ROHM’s Selection Operational Amplifier / Comparator Series
Operational Amplifiers: Ground Sense
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM, BA2904HFVM-C,BA2902S F/FV/KN,BA2902F/FV/KN,BA3404F/FVM
●Description General-purpose BA10358/BA10324A family and high-reliability BA2904S/BA2904/BA2902S/BA2902 family and automotive BA2904HFVM-C integrate two or four independent Op-Amps andphase compensation capacitors on a single chip andhave some features of high-gain, low power consumption,and operating voltage range of 3[V] to 32[V] (single powersupply ). BA3404 family is realized high speed operation andreduce the crossover distortions that compare with BA10358/ BA2904 family.
General-purpose
No.09049EAT03
Dual Quad
BA10358 F/FV BA10324A F/FV BA2904S F/FV/FVM Operation guaranteed up to +105℃ BA2904 F/FV/FVM Operation guaranteed up to +125℃ BA2902S F/FV/KN Operation guaranteed up to +105℃ BA2902 F/FV/KN Operation guaranteed up to +125℃ BA3404 F/FVM BA2904H FVM-C
High-reliabillity
Dual
Quad
Dual
Automotive
Dual
●Characteristics 1) Operable with a single power supply 2) Wide operating supply voltage +3.0[V]~+32.0[V](single supply) (BA10358/BA10324A/BA2904S/BA2904/BA2902S/BA2902 family,BA2904HFVM-C) +4.0[V]~+36.0[V](single supply) (BA3404 family) 3) Standard Op-Amp Pin-assignments 4) Input and output are operable GND sense 5) Internal phase compensation type 6) Low supply current 7) High open loop voltage gain 8) Internal ESD protection Human body model(HBM) ±5000[V](Typ.) (BA2904S/BA2904/BA2902S/BA2902/BA3404 family,BA2904HFVM-C) 9) Gold PAD (BA2904S/BA2904/BA2902S/BA2902/BA3404 family,BA2904HFVM-C) 10) Wide temperature range -40[℃]~+125[℃] (BA2904/BA2902 family,BA2904HFVM-C) -40[℃]~+105[℃] (BA2904S/BA2902S family) -40[℃]~+85[℃] (BA10358/BA10324/BA3404 family) ●Pin Assignment
OUT1
1 2 3 4 5 6 7 -+ CH2 +CH3 CH1 -+ CH4 +14 13 12 11 10 9 8
OUT4 -IN4 +IN4 VEE +IN3 -IN3 OUT3
+IN1 1 VCC 2 NC
3
-IN1
16
OUT1 OUT4 -IN4
15 14 13
CH4 +
OUT1 1 -IN1 +IN1 VEE
2 3 4
8 VCC
-IN1 +IN1 VCC
-+
CH2
CH1
7 OUT2
CH1 +
12 +IN4 11 10 9 8
VEE NC +IN3
+-
6 -IN2 5 +IN2
+
+
+IN2 -IN2 OUT2
CH2
-
CH3
-
+IN2 4
5
6
7
-IN2
OUT2 OUT3 -IN3
SOP8
SSOP-B8
MSOP8
SOP14
SSOP-B14
VQFN16
BA10358F BA2904F BA2904SF BA2904F BA3404F BA3404F
BA10358F
BA10358FV BA2904FV BA2904SFV BA2904FV
BA10358FV
BA2904SFVM BA2904FVM BA2904FVM BA3404FVM BA3404FVM BA2904HFVM-C
BA10324AF BA2902F BA2902SF BA2902F
BA10324AF
BA10324AFV BA2902FV BA2902SFV BA2902FV
BA10324AFV
BA2902SKN BA2902KN BA2902KN
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
1/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM ●Absolute Maximum Ratings (Ta=25[℃]) ○BA10358 family,BA10324A family Parameter Supply Voltage Differential Input Voltage
(*1)
Technical Note
Symbol VCC-VEE Vid Vicm Topr Tstg Tjmax
Rating BA10358 family +32 VCC-VEE VEE~VCC -40~+85 -55~+125 +125 BA10324A family
Unit V V V ℃ ℃ ℃
Input Common-mode Voltage Range Operating Temperature Range Storage Temperature Range Maximum Junction Temperature
Note bsolute maximum rating item indicates the condition which must not be exceeded. Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics. (*1) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then input terminal voltage is set to more than VEE.
●Electric Characteristics ○BA10358 family,BA10324A family(Unless otherwise specified VCC=+5[V], VEE=0[V], Ta=25[℃])
Guaranteed limit Parameter Temperature Symbol Range BA10358 family Min. Input Offset Voltage Input Offset Current Input Bias Current (*2) Supply Current High LevelOutput Voltage Low Level Output Voltage Large Signal Voltage Gain Input Common-mode Voltage Range Common-mode Rejection Ratio Power Supply Rejection Ratio Output SourceCurrent Output SinkCurrent Output Voltage Range Channel Separation (*2) Vio Iio Ib ICC VOH VOL AV Vicm CMRR PSRR IOH IOL Vo CS 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25 0 65 65 10 10 0 Typ. 2 5 45 0.7 100 80 100 20 20 120 Max. 7 50 250 1.2 VCC-1.5
BA10324A family Min. VCC-1.5
Unit
Condition
Typ. 2 5 20 0.6 100 75 100 35 20 120
Max. 7 50 250 2 250 VCC-1.5
mV nA nA mA V mV
RS=50[Ω] RL=∞, All Op-Amps RL=2[kΩ] RL=2[kΩ]
25 0 65 65 20 10 -
V/mV RL≧2[kΩ],VCC=15[V] V dB dB mA mA V dB RS=50[Ω] VIN+=1[V],VIN-=0[V],VOUT=0[V] VIN+=0[V],VIN-=1[V],VOUT=VCC RL=2[kΩ] f=1[kHz], input referred -
VCC-1.5
-
-
Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC.
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
2/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM ●Absolute Maximum Ratings (Ta=25[℃]) ○BA2904S/BA2904/BA2902S/BA2902 family,BA2904HFVM-C Parameter Supply Voltage Differential Input Voltage (*3) Input Common-mode Voltage Range Operating Temperature Range Storage Temperature Range Maximum Junction Temperature Symbol VCC-VEE Vid Vicm Topr Tstg Tjmax -40~+105 -55~+150 +150 BA2904S family BA2902S family +32 32 (VEE-0.3)~(VEE+32) -40~+125 Rating BA2904 family BA2902 family
Technical Note
BA2904HFVM-C +36 36 (VEE-0.3)~(VEE+36)
Unit V V V ℃ ℃ ℃
Note Absolute maximum rating item indicates the condition which must not be exceeded. Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics. (*3) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then input terminal voltage is set to more than VEE.
●Electric Characteristics ○BA2904S/BA2904 family (Unless otherwise specified VCC=+5[V], VEE=0[V]) Guaranteed limit Temperature BA2904S/BA2904 family Parameter Symbol Range Min. Typ. Max. 25℃ 2 7 Input Offset Voltage (*4) Vio Full range 10 Input Offset Voltage Drift △Vio/△T ±7 25℃ 2 50 Input Offset Current (*4) Iio Full range 200 Input Offset Current Drift △lio/△T ±10 25℃ 20 250 (*4) Input Bias Current Ib Full range 250 25℃ 0.7 1.2 Supply Current Vicm Full range 2 25℃ 3.5 High Level Output Voltage VOH Full range 27 28 Low Level VOL Full range 5 20 Output Voltage Large Signal Voltage Gain AV 25℃ 25℃ Full range 25℃ 25℃ 25℃ Full range 25℃ Full range 25℃ 25℃ 25℃ 25℃ 25℃ 25 0 50 65 20 10 10 2 12 100 80 100 30 20 40 120 0.2 0.5 40 VCC-1.5 -
Unit mV
Condition
VOUT=1.4[V] VCC=5~30[V],VOUT=1.4[V] μV/℃ VOUT=1.4[V] nA VOUT=1.4[V]
pA/℃ VOUT=1.4[V] nA mA V mV V/mV V dB dB mA mA μA dB V/μs MHz
nV/(Hz)1/2
VOUT=1.4[V] RL=∞All Op-Amps RL=2[kΩ] VCC=30[V],RL=10[kΩ] RL=∞All Op-Amps RL≧2[kΩ],VCC=15[V] VOUT=1.4~11.4[V] (VCC-VEE)=5V,VOUT=VEE+1.4[V] VOUT=1.4[V] VCC=5~30[V] VIN+=1[V],VIN-=0[V] VOUT=0[V] 1CH is short circuit VIN+=0[V],VIN-=1[V] VOUT=5[V] 1CH is short circuit VIN+=0[V],VIN-=1[V] VOUT=200[mV] f=1[kHz], input referred VCC=15[V],AV=0[V], RL=2[kΩ],CL=100[pF] VCC=30[V],RL=2[kΩ], CL=100[pF] VCC=15[V],VEE=-15[V], RS=100[Ω],Vi=0[V],f=1[kHz]
Input Common-mode Vicm Voltage Range Common-mode Rejection Ratio CMRR Power Supply Rejection Ratio PSRR Output SourceCurrent (*5) IOH IOL Isink Channel Separation Slew rate Maximum frequency Input referred noise voltage
(*4) (*5) (*6)
Output Sink Current
(*5)
CS SR ft Vn
Absolute value Under high temperatures, please consider the power dissipation when selecting the output current. When the output terminal is continuously shorted the output current reduces the internal temperature by flushing. BA2904S family:Full range -40~105℃ BA2904 family:Full range -40~+125℃
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
3/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM ○BA2902S/BA2902 family (Unless otherwise specified VCC=+5[V], VEE=0[V]) Guaranteed limit Temperature Parameter Symbol BA2902S/BA2902 family Range Min. Typ. Max. Input Offset Voltage (*4) Input Offset Voltage Drift Input Offset Current (*4) Input Offset Current Drift Input Bias Current (*4) Supply Current Vio △Vio/△T Iio △lio/△T Ib Vicm 25℃ Full range 25℃ Full range 25℃ High Level Output Voltage Low Level Output Voltage Large Signal Voltage Gain Input Common-mode Voltage Range Power Supply Rejection Ratio Output SourceCurrent (*5) VOH Full range Full range 25℃ 25℃ Full range 25℃ 25℃ 25℃ Full range 25℃ Full range 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ Full range 25℃ Full range 3.5 27 25 0 50 65 20 10 10 2 12 2 ±7 2 ±10 20 0.7 28 5 100 80 100 30 20 40 120 0.2 0.5 40 7 10 50 200 250 250 2 3 20 VCC-1.5 mV V/mV V dB dB mA mA μA dB V/μs MHz
nV/(Hz)1/2
Technical Note
Unit
Condition VOUT=1.4[V] VCC=5~30[V],VOUT=1.4[V]
mV
μV/℃ VOUT=1.4[V] nA VOUT=1.4[V]
pA/℃ VOUT=1.4[V] nA mA VOUT=1.4[V] RL=∞All Op-Amps RL=2[kΩ] VCC=30[V],RL=10[kΩ] RL=∞All Op-Amps RL≧2[kΩ],VCC=15[V] VOUT=1.4~11.4[V] (VCC-VEE)=5V,VOUT=VEE+1.4[V] VOUT=1.4[V] VCC=5~30[V] VIN+=1[V],VIN-=0[V] VOUT=0[V] 1CH is short circuit VIN+=0[V],VIN-=1[V] VOUT=5[V] 1CH is short circuit VIN+=0[V],VIN-=1[V] VOUT=200[mV] f=1[kHz], input referred VCC=15[V],AV=0[V], RL=2[kΩ],CL=100[pF] VCC=30[V],RL=2[kΩ], CL=100[pF] VCC=15[V],VEE=-15[V], RS=100[Ω],Vi=0[V],f=1[kHz]
V
VOL AV Vicm
Common-mode Rejection Ratio CMRR PSRR IOH IOL Isink Channel Separation Slew rate Maximum frequency Input referred noise voltage
(*4) (*5) (*6)
Output Sink Current
(*5)
CS SR ft Vn
Absolute value Under high temperatures, please consider the power dissipation when selecting the output current. When the output terminal is continuously shorted the output current reduces the internal temperature by flushing. BA2902S family:Full range -40~105℃ ,BA2902 family:Full range -40~+125℃
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
4/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM ○BA2904HFVM-C(Unless otherwise specified VCC=+5[V], VEE=0[V]) Guaranteed limit Temperature Parameter Symbol BA2904HFVM-C Range Min. Typ. Max. Input Offset Voltage (*4) Input Offset Voltage Drift Input Offset Current (*4) Input Offset Current Drift Input Bias Current (*4) Supply Current Vio △Vio/△T Iio △lio/△T Ib Vicm 25℃ Full range 25℃ Full range 25℃ High Level Output Voltage Low Level Output Voltage Large Signal Voltage Gain Input Common-mode Voltage Range Power Supply Rejection Ratio Output SourceCurrent (*5) VOH Full range Full range 25℃ 25℃ Full range 25℃ 25℃ 25℃ Full range 25℃ Full range 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ Full range 25℃ Full range 3.5 3.2 27 0 0 65 65 20 10 10 2 12 2 2 20 0.7 28 5 80 100 30 20 40 7 7 50 100 60 100 1.2 1.2 20 VCC-1.5 VCC-2.0 mV V/mV V dB dB mA mA μA dB V/μs MHz
nV/(Hz)1/2
Technical Note
Unit
Condition VOUT=1.4[V] VCC=5~30[V],VOUT=1.4[V]
mV
μV/℃ VOUT=1.4[V] nA VOUT=1.4[V]
pA/℃ VOUT=1.4[V] nA mA VOUT=1.4[V] RL=∞All Op-Amps RL=2[kΩ] VCC=30[V],RL=10[kΩ] RL=∞All Op-Amps RL≧2[kΩ],VCC=15[V] VOUT=1.4~11.4[V] (VCC-VEE)=5V,VOUT=VEE+1.4[V] VOUT=1.4[V] VCC=5~30[V] VIN+=1[V],VIN-=0[V] VOUT=0[V] 1CH is short circuit VIN+=0[V],VIN-=1[V] VOUT=5[V] 1CH is short circuit VIN+=0[V],VIN-=1[V] VOUT=200[mV] f=1[kHz], input referred VCC=15[V],AV=0[V], RL=2[kΩ],CL=100[pF] VCC=30[V],RL=2[kΩ], CL=100[pF] VCC=15[V],VEE=-15[V], RS=100[Ω],Vi=0[V],f=1[kHz]
V
VOL AV Vicm
Common-mode Rejection Ratio CMRR PSRR IOH IOL Isink Channel Separation Slew rate Maximum frequency Input referred noise voltage
(*4) (*5) (*6)
Output Sink Current
(*5)
CS SR ft Vn
Absolute value Under high temperatures, please consider the power dissipation when selecting the output current. When the output terminal is continuously shorted the output current reduces the internal temperature by flushing. BA2904HFVM-C:Full range -40~+125℃
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
5/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM ●Absolute Maximum Ratings (Ta=25[℃]) ○BA3404 family Parameter Supply Voltage Differential Input Voltage
(*7)
Technical Note
Symbol VCC-VEE Vid Vicm Topr Tstg Tjmax
Rating +36 36 (VEE-0.3)~(VEE+36) -40~+85 -55~+150 +150
Unit V V V ℃ ℃ ℃
Input Common-mode Voltage Range Operating Temperature Range Storage Temperature Range Maximum Junction Temperature
Note Absolute maximum rating item indicates the condition which must not be exceeded. Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics. (*7) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then input terminal voltage is set to more than VEE.
●Electric Characteristics ○BA3404 family (Unless otherwise specified VCC=+15[V], VEE=-15[V], Ta=25[℃]) Guaranteed limit Temperature Unit Parameter Symbol Range Min. Typ. Max. Input Offset Voltage(*8) Input Offset Current (*8) Input Bias Current (*8) Large Signal Voltage Gain Maximum Output Voltage Input Common-mode Voltage Range Vio Iio Ib AV VOM Vicm 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 88 ±13 -15 70 80 20 10 2 5 70 100 ±14 90 94 2.0 30 20 1.2 1.2 0.1 5 50 200 13 3.5 mV nA nA dB V V dB dB mA mA mA
Condition VOUT=0[V], Vicm=0[V] VOUT=0[V], Vicm=0[V] VOUT=0[V], Vicm=0[V] RL≧2[kΩ],VOUT=±10[V],Vicm=0[V] RL≧2[kΩ] VOUT=0[V] VOUT=0[V], Vicm=-15[V]~+13[V] Ri≦10[kΩ], VCC=+4[V]~+30[V] RL=∞ All Op-Amps, VIN+=0[V] VIN+=1[V], VIN-=0[V],VOUT=+12[V], Output of one channel only VIN+=0[V], VIN-=1[V],VOUT=-12[V], Output of one channel only
Common-mode Rejection Ratio CMRR Power Supply Rejection Ratio Supply Current Output Source Current Output Sink Current Slew rate Unity Gain Frequency Total Harmonic Distortion
(*8) Absolute value
PSRR ICC Isource Isink SR ft THD
V/μs AV=0[dB], RL=2[kΩ],CL=100[pF] MHz RL=2[kΩ] % VOUT=10[Vp-p], f=20[kHz],AV=0[dB],RL=2[kΩ]
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
6/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM ●Example of electrical characteristics ○BA10358 family BA10358 family
1000 POWER DISSIPATION [mW] .
Technical Note
1.0 SUPPLY CURRENT [mA] .
BA10358 family
1
BA10358 family
800
BA10358F
0.8
SUPP LY CURRENT [mA ]
25℃
0.8
32V
600
0.6
0.6
400
BA10358FV
0.4
85℃ -40℃
0.4
5V
200
0.2
0.2
3V
0 0 25 50 75 100 125 AMBIENT TEMPERTURE [℃] .
0.0 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35
0 -50 -25 0 25 50 75 AMBIE NT TEMPERATURE [ ℃] 100
Fig. 1 Derating Curve
35
MAXIMUM OUTPUT VOLTAGE [V] OUTPUT VOLTAGE [V]
BA10358 family
Fig. 2 Supply Current - Supply Voltage
5
BA10358 family
Fig. 3 Supply Current - Ambient Temperature
40 OUTPUT SO URCE CURRENT [mA]
BA10358 family
30 25 20 15
25℃ 85℃
MAXIMUM OUTPUT VOLTAGE [V]
4 OUTPUT VOLTAGE [V]
30
-40℃
3
20
25℃
2
10
-40℃
10
85℃
5 0 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35
1
0 -50 -25 0 25 50 75 AMBIENT TE MPERATURE[℃] 100
0 0 1 2 3 4 OUTPUT VOLTAGE [V] 5
Fig. 4 Maximum Output Voltage – Supply Voltage
(RL=10[kΩ])
40 OUTPUT SOURCE CURRENT [mA]
BA10358 family
Fig. 5 Maximum Output Voltage– Ambient Temperature
(VCC=5[V],RL=2[kΩ])
100
BA10358 family
Fig. 6 Output Source Current - Output Voltage
(VCC=5[V])
40 OUTPUT SINK CURRENT [mA]
BA10358 family
OUTPUT SINK CURRENT [mA]
30
10
15V
30
15V
1
85℃
20
5V
20
5V
0.1
25℃
10
3V
0.01
-40℃
10
3V
0 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100
0.001 0 0.4 0.8 1.2 1.6 2 OUTPUT VOLTAGE [V]
0 -50 -25 0 25 50 75 100 AMBIENT TEMPERAURE [℃]
Fig. 7 Output Source Current - Ambient Temperature
(VOUT=0[V])
60 LOW LEVEL SINK CURRENT [μA] 50 40
25℃
Fig. 8 Output Sink Current - Output Voltage
(VCC=5[V])
. 60 50
32V BA10358 family
Fig. 9 Output Sink Current - Ambient Temperature
(VOUT=VCC)
BA10358 family
BA10358 family
8 INPUT OFFSET VO LTAG E [mV] 6 4 2
-40℃
LOW LE VEL SINK CURRENT [μA]
40 30 20
3V 5V
30 20 10 0 0 5 10 15 20 25 30 35 SUPPLY VOLTAGE [V]
85℃ -40℃
0 -2 -4 -6 -8
25℃
10 0 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [ ℃]
85℃
0
5
10
15
20
25
30
35
SUPPLY VOLTAGE [V]
Fig. 10 Low Level Sink Current – Supply Voltage
Fig. 11 Low Level Sink Current – Ambient Temperature
(VOUT=0.2[V])
Fig. 12 Input Offset Voltage - Supply Voltage
(VOUT=0.2[V]) (*)The data above is ability value of sample, it is not guaranteed.
(Vicm=0[V], VOUT=1.4[V])
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
7/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM ○BA10358 family
. 8 6 INP UT O FFSET VOLTAGE [mV]
Technical Note
BA10358 family
BA10358 family
50
BA10358 family
50
INPUT BIAS CURRENT [nA]
INPUT BIAS CURRENT [nA]
4 2 0 -2 -4 -6 -8 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [ ℃]
32V 5V 3V
40
85℃
40
32V
30
25℃
30
5V
20
-40℃
20
10
10
3V
0 0 5 10 15 20 25 SUPPLY VO LTAGE [V] 30 35
0 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [℃]
Fig. 13 Input Offset Voltage – Ambient Temperature
(Vicm=0[V], VOUT=1.4[V])
50
Fig. 14 Input Bias Current – Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
8 6 4 2 0 -2 -4 -6 -8
85℃ -40℃ 25℃
Fig. 15 Input Bias Current – Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
. 10
BA10358 family
INPUT OFFSET VOLTAGE [mV]
.
BA10358 family
BA10358 family
40
INPUT OFFSE T CURRENT [nA ]
INPUT BIAS CURRENT [nA]
5
-40℃
30
25℃
0
20
10
-5
85℃
0 -50 -25 0 25 50 75 AMBIE NT TE MPERATURE [°C] 100
-10
-1
0 1 2 3 4 5 COMMON MODE INPUT VOLTAGE [V]
0
5
10 15 20 25 SUPPLY VOLTAGE [V]
30
35
Fig. 16 Input Bias Current – Ambient Temperature
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])
10 . INPUT OFFSET CURRENT [nA]
BA10358 family
Fig. 17 Input Offset Voltage – Common Mode Input Voltage
.
Fig. 18 Input Offset Current – Supply Voltage
(Vicm=0[V],VOUT=1.4[V])
140 LARGE SIGNAL VOLTAGE GAIN [dB] 130 120 110 100 90 80 70 60
15V 5V BA10358 family
(VCC=5[V])
140 130 120 110 100 90 80 70 60
85℃ 25℃ -40℃
BA10358 family
5
3V
0
-5
5V
32V
-10 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100
LARGE SIGNAL VOLTAGE GAIN [dB]
2
4
Fig. 19 Input Offset Current – Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
.
BA10358 family
Fig. 20 Large Signal Voltage Gain – Supply Voltage
(RL=2[kΩ])
.
BA10358 family
6 8 10 12 14 SUPPLY VOLTAGE[V]
16
18
-50
Fig. 21 Large Signal Voltage Gain – Ambient Temperature
(RL=2[kΩ])
140 130 120 110 100 90 80 70 60 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100
BA10358 family
-25 0 25 50 75 AMBIENT TEMPERATURE [℃]
100
COMMON MODE REJECTION RATIO [dB] ..
120
COMMON MODE REJECTION RATIO [dB]
120
100
-40℃ 25℃
100
5V
32V
80
85℃
80
60
60
3V
40 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35
40 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100
Fig. 22 Common Mode Rejection Ratio – Supply Voltage
Fig. 23 Common Mode Rejection Ratio – Ambient Temperature
POWER SUPPLY REJECTION RATIO [dB] .
140
140
Fig. 24 Power Supply Rejection Ratio – Ambient Temperature
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
8/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM ○BA10324A family
1000 POWER DISSIPATION [mW] .
BA10324A family
Technical Note
2.0 SUPPLY CURRENT [mA] .
BA10324A family
2
BA10324A family
BA10324AFV
SUPPLY CURRENT [mA]
800
1.6
25℃
1.6
32V
600
1.2
1.2
400
BA10324AF
0.8
-40℃ 85℃
0.8
5V
200
0.4
0.4
3V
0 0 25 50 75 100 . 125 AMBIENT TEMPERTURE [ ℃]
0.0 0 5 10 15 20 25 30 35 SUPPLY VOLTAGE [V]
0 -50
-25 0 25 50 75 AMBIENT TEMPERATURE [℃]
100
Fig. 25 Derating Curve
35
BA10324A family
Fig. 26 Supply Current - Supply Voltage
5
MAXIMUM OUTPUT VOLTAGE [V] OUTPUT VOLTAGE [V]
BA10324A family
Fig. 27 Supply Current - Ambient Temperature
50 OUTPUT SOURCE CURRENT [mA]
-40℃ BA10324A family
MAXIMUM OUTPUT VOLTAGE [V] O UTPUT VOLTAGE [V]
30 25 20 15
25℃ 85℃
4
40
3
30
25℃
2
20
85℃
10
-40℃
1
5 0 0 5 10 15 20 25 S UPPLY VOLTAGE [V] 30 35
10
0 -50
-25
0
25
50
75
100
0 0 1 2 3 4 OUTPUT VOLTAGE [V] 5
AMBIENT TEMPERATURE[℃]
Fig. 28 Maximum Output Voltage – Supply Voltage
(RL=10[kΩ])
50 OUTPUT SOURCE CURRENT [mA]
15V BA10324A family
Fig. 29 Maximum Output Voltage – Ambient Temperature
(VCC=5[V],RL=2[kΩ])
100 O UTPUT SINK CURRENT [mA]
BA10324A family
Fig. 30 Output Source Current - Output Voltage
(VCC=5[V])
40
BA10324A family
40
10
OUTPUT SINK CURRENT [mA]
30
15V
30
3V 5V
1
85℃
20
3V 5V
20
0.1
25℃
10
0.01
-40℃
10
0 - 50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [ ℃]
0.001 0.0 0.4 0.8 1.2 1.6 2.0 OUTPUT VOLTAGE [V]
0 -50
-25
0
25
50
75
100
AMBIENT TEMPERAURE [℃]
Fig. 31 Output Source Current - Ambient Temperature
(VOUT=0[V])
60 LOW LEVEL SINK CURRENT [μA] 50
25℃ BA10324A family
Fig. 32 Output Sink Current - Output Voltage
(VCC=5[V])
60 50 40
5V 32V BA10324A family
Fig. 33 Output Sink Current - Ambient Temperature
(VOUT=VCC)
8 6 INPUT OFFSET VOLTAGE [mV] 4 2 0 -2 -4 -6 -8
25℃ -40℃ 85℃ BA10324A family
40 30
-40℃ 85℃
LOW LEVEL SINK CURRENT [μA]
.
30 20
3V
20 10 0 0 5 10 15 20 25 30 35 SUPPLY VOLTAGE [V]
10 0 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [℃]
0
5
10
15
20
25
30
35
SUPPLY VOLTAGE [V]
Fig. 34 Low Level Sink Current – Supply Voltage
(VOUT=0.2[V])
Fig. 35 Low Level Sink Current – Ambient Temperature
(VOUT=0.2[V])
Fig. 36 Input Offset Voltage - Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
9/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM ○BA10324A family
. 8 INPUT OFFSET VOLTAGE [mV] 6
Technical Note
BA10324A family
BA10324A family
50
BA10324A family
50 INPUT BIAS CURRENT [nA]
INPUT BIAS CURRENT [nA]
4 2 0 -2 -4 -6 -8 -50 -25 0 25
40
40
32V
30
85℃ 25℃
30
32V
3V
5V
20
20
5V
10
-40℃
10
3V
0
50
75
100
0
0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35
-50
-25
0
25
50
75
100
AMBIENT TEMPERATURE [℃]
AMBIENT TEMPERATURE [℃]
Fig. 37 Input Offset Voltage – Ambient Temperature
(Vicm=0[V], VOUT=1.4[V])
50 INPUT BIAS CURRENT [nA]
BA10324A family
Fig. 38 Input Bias Current – Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
8 6 4 2 0 -2 -4 -6 -8
25℃ 85℃ -40℃ BA10324A family
Fig. 39 Input Bias Current – Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
10
BA10324A family
.
INPUT O FFSET VOLTAGE [mV]
40
INPUT OFFSET CURRENT [nA]
.
5
85℃
30
0
25℃
20
-40℃
10
-5
0 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100
-10
-1
0 1 2 3 4 5 COMMON MODE INP UT VOLTAGE [V]
0
5
10 15 20 25 SUPP LY VOLTAGE [V]
30
35
Fig. 40 Input Bias Current – Ambient Temperature
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])
10 . INPUT OFFSET CURRENT [nA]
BA10324A family
Fig. 41 Input Offset Voltage – Common Mode Input Voltage(VCC=5[V])
140 LARGE SIGNAL VOLTAGE GAIN [dB] 130 120 110 100 90 80 70 60
25℃ -40℃ BA10324A family
Fig. 42 Input Offset Current – Supply Voltage(Vicm=0[V],VOUT=1.4[V])
140 LARGE SIGNAL VOLTAGE GAIN [dB] 130 120 110 100 90
5V 15V BA10324A family
5
5V 32V
0
3V
-5
85℃
80 70 60
-10 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100
4
6
8 10 12 14 SUPPLY VOLTAGE [V]
16
-50
-25 0 25 50 75 AMBIENT TEMPERATURE [℃]
100
Fig. 43 Input Offset Current – Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
.
BA10324A family
Fig. 44 Large Signal Voltage Gain – Supply Voltage
(RL=2[kΩ])
.
BA10324A family
Fig. 45 Large Signal Voltage Gain – Ambient Temperature(RL=2[kΩ])
140 130 120 110 100 90 80 70 60 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100
BA10324A family
COMMON MODE REJECTION RATIO [dB] ..
120
COMMON MODE REJECTION RATIO [dB]
120
32V 5V
100
-40℃ 25℃
100
80
80
60
85℃
60
3V
40 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35
40 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100
Fig. 46 Common Mode Rejection Ratio – Supply Voltage
Fig. 47 Common Mode Rejection Ratio – Ambient Temperature
POWER SUPPLY REJECTION RATIO [dB] .
140
140
Fig. 48 Power Supply Rejection Ratio – Ambient Temperature
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
10/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
○BA2904S/BA2904 family,BA2904HFVM-C
1000 POWER DISSIPATION [m POWER DISSIPATION [mA] A]
BA2904S/BA2904 family,BA2904H
1.0
BA2904S/BA2904 family,BA2904H
1.0
SUPPLY CURRENT [mA]
BA2904S/BA2904 family,BA2904H
BA2904FV
600
BA2904FVM BA2904HFVM-C
SUPPLY CURRENT [mA]
800
BA2904F
0.8
0.8 0.6 0.4 0.2 0.0
5V 3V 32V
0.6
25℃ -40℃
400
BA2904SF
0.4
105℃ 125℃
200
BA2904SFV BA2904SFVM
0.2
0 0 25 50 75 10005 125 1 150 AMBIENT TEMPERATURE [℃]
0.0 0 10 20 30 SUPPLY VOLTAGE [V] 40
-50
-25
0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
Fig. 49 Derating Curve
40
MAXIMUM OUTPUT VOLTAGE [V]
BA2904S/BA2904 family,BA2904H
Fig. 50 Supply Current - Supply Voltage
5
MAXIMUM OUTPUT VOLTAGE [V]
BA2904S/BA2904 family,BA2904H
Fig. 51 Supply Current - Ambient Temperature
50 OUTPUT SOURCE CURRENT [mA]
-40℃ BA2904S/BA2904 family,BA2904H
30
100℃
-40℃
4 3
40
25℃
30
105℃
20
25℃
2 1 0
20
125℃
10
105℃
10
0 0 10 20 30 40
SUPPLY VOLTAGE [V]
0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] 0 1 2 3 4 OUTPUT VOLTAGE [V] 5
Fig. 52 Maximum Output Voltage – Supply Voltage(RL=10[kΩ])
50 OUTPUT SOURCE CURRENT [mA]
BA2904S/BA2904 family,BA2904H
Fig. 53 Maximum Output Voltage – Ambient Temperature(VCC=5[V],RL=2[kΩ])
100
105℃ BA2904S/BA2904 family,BA2904H
Fig. 54 Output Source Current - Output Voltage(VCC=5[V])
30 OUTPUT SINK CURRENT [mA]
15V BA2904S/BA2904 family,BA2904H
40
OUTPUT SINK CURRENT [mA]
3V 5V
10
125℃ -40℃
20
5V
30
15V
1
3V
20
0.1
25℃
10
10
0.01
0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
0.001 0 0.4 0.8 1.2 1.6 OUTPUT VOLTAGE [V] 2
0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
Fig. 55 Output Source Current - Ambient Temperature
(VOUT=0[V])
80
LOW LEVEL SINK CURRENT [μA]
BA2904S/BA2904 family,BA2904H
Fig. 56 Output Sink Current - Output Voltage
(VCC=5[V])
80 LOW LEVEL SINK CURRENT [μA] 70 60 50 40 30 20 10 0
3V 5V BA2904S/BA2904 family,BA2904H 32V
Fig. 57
Output Sink Current - Ambient Temperature
(VOUT=VCC)
8 INPUT OFFSET VOLTAGE [mV] 6 4 2 0 -2
105 125 -40 25 BA2904S/BA2904 family,BA2904H
70 60 50 40 30 20 10 0
0 5
-40 25
125 105
-4 -6 -8
Fig. 58 Low Level Sink Current – Supply Voltage(VOUT=0.2[V])
10 15 20 25 SUPPLY VOLTAGE [V]
30
35
-50
-25
0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
0
5
Fig. 59 Low Level Sink Current – Ambient Temperature(VOUT=0.2[V])
Fig. 60 Input Offset Voltage - Supply Voltage(Vicm=0[V], VOUT=1.4[V])
10 15 20 25 SUPPLY VOLTAGE [V]
30
35
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
11/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM ○BA2904S/BA2904 family,BA2904HFVM-C
8 INPUT OFFSET VOLTAGE [mV] 6 INPUT BIAS CURRENT [nA] INPUT BIAS CURRENT [nA] 4 2 0 -2 -4 -6 -8 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] 0 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35
5V 32V 3V BA2904S/BA2904 family,BA2904H
Technical Note
50
BA2904S/BA2904 family,BA2904H
50
BA2904S/BA2904 family,BA2904H
40
-40℃ 25℃
40
30
30
32V
20
20
3V 5V
10
125℃
105℃
10
0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
Fig. 61 Input Offset Voltage – Ambient Temperature
(Vicm=0[V], VOUT=1.4[V])
50 40 30 20 10 0 -10 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
BA2904S/BA2904 family,BA2904H
Fig. 62 Input Bias Current – Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
8 INPUT OFFSET VOLTAGE [mV] 6 4
25℃ -40℃ BA2904S/BA2904 family,BA2904H
Fig. 63 Input Bias Current – Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
10 INPUT OFFSET CURRENT [nA]
BA2904S/BA2904 family,BA2904H
INPUT BIAS CURRENT[nA]
105℃ 125℃
5
-40℃
25℃
2 0 -2 -4 -6 -8 -1
0
105℃ 125℃
-5
-10
1 2 3 4 COMMON INPUT VOLTAGE [Vin] MODE INPUT VOLTAGE [V] 0 5
0
5
10
15
20
25
30
35
SUPPLY VOLTAGE [V]
Fig. 64 Input Bias Current – Ambient Temperature
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])
10 INPUT OFFSET CURRENT [nA]
BA2904S/BA2904 family,BA2904H
Fig. 65 Input Offset Voltage – Common Mode Input Voltage(VCC=5[V])
140 LARGE SIGNAL VOLTAGE GAIN [dB] 130
-40℃ BA2904S/BA2904 family,BA2904H
Fig. 66 Input Offset Current – Supply Voltage
(Vicm=0[V],VOUT=1.4[V])
140 LARGE SIGNAL VOLTAGE GAIN [dB] 130 120 110 100 90 80 70 60
5V 15V BA2904S/BA2904 family,BA2904H
5
3V
120 110 100 90 80 70 60
105℃
25℃
0
5V 32V
125℃
-5
-10 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
4
6
8 10 12 SUPPLY VOLTAGE [V]
14
16
-50
-25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
Fig. 67 Input Offset Current – Ambient Temperature(Vicm=0[V],VOUT=1.4[V])
COMMON MODE REJECTION RATIO [dB] COMMON MODE REJECTION RATIO [dB] 140
BA2904S/BA2904 family,BA2904H
Fig. 68 Large Signal Voltage Gain – Supply Voltage(RL=2[kΩ])
140
36V 32V BA2904S/BA2904 family,BA2904H
Fig. 69 Large Signal Voltage Gain – Ambient Temperature(RL=2[kΩ])
140 POWER SUPPLY REJECTION RATIO [dB] 130 120 110 100 90 80 70 60 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
BA2904S/BA2904 family,BA2904H
120
-40℃
25℃
120
100
125℃ 105℃
100
80
80
5V 3V
60
60
40 0 10 20 30 SUPPLY VOLTAGE [V] 40
40 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
Fig. 70 Common Mode Rejection Ratio – Supply Voltage
Fig. 71 Common Mode Rejection Ratio – Ambient Temperature
Fig. 72 Power Supply Rejection Ratio - Ambient Temperature
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
12/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
○BA2902S/BA2902 family
1000
BA2902S/BA2902 family BA2902FV BA2902KN BA2902F
1.0
BA2902S/BA2902 family
1.0
SUPPLY CURRENT [mA]
BA2902S/BA2902 family
POWER DISSIPATION [mW]
SUPPLY CURRENT [mA]
800
0.8
25℃ -40℃
0.8 0.6 0.4 0.2 0.0
5V 3V 32V
600
0.6
400
BA2902SFV BA2902SKN
0.4
105℃ 125℃
200
BA2902SF
0.2
0 0 25 50 75 100 125 AMBIENT TEMPERTURE [℃] 150
0.0 0 10
Fig. 73 Derating Curve
40
MAXIMUM OUTPUT VOLTAGE [V]
BA2902S/BA2902 family
Fig. 74 Supply Current - Supply Voltage
5
MAXIMUM OUTPUT VOLTAGE [V]
BA2902S/BA2902 family
20 30 SUPPLY VOLTAGE [V]
40
-50
-25
Fig. 75 Supply Current - Ambient Temperature
50 OUTPUT SOURCE CURRENT [mA]
-40℃ BA2902S/BA2902 family
0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
30
100℃
-40℃
4 3
40
25℃
30
105℃
20
25℃
2 1 0
20
125℃
10
105℃
10
0 0 10 20 30 40
SUPPLY VOLTAGE [V]
0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] 0 1
Fig. 76 Maximum Output Voltage – Supply Voltage(RL=10[kΩ])
50 OUTPUT SOURCE CURRENT [mA]
BA2902S/BA2902 family
Fig. 77 Maximum Output Voltage – Ambient Temperature(VCC=5[V],RL=2[kΩ])
100
105℃ BA2902S/BA2902 family
Fig. 78 Output Source Current - Output Voltage(VCC=5[V])
30
15V BA2902S/BA2902 family
2 3 4 OUTPUT VOLTAGE [V]
5
40
3V 5V
10
125℃ -40℃
OUTPUT SINK CURRENT [mA]
OUTPUT SINK CURRENT [mA]
20
5V
30
15V
1
3V
20
0.1
25℃
10
10
0.01
0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
0.001 0 0.4 0.8 1.2 1.6 OUTPUT VOLTAGE [V] 2
0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
Fig. 79 Output Source Current - Ambient Temperature(VOUT=0[V])
80
LOW LEVEL SINK CURRENT [ μ A]
BA2902S/BA2902 family
Fig. 80 Output Sink Current - Output Voltage (VCC=5[V])
80 LOW LEVEL SINK CURRENT [μ A] 70 60 50 40 30 20 10 0
3V 5V 32V BA2902S/BA2902 family
Fig. 81 Output Sink Current - Ambient Temperature (VOUT=VCC)
8 INPUT OFFSET VOLTAGE [mV] 6 4 2 0 -2
105℃ 125℃ -40℃ 25℃ BA2902S/BA2902 family
70 60 50 40
-40℃ 25℃
125℃
30 20 10 0
0 5
105℃
-4 -6 -8
10 15 20 25 SUPPLY VOLTAGE [V]
30
35
-50
-25
0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
0
5
10 15 20 25 SUPPLY VOLTAGE [V]
30
35
Fig. 82 Low Level Sink Current – Supply Voltage(VOUT=0.2[V])
Fig. 83 Low Level Sink Current – Ambient Temperature(VOUT=0.2[V])
Fig. 84 Input Offset Voltage - Supply Voltage(Vicm=0[V], VOUT=1.4[V])
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
13/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM ○BA2902S/BA2902 family
8 INPUT OFFSET VOLTAGE [mV] 6 INPUT BIAS CURRENT [nA] INPUT BIAS CURRENT [nA] 4 2 0 -2 -4 -6 -8 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] 0 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35
5V 32V 3V BA2902S/BA2902 family
Technical Note
50
BA2902S/BA2902 family
50
BA2902S/BA2902 family
40
-40℃ 25℃
40
30
30
32V
20
20
3V 5V
10
125℃
105℃
10
0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
Fig. 85 Input Offset Voltage – Ambient Temperature
(Vicm=0[V], VOUT=1.4[V])
50 40 30 20 10 0
BA2902S/BA2902 family
Fig. 86 Input Bias Current – Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
8 INPUT OFFSET VOLTAGE [mV] 6 4
25℃ -40℃ BA2902S/BA2902 family
Fig. 87 Input Bias Current – Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
10 INPUT OFFSET CURRENT [nA]
BA2902S/BA2902 family
INPUT BIAS CURRENT[nA]
105℃ 125℃
5
-40℃ 25℃
2 0 -2 -4 -6 -8
0
105℃ 125℃
-5
-10 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
-10
-1 1 2 3 4 INPUT INPUT VOLTAGE [V] COMMON MODE VOLTAGE [Vin] 0 5
0
5
10
15
20
25
30
35
SUPPLY VOLTAGE [V]
Fig. 88 Input Bias Current – Ambient Temperature
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])
10 INPUT OFFSET CURRENT [nA]
BA2902S/BA2902 family
Fig. 89 Input Offset Voltage – Common Mode Input Voltage(VCC=5[V])
140 LARGE SIGNAL VOLTAGE GAIN [dB] 130 120 110 100 90 80 70 60
105℃ 125℃ -40℃ 25℃ BA2902S/BA2902 family
Fig. 90 Input Offset Current – Supply Voltage
(Vicm=0[V],VOUT=1.4[V])
140 LARGE SIGNAL VOLTAGE GAIN [dB] 130 120 110 100 90 80 70 60
5V 15V BA2902S/BA2902 family
5
3V
0
5V 32V
-5
-10 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
4
6
8 10 12 SUPPLY VOLTAGE [V]
14
16
-50
-25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
Fig. 91 Input Offset Current – Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
COMMON MODE REJECTION RATIO [dB] COMMON MODE REJECTION RATIO [dB] 140
BA2902S/BA2902 family
Fig. 92 Large Signal Voltage Gain – Supply Voltage(RL=2[kΩ])
140
36V 32V BA2902S/BA2902 family
Fig. 93 Large Signal Voltage Gain – Ambient Temperature(RL=2[kΩ])
140 POWER SUPPLY REJECTION RATIO [dB] 130 120 110 100 90 80 70 60 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
BA2902S/BA2902 family
120
-40℃
25℃
120
100
125℃ 105℃
100
80
80
5V 3V
60
60
40 0 10 20 30 SUPPLY VOLTAGE [V] 40
40 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
Fig. 94 Common Mode Rejection Ratio – Supply Voltage
Fig. 95 Common Mode Rejection Ratio – Ambient Temperature
Fig. 96 Power Supply Rejection Ratio – Ambient Temperature
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
14/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
○BA3404 family
1000 POWER DISSIPATION [mW] .
BA3404 family
4 .
BA3404 family
4
BA3404 family
SUPPLY CURRENT [mA]
800
BA3404F
600
SUPPLY CURRENT [mA]
3
25℃
3
±18.0V
2
85℃
2
400
BA3404FVM
200
1
-40℃
1
±2.0V
±15.0V
0 0 25 50 75 . 100 AMBIENT TEMPERTURE [℃ ]
0 0 8
0
Fig. 97 Derating Curve
Fig. 98 Supply Current - Supply Voltage
20 OUTPUT VOLTAGE [V] MAXIMUM OUTPUT VOLTAGE [V] 15
OUTPUT VOLTAGE [V]
BA3404 family
16 24 32 SUP PLY VOLTAG E [V]
40
-50
Fig. 99 Supply Current - Ambient Temperature
15 10
VOH BA3404 family
-25 0 25 50 75 AMB IENT TEMPERATURE [℃]
100
15
BA3404 family
MAXIMUM OUTPUT VOLTAGE [V] OUTPUT VOLTAGE [V]
10 5 0 -5 -10 -15 0.1
VOH
10 5 0 -5 -10 -15 -20
VOH
5 0 -5
VOL
VOL
VOL
-10 -15
10 1000 LOAD RESISTANCE [kΩ]
100000
±0
±4
±8 ±12 ±16 SUPPLY VOLTAGE [V]
±20
0.001
0.01
0.1
1
10
100
OUTPUT CURRENT [mA]
Fig. 100 Maximum Output Voltage – Load Resistance
(VCC/VEE=+15[V]/-15[V],Ta=25[℃])
6 INPUT OFFSET V OLTG E [mV] 4 2
85 BA3404 family
Fig. 101 Maximum Output Voltage – Supply Voltage
6 INPUT OFFSET V OLTA GE [mV] 4 2
±15.0V ±18.0V BA3404 family
Fig. 102 Output Voltage – Output Current
(VCC/VEE=+15[V]/-15[V],Ta=25[℃])
250
BA3404 family
.
INPUT OFFSET VOLTAGE [mV]
200 INPUT BIAS CURRENT [nA]
150
-40 25
0 -2 -4 -6 ±0 ±5 ±10 ±15 ±20 SUPPLY VOLTAGE [V]
-40 25
0 -2 -4 -6 -50 -25 0 25 50 75 100 AMBIENT TEMPE RATURE [°C]
±2.0V
100
50
85℃
0 ±0 ±5 ±10 ±15 ±20 SUPPLY VOLTAGE [V]
Fig. 103 Input Offset Voltage - Supply voltage
(Vicm=0[V], VOUT=0[V])
250
BA3404 family
Fig. 104 Input Offset Voltage - Ambient Temperature
(Vicm=0[V], VOUT=0[V])
. 40 INPUT OFFSET CURRENT [nA] 30 20
-40℃ 25℃ BA3404 family
Fig. 105 Input Bias Current - Supply Voltage
(Vicm=0[V], VOUT=0[V])
40 INPUT OFFSET CURRENT [nA] 30 20 10 0 -10 -20 -30 -40
±2.0V ±15.0V ±18.0V BA3404 family
INPUT BIAS CURRENT [nA]
200
150
±2.0V
10 0 -10 -20 -30 -40
85℃
100
±15.0V ±18.0V
50
0 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [°C]
±0
±5
±10
±15
±20
-50
SUPPLY VOLTAG E [V]
-25 0 25 50 75 AMBIENT TEMPERATURE [°C]
100
Fig. 106 Input Bias Current – Ambient Temperature
(Vicm=0[V], VOUT=0[V])
Fig. 107 Input Offset Current – Supply Voltage
(Vicm=0[V], VOUT=0[V])
Fig. 108 Input Offset Current – Ambient Temperature
(Vicm=0[V], VOUT=0[V])
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
15/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM ○BA3404 family
COMMON MODE REJECTION RATIO [dB] CMRR [dB ] .
PSRR [dB] . POWER SUPPLY REJECTION RATIO [dB]
20 INPUT OFFSE T VOLTAGE [mV ] 15 10 5 0 -5 -10 -15 -20 -3 -2 -1 0 1 2 3 COMMO N MODE INPUT VO LTAGE [V]
-40℃ 25℃ 85℃ BA3404 family
Technical Note
150 125 100 75 50 25 0 -50
BA3404 family
150 125 100 75 50 25 0 -50
BA3404 family
-25 0 25 50 75 AMBIE NT TEMPERATURE [°C]
100
Fig. 109 Input Offset Voltage – Common Mode Input Voltage
(VCC/VEE=+2.5[V]/-2.5[V])
160 LARGE SIGNAL VOLTAGE GAIN [dB] . 140 120
25℃ -40℃
Fig. 110 Common Mode Rejection Ratio – Ambient Temperature
(VCC/VEE=+15[V]/-15[V])
150 125
VOLTAGE GAIN [dB] G AIN [dB]
BA3404 family ±18.0V
Fig. 111 Power Supply Rejection Ratio – Ambient Temperature
(VCC/VEE=+15[V]/-15[V])
50
Phase BA3404 family
-25 0 25 50 75 AMBIENT TEMPERATURE [°C]
100
.
BA3404 family
200 180 160
LARGE SIGNAL VOLTAGE GAIN [dB]
40
±15.0V Gain
30
120 100
100 80 60 40 ±2
75
±2.0V
85℃
20
80 60
50 25 0 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100
10
40 20
±4
±6
±8 ±10 ±12 ±14 ±16 ±18 ±20 SUPPLY VOLTAGE [V]
0
0
1.E+02 1.E +03 1.E+04 1.E+05 1.E+06 1.E+07 FREQUE NCY [Hz]
Fig. 112 Large Signal Voltage Gain – Supply Voltage
(RL=2[kΩ])
1.4
25℃ BA3404 family
Fig. 113 Large Signal Voltage Gain – Ambient Temperature
(RL=2[kΩ])
1.4 1.2 1.0 0.8
±2.5V BA3404 family ±18.0V
Fig. 114
Voltage Gain - Frequency
(VCC=±15V)
BA3404 family
1 TOTAL HARMONIC DISTORTION [%]
SLEW RATE L-H [V/us]
SLEW RATE H-L [V/us]
1.0 0.8 0.6 0.4 0.2 0.0 ±0 ±4 ±8 ±12 ±16 SUPPLY VOLTAGE[V] ±20
-40℃ 85℃
.
1.2
.
0.1
20kHz
0.6 0.4 0.2 0.0 -50 -25 0 25
±15.0V
0.01
20Hz 1kHz
50
75
100
0.001 0.01
AMBIENT TEMPERATURE [℃]
0.1 1 OUTPUT VOLTAGE [Vrms]
10
Fig. 115 Slew Rate L-H – Supply Voltage
80 EQUIVALENT INPUT NOISE VOLTAGE [nV/√Hz] .
BA3404 family
Fig. 116 Slew Rate H-L – Ambient Temperature
Fig. 117 Total Harmonic Distoration – Output Voltage
(VCC/VEE=+4[V]/-4[V],Av=0[dB], RL=2[kΩ],80[kHz]-LPF,Ta=25[℃])
60
40
20
0 10 100 1000 FREQUENCY [Hz] 10000
Fig. 118 Equivalent Input Noise Voltage - Frequency
(VCC/VEE=+15[V]/-15[V],Rs=100[Ω],Ta=25[℃]) (*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
16/24
2009.05 - Rev.A
PHA SE [deg]
100
140
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM ●Circuit Diagram
VCC
Technical Note
VCC
-IN
-IN +IN
VOUT
VOUT+IN
VEE
VEE
BA10358/BA10324A/BA2904S/BA2904/ BA3404 simplified schematic BA2902S/BA2902/BA2904H simplified schematic Fig. 119 Circuit Diagram (one channel only) ●Test circuit1 NULL method VCC,VEE,EK,Vicm Unit:[V]
Parameter VF S1 S2 S3 BA10358/BA10324A family Vcc Input Offset Voltage Input Offset Current Input Bias Current Large Signal Voltage Gain Common-mode Rejection Ratio (Input common-mode Voltage Range) Power Supply Rejection Ratio VF1 VF2 VF3 VF4 VF5 VF6 VF7 VF8 VF9 VF10 ON ON OFF ON OFF ON ON ON ON OFF ON OFF 5 5 5 15 15 5 5 5 30 OFF OFF OFF OFF ON VEE 0 0 0 0 0 0 0 0 0 EK -1.4 -1.4 -1.4 -1.4 -11.4 -1.4 -1.4 -1.4 -1.4 Vicm 0 0 0 0 0 0 3.5 0 0 BA2904S/BA2904 family BA2902S/BA2902 family BA2904HFVM-C Vcc 5~30 5 5 15 15 5 5 5 30 VEE 0 0 0 0 0 0 0 0 0 EK -1.4 -1.4 -1.4 -1.4 -11.4 -1.4 -1.4 -1.4 -1.4 0 0 0 0 0 0 3.5 0 0 15 15 15 15 15 15 15 2 15 BA3404 family EK 0 0 0 10 -10 0 0 0 0 Vicm 0 0 0 0 0 -15 13 0 0 5 1 2 3 4 Calculation
Vicm VCC VEE -15 -15 -15 -15 -15 -15 -15 -2 -15
ON
ON
OFF
6
-Calculation1. Input Offset Voltage (Vio)
Vio = | VF1 | 1 + Rf / Rs
C2 0.1[μF]
[V]
2. Input Offset Current (Iio)
Iio = | VF2-VF1 | Ri ×(1 + Rf / Rs) [A]
Rf 50[kΩ] RK S1 Rs 50[Ω] 50[Ω] Ri 10[kΩ] 10[kΩ] Ri S2 VEE DUT S3 C3 1000[pF] RK 500[kΩ] VCC 500[kΩ]
C1 0.1[μF] +15[V] NULL
3. Input Bias Current (Ib)
Ib = | VF4-VF3 | 2×Ri× (1 + Rf / Rs) [A]
EK
4. Large Signal Voltage Gain (Av)
Av = 20×Log ΔEK×(1+Rf /Rs) |VF5-VF6| [dB]
Vic m
Rs
RL
-15[V]
V VF
5. Common-mode Rejection Ration (CMRR)
CMRR = 20×Log ΔVicm×(1+Rf /Rs) |VF8-VF7| [dB]
Fig. 120 Measurement circuit1 (one channel only)
6. Power supply rejection ratio (PSRR)
PSRR = 20×Log ΔVcc×(1+Rf /Rs) |VF10-VF9| [dB]
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
17/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM ●Measurement Circuit 2 Switch Condition SW No. Supply Current High Level Output Voltage Low Level Output Voltage Output Source Current Output Sink Current Slew Rate Gain Bandwidth Product Equivalent Input Noise Voltage SW 1 SW 2 SW 3 SW 4 ON SW 5 OFF SW 6 ON ON ON ON ON ON ON SW 7 SW 8 SW 9 SW 10 SW 11
Technical Note
SW 12
SW 13
SW 14
OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF ON ON ON ON ON ON
OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF ON OFF OFF OFF ON ON OFF OFF ON ON OFF OFF OFF OFF OFF OFF
OFF OFF OFF OFF OFF OFF OFF OFF ON ON ON
OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF ON ON ON ON ON OFF OFF
OFF OFF OFF
OFF OFF OFF
OFF OFF OFF OFF OFF OFF OFF OFF ON OFF OFF OFF
OFF OFF
OFF OFF OFF
OFF OFF OFF OFF
Input voltage
SW4
電圧
R2
SW5
VH
VCC
A
VL
-
SW1 SW2 SW3 SW6 RS R1 SW7 SW8 VEE
+
SW9 SW10 SW11 SW12 SW13 SW14
Output voltage
電圧 VH
Input wave 入力電圧波形
SR=ΔV/Δt
時間 t
ΔV
A ~
VINVIN+
~
RL
CL
V ~
V
VOU T
VL Δt
Output wave 出力電圧波形
時間 t
Fig. 121 Measurement Circuit 2 (each Op-Amp)
Fig. 122 Slew Rate Input Waveform
●Measurement Circuit 3 Amplifier To Amplifier Coupling
VCC
VCC
R1//R2
R1//R2
OTHER CH
VEE R1 VIN R2 R1 R2
VEE
V VOUT1
=0.5[Vrms]
V
VOUT2
CS=20×log
100×VOUT1 VOUT2
Fig. 123
Measurement Circuit 3
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
18/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
●Description of Electrical Characteristics Described below are descriptions of the relevant electrical terms Please note that item names, symbols and their meanings may differ from those on another manufacturer’s documents. 1.Absolute maximum ratings The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of electrical characteristics or damage to the part itself as well as peripheral components. 1.1 Power supply voltage (VCC-VEE) Expresses the maximum voltage that can be supplied between the positive and negative supply terminals without causing deterioration of the electrical characteristics or destruction of the internal circuitry. 1.2 Differential input voltage (Vid) Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without damaging the IC. 1.3 Input common-mode voltage range (Vicm) Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing deterioration of the characteristics or damage to the IC itself. Normal operation is not guaranteed within the common-mode voltage range of the maximum ratings – use within the input common-mode voltage range of the electric characteristics instead. 1.4 Operating and storage temperature ranges (Topr,Tstg) The operating temperature range indicates the temperature range within which the IC can operate. The higher the ambient temperature, the lower the power consumption of the IC. The storage temperature range denotes the range of temperatures the IC can be stored under without causing excessive deterioration of the electrical characteristics. 1.5 Power dissipation (Pd) Indicates the power that can be consumed by a particular mounted board at ambient temperature (25℃). For packaged products, Pd is determined by the maximum junction temperature and the thermal resistance. 2. Electrical characteristics 2.1 Input offset voltage (Vio) Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input voltage difference required for setting the output voltage to 0 V. 2.2 Input offset voltage drift (△Vio/△T) Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation. 2.3 Input offset current (Iio) Indicates the difference of input bias current between the non-inverting and inverting terminals. 2.4 Input offset current drift (△Iio/△T) Signifies the ratio of the input offset current fluctuation to the ambient temperature fluctuation. 2.5 Input bias current (Ib) Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at the non-inverting terminal and the input bias current at the inverting terminal. 2.6 Circuit current (ICC) Indicates the current of the IC itself that flows under specified conditions and during no-load steady state. 2.7 High level output voltage/low level output voltage (VOH/VOL) Signifying the voltage range that can be output under specified load conditions, it is in general divided into high level output voltage and low level output voltage. High level output voltage indicates the upper limit of the output voltage, while low level output voltage the lower limit. 2.8 Large signal voltage gain (AV) The amplifying rate (gain) of the output voltage against the voltage difference between non-inverting and inverting terminals, it is (normally) the amplifying rate (gain) with respect to DC voltage. AV = (output voltage fluctuation) / (input offset fluctuation) 2.9 Input common-mode voltage range (Vicm) Indicates the input voltage range under which the IC operates normally.
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
19/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
2.10 Common-mode rejection ratio (CMRR) Signifies the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation). CMRR = (change in input common-mode voltage) / (input offset fluctuation) 2.11 Power supply rejection ratio (PSRR) Denotes the ratio of fluctuation of the input offset voltage when supply voltage is changed (DC fluctuation). SVR = (change in power supply voltage) / (input offset fluctuation) 2.12 Output source current/ output sink current (IOH/IOL) The maximum current that can be output under specific output conditions, it is divided into output source current and output sink current. The output source current indicates the current flowing out of the IC, and the output sink current the current flowing into the IC. 2.13 Channel separation (CS) Expresses the amount of fluctuation of the input offset voltage or output voltage with respect to the change in the output voltage of a driven channel. 2.14 Slew rate (SR) Indicates the time fluctuation ratio of the output voltage when an input step signal is supplied. 2.15 Gain bandwidth product (GBW) The product of the specified signal frequency and the gain of the op-amp at such frequency, it gives the approximate value of the frequency where the gain of the op-amp is 1 (maximum frequency, and unity gain frequency).
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
20/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
●Derating curves Power dissipation(total loss) indicates the power that can be consumed by IC at Ta=25℃(normal temperature). IC is heated when it consumed power, and the temperature of IC chip becomes higher than ambient temperature. The temperature that can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited. Power dissipation is determined by the temperature allowed in IC chip(maximum junction temperature) and thermal resistance of package(heat dissipation capability). The maximum junction temperature is typically equal to the maximum value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin or lead frame of the package. The parameter which indicatesthis heat dissipation capability(hardness of heat release)is called thermal resistance, represented by the symbol θja[℃/W].The temperature of IC inside the package can be estimated by this thermal resistance. Fig.124(a) shows the model of thermal resistance of the package. Thermal resistance θja, ambient temperature Ta, junction temperature Tj, and power dissipation Pd can be calculated by the equation below: θja = (Tj-Ta) / Pd [℃/W] ・・・・・ (Ⅰ) Derating curve in Fig.124(b) indicates power that can be consumed by IC with reference to ambient temperature.Power that can be consumed by IC begins to attenuate at certain ambient temperature. This gradient iis determined by thermal resistance θja. Thermal resistance θja depends on chip size, power consumption, package,ambient temperature, package condition, wind velocity, etc even when the same of package is used. Thermal reduction curve indicates a reference value measured at a specified condition. Fig.125(a)~(d) show a derating curve for an example of BA10358, BA10324A, BA2904S, BA2904, BA2904HFVM-C, BA3404, BA2902S, BA2902.
LSI の 消 of LSI Power dissipation 費 電 力 [ W]
θja = ( Tj ー Ta ) / Pd [℃/W]
P2
Pd (max) θja2 < θja1
Ambient temperature Ta [℃] 周囲温度
P1 θ' ja2 θ ja2 Tj ' (max) Tj (max) θ' ja1 θ ja1 75 100 125 150
Chip surfaceチップ 表面温度 Tj [℃] temperature
消費電力 Power dissipation P [W]
0
25
50
(b) Derating curve (a) Thermal resistance Fig. 124 Thermal resistance and derating curve
1000 1000
周囲温度 Ambient temperature Ta [ ℃ ]
POWER DISSIPATION Pd [mW] 許容損失 Pd [mW]
BA10358F
620mW (*1) 620mW(*9)
許容損失 Pd [ Pd POWER DISSIPATIONmW][mW]
800
800
700mW (*3) 700mW(*11)
BA10324AFV
600
550mW(*10) 550mW (*2)
BA10358FV
600
490mW (*4) 490mW(*12)
BA10324AF
400
400
200
200
0 0 25 50 75 100 125
0 0 25 50 75 100 125
Ambient周囲温度 Ta [℃]Ta [℃] temperature :
(a) BA10358 ファミリ (a)BA10358 family
Ambient周囲温度 Ta [℃]Ta [℃] temperature :
(b) BA10324A ファミリ (a) (b)BA10324A family
1000 1000 1000 POWER DISSIPATION [mA]
780mW( *5) 780mW(*13)
1000 BA2904F BA3404F BA2904F 許容損失 Pd [mW] POWER DISSIPATION Pd [mW] 800 BA2902KN
660mW(*17) 660mW( *9) 870mW(*16) 870mW( *8)
BA2902FV
POWER DISSIPATION Pd [mW] 許容損失 Pd [mW]
800 800 800
BA2904FV BA2904FV 600 600 600
690mW(*14) 690mW( *6) 590mW(*15) 590mW (*7)
BA2904FVM BA2904FVM BA2904HFVM-C BA3404FVM BA3404F BA3404F BA3404FVM BA3404FVM BA2904SF BA2904SFV
600
610mW(*18) 610mW (*10)
BA2902F
400 400 400
400
BA2902SFV
200 200 200
200
BA2902SKN BA2902SF
00 0
BA2904SFVM
0 0 0
25 25
AMBIENT TEMPERATURE [℃] (c)BA2904S/BA2904/BA3404 family,BA2904H (a) BA2904 ファミリ
Ambient周囲温度 Ta [℃] [℃] temperature :Ta
50 50 50
75 75 75
100 100 100
105 105
0 125 125 125 150 150 0 25 50 75
105 100
125
150
Ambient 周囲温度 Ta [℃Ta [℃] temperature : ]
(d)BA2902S/BA2902 family (a) BA2902 ファミリ
(*9) 6.2
(*10) 5.5
(*11) 7.0
(*12) 4.9
(*13) 6.2
(*14) 5.5
(*15) 4.8
(*16) 7.0
(*17) 5.3
(*18) 4.9
Unit [mW/℃]
When using the unit above Ta=25[℃], subtract the value above per degree[℃]. Permissible dissipation is the value when FR4 glass epoxy board 70[mm]×70[mm]×1.6[mm](cooper foil area below 3[%]) is mounted.
Fig. 125 Derating curve
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
21/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM ●Precautions 1) Unused circuits When there are unused circuits, it is recommended that they be connected as in Fig.126, setting the non-inverting input terminal to a potential within the in-phase input voltage range (Vicm). 2) Input voltage Applying VEE+32[V](BA2904S/BA2904/BA2902S/BA2902 family, BA2904HFVM-C) and VEE+36[V](BA3404 family) to the input terminal is possible without causing deterioration of the electrical characteristics or destruction, irrespective of the supply voltage.However, this does not ensure normal circuit operation. Please note that the circuit operates normally only when the input voltage is within the common mode input voltage range of the electric characteristics.
Technical Note
VCC
Please keep this 同相入力電圧 potencial in Vicm 範囲内の電位
VEE
Fig. 126 Example of processing unused
3) Power supply (single / dual) The op-amp operates when the voltage supplied is between VCC and VEETherefore, the single supply op-mp can be used as a dual supply op-amp as well. 4) Power dissipation (Pd) Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to the rise in chip temperature, including reduced current capability. Therefore, please take into consideration the power dissipation (Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating curves for more information. 5) Short-circuit between pins and erroneous mounting Incorrect mounting may damage the IC. In addition, the presence of foreign substances between the outputs, the output and the power supply, or the output and GND may result in IC destruction. 6) Operation in a strong electromagnetic field Operation in a strong electromagnetic field may cause malfunctions. 7) Radiation This IC is not designed to withstand radiation. 8) IC handing Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuation of the electrical characteristics due to piezoelectric (piezo) effects. 9) IC operation The output stage of the IC is configured using Class C push-pull circuits. Therefore, when the load resistor is connected to the middle potential of VCC and VEE, crossover distortion occurs at the changeover between discharging and charging of the output current. Connecting a resistor between the output terminal and GND, and increasing the bias current for Class A operation will suppress crossover distortion. 10) Board inspection Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every process is recommended. In addition, when attaching and detaching the jig during the inspection phase, ensure that the power is turned OFF before inspection and removal. Furthermore, please take measures against ESD in the assembly process as well as during transportation and storage. 11) Output capacitor Discharge of the external output capacitor to VCC is possible via internal parasitic elements when VCC is shorted to VEE, causing damage to the internal circuitry due to thermal stress. Therefore, when using this IC in circuits where oscillation due to output capacitive load does not occur, such as in voltage comparators, use an output capacitor with a capacitance less than 0.1μF.
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
22/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM ●Ordering part number
Technical Note
B
A
2
9
0
4
F
V
-
E
2
Part No.
Part No. 10358,10324A 2904S,2904 2904H,3404 B902S,2902
Package F: SOP8 SOP14 FV: SSOP-B8 SSOP-B14 FVM: MSOP8 KN:VQFN16
Packaging and forming specification E2: Embossed tape and reel
(SOP8/SOP14/SSOP-B8/ SSOP-B14/VQFN16)
TR: Embossed tape and reel
(MSOP8)
SOP8
5.0±0.2 (MAX 5.35 include BURR)
8 7 6 5
+6° 4° −4°
Tape Quantity
0.9±0.15 0.3MIN
Embossed carrier tape 2500pcs E2
The direction is the 1pin of product is at the upper left when you hold
6.2±0.3
4.4±0.2
Direction of feed
( reel on the left hand and you pull out the tape on the right hand
)
12
3
4
0.595
1.5±0.1
+0.1 0.17 -0.05 S
0.11
1.27 0.42±0.1
1pin
(Unit : mm)
Direction of feed
Reel
∗ Order quantity needs to be multiple of the minimum quantity.
SOP14
8.7 ± 0.2 (MAX 9.05 include BURR)
14 8
Tape Quantity Direction of feed
0.3MIN
Embossed carrier tape 2500pcs E2
The direction is the 1pin of product is at the upper left when you hold
4.4 ± 0.2
6.2 ± 0.3
( reel on the left hand and you pull out the tape on the right hand
)
1
7
0.15 ± 0.1
1.5 ± 0.1
0.11
1.27
0.4 ± 0.1
0.1
1pin
(Unit : mm)
Direction of feed
Reel
∗ Order quantity needs to be multiple of the minimum quantity.
SSOP-B8
3.0 ± 0.2 (MAX 3.35 include BURR)
876 5
Tape Quantity
0.3MIN
Embossed carrier tape 2500pcs E2
The direction is the 1pin of product is at the upper left when you hold
6.4 ± 0.3
4.4 ± 0.2
Direction of feed
( reel on the left hand and you pull out the tape on the right hand
)
1234
1.15 ± 0.1
0.15 ± 0.1 S 0.1 +0.06 0.22 -0.04 0.08
M
0.1
(0.52)
0.65
1pin
(Unit : mm)
Direction of feed
Reel
∗ Order quantity needs to be multiple of the minimum quantity.
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
23/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
SSOP-B14
5.0 ± 0.2
14 8
Tape Quantity
0.3Min.
Embossed carrier tape 2500pcs E2
The direction is the 1pin of product is at the upper left when you hold
6.4 ± 0.3
4.4 ± 0.2
Direction of feed
( reel on the left hand and you pull out the tape on the right hand
)
1
7
0.15 ± 0.1
1.15 ± 0.1
0.10
0.65
0.1
0.22 ± 0.1
1pin
(Unit : mm)
Direction of feed
Reel
∗ Order quantity needs to be multiple of the minimum quantity.
MSOP8
2.9±0.1 (MAX 3.25 include BURR)
8765
Tape
0.29±0.15 0.6±0.2
+6° 4° −4°
Embossed carrier tape 3000pcs TR
The direction is the 1pin of product is at the upper right when you hold
Quantity Direction of feed
4.0±0.2
2.8±0.1
( reel on the left hand and you pull out the tape on the right hand
1pin
)
1 234
1PIN MARK 0.475 S +0.05 0.22 –0.04 0.08 S 0.65
+0.05 0.145 –0.03
0.9MAX 0.75±0.05
0.08±0.05
Direction of feed
(Unit : mm)
Reel
∗ Order quantity needs to be multiple of the minimum quantity.
VQFN16
4.2±0.1 (1.35) 4.0±0.1
12 9 8 5 1 4
Tape Quantity Direction of feed
0.05
M
Embossed carrier tape (with dry pack) 2500pcs E2
The direction is the 1pin of product is at the upper left when you hold
4.2±0.1
4.0±0.1
13 16
0.22±0.05
( reel on the left hand and you pull out the tape on the right hand
)
0.22±0.05
+0.03 0.02 −0.02
0.5 0.05
(0
.2 2
)
0.95MAX
) .5
Notice : Do not use the dotted line area for soldering
+0.1 0.6 −0.3
(0
1pin Reel
Direction of feed
3(0 5 .3 )
(Unit : mm)
∗ Order quantity needs to be multiple of the minimum quantity.
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
24/24
2009.05 - Rev.A
Notice
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.
R0039A