitance connected to TSCAP pin Ctscap 9 10 11 nF — 2.9 Comparator Characteristics Table 2.49 ACMPLP characteristics (1 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V, VSS = AVSS0 = 0 V Parameter Symbol Min Typ Max Unit Test conditions Reference voltage range VREF 0 — VCC-1.4 V — Input voltage range VI 0 — VCC V — Internal reference voltage*1 — 1.34 1.44 1.54 V — Output delay time Td — — 1.2 µs VCC = 3.0 V Low-speed mode — — 9 µs Window mode — — 2 µs High-speed mode R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 77 of 112 RA2E1 Datasheet Table 2.49 2. Electrical Characteristics ACMPLP characteristics (2 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V, VSS = AVSS0 = 0 V Parameter Offset voltage Symbol Min Typ Max Unit Test conditions High-speed mode — — — 50 mV — Low-speed mode — — — 40 mV — Window mode — — — 60 mV — VRFH — 0.76 × VCC — V — VRFL — 0.24 × VCC — V — Tcmp 100 — — µs — 200 — — Internal reference voltage for window mode Operation stabilization wait time High-speed mode Low-speed mode Note 1. The internal reference voltage can be selected as ACMPLP reference voltage only when 2.94 V ≤ VCC ≤ 5.50 V. Output voltage Td Td +100 mV Reference voltage Input voltage -100 mV Figure 2.46 2.10 Output delay time Flash Memory Characteristics 2.10.1 Table 2.50 Code Flash Memory Characteristics Code flash characteristics (1) Parameter Symbol Min Typ Max Unit Conditions Reprogramming/erasure cycle*1 NPEC 1000 — — Times — Data hold time After 1000 times NPEC tDRP 20*2 *3 — — Year Ta = +85°C Ta = +105°C Note 1. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 1,000), erasing can be performed n times for each block. For instance, when 4-byte programming is performed 512 times for different addresses in 2-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasure is not enabled (overwriting is prohibited). Note 2. Characteristic when using the flash memory programmer and the self-programming library provided by Renesas Electronics. Note 3. This result is target spec, may changed after reliability testing. Table 2.51 Code flash characteristics (2) (1 of 2) High-speed operating mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V ICLK = 1 MHz Parameter ICLK = 48 MHz Symbol Min Typ Max Min Typ Max Unit Programming time 4-byte tP4 — 86 732 — 34 321 µs Erasure time 2-KB tE2K — 12.5 355 — 5.6 215 ms R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 78 of 112 RA2E1 Datasheet Table 2.51 2. Electrical Characteristics Code flash characteristics (2) (2 of 2) High-speed operating mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V ICLK = 1 MHz Parameter ICLK = 48 MHz Symbol Min Typ Max Min Typ Max Unit 4-byte tBC4 — — 46.5 — — 8.3 µs 2-KB tBC2K — — 3681 — — 240 µs Erase suspended time tSED — — 22.3 — — 10.5 µs Access window information program Start-up area selection and security setting time tAWSSAS — 21.2 570 — 11.4 423 ms OCD/serial programmer ID setting time*1 tOSIS — 84.7 2280 — 45.3 1690 ms Flash memory mode transition wait time 1 tDIS 2 — — 2 — — µs Flash memory mode transition wait time 2 tMS 15 — — 15 — — µs Blank check time Note: Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note: The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Note 1. Total time of four commands. Table 2.52 Code flash characteristics (3) Middle-speed operating mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V, Ta = -40 to +85°C ICLK = 24 MHz*2 ICLK = 1 MHz Parameter Symbol Min Typ Max Min Typ Max Unit Programming time 4-byte tP4 — 86 732 — 39 356 µs Erasure time 2-KB tE2K — 12.5 355 — 6.2 227 ms Blank check time 4-byte tBC4 — — 46.5 — — 11.3 µs 2-KB tBC2K — — 3681 — — 534 µs Erase suspended time tSED — — 22.3 — — 11.7 µs Access window information program Start-up area selection and security setting time tAWSSAS — 21.2 570 — 12.2 435 ms OCD/serial programmer ID setting time*1 tOSIS — 84.7 2280 — 48.7 1740 ms Flash memory mode transition wait time 1 tDIS 2 — — 2 — — µs Flash memory mode transition wait time 2 tMS 15 — — 15 — — µs Note: Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note: The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Note 1. Total time of four commands. Note 2. When 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 79 of 112 RA2E1 Datasheet Table 2.53 2. Electrical Characteristics Code flash characteristics (4) Low-speed operating mode Conditions: VCC = AVCC0 = 1.6 to 5.5 V, Ta = -40 to +85°C ICLK = 1 MHz Parameter ICLK = 2 MHz Symbol Min Typ Max Min Typ Max Unit Programming time 4-byte tP4 — 86 732 — 57 502 µs Erasure time 2-KB tE2K — 12.5 355 — 8.8 280 ms Blank check time 4-byte tBC4 — — 46.5 — — 23.3 µs 2-KB tBC2K — — 3681 — — 1841 µs Erase suspended time tSED — — 22.3 — — 16.2 µs Access window information program Start-up area selection and security setting time tAWSSAS — 21.2 570 — 15.9 491 ms OCD/serial programmer ID setting time*1 tOSIS — 84.7 2280 — 63.5 1964 ms Flash memory mode transition wait time 1 tDIS 2 — — 2 — — µs Flash memory mode transition wait time 2 tMS 15 — — 15 — — µs Note: Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz or 2 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note: The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Note 1. Total time of four commands. 2.10.2 Table 2.54 Data Flash Memory Characteristics Data flash characteristics (1) Parameter Symbol Min Typ Max Unit Conditions Reprogramming/erasure cycle*1 NDPEC 100000 1000000 — Times — Data hold time tDDRP 20*2 *3 — — Year After 100000 times of NDPEC 5*2 *3 — — Year Ta = +85°C Ta = +105°C After 1000000 times of NDPEC — 1*2 *3 — Year After 10000 times of NDPEC Ta = +25°C Note 1. The reprogram/erase cycle is the number of erasure for each block. When the reprogram/erase cycle is n times (n = 100,000), erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1,024 times for different addresses in 1-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasure is not enabled. (overwriting is prohibited.) Note 2. Characteristics when using the flash memory programmer and the self-programming library provided by Renesas Electronics. Note 3. These results are target spec, may changed after reliability testing. Table 2.55 Data flash characteristics (2) (1 of 2) High-speed operating mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V ICLK = 1 MHz Parameter ICLK = 48 MHz Symbol Min Typ Max Min Typ Max Unit Programming time 1-byte tDP1 — 45 404 — 34 321 µs Erasure time 1-KB tDE1K — 8.8 280 — 6.1 224 ms Blank check time 1-byte tDBC1 — — 15.2 — — 8.3 µs 1-KB tDBC1K — — 1832 — — 466 µs tDSED — — 13.2 — — 10.5 µs Suspended time during erasing R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 80 of 112 RA2E1 Datasheet Table 2.55 2. Electrical Characteristics Data flash characteristics (2) (2 of 2) High-speed operating mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V ICLK = 1 MHz ICLK = 48 MHz Parameter Symbol Min Typ Max Min Typ Max Unit Data flash STOP recovery time tDSTOP 250 — — 250 — — ns Note: Note: Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Table 2.56 Data flash characteristics (3) Middle-speed operating mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V, Ta = -40 to +85°C ICLK = 24 MHz*1 ICLK = 1 MHz Parameter Symbol Min Typ Max Min Typ Max Unit Programming time 1-byte tDP1 — 45 404 — 39 356 µs Erasure time 1-KB tDE1K — 8.8 280 — 7.3 248 ms Blank check time 1-byte tDBC1 — — 15.2 — — 11.3 µs 1-KB tDBC1K — — 1.84 — — 1.06 ms Suspended time during erasing tDSED — — 13.2 — — 11.7 µs Data flash STOP recovery time tDSTOP 250 — — 250 — — ns Note: Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note: The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Note 1. When 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V Table 2.57 Data flash characteristics (4) Low-speed operating mode Conditions: VCC = AVCC0 = 1.6 to 5.5 V, Ta = -40 to +85°C ICLK = 1 MHz Parameter ICLK = 2 MHz Symbol Min Typ Max Min Typ Max Unit Programming time 1-byte tDP1 — 86 732 — 57 502 µs Erasure time 1-KB tDE1K — 19.7 504 — 12.4 354 ms Blank check time 1-byte tDBC1 — — 46.5 — — 23.3 µs 1-KB tDBC1K — — 7.3 — — 3.66 ms Suspended time during erasing tDSED — — 22.3 — — 16.2 µs Data flash STOP recovery time tDSTOP 250 — — 250 — — ns Note: Note: Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 2 MHz, the frequency can be set to 1 MHz or 2 MHz. A non-integer frequency such as 1.5 MHz cannot be set. The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 81 of 112 RA2E1 Datasheet 2.11 2. Electrical Characteristics Serial Wire Debug (SWD) Table 2.58 SWD characteristics (1) Conditions: VCC = AVCC0 = 2.4 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions SWCLK clock cycle time tSWCKcyc 80 — — ns Figure 2.47 SWCLK clock high pulse width tSWCKH 35 — — ns SWCLK clock low pulse width tSWCKL 35 — — ns SWCLK clock rise time tSWCKr — — 5 ns SWCLK clock fall time tSWCKf — — 5 ns SWDIO setup time tSWDS 16 — — ns SWDIO hold time tSWDH 16 — — ns SWDIO data delay time tSWDD 2 — 70 ns Table 2.59 Figure 2.48 SWD characteristics (2) Conditions: VCC = AVCC0 = 1.6 to 2.4 V Parameter Symbol Min Typ Max Unit Test conditions SWCLK clock cycle time tSWCKcyc 250 — — ns Figure 2.47 SWCLK clock high pulse width tSWCKH 120 — — ns SWCLK clock low pulse width tSWCKL 120 — — ns SWCLK clock rise time tSWCKr — — 5 ns SWCLK clock fall time tSWCKf — — 5 ns SWDIO setup time tSWDS 50 — — ns SWDIO hold time tSWDH 50 — — ns SWDIO data delay time tSWDD 2 — 170 ns Figure 2.48 tSWCKcyc tSWCKH tSWCKf SWCLK tSWCKL Figure 2.47 tSWCKr SWD SWCLK timing R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 82 of 112 RA2E1 Datasheet 2. Electrical Characteristics SWCLK tSWDS tSWDH SWDIO (Input) tSWDD SWDIO (Output) tSWDD SWDIO (Output) tSWDD SWDIO (Output) Figure 2.48 SWD input/output timing R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 83 of 112 RA2E1 Datasheet Appendix 1. Table 1.1 Appendix 1. Port States in each Processing Mode Port States in each Processing Mode Port states in each processing mode (1 of 3) Port name Reset Software Standby Mode P000/AN000/TS21/IRQ6 Hi-Z Keep-O*1 P001/AN001/TS22/IRQ7 Hi-Z Keep-O*1 P002/AN002/TS23/IRQ2 Hi-Z Keep-O*1 P003/AN003/TS24 Hi-Z Keep-O P004/AN004/TS25/IRQ3 Hi-Z Keep-O*1 P010/AN005/TS30-CFC Hi-Z Keep-O P011/AN006/TS31-CFC Hi-Z Keep-O P012/AN007/TS32-CFC Hi-Z Keep-O P013/AN008/TS33-CFC Hi-Z Keep-O P014/AN009 Hi-Z Keep-O P015/AN010/TS28-CFC/IRQ7_A Hi-Z Keep-O*1 P100/CMPIN0/TS26-CFC/AGTIO0_A/ GTETRGA_A/GTIOC8B_A/RXD0_A/ SCL0_D/SCK1_A/MISOA_A/KRM00/ IRQ2_A Hi-Z [AGTIO0_A output selected] AGTIO0_A output*2 [Other than the above] Keep-O*1 P101/CMPREF0/TS16-CFC/AGTEE0/ GTETRGB_A/GTIOC8A_A/TXD0_A/ MOSI0_A/SDA0_C/CTS1_RTS1_A/KRM01/ IRQ1_A Hi-Z Keep-O*1 P102/CMPIN1/ADTRG0_A/TS15-CFC/ AGTO0/GTOWLO_A/GTIOC5B_A/SCK0_A/ TXD2_D/MOSI2_D/SDA2_D/RSPCKA_A/ KRM02 Hi-Z [AGTO0 selected] AGTO0 output*2 [Other than the above] Keep-O*1 P103/CMPREF1/TS14-CFC/GTOWUP_A/ GTIOC5A_A/CTS0_RTS0_A/SSLA0_A/ KRM03 Hi-Z Keep-O*1 P104/TS13-CFC/GTETRGB_B/GTIOC4B_C/ Hi-Z RXD0_C/MISO0_C/SSLA1_A/KRM04/ IRQ1_B Keep-O*1 P105/TS34-CFC/GTETRGA_C/ GTIOC4A_C/SSLA2_A/KRM05/IRQ0_B Hi-Z Keep-O*1 P106/SSLA3_A/KRM06 Hi-Z Keep-O*1 P107/KRM07 Hi-Z Keep-O*1 P108/SWDIO/GTOULO_C/GTIOC0B_A/ CTS9_RTS9_B Pull-up Keep-O P109/TS10-CFC/GTOVUP_A/GTIOC4A_A/ SCK1_E/TXD9_B/MOSI9_B/SDA9_B/ CLKOUT_B Hi-Z [CLKOUT selected] CLKOUT output [Other than the above] Keep-O P110/TS11-CFC/GTOVLO_A/GTIOC4B_A/ CTS2_RTS2_B/RXD9_B/SCL9_B/ MISOB_B/IRQ3_A/VCOUT Hi-Z [ACMPLP selected] VCOUT output [Other than the above] Keep-O*1 P111/TS12-CFC/AGTOA0/GTIOC6A_A/ SCK2_B/SCK9_B/IRQ4_A Hi-Z [AGTOA0 selected] AGTOA0 output*2 [Other than the above] Keep-O*1 R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 84 of 112 RA2E1 Datasheet Table 1.1 Appendix 1. Port States in each Processing Mode Port states in each processing mode (2 of 3) Port name Reset Software Standby Mode P112/TSCAP/AGTOB0/GTIOC6B_A/ TXD2_B/MOSI2_B/SDA2_B/SCK1_D Hi-Z [AGTOB0 selected] AGTOB0 output*2 [Other than the above] Keep-O P113/TS27-CFC Hi-Z Keep-O P200/NMI Hi-Z Hi-Z P201/MD Pull-up Keep-O P204/CACREF_A/TS0/AGTIO1_A/GTIW_A/ GTIOC4B_B/SCK0_D/SCK9_A/SCL0_B Hi-Z [AGTIO1_A output selected] AGTIO1_A output*2 [Other than the above] Keep-O*1 P205/AGTO1/GTIV_A/TXD0_D/MOSI0_D/ SDA0_D/CTS9_RTS9_A/IRQ1/CLKOUT_A Hi-Z [AGTO1 selected] AGTO1 output*2 [CLKOUT selected] CLKOUT output [Other than the above] Keep-O*1 P206/GTIU_A/RXD0_D/MISO0_D/SCL0_D/ IRQ0 Hi-Z Keep-O*1 P207 Hi-Z Keep-O P208/AGTOB0_A Hi-Z [AGTOB0_A selected] AGTOB0_A output*2 [Other than the above] Keep-O P212/EXTAL /AGTEE1/GTETRGB_D/ GTIOC0B_D/RXD1_A/MISO1_A/SCL1_A/ IRQ3_B Hi-Z Keep-O*1 P213/XTAL /GTETRGA_D/GTIOC0A_D/ TXD1_A/MOSI1_A/SDA1_A/IRQ2_B Hi-Z Keep-O*1 P214/XCOUT, P215/XCIN Hi-Z [Sub-clock Oscillator selected] Sub-clock Oscillator is operating [Other than the above] Hi-Z P300/SWCLK/GTOUUP_C/GTIOC0A_A Pull-up Keep-O P301/TS9-CFC/AGTIO0_D/GTOULO_A/ GTIOC7B_A/RXD2_A/MISO2_A/SCL2_A/ CTS9_RTS9_D/IRQ6_A Hi-Z [AGTIO0_D output selected] AGTIO0_D output*2 [Other than the above] Keep-O*1 P302/TS8-CFC/GTOUUP_A/GTIOC7A_A/ TXD2_A/MOSI2_A/SDA2_A/IRQ5_A Hi-Z Keep-O*1 P303/TS2-CFC Hi-Z Keep-O P304 Hi-Z Keep-O P400/CACREF_C/AGTIO1_C/GTIOC9A_A/ SCK0_B/SCK1_B/SCL0_A/IRQ0_A Hi-Z [AGTIO1_C output selected] AGTIO1_C output*2 [Other than the above] Keep-O*1 P401/GTETRGA_B/GTIOC9B_A/ Hi-Z CTS0_RTS0_B/TXD1_B/MOSI1_B/SDA1_B/ SDA0_A/IRQ5 Keep-O*1 P402/TS18/AGTIO0_E/AGTIO1_D/RXD1_B/ Hi-Z MISO1_B/SCL1_B/IRQ4 [AGTIO0_E, AGTIO1_D output selected] AGTIO0_E, AGTIO1_D output*2 [Other than the above] Keep-O*1 R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 85 of 112 RA2E1 Datasheet Table 1.1 Appendix 1. Port States in each Processing Mode Port states in each processing mode (3 of 3) Port name Reset Software Standby Mode P403/TS17/AGTIO0_F/AGTIO1_E/ CTS1_RTS1_B Hi-Z [AGTIO0_F, AGTIO1_E output selected] AGTIO0_F, AGTIO1_E output*2 [Other than the above] Keep-O*1 P407/ADTRG0_B/AGTIO0_C/RTCOUT/ CTS0_RTS0_D/SDA0_B Hi-Z [AGTIO0_C output selected] AGTIO0_C output*2 [RTCOUT selected] RTCOUT output [Other than the above] Keep-O*1 P408/TS4/GTOWLO_B/CTS1_RTS1_D/ SCL0_C/IRQ7_B Hi-Z Keep-O*1 P409/TS5/GTOWUP_B/IRQ6_B Hi-Z Keep-O*1 P410/TS6/AGTOB1/GTOVLO_B/RXD0_B/ MISO0_B/SCL0_B/MISOA_B/IRQ5_B Hi-Z [AGTOB1 selected] AGTOB1 output*2 [Other than the above] Keep-O*1 P411/TS7/AGTOA1/GTOVUP_B/TXD0_B/ MOSI0_B/SDA0_B/MOSIA_B/IRQ4_B Hi-Z [AGTOA1 selected] AGTOA1 output*2 [Other than the above] Keep-O*1 P500/GTIU_B/GTIOC5A_B Hi-Z Keep-O P501/AN017/GTIV_B/GTIOC5B_B/TXD1_C/ Hi-Z MOSI1_C/SDA1_C Keep-O P502/AN018/GTIW_B/RXD1_C/MISO1_C/ SCL1_C Hi-Z Keep-O P913/AGTIO1_F/GTETRGA_F Hi-Z Keep-O P914/AGTOA1_A/GTETRGB_F Hi-Z Keep-O P915 Hi-Z Keep-O Note: Hi-Z: High-impedance Keep-O: Output pins retain their previous values. Input pins become high-impedance. Note 1. Input is enabled if the pin is specified as the software standby canceling source while it is used as an external interrupt pin. Note 2. AGTIO output is enabled while LOCO or SOSC is selected as a count source. R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 86 of 112 RA2E1 Datasheet Appendix 2. Package Dimensions Appendix 2. Package Dimensions Information on the latest version of the package dimensions or mountings is displayed in “Packages” on the Renesas Electronics Corporation website. JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g] P-LFQFP64-10x10-0.50 PLQP0064KB-C — 0.3 Unit: mm HD *1 D 48 33 64 HE 32 *2 E 49 17 1 16 NOTE 4 Index area NOTE 3 F S y S *3 bp 0.25 c A1  A2 A e Lp L1 Detail F M NOTE) 1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH. 2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET. 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA. 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY. Reference Dimensions in millimeters Symbol Min Nom Max D 9.9 10.0 10.1 10.1 E 9.9 10.0 A2  1.4  HD 11.8 12.0 12.2 HE 11.8 12.0 12.2 A   1.7 A1 0.05  0.15 bp 0.15 0.20 0.27 c 0.09  0.20  0 3.5 8 e  0.5  x   0.08 y   0.08 Lp 0.45 0.6 0.75 L1  1.0  © 2015 Renesas Electronics Corporation. All rights reserved. Figure 2.1 LQFP 64-pin 0.5mm pitch R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 87 of 112 RA2E1 Datasheet Appendix 2. Package Dimensions JEITA Package Code P-LQFP64-14x14-0.80 RENESAS Code PLQP0064GA-A Previous Code 64P6U-A/ ⎯ MASS[Typ.] 0.7g HD *1 D 33 48 NOTE) 1. DIMENSIONS "*1" AND "*2" DO NOT INCLUDE MOLD FLASH. 2. DIMENSION "*3" DOES NOT INCLUDE TRIM OFFSET. 32 49 bp c Reference Dimension in Millimeters Symbol *2 E HE c1 b1 ZE Terminal cross section 64 17 c Index mark A2 16 ZD A 1 F A1 S L D E A2 HD HE A A1 bp b1 c c1 L1 y S e Figure 2.2 Detail F *3 bp x e x y ZD ZE L L1 Min Nom Max 13.9 14.0 14.1 13.9 14.0 14.1 1.4 15.8 16.0 16.2 15.8 16.0 16.2 1.7 0.1 0.2 0 0.32 0.37 0.42 0.35 0.09 0.145 0.20 0.125 0° 8° 0.8 0.20 0.10 1.0 1.0 0.3 0.5 0.7 1.0 LQFP 64-pin R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 88 of 112 RA2E1 Datasheet Appendix 2. Package Dimensions JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g] P-LFQFP48-7x7-0.50 PLQP0048KB-B — 0.2 HD Unit: mm *1 D 36 25 *2 48 HE 24 E 37 13 1 12 Index area NOTE 4 NOTE 3 F S NOTE) 1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH. 2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET. 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA. 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY. Reference Dimensions in millimeters Symbol y S *3 bp 0.25 M A1  c A2 A e Lp L1 Detail F Min Nom Max D 6.9 7.0 7.1 E 6.9 7.0 7.1 A2  1.4  HD 8.8 9.0 9.2 HE 8.8 9.0 9.2 A   1.7 A1 0.05  0.15 bp 0.17 0.20 0.27 c 0.09  0.20  0 3.5 8 e  0.5  x   0.08 y   0.08 Lp 0.45 0.6 0.75 L1  1.0  © 2015 Renesas Electronics Corporation. All rights reserved. Figure 2.3 LQFP 48-pin R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 89 of 112 RA2E1 Datasheet Appendix 2. Package Dimensions JEITA Package code RENESAS code MASS(TYP.)[g] P-HWQFN048-7x7-0.50 PWQN0048KC-A 0.13 g 2X aaa C 36 25 37 24 D INDEX AREA (D/2 X E/2) 48 2X aaa C 13 1 12 B A E ccc C C SEATING PLANE A (A3) A1 b(48X) e 48X bbb ddd eee C E2 1 fff fff C A B 12 EXPOSED 13 DIE PAD 48 C A B C A B C Reference Symbol Dimension in Millimeters Min. A - - 0.80 0.00 0.02 0.05 0.203 REF. A3 0.20 D 24 37 36 25 L(48X) Figure 2.4 K(48X) Max. A1 b D2 Nom. 0.25 0.30 7.00 BSC E 7.00 BSC e 0.50 BSC L 0.30 0.40 0.50 K 0.20 - - D2 5.25 5.30 5.35 E2 5.25 5.30 5.35 aaa 0.15 bbb 0.10 ccc 0.10 ddd 0.05 eee 0.08 fff 0.10 HWQFN 48-pin R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 90 of 112 RA2E1 Datasheet Appendix 2. Package Dimensions JEITA Package Code P-LQFP32-7x7-0.80 RENESAS Code PLQP0032GB-A Previous Code 32P6U-A MASS[Typ.] 0.2g HD *1 D 24 17 NOTE) 1. DIMENSIONS "*1" AND "*2" DO NOT INCLUDE MOLD FLASH. 2. DIMENSION "*3" DOES NOT INCLUDE TRIM OFFSET. 16 25 bp c c1 HE *2 E b1 Reference Symbol 32 9 1 ZE Terminal cross section 8 ZD c L A1 S A F A2 Index mark L1 y S e Figure 2.5 *3 Detail F bp x D E A2 HD HE A A1 bp b1 c c1 e x y ZD ZE L L1 Dimension in Millimeters Min Nom Max 6.9 7.0 7.1 6.9 7.0 7.1 1.4 8.8 9.0 9.2 8.8 9.0 9.2 1.7 0.1 0.2 0 0.32 0.37 0.42 0.35 0.09 0.145 0.20 0.125 0° 8° 0.8 0.20 0.10 0.7 0.7 0.3 0.5 0.7 1.0 LQFP 32-pin R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 91 of 112 RDK-G-001445 1/1 外形図 Outline drawing ルネサスエレクトロニクス株式会社 Appendix 2. Package Dimensions Renesas Electronics Corporation Renesasコード PWQN0032KE-A RA2E1 Datasheet JEITA Package code RENESAS code MASS(TYP.)[g] P-HWQFN032-5x5-0.50 PWQN0032KE-A 0.06 2X aaa C 24 17 25 16 D INDEX AREA (D/2 X E/2) 32 2X aaa C 9 8 1 B A E ccc C C SEATING PLANE A (A3) A1 b(32X) e 32X bbb ddd eee C E2 C A B C A B 8 1 fff fff 32 C A B C 9 Reference Symbol 25 16 24 17 L(32X) Figure 2.6 K(32X) Min. Nom. Max. A - - 0.80 A1 0.00 0.02 0.05 A3 b D2 Dimension in Millimeters 0.203 REF. 0.18 0.25 D 5.00 BSC E 5.00 BSC e 0.50 BSC 0.30 L 0.35 0.40 K 0.20 - - D2 3.15 3.20 3.25 E2 3.15 3.20 3.25 aaa 0.15 bbb 0.10 ccc 0.10 ddd 0.05 eee 0.08 fff 0.10 0.45 HWQFN 32-pin R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 92 of 112 RA2E1 Datasheet Appendix 3. Appendix 3. I/O Registers I/O Registers This appendix describes I/O register addresses, access cycles, and reset values by function. 3.1 Peripheral Base Addresses This section provides the base addresses for peripherals described in this manual. Table 3.1 shows the name, description, and the base address of each peripheral. Table 3.1 Peripheral base address (1 of 2) Name Description Base address MPU Memory Protection Unit 0x4000_0000 SRAM SRAM Control 0x4000_2000 BUS BUS Control 0x4000_3000 DTC Data Transfer Controller 0x4000_5400 ICU Interrupt Controller 0x4000_6000 CPU_DBG Debug Function 0x4001_B000 SYSC System Control 0x4001_E000 PORT0 Port 0 Control Registers 0x4004_0000 PORT1 Port 1 Control Registers 0x4004_0020 PORT2 Port 2 Control Registers 0x4004_0040 PORT3 Port 3 Control Registers 0x4004_0060 PORT4 Port 4 Control Registers 0x4004_0080 PORT5 Port 5 Control Registers 0x4004_00A0 PORT9 Port 9 Control Registers 0x4004_0120 PFS Pmn Pin Function Control Register 0x4004_0800 ELC Event Link Controller 0x4004_1000 POEG Port Output Enable Module for GPT 0x4004_2000 RTC Realtime Clock 0x4004_4000 WDT Watchdog Timer 0x4004_4200 IWDT Independent Watchdog Timer 0x4004_4400 CAC Clock Frequency Accuracy Measurement Circuit 0x4004_4600 MSTP Module Stop Control B, C, D 0x4004_7000 IIC0 Inter-Integrated Circuit 0 0x4005_3000 IIC0WU Inter-Integrated Circuit 0 Wakeup Unit 0x4005_3014 DOC Data Operation Circuit 0x4005_4100 ADC12 12-bit A/D Converter 0x4005_C000 SCI0 Serial Communication Interface 0 0x4007_0000 SCI1 Serial Communication Interface 1 0x4007_0020 SCI2 Serial Communication Interface 2 0x4007_0040 SCI9 Serial Communication Interface 9 0x4007_0120 SPI0 Serial Peripheral Interface 0 0x4007_2000 CRC CRC Calculator 0x4007_4000 GPT320 General PWM Timer 0 (32-bit) 0x4007_8000 GPT164 General PWM Timer 4 (16-bit) 0x4007_8400 GPT165 General PWM Timer 5 (16-bit) 0x4007_8500 R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 93 of 112 RA2E1 Datasheet Table 3.1 Appendix 3. I/O Registers Peripheral base address (2 of 2) Name Description Base address GPT166 General PWM Timer 6 (16-bit) 0x4007_8600 GPT167 General PWM Timer 7 (16-bit) 0x4007_8700 GPT168 General PWM Timer 8 (16-bit) 0x4007_8800 GPT169 General PWM Timer 9 (16-bit) 0x4007_8900 GPT_OPS Output Phase Switching Controller 0x4007_8FF0 KINT Key Interrupt Function 0x4008_0000 CTSU Capacitive Sensing Unit 2 0x4008_2000 AGT0 Low Power Asynchronous General Purpose Timer 0 0x4008_4000 AGT1 Low Power Asynchronous General Purpose Timer 1 0x4008_4100 ACMPLP Low-Power Analog Comparator 0x4008_5E00 FLCN Flash I/O Registers 0x407E_C000 Note: Name = Peripheral name Description = Peripheral functionality Base address = Lowest reserved address or address used by the peripheral 3.2 Access Cycles This section provides access cycle information for the I/O registers described in this manual. The following information applies to Table 3.2: ● Registers are grouped by associated module. ● The number of access cycles indicates the number of cycles based on the specified reference clock. ● In the internal I/O area, reserved addresses that are not allocated to registers must not be accessed, otherwise operations cannot be guaranteed. ● The number of I/O access cycles depends on bus cycles of the internal peripheral bus, divided clock synchronization cycles, and wait cycles of each module. Divided clock synchronization cycles differ depending on the frequency ratio between ICLK and PCLK. ● When the frequency of ICLK is equal to that of PCLK, the number of divided clock synchronization cycles is always constant. ● When the frequency of ICLK is greater than that of PCLK, at least 1 PCLK cycle is added to the number of divided clock synchronization cycles. Note: This applies to the number of cycles when access from the CPU does not conflict with the instruction fetching to the external memory or bus access from other bus master such as DTC. Table 3.2 shows the register access cycles for non-GPT modules. Table 3.2 Access cycles for non-GPT modules (1 of 2) Number of access cycles Address ICLK = PCLK ICLK > PCLK*1 Read Read Cycle unit Peripherals From To MPU, SRAM, BUS, DTC, ICU, CPU_DBG 0x4000_2000 0x4001_BFFF 3 ICLK Memory Protection Unit, SRAM, Buses, Data Transfer Controller, Interrupt Controller, CPU, Flash Memory SYSC 0x4001_E000 0x4001_E6FF 4 ICLK Low Power Modes, Resets, Low Voltage Detection, Clock Generation Circuit, Register Write Protection R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Write Write Related function Page 94 of 112 RA2E1 Datasheet Table 3.2 Appendix 3. I/O Registers Access cycles for non-GPT modules (2 of 2) Number of access cycles Address ICLK = PCLK ICLK > PCLK*1 Read Read Cycle unit Peripherals From To PORTn, PFS, ELC, POEG, RTC, WDT, IWDT, CAC, MSTP 0x4004_0000 0x4004_7FFF 3 2 to 3 PCLKB I/O Ports, Event Link Controller, Port Output Enable for GPT, Realtime Clock, Watchdog Timer, Independent Watchdog Timer, Clock Frequency Accuracy Measurement Circuit, Module Stop Control IICn (n = 0), IIC0WU, 0x4005_0000 DOC, ADC12 0x4005_EFFF 3 2 to 3 PCLKB I2C Bus Interface, Data Operation Circuit, 12-bit A/D Converter SCIn (n = 0 to 2, 9*2) 0x4007_0000 0x4007_0EFF 5 2 to 3 PCLKB Serial Communications Interface SPIn (n = 0)*3 0x4007_2000 0x4007_2FFF 5 2 to 3 PCLKB Serial Peripheral Interface CRC 0x4007_4000 0x4007_4FFF 3 2 to 3 PCLKB CRC Calculator GPT32n (n = 0), GPT16n (n = 4 to 9), GPT_OPS 0x4007_8000 0x4007_BFFF PCLKB General PWM Timer KINT, CTSU 0x4008_0000 0x4008_2FFF 3 2 to 3 PCLKB Key interrupt Function, Capacitive Sensing Unit 2 AGTn 0x4008_4000 0x4008_4FFF 3 2 to 3 PCLKB Low Power Asynchronous General Purpose Timer ACMPLP 0x4008_5000 0x4008_6FFF 3 2 to 3 PCLKB Low-Power Analog Comparator FLCN 0x407E_C000 0x407E_FFFF 7 7 ICLK Data Flash, Temperature Sensor, Capacitive Sensing Unit 2, Flash Control Write Write See Table 3.3. Related function Note 1. If the number of PCLK cycles is non-integer (for example 1.5), the minimum value is without the decimal point, and the maximum value is rounded up to the decimal point. For example, 1.5 to 2.5 is 1 to 3. Note 2. Regarding n = 0, when accessing a 16-bit register (FTDRHL, FRDRHL, FCR, FDR, LSR, and CDR), access is 2 cycles more than the value shown in Table 3.2. When accessing an 8-bit register (FTDRH, FTDRL, FRDRH, and FRDRL), the access cycles are as shown in Table 3.2. Note 3. When accessing the 32-bit register (SPDR), access is 2 cycles more than the value in Table 3.2. When accessing an 8-bit or 16-bit register (SPDR_HA), the access cycles are as shown in Table 3.2. Table 3.3 shows register access cycles for GPT modules. Table 3.3 Access cycles for GPT modules Frequency ratio between ICLK and PCLK Number of access cycles Read Write Cycle unit ICLK > PCLKD = PCLKB 5 to 6 3 to 4 PCLKB ICLK > PCLKD > PCLKB 3 to 4 2 to 3 PCLKB PCLKD = ICLK = PCLKB 6 4 PCLKB PCLKD = ICLK > PCLKB 2 to 3 1 to 2 PCLKB PCLKD > ICLK = PCLKB 4 3 PCLKB PCLKD > ICLK > PCLKB 2 to 3 1 to 2 PCLKB 3.3 Register Descriptions This section provides information associated with registers described in this manual. Table 3.4 shows a list of registers including address offsets, address sizes, access rights, and reset values. R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 95 of 112 RA2E1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (1 of 13) Peripheral name Dim Dim inc. Dim index Register name Description Address offset Size R/W Reset value Reset mask MPU - - - MMPUCTLA Bus Master MPU Control Register 0x000 16 R/W 0x0000 0xFFFF MPU - - - MMPUPTA Group A Protection of Register 0x102 16 R/W 0x0000 0xFFFF MPU 4 0x010 0-3 MMPUACA%s Group A Region %s access control register 0x200 16 R/W 0x0000 0xFFFF MPU 4 0x010 0-3 MMPUSA%s Group A Region %s Start Address Register 0x204 32 R/W 0x00000000 0x00000003 MPU 4 0x010 0-3 MMPUEA%s Group A Region %s End Address Register 0x208 32 R/W 0x00000003 0x00000003 MPU - - - SMPUCTL Slave MPU Control Register 0xC00 16 R/W 0x0000 0xFFFF MPU - - - SMPUMBIU Access Control Register for Memory Bus 1 0xC10 16 R/W 0x0000 0xFFFF MPU - - - SMPUFBIU Access Control Register for Internal Peripheral Bus 9 0xC14 16 R/W 0x0000 0xFFFF MPU - - - SMPUSRAM0 Access Control Register for Memory Bus 4 0xC18 16 R/W 0x0000 0xFFFF MPU - - - SMPUP0BIU Access Control Register for Internal Peripheral Bus 1 0xC20 16 R/W 0x0000 0xFFFF MPU - - - SMPUP2BIU Access Control Register for Internal Peripheral Bus 3 0xC24 16 R/W 0x0000 0xFFFF MPU - - - SMPUP6BIU Access Control Register for Internal Peripheral Bus 7 0xC28 16 R/W 0x0000 0xFFFF MPU - - - MSPMPUOAD Stack Pointer Monitor Operation After Detection Register 0xD00 16 R/W 0x0000 0xFFFF MPU - - - MSPMPUCTL Stack Pointer Monitor Access Control Register 0xD04 16 R/W 0x0000 0xFEFF MPU - - - MSPMPUPT Stack Pointer Monitor Protection Register 0xD06 16 R/W 0x0000 0xFFFF MPU - - - MSPMPUSA Main Stack Pointer (MSP) Monitor Start Address Register 0xD08 32 R/W 0x00000000 0x00000000 MPU - - - MSPMPUEA Main Stack Pointer (MSP) Monitor End Address Register 0xD0C 32 R/W 0x00000000 0x00000000 MPU - - - PSPMPUOAD Stack Pointer Monitor Operation After Detection Register 0xD10 16 R/W 0x0000 0xFFFF MPU - - - PSPMPUCTL Stack Pointer Monitor Access Control Register 0xD14 16 R/W 0x0000 0xFEFF MPU - - - PSPMPUPT Stack Pointer Monitor Protection Register 0xD16 16 R/W 0x0000 0xFFFF MPU - - - PSPMPUSA Process Stack Pointer (PSP) Monitor Start Address Register 0xD18 32 R/W 0x00000000 0x00000000 MPU - - - PSPMPUEA Process Stack Pointer (PSP) Monitor End Address Register 0xD1C 32 R/W 0x00000000 0x00000000 SRAM - - - PARIOAD SRAM Parity Error Operation After Detection Register 0x00 8 R/W 0x00 0xFF SRAM - - - SRAMPRCR SRAM Protection Register 0x04 8 R/W 0x00 0xFF BUS - - - BUSMCNTSYS Master Bus Control Register SYS 0x1008 16 R/W 0x0000 0xFFFF BUS - - - BUSMCNTDMA Master Bus Control Register DMA 0x100C 16 R/W 0x0000 0xFFFF BUS - - - BUS3ERRADD Bus Error Address Register 3 0x1820 32 R 0x00000000 0x00000000 BUS - - - BUS3ERRSTAT BUS Error Status Register 3 0x1824 8 R 0x00 0xFE BUS - - - BUS4ERRADD Bus Error Address Register 4 0x1830 32 R 0x00000000 0x00000000 BUS - - - BUS4ERRSTAT BUS Error Status Register 4 0x1834 8 R 0x00 0xFE DTC - - - DTCCR DTC Control Register 0x00 8 R/W 0x08 0xFF DTC - - - DTCVBR DTC Vector Base Register 0x04 32 R/W 0x00000000 0xFFFFFFFF DTC - - - DTCST DTC Module Start Register 0x0C 8 R/W 0x00 0xFF DTC - - - DTCSTS DTC Status Register 0x0E 16 R 0x0000 0xFFFF ICU 8 0x1 0-7 IRQCR%s IRQ Control Register 0x000 8 R/W 0x00 0xFF ICU - - - NMICR NMI Pin Interrupt Control Register 0x100 8 R/W 0x00 0xFF R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 96 of 112 RA2E1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (2 of 13) Peripheral name Dim Dim inc. Dim index Register name Description Address offset Size R/W Reset value Reset mask ICU - - - NMIER Non-Maskable Interrupt Enable Register 0x120 16 R/W 0x0000 0xFFFF ICU - - - NMICLR Non-Maskable Interrupt Status Clear Register 0x130 16 R/W 0x0000 0xFFFF ICU - - - NMISR Non-Maskable Interrupt Status Register 0x140 16 R 0x0000 0xFFFF ICU - - - WUPEN Wake Up Interrupt Enable Register 0x1A0 32 R/W 0x00000000 0xFFFFFFFF ICU - - - IELEN ICU event Enable Register 0x1C0 8 R/W 0x00 0xFF ICU - - - SELSR0 SYS Event Link Setting Register 0x200 16 R/W 0x0000 0xFFFF ICU 32 0x4 0-31 IELSR%s ICU Event Link Setting Register %s 0x300 32 R/W 0x00000000 0xFFFFFFFF CPU_DBG - - - DBGSTR Debug Status Register 0x00 32 R 0x00000000 0xFFFFFFFF CPU_DBG - - - DBGSTOPCR Debug Stop Control Register 0x10 32 R/W 0x00000003 0xFFFFFFFF SYSC - - - SBYCR Standby Control Register 0x00C 16 R/W 0x0000 0xFFFF SYSC - - - MSTPCRA Module Stop Control Register A 0x01C 32 R/W 0xFFBFFFFF 0xFFFFFFFF SYSC - - - SCKDIVCR System Clock Division Control Register 0x020 32 R/W 0x04000404 0xFFFFFFFF SYSC - - - SCKSCR System Clock Source Control Register 0x026 8 R/W 0x01 0xFF SYSC - - - MEMWAIT Memory Wait Cycle Control Register for Code Flash 0x031 8 R/W 0x00 0xFF SYSC - - - MOSCCR Main Clock Oscillator Control Register 0x032 8 R/W 0x01 0xFF SYSC - - - HOCOCR High-Speed On-Chip Oscillator Control Register 0x036 8 R/W 0x00 0xFE SYSC - - - MOCOCR Middle-Speed On-Chip Oscillator Control Register 0x038 8 R/W 0x00 0xFF SYSC - - - OSCSF Oscillation Stabilization Flag Register 0x03C 8 R 0x00 0xFE SYSC - - - CKOCR Clock Out Control Register 0x03E 8 R/W 0x00 0xFF SYSC - - - OSTDCR Oscillation Stop Detection Control Register 0x040 8 R/W 0x00 0xFF SYSC - - - OSTDSR Oscillation Stop Detection Status Register 0x041 8 R/W 0x00 0xFF SYSC - - - LPOPT Lower Power Operation Control Register 0x04C 8 R/W 0x00 0xFF SYSC - - - MOCOUTCR MOCO User Trimming Control Register 0x061 8 R/W 0x00 0xFF SYSC - - - HOCOUTCR HOCO User Trimming Control Register 0x062 8 R/W 0x00 0xFF SYSC - - - SNZCR Snooze Control Register 0x092 8 R/W 0x00 0xFF SYSC - - - SNZEDCR0 Snooze End Control Register 0x094 8 R/W 0x00 0xFF SYSC - - - SNZREQCR Snooze Request Control Register 0x098 32 R/W 0x00000000 0xFFFFFFFF SYSC - - - PSMCR Power Save Memory Control Register 0x09F 8 R/W 0x00 0xFF SYSC - - - OPCCR Operating Power Control Register 0x0A0 8 R/W 0x01 0xFF SYSC - - - MOSCWTCR Main Clock Oscillator Wait Control Register 0x0A2 8 R/W 0x05 0xFF SYSC - - - HOCOWTCR High-Speed On-Chip Oscillator Wait Control Register 0x0A5 8 R/W 0x05 0xFF SYSC - - - SOPCCR Sub Operating Power Control Register 0x0AA 8 R/W 0x00 0xFF SYSC - - - RSTSR1 Reset Status Register 1 0x0C0 16 R/W 0x0000 0xE2F8 SYSC - - - LVD1CR1 Voltage Monitor 1 Circuit Control Register 0x0E0 8 R/W 0x01 0xFF SYSC - - - LVD1SR Voltage Monitor 1 Circuit Status Register 0x0E1 8 R/W 0x02 0xFF SYSC - - - LVD2CR1 Voltage Monitor 2 Circuit Control Register 1 0x0E2 8 R/W 0x01 0xFF SYSC - - - LVD2SR Voltage Monitor 2 Circuit Status Register 0x0E3 8 R/W 0x02 0xFF SYSC - - - PRCR Protect Register 0x3FE 16 R/W 0x0000 0xFFFF SYSC - - - SYOCDCR System Control OCD Control Register 0x040E 8 R/W 0x00 0xFF SYSC - - - RSTSR0 Reset Status Register 0 0x410 8 R/W 0x00 0xF0 SYSC - - - RSTSR2 Reset Status Register 2 0x411 8 R/W 0x00 0xFE R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 97 of 112 RA2E1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (3 of 13) Peripheral name Dim Dim inc. Dim index Register name Address offset Size R/W Reset value Reset mask SYSC - - - MOMCR Main Clock Oscillator Mode Oscillation Control Register 0x413 8 R/W 0x00 0xFF SYSC - - - LVCMPCR Voltage Monitor Circuit Control Register 0x417 8 R/W 0x00 0xFF SYSC - - SYSC - - - LVDLVLR Voltage Detection Level Select Register 0x418 8 R/W 0x07 0xFF - LVD1CR0 Voltage Monitor 1 Circuit Control Register 0 0x41A 8 R/W 0x80 0xF7 SYSC - - - LVD2CR0 Voltage Monitor 2 Circuit Control Register 0 0x41B 8 R/W 0x80 0xF7 SYSC SYSC - - - SOSCCR Sub-Clock Oscillator Control Register 0x480 8 R/W 0x01 0xFF - - - SOMCR Sub-Clock Oscillator Mode Control Register 0x481 8 R/W 0x00 0xFF SYSC - - - SOMRG Sub-Clock Oscillator Margin Check Register 0x482 8 R/W 0x00 0xFF SYSC - - - LOCOCR Low-Speed On-Chip Oscillator Control Register 0x490 8 R/W 0x00 0xFF SYSC - - - LOCOUTCR LOCO User Trimming Control Register 0x492 8 R/W 0x00 0xFF PORT0,3-5 ,9 - - - PCNTR1 Port Control Register 1 0x000 32 R/W 0x00000000 0xFFFFFFFF PORT0,3-5 ,9 - - - PODR Port Control Register 1 0x000 16 R/W 0x0000 0xFFFF PORT0,3-5 ,9 - - - PDR Port Control Register 1 0x002 16 R/W 0x0000 0xFFFF PORT0,3-5 ,9 - - - PCNTR2 Port Control Register 2 0x004 32 R 0x00000000 0xFFFF0000 PORT0,3-5 ,9 - - - PIDR Port Control Register 2 0x006 16 R 0x0000 0x0000 PORT0,3-5 ,9 - - - PCNTR3 Port Control Register 3 0x008 32 W 0x00000000 0xFFFFFFFF PORT0,3-5 ,9 - - - PORR Port Control Register 3 0x008 16 W 0x0000 0xFFFF PORT0,3-5 ,9 - - - POSR Port Control Register 3 0x00A 16 W 0x0000 0xFFFF PORT1-2 - - - PCNTR1 Port Control Register 1 0x000 32 R/W 0x00000000 0xFFFFFFFF PORT1-2 - - - PODR Port Control Register 1 0x000 16 R/W 0x0000 0xFFFF PORT1-2 - - - PDR Port Control Register 1 0x002 16 R/W 0x0000 0xFFFF PORT1-2 - - - PCNTR2 Port Control Register 2 0x004 32 R 0x00000000 0xFFFF0000 PORT1-2 - - - EIDR Port Control Register 2 0x004 16 R 0x0000 0xFFFF PORT1-2 - - - PIDR Port Control Register 2 0x006 16 R 0x0000 0x0000 PORT1-2 - - - PCNTR3 Port Control Register 3 0x008 32 W 0x00000000 0xFFFFFFFF PORT1-2 - - - PORR Port Control Register 3 0x008 16 W 0x0000 0xFFFF PORT1-2 - - - POSR Port Control Register 3 0x00A 16 W 0x0000 0xFFFF PORT1-2 - - - PCNTR4 Port Control Register 4 0x00C 32 R/W 0x00000000 0xFFFFFFFF PORT1-2 - - - EORR Port Control Register 4 0x00C 16 R/W 0x0000 0xFFFF PORT1-2 - - - EOSR Port Control Register 4 0x00E 16 R/W 0x0000 0xFFFF PFS 9 0x4 0-8 P00%sPFS Port 00%s Pin Function Select Register 0x000 32 R/W 0x00000000 0xFFFFFFFD PFS 9 0x4 0-8 P00%sPFS_HA Port 00%s Pin Function Select Register 0x002 16 R/W 0x0000 0xFFFD PFS 9 0x4 0-8 P00%sPFS_BY Port 00%s Pin Function Select Register 0x003 8 R/W 0x00 0xFD PFS 6 0x4 10-15 P0%sPFS Port 0%s Pin Function Select Register 0x028 32 R/W 0x00000000 0xFFFFFFFD PFS 6 0x4 10-15 P0%sPFS_HA Port 0%s Pin Function Select Register 0x02A 16 R/W 0x0000 0xFFFD PFS 6 0x4 10-15 P0%sPFS_BY Port 0%s Pin Function Select Register 0x02B 8 R/W 0x00 0xFD PFS 8 0x4 0-7 P10%sPFS Port 10%s Pin Function Select Register 0x040 32 R/W 0x00000000 0xFFFFFFFD R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Description Page 98 of 112 RA2E1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (4 of 13) Peripheral name Dim Dim inc. Dim index Register name Description Address offset Size R/W Reset value Reset mask PFS 8 0x4 0-7 P10%sPFS_HA Port 10%s Pin Function Select Register 0x042 16 R/W 0x0000 0xFFFD PFS 8 0x4 0-7 P10%sPFS_BY Port 10%s Pin Function Select Register 0x043 8 R/W 0x00 0xFD PFS - - - P108PFS Port 108 Pin Function Select Register 0x060 32 R/W 0x00010010 0xFFFFFFFD PFS - - - P108PFS_HA Port 108 Pin Function Select Register 0x062 16 R/W 0x0010 0xFFFD PFS - - - P108PFS_BY Port 108 Pin Function Select Register 0x063 8 R/W 0x10 0xFD PFS - - - P109PFS Port 109 Pin Function Select Register 0x064 32 R/W 0x00000000 0xFFFFFFFD PFS - - - P109PFS_HA Port 109 Pin Function Select Register 0x066 16 R/W 0x0000 0xFFFD PFS - - - P109PFS_BY Port 109 Pin Function Select Register 0x067 8 R/W 0x00 0xFD PFS 6 0x4 10-15 P1%sPFS Port 1%s Pin Function Select Register 0x068 32 R/W 0x00000000 0xFFFFFFFD PFS 6 0x4 10-15 P1%sPFS_HA Port 1%s Pin Function Select Register 0x06A 16 R/W 0x0000 0xFFFD PFS 6 0x4 10-15 P1%sPFS_BY Port 1%s Pin Function Select Register 0x06B 8 R/W 0x00 0xFD PFS - - - P200PFS Port 200 Pin Function Select Register 0x080 32 R/W 0x00000000 0xFFFFFFFD PFS - - - P200PFS_HA Port 200 Pin Function Select Register 0x082 16 R/W 0x0000 0xFFFD PFS - - - P200PFS_BY Port 200 Pin Function Select Register 0x083 8 R/W 0x00 0xFD PFS - - - P201PFS Port 201 Pin Function Select Register 0x084 32 R/W 0x00000010 0xFFFFFFFD PFS - - - P201PFS_HA Port 201 Pin Function Select Register 0x086 16 R/W 0x0010 0xFFFD PFS - - - P201PFS_BY Port 201 Pin Function Select Register 0x087 8 R/W 0x10 0xFD PFS 7 0x4 2-8 P20%sPFS Port 20%s Pin Function Select Register 0x088 32 R/W 0x00000000 0xFFFFFFFD PFS 7 0x4 2-8 P20%sPFS_HA Port 20%s Pin Function Select Register 0x08A 16 R/W 0x0000 0xFFFD PFS 7 0x4 2-8 P20%sPFS_BY Port 20%s Pin Function Select Register 0x08B 8 R/W 0x00 0xFD PFS 4 0x4 12-15 P2%sPFS Port 2%s Pin Function Select Register 0x0B0 32 R/W 0x00000000 0xFFFFFFFD PFS 4 0x4 12-15 P2%sPFS_HA Port 2%s Pin Function Select Register 0x0B2 16 R/W 0x0000 0xFFFD PFS 4 0x4 12-15 P2%sPFS_BY Port 2%s Pin Function Select Register 0x0B3 8 R/W 0x00 0xFD PFS - - - P300PFS Port 300 Pin Function Select Register 0x0C0 32 R/W 0x00010000 0xFFFFFFFD PFS - - - P300PFS_HA Port 300 Pin Function Select Register 0x0C2 16 R/W 0x0000 0xFFFD PFS - - - P300PFS_BY Port 300 Pin Function Select Register 0x0C3 8 R/W 0x00 0xFD PFS 7 0x4 1-7 P30%sPFS Port 30%s Pin Function Select Register 0x0C4 32 R/W 0x00000000 0xFFFFFFFD PFS 7 0x4 1-7 P30%sPFS_HA Port 30%s Pin Function Select Register 0x0C6 16 R/W 0x0000 0xFFFD PFS 7 0x4 1-7 P30%sPFS_BY Port 30%s Pin Function Select Register 0x0C7 8 R/W 0x00 0xFD PFS 10 0x4 0-9 P40%sPFS Port 40%s Pin Function Select Register 0x100 32 R/W 0x00000000 0xFFFFFFFD PFS 10 0x4 0-9 P40%sPFS_HA Port 40%s Pin Function Select Register 0x102 16 R/W 0x0000 0xFFFD PFS 10 0x4 0-9 P40%sPFS_BY Port 40%s Pin Function Select Register 0x103 8 R/W 0x00 0xFD PFS 6 0x4 10-15 P4%sPFS Port 4%s Pin Function Select Register 0x128 32 R/W 0x00000000 0xFFFFFFFD PFS 6 0x4 10-15 P4%sPFS_HA Port 4%s Pin Function Select Register 0x12A 16 R/W 0x0000 0xFFFD PFS 6 0x4 10-15 P4%sPFS_BY Port 4%s Pin Function Select Register 0x12B 8 R/W 0x00 0xFD PFS 6 0x4 0-5 P50%sPFS Port 50%s Pin Function Select Register 0x140 32 R/W 0x00000000 0xFFFFFFFD PFS 6 0x4 0-5 P50%sPFS_HA Port 50%s Pin Function Select Register 0x142 16 R/W 0x0000 0xFFFD PFS 6 0x4 0-5 P50%sPFS_BY Port 50%s Pin Function Select Register 0x143 8 R/W 0x00 0xFD PFS 3 0x4 13-15 P90%sPFS Port 90%s Pin Function Select Register 0x274 32 R/W 0x00000000 0xFFFFFFFD PFS 3 0x4 13-15 P90%sPFS_HA Port 90%s Pin Function Select Register 0x276 16 R/W 0x0000 0xFFFD PFS 3 0x4 13-15 P90%sPFS_BY Port 90%s Pin Function Select Register 0x277 8 R/W 0x00 0xFD PFS - - - PWPR Write-Protect Register 0x503 8 R/W 0x80 0xFF PFS - - - PRWCNTR Port Read Wait Control Register 0x50F 8 R/W 0x01 0xFF ELC - - - ELCR Event Link Controller Register 0x00 8 R/W 0x00 0xFF R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 99 of 112 RA2E1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (5 of 13) Peripheral name Dim Dim inc. Dim index Register name Address offset Size R/W Reset value Reset mask ELC 2 0x02 0-1 ELSEGR%s Event Link Software Event Generation Register %s 0x02 8 R/W 0x80 0xFF ELC 4 0x04 0-3 ELSR%s Event Link Setting Register %s 0x10 16 R/W 0x0000 0xFFFF ELC 2 0x04 ELC 2 0x04 8-9 ELSR%s Event Link Setting Register %s 0x30 16 R/W 0x0000 0xFFFF 14-15 ELSR%s Event Link Setting Register %s 0x48 16 R/W 0x0000 0xFFFF ELC - - - ELSR18 Event Link Setting Register 18 0x58 16 R/W 0x0000 0xFFFF POEG - - POEG - - - POEGGA POEG Group A Setting Register 0x000 32 R/W 0x00000000 0xFFFFFFFF - POEGGB POEG Group B Setting Register 0x100 32 R/W 0x00000000 0xFFFFFFFF RTC - - RTC 4 0x02 - R64CNT 64-Hz Counter 0x00 8 R 0x00 0x00 0-3 BCNT%s Binary Counter %s 0x02 8 R/W 0x00 0x00 RTC - - - RSECCNT Second Counter (in Calendar Count Mode) 0x02 8 R/W 0x00 0x00 RTC RTC - - - RMINCNT Minute Counter (in Calendar Count Mode) 0x04 8 R/W 0x00 0x00 - - - RHRCNT Hour Counter (in Calendar Count Mode) 0x06 8 R/W 0x00 0x00 RTC - - - RWKCNT Day-of-Week Counter (in Calendar Count Mode) 0x08 8 R/W 0x00 0x00 RTC - - - RDAYCNT Day Counter 0x0A 8 R/W 0x00 0xC0 RTC - - - RMONCNT Month Counter 0x0C 8 R/W 0x00 0xE0 RTC - - - RYRCNT Year Counter 0x0E 16 R/W 0x0000 0xFF00 RTC 4 0x02 0-3 BCNT%sAR Binary Counter %s Alarm Register 0x10 8 R/W 0x00 0x00 RTC - - - RSECAR Second Alarm Register (in Calendar Count Mode) 0x10 8 R/W 0x00 0x00 RTC - - - RMINAR Minute Alarm Register (in Calendar Count Mode) 0x12 8 R/W 0x00 0x00 RTC - - - RHRAR Hour Alarm Register (in Calendar Count Mode) 0x14 8 R/W 0x00 0x00 RTC - - - RWKAR Day-of-Week Alarm Register (in Calendar Count Mode) 0x16 8 R/W 0x00 0x00 RTC 2 0x02 0-1 BCNT%sAER Binary Counter %s Alarm Enable Register 0x18 8 R/W 0x00 0x00 RTC - - - RDAYAR Date Alarm Register (in Calendar Count Mode) 0x18 8 R/W 0x00 0x00 RTC - - - RMONAR Month Alarm Register (in Calendar Count Mode) 0x1A 8 R/W 0x00 0x00 RTC - - - BCNT2AER Binary Counter 2 Alarm Enable Register 0x1C 16 R/W 0x0000 0xFF00 RTC - - - RYRAR Year Alarm Register (in Calendar Count Mode) 0x1C 16 R/W 0x0000 0xFF00 RTC - - - BCNT3AER Binary Counter 3 Alarm Enable Register 0x1E 8 R/W 0x00 0x00 RTC - - - RYRAREN Year Alarm Enable Register (in Calendar Count Mode) 0x1E 8 R/W 0x00 0x00 RTC - - - RCR1 RTC Control Register 1 0x22 8 R/W 0x00 0x0A RTC - - - RCR2 RTC Control Register 2 (in Calendar Count 0x24 Mode) 8 R/W 0x00 0x0E RTC - - - RCR2 RTC Control Register 2 (in Binary Count Mode) 0x24 8 R/W 0x00 0x0E RTC - - - RCR4 RTC Control Register 4 0x28 8 R/W 0x00 0x7E RTC - - - RFRH Frequency Register H 0x2A 16 R/W 0x0000 0xFFFE RTC - - - RFRL Frequency Register L 0x2C 16 R/W 0x0000 0x0000 RTC - - - RADJ Time Error Adjustment Register 0x2E 8 R/W 0x00 0x00 WDT - - - WDTRR WDT Refresh Register 0x00 8 R/W 0xFF 0xFF WDT - - - WDTCR WDT Control Register 0x02 16 R/W 0x0000 0xFFFF WDT - - - WDTSR WDT Status Register 0x04 16 R/W 0x0000 0xFFFF R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Description Page 100 of 112 RA2E1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (6 of 13) Peripheral name Dim Dim inc. Dim index Register name Description Address offset Size R/W Reset value Reset mask WDT - - - WDTRCR WDT Reset Control Register 0x06 8 R/W 0x80 0xFF WDT - - - WDTCSTPR WDT Count Stop Control Register 0x08 8 R/W 0x80 0xFF IWDT - - - IWDTRR IWDT Refresh Register 0x00 8 R/W 0xFF 0xFF IWDT - - - IWDTSR IWDT Status Register 0x04 16 R/W 0x0000 0xFFFF CAC - - - CACR0 CAC Control Register 0 0x00 8 R/W 0x00 0xFF CAC - - - CACR1 CAC Control Register 1 0x01 8 R/W 0x00 0xFF CAC - - - CACR2 CAC Control Register 2 0x02 8 R/W 0x00 0xFF CAC - - - CAICR CAC Interrupt Control Register 0x03 8 R/W 0x00 0xFF CAC - - - CASTR CAC Status Register 0x04 8 R 0x00 0xFF CAC - - - CAULVR CAC Upper-Limit Value Setting Register 0x06 16 R/W 0x0000 0xFFFF CAC - - - CALLVR CAC Lower-Limit Value Setting Register 0x08 16 R/W 0x0000 0xFFFF CAC - - - CACNTBR CAC Counter Buffer Register 0x0A 16 R 0x0000 0xFFFF MSTP - - - MSTPCRB Module Stop Control Register B 0x000 32 R/W 0xFFFFFFFF 0xFFFFFFFF MSTP - - - MSTPCRC Module Stop Control Register C 0x004 32 R/W 0xFFFFFFFF 0xFFFFFFFF MSTP - - - MSTPCRD Module Stop Control Register D 0x008 32 R/W 0xFFFFFFFF 0xFFFFFFFF IIC0 - - - ICCR1 I2C Bus Control Register 1 0x00 8 R/W 0x1F 0xFF IIC0 - - - ICCR2 I2C Bus Control Register 2 0x01 8 R/W 0x00 0xFF IIC0 - - - ICMR1 I2C Bus Mode Register 1 0x02 8 R/W 0x08 0xFF IIC0 - - - ICMR2 I2C Bus Mode Register 2 0x03 8 R/W 0x06 0xFF IIC0 - - - ICMR3 I2C Bus Mode Register 3 0x04 8 R/W 0x00 0xFF IIC0 - - - ICFER I2C Bus Function Enable Register 0x05 8 R/W 0x72 0xFF IIC0 - - - ICSER I2C Bus Status Enable Register 0x06 8 R/W 0x09 0xFF IIC0 - - - ICIER I2C Bus Interrupt Enable Register 0x07 8 R/W 0x00 0xFF IIC0 - - - ICSR1 I2C Bus Status Register 1 0x08 8 R/W 0x00 0xFF IIC0 - - - ICSR2 I2C Bus Status Register 2 0x09 8 R/W 0x00 0xFF IIC0 3 0x02 0-2 SARL%s Slave Address Register Ly 0x0A 8 R/W 0x00 0xFF IIC0 3 0x02 0-2 SARU%s Slave Address Register Uy 0x0B 8 R/W 0x00 0xFF IIC0 - - - ICBRL I2C Bus Bit Rate Low-Level Register 0x10 8 R/W 0xFF 0xFF IIC0 - - - ICBRH I2C Bus Bit Rate High-Level Register 0x11 8 R/W 0xFF 0xFF IIC0 - - - ICDRT I2C Bus Transmit Data Register 0x12 8 R/W 0xFF 0xFF IIC0 - - - ICDRR I2C Bus Receive Data Register 0x13 8 R 0x00 0xFF IIC0WU - - - ICWUR I2C Bus Wakeup Unit Register 0x02 8 R/W 0x10 0xFF IIC0WU - - - ICWUR2 I2C Bus Wakeup Unit Register 2 0x03 8 R/W 0xFD 0xFF DOC - - - DOCR DOC Control Register 0x00 8 R/W 0x00 0xFF DOC - - - DODIR DOC Data Input Register 0x02 16 R/W 0x0000 0xFFFF DOC - - - DODSR DOC Data Setting Register 0x04 16 R/W 0x0000 0xFFFF ADC12 - - - ADCSR A/D Control Register 0x000 16 R/W 0x0000 0xFFFF ADC12 - - - ADANSA0 A/D Channel Select Register A0 0x004 16 R/W 0x0000 0xFFFF ADC12 - - - ADANSA1 A/D Channel Select Register A1 0x006 16 R/W 0x0000 0xFFFF ADC12 - - - ADADS0 A/D-Converted Value Addition/Average Channel Select Register 0 0x008 16 R/W 0x0000 0xFFFF ADC12 - - - ADADS1 A/D-Converted Value Addition/Average Channel Select Register 1 0x00A 16 R/W 0x0000 0xFFFF ADC12 - - - ADADC A/D-Converted Value Addition/Average Count Select Register 0x00C 8 R/W 0x00 0xFF ADC12 - - - ADCER A/D Control Extended Register 0x00E 16 R/W 0x0000 0xFFFF R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 101 of 112 RA2E1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (7 of 13) Peripheral name Dim Dim inc. Dim index Register name Address offset Size R/W Reset value Reset mask ADC12 - - - ADSTRGR A/D Conversion Start Trigger Select Register 0x010 16 R/W 0x0000 0xFFFF ADC12 - - - ADEXICR A/D Conversion Extended Input Control Registers 0x012 16 R/W 0x0000 0xFFFF ADC12 - - - ADANSB0 A/D Channel Select Register B0 0x014 16 R/W 0x0000 0xFFFF ADC12 - ADC12 - - - ADANSB1 A/D Channel Select Register B1 0x016 16 R/W 0x0000 0xFFFF - - ADDBLDR A/D Data Duplexing Register 0x018 16 R 0x0000 0xFFFF ADC12 ADC12 - - - ADTSDR A/D Temperature Sensor Data Register 0x01A 16 R 0x0000 0xFFFF - - - ADOCDR A/D Internal Reference Voltage Data Register 0x01C 16 R 0x0000 0xFFFF ADC12 - - - ADRD A/D Self-Diagnosis Data Register 0x01E 16 R 0x0000 0xFFFF ADC12 11 0x2 0-10 ADDR%s A/D Data Registers %s 0x020 16 R 0x0000 0xFFFF ADC12 - - - ADCTDR A/D CTSU TSCAP Voltage Data Register 0x040 16 R 0x0000 0xFFFF ADC12 6 0x2 17-22 ADDR%s A/D Data Registers %s 0x042 16 R 0x0000 0xFFFF ADC12 - - - ADDISCR A/D Disconnection Detection Control Register 0x07A 8 R/W 0x00 0xFF ADC12 - - - ADACSR A/D Conversion Operation Mode Select Register 0x07E 8 R/W 0x00 0xFF ADC12 - - - ADGSPCR A/D Group Scan Priority Control Register 0x080 16 R/W 0x0000 0xFFFF ADC12 - - - ADDBLDRA A/D Data Duplexing Register A 0x084 16 R 0x0000 0xFFFF ADC12 - - - ADDBLDRB A/D Data Duplexing Register B 0x086 16 R 0x0000 0xFFFF ADC12 - - - ADHVREFCNT A/D High-Potential/Low-Potential Reference Voltage Control Register 0x08A 8 R/W 0x00 0xFF ADC12 - - - ADWINMON A/D Compare Function Window A/B Status Monitor Register 0x08C 8 R 0x00 0xFF ADC12 - - - ADCMPCR A/D Compare Function Control Register 0x090 16 R/W 0x0000 0xFFFF ADC12 - - - ADCMPANSER A/D Compare Function Window A Extended Input Select Register 0x092 8 R/W 0x00 0xFF ADC12 - - - ADCMPLER A/D Compare Function Window A Extended Input Comparison Condition Setting Register 0x093 8 R/W 0x00 0xFF ADC12 - - - ADCMPANSR0 A/D Compare Function Window A Channel Select Register 0 0x094 16 R/W 0x0000 0xFFFF ADC12 - - - ADCMPANSR1 A/D Compare Function Window A Channel Select Register 1 0x096 16 R/W 0x0000 0xFFFF ADC12 - - - ADCMPLR0 A/D Compare Function Window A Comparison Condition Setting Register 0 0x098 16 R/W 0x0000 0xFFFF ADC12 - - - ADCMPLR1 A/D Compare Function Window A Comparison Condition Setting Register 1 0x09A 16 R/W 0x0000 0xFFFF ADC12 2 0x2 0-1 ADCMPDR%s A/D Compare Function Window A LowerSide/Upper-Side Level Setting Register 0x09C 16 R/W 0x0000 0xFFFF ADC12 - - - ADCMPSR0 A/D Compare Function Window A Channel Status Register 0 0x0A0 16 R/W 0x0000 0xFFFF ADC12 - - - ADCMPSR1 A/D Compare Function Window A Channel Status Register1 0x0A2 16 R/W 0x0000 0xFFFF ADC12 - - - ADCMPSER A/D Compare Function Window A Extended Input Channel Status Register 0x0A4 8 R/W 0x00 0xFF ADC12 - - - ADCMPBNSR A/D Compare Function Window B Channel Select Register 0x0A6 8 R/W 0x00 0xFF ADC12 - - - ADWINLLB A/D Compare Function Window B LowerSide/Upper-Side Level Setting Register 0x0A8 16 R/W 0x0000 0xFFFF ADC12 - - - ADWINULB A/D Compare Function Window B LowerSide/Upper-Side Level Setting Register 0x0AA 16 R/W 0x0000 0xFFFF R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Description Page 102 of 112 RA2E1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (8 of 13) Peripheral name Dim Dim inc. Dim index Register name Address offset Size R/W Reset value Reset mask ADC12 - - - ADCMPBSR A/D Compare Function Window B Status Register 0x0AC 8 R/W 0x00 0xFF ADC12 - - - ADSSTRL A/D Sampling State Register 0x0DD 8 R/W 0x0D 0xFF ADC12 - - - ADC12 - - - ADSSTRT A/D Sampling State Register 0x0DE 8 R/W 0x0D 0xFF ADSSTRO A/D Sampling State Register 0x0DF 8 R/W 0x0D 0xFF ADC12 11 0x1 0-10 ADSSTR%s A/D Sampling State Register 0x0E0 8 R/W 0x0D 0xFF SCI0 - - - SMR Serial Mode Register for Non-Smart Card Interface Mode (SCMR.SMIF = 0) 0x00 8 R/W 0x00 0xFF SCI0 - - - SMR_SMCI Serial Mode Register for Smart Card Interface Mode (SCMR.SMIF = 1) 0x00 8 R/W 0x00 0xFF SCI0 - - - BRR Bit Rate Register 0x01 8 R/W 0xFF 0xFF SCI0 - - - SCR Serial Control Register for Non-Smart Card 0x02 Interface Mode (SCMR.SMIF = 0) 8 R/W 0x00 0xFF SCI0 - - - SCR_SMCI Serial Control Register for Smart Card Interface Mode (SCMR.SMIF = 1) 0x02 8 R/W 0x00 0xFF SCI0 - - - TDR Transmit Data Register 0x03 8 R/W 0xFF 0xFF SCI0 - - - SSR Serial Status Register for Non-Smart Card Interface and Non-FIFO Mode (SCMR.SMIF = 0 and FCR.FM = 0) 0x04 8 R/W 0x84 0xFF SCI0 - - - SSR_FIFO Serial Status Register for Non-Smart Card 0x04 Interface and FIFO Mode (SCMR.SMIF = 0 and FCR.FM = 1) 8 R/W 0x80 0xFD SCI0 - - - SSR_SMCI Serial Status Register for Smart Card Interface Mode (SCMR.SMIF = 1) 0x04 8 R/W 0x84 0xFF SCI0 - - - RDR Receive Data Register 0x05 8 R/W 0x00 0xFF SCI0 - - - SCMR Smart Card Mode Register 0x06 8 R/W 0xF2 0xFF SCI0 - - - SEMR Serial Extended Mode Register 0x07 8 R/W 0x00 0xFF SCI0 - - - SNFR Noise Filter Setting Register 0x08 8 R/W 0x00 0xFF SCI0 - - - SIMR1 IIC Mode Register 1 0x09 8 R/W 0x00 0xFF SCI0 - - - SIMR2 IIC Mode Register 2 0x0A 8 R/W 0x00 0xFF SCI0 - - - SIMR3 IIC Mode Register 3 0x0B 8 R/W 0x00 0xFF SCI0 - - - SISR IIC Status Register 0x0C 8 R 0x00 0xCB SCI0 - - - SPMR SPI Mode Register 0x0D 8 R/W 0x00 0xFF SCI0 - - - TDRHL Transmit Data Register 0x0E 16 R/W 0xFFFF 0xFFFF SCI0 - - - FRDRHL Receive FIFO Data Register 0x10 16 R 0x0000 0xFFFF SCI0 - - - FTDRHL Transmit FIFO Data Register 0x0E 16 W 0xFFFF 0xFFFF SCI0 - - - RDRHL Receive Data Register 0x10 16 R 0x0000 0xFFFF SCI0 - - - FRDRH Receive FIFO Data Register 0x10 8 R 0x00 0xFF SCI0 - - - FTDRH Transmit FIFO Data Register 0x0E 8 W 0xFF 0xFF SCI0 - - - FRDRL Receive FIFO Data Register 0x11 8 R 0x00 0xFF SCI0 - - - FTDRL Transmit FIFO Data Register 0x0F 8 W 0xFF 0xFF SCI0 - - - MDDR Modulation Duty Register 0x12 8 R/W 0xFF 0xFF SCI0 - - - DCCR Data Compare Match Control Register 0x13 8 R/W 0x40 0xFF SCI0 - - - FCR FIFO Control Register 0x14 16 R/W 0xF800 0xFFFF SCI0 - - - FDR FIFO Data Count Register 0x16 16 R 0x0000 0xFFFF SCI0 - - - LSR Line Status Register 0x18 16 R 0x0000 0xFFFF SCI0 - - - CDR Compare Match Data Register 0x1A 16 R/W 0x0000 0xFFFF SCI0 - - - SPTR Serial Port Register 0x1C 8 R/W 0x03 0xFF SCI1-2,9 - - - SMR Serial Mode Register for Non-Smart Card Interface Mode (SCMR.SMIF = 0) 0x00 8 R/W 0x00 0xFF R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Description Page 103 of 112 RA2E1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (9 of 13) Peripheral name Dim Dim inc. Dim index Register name Address offset Size R/W Reset value Reset mask SCI1-2,9 - - - SMR_SMCI Serial Mode Register for Smart Card Interface Mode (SCMR.SMIF = 1) 0x00 8 R/W 0x00 0xFF SCI1-2,9 - - - BRR Bit Rate Register 0x01 8 R/W 0xFF 0xFF SCI1-2,9 - - - SCR Serial Control Register for Non-Smart Card 0x02 Interface Mode (SCMR.SMIF = 0) 8 R/W 0x00 0xFF SCI1-2,9 - - - SCR_SMCI Serial Control Register for Smart Card Interface Mode (SCMR.SMIF = 1) 0x02 8 R/W 0x00 0xFF SCI1-2,9 - - - TDR Transmit Data Register 0x03 8 R/W 0xFF 0xFF SCI1-2,9 - - - SSR Serial Status Register for Non-Smart Card Interface and Non-FIFO Mode (SCMR.SMIF = 0 and FCR.FM = 0) 0x04 8 R/W 0x84 0xFF SCI1-2,9 - - - SSR_SMCI Serial Status Register for Smart Card Interface Mode (SCMR.SMIF = 1) 0x04 8 R/W 0x84 0xFF SCI1-2,9 - - - RDR Receive Data Register 0x05 8 R/W 0x00 0xFF SCI1-2,9 - - - SCMR Smart Card Mode Register 0x06 8 R/W 0xF2 0xFF SCI1-2,9 - - - SEMR Serial Extended Mode Register 0x07 8 R/W 0x00 0xFF SCI1-2,9 - - - SNFR Noise Filter Setting Register 0x08 8 R/W 0x00 0xFF SCI1-2,9 - - - SIMR1 IIC Mode Register 1 0x09 8 R/W 0x00 0xFF SCI1-2,9 - - - SIMR2 IIC Mode Register 2 0x0A 8 R/W 0x00 0xFF SCI1-2,9 - - - SIMR3 IIC Mode Register 3 0x0B 8 R/W 0x00 0xFF SCI1-2,9 - - - SISR IIC Status Register 0x0C 8 R 0x00 0xCB SCI1-2,9 - - - SPMR SPI Mode Register 0x0D 8 R/W 0x00 0xFF SCI1-2,9 - - - TDRHL Transmit Data Register 0x0E 16 R/W 0xFFFF 0xFFFF SCI1-2,9 - - - RDRHL Receive Data Register 0x10 16 R 0x0000 0xFFFF SCI1-2,9 - - - MDDR Modulation Duty Register 0x12 8 R/W 0xFF 0xFF SCI1-2,9 - - - DCCR Data Compare Match Control Register 0x13 8 R/W 0x40 0xFF SCI1-2,9 - - - CDR Compare Match Data Register 0x1A 16 R/W 0x0000 0xFFFF SCI1-2,9 - - - SPTR Serial Port Register 0x1C 8 R/W 0x03 0xFF SPI0 - - - SPCR SPI Control Register 0x00 8 R/W 0x00 0xFF SPI0 - - - SSLP SPI Slave Select Polarity Register 0x01 8 R/W 0x00 0xFF SPI0 - - - SPPCR SPI Pin Control Register 0x02 8 R/W 0x00 0xFF SPI0 - - - SPSR SPI Status Register 0x03 8 R/W 0x20 0xFF SPI0 - - - SPDR SPI Data Register 0x04 32 R/W 0x00000000 0xFFFFFFFF SPI0 - - - SPDR_HA SPI Data Register 0x04 16 R/W 0x0000 0xFFFF SPI0 - - - SPBR SPI Bit Rate Register 0x0A 8 R/W 0xFF 0xFF SPI0 - - - SPDCR SPI Data Control Register 0x0B 8 R/W 0x00 0xFF SPI0 - - - SPCKD SPI Clock Delay Register 0x0C 8 R/W 0x00 0xFF SPI0 - - - SSLND SPI Slave Select Negation Delay Register 0x0D 8 R/W 0x00 0xFF SPI0 - - - SPND SPI Next-Access Delay Register 0x0E 8 R/W 0x00 0xFF SPI0 - - - SPCR2 SPI Control Register 2 0x0F 8 R/W 0x00 0xFF SPI0 - - - SPCMD0 SPI Command Register 0 0x10 16 R/W 0x070D 0xFFFF CRC - - - CRCCR0 CRC Control Register 0 0x00 8 R/W 0x00 0xFF CRC - - - CRCCR1 CRC Control Register 1 0x01 8 R/W 0x00 0xFF CRC - - - CRCDIR CRC Data Input Register 0x04 32 R/W 0x00000000 0xFFFFFFFF CRC - - - CRCDIR_BY CRC Data Input Register 0x04 8 R/W 0x00 0xFF CRC - - - CRCDOR CRC Data Output Register 0x08 32 R/W 0x00000000 0xFFFFFFFF CRC - - - CRCDOR_HA CRC Data Output Register 0x08 16 R/W 0x0000 0xFFFF CRC - - - CRCDOR_BY CRC Data Output Register 0x08 8 R/W 0x00 0xFF R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Description Page 104 of 112 RA2E1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (10 of 13) Peripheral name Dim Dim inc. Dim index Register name Description Address offset Size R/W Reset value Reset mask CRC - - - CRCSAR Snoop Address Register 0x0C 16 R/W 0x0000 0xFFFF GPT320 - - - GTWP General PWM Timer Write-Protection Register 0x00 32 R/W 0x00000000 0xFFFFFFFF GPT320 - - - GTSTR General PWM Timer Software Start Register 0x04 32 R/W 0x00000000 0xFFFFFFFF GPT320 - - - GTSTP General PWM Timer Software Stop Register 0x08 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT320 - - - GTCLR General PWM Timer Software Clear Register 0x0C 32 W 0x00000000 0xFFFFFFFF GPT320 - - - GTSSR General PWM Timer Start Source Select Register 0x10 32 R/W 0x00000000 0xFFFFFFFF GPT320 - - - GTPSR General PWM Timer Stop Source Select Register 0x14 32 R/W 0x00000000 0xFFFFFFFF GPT320 - - - GTCSR General PWM Timer Clear Source Select Register 0x18 32 R/W 0x00000000 0xFFFFFFFF GPT320 - - - GTUPSR General PWM Timer Up Count Source Select Register 0x1C 32 R/W 0x00000000 0xFFFFFFFF GPT320 - - - GTDNSR General PWM Timer Down Count Source Select Register 0x20 32 R/W 0x00000000 0xFFFFFFFF GPT320 - - - GTICASR General PWM Timer Input Capture Source Select Register A 0x24 32 R/W 0x00000000 0xFFFFFFFF GPT320 - - - GTICBSR General PWM Timer Input Capture Source Select Register B 0x28 32 R/W 0x00000000 0xFFFFFFFF GPT320 - - - GTCR General PWM Timer Control Register 0x2C 32 R/W 0x00000000 0xFFFFFFFF GPT320 - - - GTUDDTYC General PWM Timer Count Direction and Duty Setting Register 0x30 32 R/W 0x00000001 0xFFFFFFFF GPT320 - - - GTIOR General PWM Timer I/O Control Register 0x34 32 R/W 0x00000000 0xFFFFFFFF GPT320 - - - GTINTAD General PWM Timer Interrupt Output Setting Register 0x38 32 R/W 0x00000000 0xFFFFFFFF GPT320 - - - GTST General PWM Timer Status Register 0x3C 32 R/W 0x00008000 0xFFFFFFFF GPT320 - - - GTBER General PWM Timer Buffer Enable Register 0x40 32 R/W 0x00000000 0xFFFFFFFF GPT320 - - - GTCNT General PWM Timer Counter 0x48 32 R/W 0x00000000 0xFFFFFFFF GPT320 - - - GTCCRA General PWM Timer Compare Capture Register A 0x4C 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT320 - - - GTCCRB General PWM Timer Compare Capture Register B 0x50 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT320 - - - GTCCRC General PWM Timer Compare Capture Register C 0x54 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT320 - - - GTCCRE General PWM Timer Compare Capture Register E 0x58 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT320 - - - GTCCRD General PWM Timer Compare Capture Register D 0x5C 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT320 - - - GTCCRF General PWM Timer Compare Capture Register F 0x60 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT320 - - - GTPR General PWM Timer Cycle Setting Register 0x64 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT320 - - - GTPBR General PWM Timer Cycle Setting Buffer Register 0x68 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT320 - - - GTDTCR General PWM Timer Dead Time Control Register 0x88 32 R/W 0x00000000 0xFFFFFFFF GPT320 - - - GTDVU General PWM Timer Dead Time Value Register U 0x8C 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT164-9 - - - GTWP General PWM Timer Write-Protection Register 0x00 32 R/W 0x00000000 0xFFFFFFFF R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 105 of 112 RA2E1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (11 of 13) Peripheral name Dim Dim inc. Dim index Register name Address offset Size R/W Reset value Reset mask GPT164-9 - - - GTSTR General PWM Timer Software Start Register 0x04 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 - - - GTSTP General PWM Timer Software Stop Register 0x08 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT164-9 - - - GTCLR General PWM Timer Software Clear Register 0x0C 32 W 0x00000000 0xFFFFFFFF GPT164-9 - - - GTSSR General PWM Timer Start Source Select Register 0x10 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 - - - GTPSR General PWM Timer Stop Source Select Register 0x14 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 - - - GTCSR General PWM Timer Clear Source Select Register 0x18 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 - - - GTUPSR General PWM Timer Up Count Source Select Register 0x1C 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 - - - GTDNSR General PWM Timer Down Count Source Select Register 0x20 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 - - - GTICASR General PWM Timer Input Capture Source Select Register A 0x24 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 - - - GTICBSR General PWM Timer Input Capture Source Select Register B 0x28 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 - - - GTCR General PWM Timer Control Register 0x2C 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 - - - GTUDDTYC General PWM Timer Count Direction and Duty Setting Register 0x30 32 R/W 0x00000001 0xFFFFFFFF GPT164-9 - - - GTIOR General PWM Timer I/O Control Register 0x34 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 - - - GTINTAD General PWM Timer Interrupt Output Setting Register 0x38 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 - - - GTST General PWM Timer Status Register 0x3C 32 R/W 0x00008000 0xFFFFFFFF GPT164-9 - - - GTBER General PWM Timer Buffer Enable Register 0x40 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 - - - GTCNT General PWM Timer Counter 0x48 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 - - - GTCCRA General PWM Timer Compare Capture Register A 0x4C 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT164-9 - - - GTCCRB General PWM Timer Compare Capture Register B 0x50 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT164-9 - - - GTCCRC General PWM Timer Compare Capture Register C 0x54 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT164-9 - - - GTCCRE General PWM Timer Compare Capture Register E 0x58 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT164-9 - - - GTCCRD General PWM Timer Compare Capture Register D 0x5C 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT164-9 - - - GTCCRF General PWM Timer Compare Capture Register F 0x60 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT164-9 - - - GTPR General PWM Timer Cycle Setting Register 0x64 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT164-9 - - - GTPBR General PWM Timer Cycle Setting Buffer Register 0x68 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT164-9 - - - GTDTCR General PWM Timer Dead Time Control Register 0x88 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 - - - GTDVU General PWM Timer Dead Time Value Register U 0x8C 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT_OPS - - - OPSCR Output Phase Switching Control Register 0x00 32 R/W 0x00000000 0xFFFFFFFF KINT - - - KRCTL Key Return Control Register 0x00 8 R/W 0x00 0xFF KINT - - - KRF Key Return Flag Register 0x04 8 R/W 0x00 0xFF KINT - - - KRM Key Return Mode Register 0x08 8 R/W 0x00 0xFF CTSU - - - CTSUCRA CTSU Control Register A 0x00 32 R/W 0x00000000 0xFFFFFFFF R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Description Page 106 of 112 RA2E1 Datasheet Table 3.4 Peripheral name Appendix 3. I/O Registers Register description (12 of 13) Dim Dim inc. Dim index Register name Description Address offset Size R/W Reset value Reset mask CTSU - - - CTSU - - - CTSUCRAL CTSU Control Register A 0x00 16 R/W 0x0000 0xFFFF CTSUCR0 CTSU Control Register A 0x00 8 R/W 0x00 0xFF CTSU - - CTSU - - - CTSUCR1 CTSU Control Register A 0x01 8 R/W 0x00 0xFF - CTSUCR2 CTSU Control Register A 0x02 8 R/W 0x00 0xFF CTSU - - - CTSUCR3 CTSU Control Register A 0x03 8 R/W 0x00 0xFF CTSU CTSU - - - CTSUCRB CTSU Control Register B 0x04 32 R/W 0x00000000 0xFFFFFFFF - - - CTSUCRBL CTSU Control Register B 0x04 16 R/W 0x0000 0xFFFF CTSU - - - CTSUSDPRS CTSU Control Register B 0x04 8 R/W 0x00 0xFF CTSU - - - CTSUSST CTSU Control Register B 0x05 8 R/W 0x00 0xFF CTSU - - - CTSUCRBH CTSU Control Register B 0x06 16 R/W 0x0000 0xFFFF CTSU - - - CTSUDCLKC CTSU Control Register B 0x07 8 R/W 0x00 0xFF CTSU - - - CTSUMCH CTSU Measurement Channel Register 0x08 32 R/W 0x00003F3F 0xFFFFFFFF CTSU - - - CTSUMCHL CTSU Measurement Channel Register 0x08 16 R/W 0x0000 0xFFFF CTSU - - - CTSUMCH0 CTSU Measurement Channel Register 0x08 8 R/W 0x00 0xFF CTSU - - - CTSUMCH1 CTSU Measurement Channel Register 0x09 8 R/W 0x00 0xFF CTSU - - - CTSUMCHH CTSU Measurement Channel Register 0x0A 16 R/W 0x3F3F 0xFFFF CTSU - - - CTSUMFAF CTSU Measurement Channel Register 0x0A 8 R/W 0x3F 0xFF CTSU - - - CTSUCHACA CTSU Channel Enable Control Register A 0x0C 32 R/W 0x00000000 0xFFFFFFFF CTSU - - - CTSUCHACAL CTSU Channel Enable Control Register A 0x0C 16 R/W 0x0000 0xFFFF CTSU - - - CTSUCHAC0 CTSU Channel Enable Control Register A 0x0C 8 R/W 0x00 0xFF CTSU - - - CTSUCHAC1 CTSU Channel Enable Control Register A 0x0D 8 R/W 0x00 0xFF CTSU - - - CTSUCHACAH CTSU Channel Enable Control Register A 0x0E 16 R/W 0x0000 0xFFFF CTSU - - - CTSUCHAC2 CTSU Channel Enable Control Register A 0x0E 8 R/W 0x00 0xFF CTSU - - - CTSUCHAC3 CTSU Channel Enable Control Register A 0x0F 8 R/W 0x00 0xFF CTSU - - - CTSUCHACB CTSU Channel Enable Control Register B 0x10 32 R/W 0x00000000 0xFFFFFFFF CTSU - - - CTSUCHACBL CTSU Channel Enable Control Register B 0x10 16 R/W 0x0000 0xFFFF CTSU - - - CTSUCHAC4 CTSU Channel Enable Control Register B 0x10 8 R/W 0x00 0xFF CTSU - - - CTSUCHTRCA CTSU Channel Transmit/Receive Control Register A 0x14 32 R/W 0x00000000 0xFFFFFFFF CTSU - - - CTSUCHTRCAL CTSU Channel Transmit/Receive Control Register A 0x14 16 R/W 0x0000 0xFFFF CTSU - - - CTSUCHTRC0 CTSU Channel Transmit/Receive Control Register A 0x14 8 R/W 0x00 0xFF CTSU - - - CTSUCHTRC1 CTSU Channel Transmit/Receive Control Register A 0x15 8 R/W 0x00 0xFF CTSU - - - CTSUCHTRCAH CTSU Channel Transmit/Receive Control Register A 0x16 16 R/W 0x0000 0xFFFF CTSU - - - CTSUCHTRC2 CTSU Channel Transmit/Receive Control Register A 0x16 8 R/W 0x00 0xFF CTSU - - - CTSUCHTRC3 CTSU Channel Transmit/Receive Control Register A 0x17 8 R/W 0x00 0xFF CTSU - - - CTSUCHTRCB CTSU Channel Transmit/Receive Control Register B 0x18 32 R/W 0x00000000 0xFFFFFFFF CTSU - - - CTSUCHTRCBL CTSU Channel Transmit/Receive Control Register B 0x18 16 R/W 0x0000 0xFFFF CTSU - - - CTSUCHTRC4 CTSU Channel Transmit/Receive Control Register B 0x18 8 R/W 0x00 0xFF CTSU - - - CTSUSR CTSU Status Register 0x1C 32 R/W 0x00000000 0xFFFFFFFF CTSU - - - CTSUSRL CTSU Status Register 0x1C 16 R/W 0x0000 0xFFFF R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 107 of 112 RA2E1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (13 of 13) Peripheral name Dim Dim inc. Dim index Register name Description Address offset Size R/W Reset value Reset mask CTSU - - - CTSUSR0 CTSU Status Register 0x1C 8 R/W 0x00 0xFF CTSU - - - CTSUST CTSU Status Register 0x1D 8 R/W 0x00 0xFF CTSU - - - CTSUSRH CTSU Status Register 0x1E 16 R/W 0x0000 0xFFFF CTSU - - - CTSUSR2 CTSU Status Register 0x1E 8 R/W 0x00 0xFF CTSU - - - CTSUSO CTSU Sensor Offset Register 0x20 32 R/W 0x00000000 0xFFFFFFFF CTSU - - - CTSUSO0 CTSU Sensor Offset Register 0x20 16 R/W 0x0000 0xFFFF CTSU - - - CTSUSO1 CTSU Sensor Offset Register 0x22 16 R/W 0x0000 0xFFFF CTSU - - - CTSUSCNT CTSU Sensor Counter Register 0x24 32 R 0x00000000 0xFFFFFFFF CTSU - - - CTSUSC CTSU Sensor Counter Register 0x24 16 R 0x0000 0xFFFF CTSU - - - CTSUCALIB CTSU Calibration Register 0x28 32 R/W 0x00000000 0xFFFFFFFF CTSU - - - CTSUDBGR0 CTSU Calibration Register 0x28 16 R/W 0x0000 0xFFFF CTSU - - - CTSUDBGR1 CTSU Calibration Register 0x2A 16 R/W 0x0000 0xFFFF CTSU - - - CTSUSUCLKA CTSU Sensor Unit Clock Control Register A 0x2C 32 R/W 0x00000000 0xFFFFFFFF CTSU - - - CTSUSUCLK0 CTSU Sensor Unit Clock Control Register A 0x2C 16 R/W 0x0000 0xFFFF CTSU - - - CTSUSUCLK1 CTSU Sensor Unit Clock Control Register A 0x2E 16 R/W 0x0000 0xFFFF CTSU - - - CTSUSUCLKB CTSU Sensor Unit Clock Control Register B 0x30 32 R/W 0x00000000 0xFFFFFFFF CTSU - - - CTSUSUCLK2 CTSU Sensor Unit Clock Control Register B 0x30 16 R/W 0x0000 0xFFFF CTSU - - - CTSUSUCLK3 CTSU Sensor Unit Clock Control Register B 0x32 16 R/W 0x0000 0xFFFF CTSU - - - CTSUCFCCNT CTSU CFC Counter Register 0x34 32 R 0x00000000 0xFFFFFFFF CTSU - - - CTSUCFCCNTL CTSU CFC Counter Register 0x34 16 R 0x0000 0xFFFF AGT0-1 - - - AGT AGT Counter Register 0x00 16 R/W 0xFFFF 0xFFFF AGT0-1 - - - AGTCMB AGT Compare Match B Register 0x00 16 R/W 0xFFFF 0xFFFF AGT0-1 - - - AGTCMA AGT Compare Match A Register 0x02 16 R/W 0xFFFF 0xFFFF AGT0-1 - - - AGTCR AGT Control Register 0x08 8 R/W 0x00 0xFF AGT0-1 - - - AGTMR1 AGT Mode Register 1 0x09 8 R/W 0x00 0xFF AGT0-1 - - - AGTMR2 AGT Mode Register 2 0x0A 8 R/W 0x00 0xFF AGT0-1 - - - AGTIOC AGT I/O Control Register 0x0C 8 R/W 0x00 0xFF AGT0-1 - - - AGTISR AGT Event Pin Select Register 0x0D 8 R/W 0x00 0xFF AGT0-1 - - - AGTCMSR AGT Compare Match Function Select Register 0x0E 8 R/W 0x00 0xFF AGT0-1 - - - AGTIOSEL AGT Pin Select Register 0x00F 8 R/W 0x00 0xFF ACMPLP - - - COMPMDR ACMPLP Mode Setting Register 0x00 8 R/W 0x00 0xFF ACMPLP - - - COMPFIR ACMPLP Filter Control Register 0x01 8 R/W 0x00 0xFF ACMPLP - - - COMPOCR ACMPLP Output Control Register 0x02 8 R/W 0x00 0xFF FLCN - - - DFLCTL Data Flash Enable Register 0x0090 8 R/W 0x00 0xFF FLCN - - - TSCDR Temperature Sensor Calibration Data Register 0x0228 16 R Unique value for each chip 0x0000 FLCN - - - CTSUTRIMA CTSU Trimming Register A 0x03A4 32 R/W Unique value for each chip 0x00000000 FLCN - - - FLDWAITR Memory Wait Cycle Control Register for Data Flash 0x3FC4 8 R/W 0x00 0xFF FLCN - - - PFBER Prefetch Buffer Enable Register 0x3FC8 8 R/W 0x00 0xFF Note: Peripheral name = Name of peripheral Dim = Number of elements in an array of registers R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 108 of 112 RA2E1 Datasheet Appendix 3. I/O Registers Dim inc. = Address increment between two simultaneous registers of a register array in the address map Dim index = Sub string that replaces the %s placeholder within the register name Register name = Name of register Description = Register description Address offset = Address of the register relative to the base address defined by the peripheral of the register Size = Bit width of the register Reset value = Default reset value of a register Reset mask = Identifies which register bits have a defined reset value R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 109 of 112 RA2E1 Datasheet Revision History Revision History Revision 1.00 — October 02, 2020 First edition, issued Revision 1.10 — December 28, 2020 Overview: ● Updated the functional description of Resets on the table 1.3 System. ● Removed Code flash memory 96KB in 1.3 Part Numbering and 1.4 Function Comparison. ● Changed from TSCAP_C to TSCAP on the table Table 1.15 Pin list (also on the table 17.6 and the table1.1 in Appendix 1). Appendix 2 Package Dimensions: ● Added Figure 2.4 HWQFN 48-pin. ● Added Figure 2.6 HWQFN 32-pin. R01DS0386EJ0110 Rev.1.10 Dec 28, 2020 Page 110 of 112 General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products. 1. Precaution against Electrostatic Discharge (ESD) A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor 2. devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices. Processing at power-on The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the 3. level at which resetting is specified. Input of signal during power-off state Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal 4. elements. Follow the guideline for input signal during power-off state as described in your product documentation. Handling of unused pins Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal 5. become possible. Clock signals After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal 6. produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable. Voltage application waveform at input pin Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the 7. input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.). Prohibition of access to reserved addresses Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these 8. addresses as the correct operation of the LSI is not guaranteed. Differences between products Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product. Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information. 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples. 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document. 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges. 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note1) (Note2) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries. "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. (Rev.4.0-1 November 2017) Corporate Headquarters Contact Information TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com www.renesas.com/contact/ Trademarks Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. © 2020 Renesas Electronics Corporation. All rights reserved.
R7FA2E1A53CFJ#AA0 价格&库存

很抱歉,暂时无法提供与“R7FA2E1A53CFJ#AA0”相匹配的价格&库存,您可以联系我们找货

免费人工找货