0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BA06SFP

BA06SFP

  • 厂商:

    ROHM(罗姆)

  • 封装:

  • 描述:

    BA06SFP - Regulator, low drop-out type with ON/OFF switch - Rohm

  • 数据手册
  • 价格&库存
BA06SFP 数据手册
Regulator ICs BAΟΟST / BAΟΟSFP series Regulator, low drop-out type with ON/OFF switch BAΟΟST / BAΟΟSFP series The BAΟΟST and BAΟΟSFP series are variable, fixed output low drop-out type voltage regulators with an ON/OFF switch. These regulators are used to provide a stabilized output voltage from a fluctuating DC input voltage. Fixed output voltages are 3.3V, 5V, 6V(SFP), 7V, 8V, 9V, 10V(ST), 12V(ST). The maximum current capacity is 1 A for each of the above voltages. !Application Constant voltage power supply !Features 1) Built-in overvoltage protection circuit, overcurrent protection circuit and thermal shutdown circuit 2) TO220FP-5, TO252-5 standard packages can be accomodated in wide application. 3) 0µA (design value) circuit current when switch is off 4) Richly diverse lineup. 5) Low minimum I/O voltage differential. !Product codes Output voltage (V) Variable Product No. Output voltage (V) Product No. BA00AST / ASFP BA033ST / SFP BA05ST / SFP BA06SFP BA07ST / SFP 8.0 9.0 10.0 12.0 BA08ST / SFP BA09ST / SFP BA10ST BA12ST 3.3 5.0 6.0 7.0 !Absolute maximum ratings (Ta=25°C) Parameter Power supply voltage Power dissipation TO220FP-5 TO252-5 Symbol VCC Pd Topr Tstg Vsurge Limits 35 2000 1000 *1 *2 Unit V mW ˚C ˚C V Operating temperature Storage temperature Peak applied voltage -40~+85 -55~+150 50 *3 *1 Reduced by 16mW for each increase in Ta of 1˚C over 25˚C. *2 Reduced by 8mW for each increase in Ta of 1˚C over 25˚C. *3 Voltage application time : 200 msec. or less Regulator ICs !Block diagram BAΟΟST / BAΟΟSFP series VCC 2 REFERENCE VOLTAGE − + OUT 4 + CTL 1 5 C GND 3 Variable output type (BA00AST / ASFP) VCC 2 REFERENCE VOLTAGE − + OUT 4 + CTL 1 GND 3 Fixed output type !Pin descriptions Pin No. 1 2 3 4 Pin name Function Output ON/OFF Power supply input Ground Output Reference power supply pin for setting voltage with the BA00AST/ASFP. In the BAOOST/SFP Series, these are NC pins, except for the BA00AST/ASFP. CTL VCC GND OUT C 5 N.C. Regulator ICs !Recommended operating conditions BA00AST / ASFP Parameter Input voltage Output current Symbol Min. VCC IO 4 Max. 25 1 Unit V A BAΟΟST / BAΟΟSFP series BA08ST / SFP Parameter Input voltage Output current Symbol Min. VCC IO 9 Max. 25 1 Unit V A BA033ST / SFP Parameter Input voltage Output current Symbol Min. VCC IO 4.3 Max. 25 1 Unit V A BA09ST / SFP Parameter Input voltage Output current Symbol Min. VCC IO 10 Max. 25 1 Unit V A BA05ST / SFP Parameter Input voltage Output current Symbol Min. VCC IO 6 Max. 25 1 Unit V A BA10ST Parameter Input voltage Output current Symbol Min. VCC IO 11 Max. 25 1 Unit V A BA06SFP Parameter Input voltage Output current Symbol Min. VCC IO 7 Max. 25 1 Unit V A BA12ST Parameter Input voltage Output current Symbol Min. VCC IO 13 Max. 25 1 Unit V A BA07ST / SFP Parameter Input voltage Output current Symbol Min. VCC IO 8 Max. 25 1 Unit V A !Electrical characteristics BA00AST / ASFP (unless otherwise noted, Ta=25°C, Vcc=10V, Io=500mA) Parameter Reference voltage Power save current Output voltage Input stability Ripple rejection ratio Load regulation Temperature coefficient of output voltage Minimum I/O voltage differential Bias current Peak output current Output short-circuit current ON mode voltage OFF mode voltage Input high level current Symbol Vref Ist VO Reg.I R.R. Reg.L TCVO Vd Ib IO-P IOS Vth1 Vth2 IIN Min. 1.200 45 1.0 2.0 100 Typ. 1.225 0 5.0 20 55 50 ±0.01 0.3 2.5 1.5 0.4 200 Max. 1.250 10 100 150 0.5 5.0 0.8 300 Unit V µA V mV dB mV % / ˚C V mA A A V V µA VCC=6→25V OFF mode Conditions Measurement circuit Fig.1 Fig.4 Fig.1 Fig.1 Fig.2 Fig.1 Fig.1 Fig.3 Fig.4 Fig.1 Fig.5 Fig.6 Fig.6 Fig.6 eIN=1Vrms, f=120Hz, IO=100mA IO =5mA→1A IO =5mA, Tj=0~125˚C VCC=0.95VO IO=0mA Tj=25˚C VCC=25V Output Active mode, IO=0mA Output OFF mode, IO=0mA CTL=5V, IO=0mA Regulator ICs BAΟΟST / BAΟΟSFP series BA033ST / SFP (unless otherwise noted, Ta=25°C, Vcc=8 V, Io=500 mA) Parameter Power save current Output voltage Input stability Ripple rejection ratio Load regulation Temperature coefficient of output voltage Minimum I/O voltage differential Bias current Peak output current Symbol IST VO1 Reg.I R.R. Reg.L TCVO Vd Ib IO-P Min. 3.13 45 1.0 2.0 100 Typ. 0 3.3 20 55 50 ±0.02 Max. 10 3.47 100 150 0.5 5.0 0.8 300 Unit µA V mV dB mV % / ˚C Conditions OFF mode VCC=4=.3→25V eIN=1Vrms, f=120Hz, IO=100mA Measurement circuit Fig.4 Fig.1 Fig.1 Fig.2 Fig.1 Fig.1 Fig.3 Fig.4 Fig.1 Fig.5 Fig.6 Fig.6 Fig.6 IO =5mA→1A IO =5mA, Tj=0~125˚C VCC=0.95VO 0.3 2.5 1.5 0.4 200 V mA A A V V µA IO=0mA Tj=25˚C VCC=25V Output Active mode, IO=0mA Output OFF mode, IO=0mA CTL=5V, IO=0mA Output short-circuit current ON mode voltage OFF mode voltage Input high level current IOS Vth1 Vth2 IIN BA05ST / SFP (unless otherwise noted, Ta=25°C, Vcc=10 V, Io=500 mA) Parameter Power save current Output voltage Input stability Ripple rejection ratio Load regulation Temperature coefficient of output voltage Minimum I/O voltage differential Bias current Peak output current Symbol IST Min. - Typ. 0 Max. 10 Unit µA V mV dB mV % / ˚C Conditions OFF mode Measurement circuit Fig.4 Fig.1 Fig.1 Fig.2 Fig.1 Fig.1 Fig.3 Fig.4 Fig.1 Fig.5 Fig.6 Fig.6 Fig.6 VO1 Reg.I R.R. Reg.L TCVO Vd Ib IO-P 4.75 45 1.0 2.0 100 5.0 20 55 50 ±0.02 5.25 100 150 0.5 5.0 - VCC=6→2=5V eIN=1Vrms, f=120Hz, IO=100mA IO=5mA→1A IO=5mA, Tj=0~125˚C VCC=4.75V IO=0mA Tj=25˚C VCC=25V Output Active mode, IO=0mA Output OFF mode, IO=0mA CTL=5V, IO=0mA 0.3 2.5 1.5 0.4 200 V mA A A V V µA Output short-circuit current ON mode voltage OFF mode voltage Input high level current IOS Vth1 Vth2 IIN 0.8 300 BA06SFP ( unless otherwise noted, Ta=25°C, Vcc=11 V, Io=500 mA) Parameter Power save current Output voltage Input stability Ripple rejection ratio Load regulation Temperature coefficient of output voltage Minimum I/O voltage differential Bias current Peak output current Symbol Min. Typ. Max. Unit µA V mV dB mV Conditions IST VO1 Reg.I R.R. Reg.L TCVO Vd Ib IO-P IOS Vth1 Vth2 IIN 5.7 45 1.0 2.0 100 0 6.0 20 55 50 10 6.3 100 150 0.5 5.0 - OFF mode VCC=7→25V Measurement circuit Fig.4 Fig.1 Fig.1 Fig.2 Fig.1 Fig.1 Fig.3 Fig.4 Fig.1 Fig.5 Fig.6 Fig.6 Fig.6 eIN=1Vrms, f=120Hz, IO=100mA IO=5mA→1A IO=5mA, Tj=0~125˚C VCC=5.7V IO=0mA Tj=25˚C VCC=25V Output Active mode, IO=0mA Output OFF mode, IO=0mA CTL=5V, IO=0mA ±0.02 0.3 2.5 1.5 0.4 200 % / ˚C V mA A A V V µA Output short-circuit current ON mode voltage OFF mode voltage Input high level current 0.8 300 Regulator ICs BAΟΟST / BAΟΟSFP series BA07ST / SFP (unless otherwise noted, Ta=25°C, Vcc=12 V, Io=500 mA) (under development) Parameter Symbol Min. Typ. Max. Unit µA V mV dB mV VCC=8→25V eIN=1Vrms, f=120Hz, IO=100mA Conditions Power save current Output voltage Input stability Ripple rejection ratio Load regulation Temperature coefficient of output voltage Minimum I/O voltage differential Bias current Peak output current IST VO1 Reg.I R.R. Reg.L TCVO Vd Ib IO-P IOS Vth1 Vth2 IIN 6.65 45 1.0 2.0 100 0 7.0 20 55 50 10 7.35 100 150 0.5 5.0 0.8 300 OFF mode Measurement circuit Fig.4 Fig.1 Fig.1 Fig.2 Fig.1 Fig.1 Fig.3 Fig.4 Fig.1 Fig.5 Fig.6 Fig.6 Fig.6 IO=5mA→1A IO=5mA, Tj=0~125˚C VCC=6.65V IO=0mA Tj=25˚C VCC=25V Output Active mode, IO=0mA Output OFF mode, IO=0mA CTL=5V, IO=0mA ±0.02 0.3 2.5 1.5 0.4 200 % / ˚C V mA A A V V µA Output short-circuit current ON mode voltage OFF mode voltage Input high level current BA08ST / SFP (unless otherwise noted, Ta=25°C, Vcc=13 V, Io=500 mA) Parameter Power save current Output voltage Input stability Ripple rejection ratio Load regulation Temperature coefficient of output voltage Minimum I/O voltage differential Bias current Peak output current Symbol Min. Typ. Max. Unit µA V mV dB mV VCC9→25V Conditions IST VO1 Reg.I R.R. Reg.L TCVO Vd Ib IO-P IOS Vth1 Vth2 IIN 7.6 45 1.0 2.0 100 0 8.0 20 55 50 10 8.4 100 150 0.5 5.0 0.8 300 OFF mode Measurement circuit Fig.4 Fig.1 Fig.1 Fig.2 Fig.1 Fig.1 Fig.3 Fig.4 Fig.1 Fig.5 Fig.6 Fig.6 Fig.6 eIN=1Vrms, f=120Hz, IO=100mA IO=5mA→1A IO=5mA, Tj=0~125˚C VCC=0.95VO ±0.02 0.3 2.5 1.5 0.4 200 % / ˚C V mA A A V V µA IO=0mA Tj=25˚C VCC=25V Output Active mode, IO=0mA Output OFF mode, IO=0mA CTL=5V, IO=0mA Output short-circuit current ON mode voltage OFF mode voltage Input high level current BA09ST / SFP (unless otherwise noted, Ta=25°C, Vcc=14 V, Io=500 mA) Parameter Power save current Output voltage Input stability Ripple rejection ratio Load regulation Temperature coefficient of output voltage Minimum I/O voltage differential Bias current Peak output current Symbol Min. Typ. Max. Unit µA V mV dB mV Conditions IST VO1 Reg.I R.R. Reg.L TCVO Vd Ib IO-P IOS Vth1 Vth2 IIN 8.55 45 1.0 2.0 100 0 9.0 20 55 50 10 9.45 100 150 0.5 5.0 0.8 300 OFF mode VCC=10→25V Measurement circuit Fig.4 Fig.1 Fig.1 Fig.2 Fig.1 Fig.1 Fig.3 Fig.4 Fig.1 Fig.5 Fig.6 Fig.6 Fig.6 eIN=1Vrms, f=120Hz, IO=100mA IO=5mA→1A IO=5mA, Tj=0~125˚C VCC=0.95VO ±0.02 0.3 2.5 1.5 0.4 200 % / ˚C V mA A A V V µA IO=0mA Tj=25˚C VCC=25V Output Active mode, IO=0mA Output OFF mode, IO=0mA CTL=5V, IO=0mA Output short-circuit current ON mode voltage OFF mode voltage Input high level current Regulator ICs BA10ST (unless otherwise noted, Ta=25°C, Vcc=15 V, Io=500 mA) Parameter Symbol Min. Typ. Max. BAΟΟST / BAΟΟSFP series Unit Conditions Power save current Output voltage Input stability Ripple rejection ratio Load regulation Temperature coefficient of output voltage Minimum I/O voltage differential Bias current Peak output current IST VO1 Reg.I R.R. Reg.L TCVO Vd Ib IO-P IOS Vth1 Vth2 IIN 9.5 45 1.0 2.0 100 0 10 20 55 50 10 10.5 100 150 0.5 5.0 - µA V mV dB mV OFF mode VCC=11→25V Measurement circuit Fig.4 Fig.1 Fig.1 Fig.2 Fig.1 Fig.1 Fig.3 Fig.4 Fig.1 Fig.5 Fig.6 Fig.6 Fig.6 eIN=1Vrms, f=120Hz, IO=100mA IO=5mA→1A IO=5mA, Tj=0~125˚C VCC=0.95VO IO=0mA Tj=25˚C VCC=25V Output Active mode, IO=0mA Output OFF mode, IO=0mA CTL=5V, IO=0mA ±0.02 0.3 2.5 1.5 0.4 200 % / ˚C V mA A A V V Output short-circuit current ON mode voltage OFF mode voltage Input high level current 0.8 300 µA BA12ST (unless otherwise noted, Ta=25°C, Vcc=17 V, Io=500 mA) Parameter Symbol Min. Typ. Max. Unit Conditions Power save current Output voltage Input stability Ripple rejection ratio Load regulation Temperature coefficient of output voltage Minimum I/O voltage differential Bias current Peak output current IST VO1 Reg.I R.R. Reg.L TCVO Vd Ib IO-P IOS Vth1 Vth2 IIN 11.4 45 1.0 2.0 100 0 12 20 55 50 10 12.6 100 150 0.5 5.0 0.8 300 µA V mV dB mV OFF mode VCC=13→25V Measurement circuit Fig.4 Fig.1 Fig.1 Fig.2 Fig.1 Fig.1 Fig.3 Fig.4 Fig.1 Fig.5 Fig.6 Fig.6 Fig.6 eIN=1Vrms, f=120Hz, IO=100mA IO=5mA→1A IO=5mA, Tj=0~125˚C VCC=0.95VO IO=0mA Tj=25˚C VCC=25V Output Active mode, IO=0mA Output OFF mode, IO=0mA CTL=5V, IO=0mA ±0.02 0.3 2.5 1.5 0.4 200 % / ˚C V mA A A V V Output short-circuit current ON mode voltage OFF mode voltage Input high level current µA Regulator ICs BAΟΟST / BAΟΟSFP series !Measurement circuits ( The C pin only exists on the BA00AST / ASFP, for the BA00AST / ASFP, place a 6.8kΩ resistor between the OUT and C pins, and a 2.2kΩ resisitor between the C and pins.) V VCC OUT eIN 10Ω5W 22µF + IO 0.33µF 100µF VCC OUT VCC CTL GND *C V VCC 0.33µF CTL eIN=1Vrms f=120Hz GND *C 22µF + eOUT V IO=100mA 5V 5V Fig.1 Measurement circuit for output voltage, input stability, load regulation, and temperature coefficient of output voltage Ripple rejection ratio R.R. = 20 log ( ee ) IN OUT Fig.2 Measurement circuit for ripple rejection ratio V VCC 22µF + IO=500mA 0.33µF OUT VCC OUT 22µF + 0.33µF VCC=0.95VO VCC CTL GND *C CTL GND *C A 5V Fig.3 Measurement circuit for minimum I/O voltage differential Fig.4 Measurement circuit for bias current, power save current measurement circuit 0.33µF VCC VCC OUT 22µF + IOS 0.33µF VCC OUT + CTL GND *C A VCC CTL GND *C 22µF V 5V A Fig.5 Measurement circuit for output short-circuit current Fig.6 Measurement circuit for ON/OFF mode voltage, input high level current Regulator ICs BAΟΟST / BAΟΟSFP series !Operation notes (1) Operating power supply voltage When operating within the normal voltage range and within the ambient operating temperature range, most circuit functions are guaranteed. The rated values cannot be guaranteed for the electrical characteristics, but there are no sudden changes of the characteristics within these ranges. (2) Power dissipation Heat attenuation characteristics are noted on a separate page and can be used as a guide in judging power dissipation. If these ICs are used in such a way that the allowable power dissipation level is exceeded, an increase in the chip temperature could cause a reduction in the current capability or could otherwise adversely affect the performance of the IC. Make sure a sufficient margin is allowed so that the allowable power dissipation value is not exceeded. (3) Output oscillation prevention and bypass capacitor Be sure to connect a capacitor between the output pin and GND to prevent oscillation. Since fluctuations in the valve of the capacitor due to temperature changes may cause oscillations, a tantalum electrolytic capacitor with a small internal series resistance (ESR) is recommended. A 22m F capacitor is recommended; however, be aware that if an extremely large capacitance is used (1000µF or greater), then oscillations may occur at low frequencies. Therefore, be sure to perform the appropriate verifications before selecting the capacitor. Also, we recommend connecting a 0.33m F bypass capacitor as close as possible between the input pin and GND. (4) Current overload protection circuit A current overload protection circuit is built into the outputs, to prevent IC destruction if the load is shorted. This protection circuit limits the current in the shape of a ‘7’. It is designed with a high margin, so that even if a large current suddenly flows through the large capacitor in the IC, the current is restricted and latching is prevented. However, these protection circuits are only good for pre-venting damage from sudden accidents. The design should take this into consideration, so that the protection circuit is not made to operate continuously (for instance, clamping at an output of 1VF or greater; below 1VF, the short mode circuit operates). Note that the capacitor has negative temperature characteristics, and the design should take this into consideration. (5) Thermal overload circuit A built-in thermal overload circuit prevents damage from overheating. When the thermal circuit is activated, the various outputs are in the OFF state. When the temperature drops back to a constant level, the circuit is restored. (6) Internal circuits could be damaged if there are modes in which the electric potential of the application’s input (VCC) and GND are the opposite of the electric potential of the various outputs. Use of a diode or other such bypass path is recommended. (7) Although the manufacture of this product includes rigorous quality assurance procedures, the product may be damaged if absolute maximum ratings for voltage or operating temperature are exceeded. If damage has occurred, special modes (such as short circuit mode or open circuit mode) cannot be specified. If it is possible that such special modes may be needed, please consider using a fuse or some other mechanical safety measure. (8) When used within a strong magnetic field, be aware that there is a slight possibility of malfunction. Regulator ICs BAΟΟST / BAΟΟSFP series (9) When the connected load which contains a big inductance component in an output terminal is connected and the occurrence of a reverse electromotive force can be considered at the time of and power-output OFF at the time of starting, I ask the insertion of protection diode of you. (Example) Output pin (10) Although it is sure that the example of an application circuit should be recommended, in a usage, I fully ask the validation of a property of you. In addition, when you alter the circuit constant with outside and you become a usage, please see and decide sufficient margin in consideration of the dispersion in an external component and IC of our company etc. not only including the static characteristic but including a transient characteristic. This IC is monolithic IC and has P+ isolation and P substrate for an isolation between each element. A P-N junction is formed by these P layers and N layers of each element, and various kinds of parasitic elements are formed. For example, when the resistor and the transistor are connected with the pin like the example of a simple architecture, •At a resistor, it is at the time of GND > (PIN A), at a transistor (NPN), it is at the time of GND > (PIN B), A P-N junction operates as parasitism diode. •At a transistor (NPN), it is at the time of GND > (PIN B), The NPN transistor of a parasitic element operates by N layers of other elements which approach with the abovementioned parasitism diode. A parasitic element is inevitably made according to a potential relation on the architecture of IC. When a parasitic element operates, the interference of a circuit operation is caused and the cause of a malfunction, as a result a destructive is obtained. Therefore, please be fully careful of impressing a voltage lower than GND(P substrate) to an input/output terminal etc. not to carry out usage with which a parasitic element operates. Resistor (Pin A) (Pin B) C Transistor (NPN) B E GND N P N P substrate + P N P + N Parasitic elements GND N P substrate Parasitic elements (Pin B) (Pin A) C Parasitic elements Other approaching elements B E GND Parasitic elements GND P + P N P + N GND The example of a simple architecture of bipolar IC Regulator ICs !Electrical characteristic curves 25 (1)22.0 BAΟΟST / BAΟΟSFP series 12.5 POWER DISSIPATION : Pd(W) OUTPUT VOLTAGE : VOUT (V) (1) Infinite heat sink 2 (2) Alumina PCB, 100×100×2 mm 2 (3) Alumina PCB, 50×50×2 mm (4) IC alone 6 (1)10.0 POWER DISSIPATION : Pd (W) (1) Infinite heat sink is used θj-c=12.5 (ºC/W) (2) IC simple substance θj-a=125.0 (ºC/W) BA05ST 5 4 20 10 15 (2)11.0 10 (3)6.5 5 (4)2.0 0 25 50 75 100 125 150 7.5 3 2 5 2.5 (2)1.0 1 0 0 0 25 50 75 100 125 150 10 20 30 40 50 AMBIENT TEMPERATURE : Ta(˚C) AMBIENT TEMPERATURE : Ta (ºC) INPUT VOLTAGE : VCC (V) Fig. 7 Thermal derating curves (TO220FP-5) 6 Fig.8 Thermal derating curves (TO252-5) Fig. 9 Current limit characteristics BA05ST OUTPUT VOLTAGE : VOUT (V) 5 4 3 2 1 0 0 10 20 30 40 50 INPUT VOLTAGE : VCC (V) Fig. 10 Over voltage protection characteristics !External Dimensions (Units: mm) 4.5 +0.3 −0.1 f3.2±0.1 2.8 +0.2 −0.1 1.8±0.2 10.0 +0.3 −0.1 7.0 +0.3 −0.1 17.0 +0.4 −0.2 6.5±0.2 12.0±0.2 +0.2 5.1 −0.1 3 2.3±0.2 0.5±0.1 8.0±0.2 7.0±0.2 5.5±0.2 1.5 0.85±0.2 13.5Min. 1.2 0.8 12345 1.778 0.5+0.1 2.85 0.8 0.5 1.27 0.5±0.1 1.0±0.2 1pin : CTL 2pin : VCC 3pin : GND 4pin : OUT 5pin : N.C. TO220FP-5 TO252-5 2.5 1 2 4 5 9.5±0.5
BA06SFP 价格&库存

很抱歉,暂时无法提供与“BA06SFP”相匹配的价格&库存,您可以联系我们找货

免费人工找货