0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BA2904SFV

BA2904SFV

  • 厂商:

    ROHM(罗姆)

  • 封装:

  • 描述:

    BA2904SFV - Ground Sense Operational Amplifiers - Rohm

  • 数据手册
  • 价格&库存
BA2904SFV 数据手册
Operational Amplifiers / Comparators Ground Sense Operational Amplifiers BA10358F/FV,BA10324AF/FV,BA2904S F/FV/FVM,BA2904F/FV/FVM BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM No.11049EBT15 ●Description General-purpose BA10358/BA10324A family and high-reliability BA2904 /BA2902 family integrate two or four independent Op-Amps and phase compensation capacitors on a single chip and have some features of high-gain, low power consumption, and operating voltage range of 3[V] to 32[V] (single power supply ). BA3404 family is realized high speed operation and reduces the crossover distortions that compare with BA10358 family. General purpose Dual Quad High-reliability Dual Quad Dual BA10358F/FV BA10324A F/FV BA2904S F/FV/FVM:105℃ guaranteed BA2904F/FV/FVM:125℃ guaranteed BA2902S F/FV/KN:105℃ guaranteed BA2902F/FV/KN:125℃ guaranteed BA3404F/FVM ●Characteristics 1) Operable with a single power supply 2) Wide operating supply voltage +3.0[V]~+32.0[V]( single supply) (BA10358/BA10324A/BA2904/BA2902 family) +4.0[V]~+36.0[V]( single supply) (BA3404 family) 3) Standard Op-Amp Pin-assignments 4) Input and output are operable GND sense 5) Internal phase compensation type 6) Low supply current 7) High open loop voltage gain 8) Internal ESD protection Human body model (HBM) ±5000[V](Typ.)(BA2904/BA2902/BA3404 family) 9) Gold PAD (BA2904/BA2902/BA3404 family) 10) Wide temperature range -40[℃]~+85[℃] (BA10358/BA10324/BA3404 family) -40[℃]~+105[℃] (BA2904S/BA2902S family) -40[℃]~+125[℃] (BA2904/BA2902 family) ●Pin Assignment OUT1 1 2 3 4 5 6 7 + +CH3 14 13 12 11 10 9 8 OUT4 -IN4 +IN4 VEE +IN3 -IN3 OUT3 +IN1 1 VCC 2 NC 3 -IN1 16 OUT1 OUT4 -IN4 15 14 13 CH4 + OUT1 1 -IN1 2 +IN1 3 VEE 4 -+ +CH2 CH1 8 7 6 VCC OUT2 -IN2 -IN1 +IN1 VCC +IN2 -IN2 OUT2 CH1 -+ CH4 +- CH1 + 12 +IN4 11 VEE 10 NC 9 8 + + CH2 CH3 - +IN2 4 5 - +IN3 5 +IN2 CH2 6 7 -IN2 OUT2 OUT3 -IN3 SOP8 BA10358F BA2904SF BA2904F BA3404F www.rohm.com SSOP-B8 BA10358FV BA2904SFV BA2904FV MSOP8 BA2904SFVM BA2904FVM BA3404FVM SOP14 BA10324AF BA2902SF BA2902F SSOP-B14 BA10324AFV BA2902SFV BA2902FV VQFN16 BA2902SKN BA2902KN © 2011 ROHM Co., Ltd. All rights reserved. 1/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM ●Absolute Maximum Ratings (Ta=25[℃]) ○BA10358 family,BA10324A family Parameter Supply Voltage Differential Input Voltage (*1) Technical Note Symbol VCC-VEE Vid Vicm Topr Tstg Tjmax Ratings BA10358 family +32 VCC-VEE (VEE-0.3)~VCC -40~+85 -55~+125 +125 BA10324A family Unit V V V ℃ ℃ ℃ Input Common-mode Voltage Range Operating Temperature Range Storage Temperature Range Maximum Junction Temperature Note: Absolute maximum rating item indicates the condition which must not be exceeded. Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics. (*1) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then input terminal voltage is set to more than VEE. ●Electric Characteristics ○BA10358 family (Unless otherwise specified VCC=+5[V], VEE=0[V], Ta=25[℃]) Limits T emperature BA10358F/FV Parameter Symbol Range Min. Typ. Max. Input Offset Voltage (*2) Input Offset Current (*2) Input Bias Current (*3) Supply Current Large Signal Voltage Gain Input Common-mode Voltage Range Common-mode Rejection Ratio Power Supply Rejection Ratio Output Source Current Output Sink Current Output Voltage Range Channel Separation (*2) (*3) Unit Condition Vio Iio Ib ICC AV Vicm CMRR PSRR IOH IOL Vo CS 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25 0 65 65 10 10 0 - 2 5 45 0.7 100 80 100 20 20 120 7 50 250 1.2 VCC-1.5 VCC-1.5 - mV nA nA mA V/mV V dB dB mA mA V dB VOUT=1.4[V] VOUT=1.4[V] VOUT=1.4[V] RL=∞ All Op-Amps RL≧2[kΩ],VCC=15[V], VOUT=1.4~11.4[V] (VCC-VEE)=5[V], VOUT=VEE+1.4[V] VOUT=1.4[V] VCC=5~30[V] VIN+=1[V],VIN-=0[V], VOUT=0[V], 1CH is short circuit VIN+=0[V],VIN-=1[V], VOUT=5[V], 1CH is short circuit RL=2[kΩ] f=1[kHz], input referred Absolute value Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 2/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM Technical Note ○BA10324A family (Unless otherwise specified VCC=+5[V], VEE=0[V], Ta=25[℃]) Limits T emperature Parameter Symbol BA10324A F/FV Range Min. Typ. Max. Input Offset Voltage (*4) Input Offset Current (*4) Input Bias Current (*5) Supply Current High Level Output Voltage Low Level Output Voltage Large Signal Voltage Gain Input Common-mode Voltage range Common-mode Rejection Ratio Power Supply Rejection Ratio Output Source Current Output Sink Current Channel Separation (*4) (*5) Unit Condition Vio Iio Ib ICC VOH VOL AV Vicm CMRR PSRR IOH IOL CS 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 3.5 25 0 65 65 20 10 - 2 5 20 0.6 100 75 100 35 20 120 7 50 250 2 250 VCC-1.5 - mV nA nA mA V mV V/mV V dB dB mA mA dB VOUT=1.4[V] VOUT=1.4[V] VOUT=1.4[V] RL=∞ All Op-Amps RL=2[kΩ] RL=∞ All Op-Amps RL≧2[kΩ],VCC=15[V], VOUT=1.4~11.4[V] (VCC-VEE)=5[V], VOUT=VEE+1.4[V] VOUT=1.4[V] VCC=5~30[V] VIN+=1[V],VIN-=0[V], VOUT=0[V], 1CH is short circuit VIN+=0[V],VIN-=1[V], VOUT=5[V] 1CH is short circuit f=1[kHz], input referred bsolute value Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 3/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM ●Absolute Maximum Ratings (Ta=25[℃]) ○BA2904/BA2902 family Parameter Supply Voltage Differential Input Voltage (*6) Technical Note Symbol VCC-VEE Vid Vicm Topr Tstg Tjmax Ratings BA2904S F/FV/FVM BA2904F/FV/FVM BA2902S F/FV/KN BA2902F/FV/KN +32 32 (VEE-0.3)~(VEE+32) -40~+105 -55~+150 +150 -40~+125 Unit V V V ℃ ℃ ℃ Input Common-mode Voltage Range Operating Temperature Range Storage Temperature Range Maximum Junction Temperature Note:Absolute maximum rating item indicates the condition which must not be exceeded. Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics. (*6) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then input terminal voltage is set to more than VEE. ●Electric Characteristics ○BA2904 family (Unless otherwise specified VCC=+5[V], VEE=0[V]) Parameter Symbol T emperature Range 25℃ Full range 25℃ Full range 25℃ Full range 25℃ Full range 25℃ Full range Full range 25℃ 25℃ 25℃ 25℃ 25℃ Full range 25℃ Full range 25℃ 25℃ 25℃ 25℃ 25℃ Limits BA2904S F/FV/FVM BA2904F/FV/FVM Min. Typ. Max. 2 7 10 3.5 27 25 0 50 65 20 10 10 2 12 ±7 2 ±10 20 0.7 28 5 100 80 100 30 20 40 120 0.2 0.5 40 50 200 250 250 1.2 2 20 VCC-1.5 Unit Condition VOUT=1.4[V] VCC=5~30[V],VOUT=1.4[V] Input Offset Voltage (*7) (*8) Input Offset Voltage Drift Input Offset Current (*7) (*8) Input Offset Current Drift Input Bias Current (*7) (*8) Supply Current (*8) High Level Output Voltage (*8) Low Level Output Voltage (*8) Large Signal Voltage Gain Input Common-mode Voltage Range Common-mode Rejection Ratio Power Supply Rejection Ratio Output Source Current (*8) (*9) Vio △Vio/△T Iio △lio/△T Ib ICC VOH VOL AV Vicm CMRR PSRR IOH IOL Isink mV μV/℃ VOUT=1.4[V] nA VOUT=1.4[V] pA/℃ VOUT=1.4[V] nA mA V mV V/mV V dB dB mA mA μA dB V/μs MHz nV/ Hz VOUT=1.4[V] RL=∞All Op-Amps RL=2[kΩ] VCC=30[V],RL=10[kΩ] RL=∞ All Op-Amps RL≧2[kΩ],VCC=15[V] VOUT=1.4~11.4[V] (VCC-VEE)=5[V], VOUT=VEE+1.4[V] VOUT=1.4[V] VCC=5~30[V] VIN+=1[V],VIN-=0[V] VOUT=0[V] 1CH is short circuit VIN+=0[V],VIN-=1[V] VOUT=5[V] 1CH is short circuit VIN+=0[V],VIN-=1[V] VOUT=200[mV] f=1[kHz], input referred VCC=15[V],AV=0[dB], RL=2[kΩ],CL=100[pF] VCC=30[V],RL=2[kΩ], CL=100[pF] VCC=15[V],VEE=-15[V], RS=100[Ω],Vi=0[V],f=1[kHz] Output Sink Current (*8) (*9) Channel Separation Slew rate Maximum frequency Input referred noise voltage (*7) (*8) (*9) CS SR ft Vn Absolute value BA2904S family:Full range -40~+105℃ BA2904 family:Full range -40~+125℃ Under high temperatures, please consider the power dissipation when selecting the output current. When the output terminal is continuously shorted the output current reduces the internal temperature by flushing. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 4/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM Technical Note ○BA2902 family (Unless otherwise specified VCC=+5[V], VEE=0[V]) Parameter Input Offset Voltage ( *10) (*11) Input Offset Voltage Drift Input Offset Current (*10) (*11) Input Offset Current Drift Input Bias Current (*10) (*11) Supply Current (*10) High Level Output Voltage (*11) Low Level Output Voltage (*11) Large Signal Voltage Gain Input Common-mode Voltage Range Common-mode Rejection Ratio Power Supply Rejection Ratio Output SourceCurrent (*11) (*12) Symbol T emperature Range Limits BA2902S F/FV/KN BA2902F/FV/KN Min. Typ. Max. 2 7 10 ±7 2 50 200 3.5 27 25 0 50 65 20 10 10 2 12 ±10 20 0.7 28 5 100 80 100 30 20 40 120 0.2 0.5 40 250 250 2 3 20 VCC-1. 5 Unit Condition 25℃ Full range △Vio/△T 25℃ Iio Full range Vio △lio/△T Ib ICC VOH VOL AV Vicm CMRR PSRR IOH IOL Isink 25℃ Full range 25℃ Full range 25℃ Full range Full range 25℃ 25℃ 25℃ 25℃ 25℃ Full range 25℃ Full range 25℃ 25℃ 25℃ 25℃ 25℃ VOUT=1.4[V] VCC=5~30[V],VOUT=1.4[V] μV/℃ VOUT=1.4[V] mV nA VOUT=1.4[V] pA/℃ VOUT=1.4[V] nA mA V mV V/mV V dB dB mA mA μA dB V/μs MHz nV/ Hz VOUT=1.4[V] RL=∞ All Op-Amps RL=2[kΩ] VCC=30[V],RL=10[kΩ] RL=∞All Op-Amps RL≧2[kΩ],VCC=15[V] VOUT=1.4~11.4[V] (VCC-VEE)=5[V], VOUT=VEE+1.4[V] VOUT=1.4[V] VCC=5~30[V] VIN+=1[V],VIN-=0[V] VOUT=0[V] 1CH is short circuit VIN+=0[V],VIN-=1[V] VOUT=5[V] 1CH is short circuit VIN+=0[V],VIN-=1[V] VOUT=200[mV] f=1[kHz], input referred VCC=15[V],AV=0[dB], RL=2[kΩ],CL=100[pF] VCC=30[V],RL=2[kΩ], CL=100[pF] VCC=15[V],VEE=-15[V], RS=100[Ω],Vi=0[V],f=1[kHz] Output Sink Current (*11) (*12) Channel Separation Slew rate Maximum frequency Input referred noise voltage CS SR ft Vn (*10) Absolute value (*11) BA2902S family:Full range -40~+105℃ ,BA2902 family:Full range -40~+125℃ (*12) Under high temperatures, please consider the power dissipation when selecting the output current. When the output terminal is continuously shorted the output current reduces the internal temperature by flushing. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 5/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM ●Absolute Maximum Ratings (Ta=25[℃]) ○BA3404 family Parameter Supply Voltage Differential Input Voltage (*13) Input Common-mode Voltage Range Operating Temperature Range Storage Temperature Range Maximum Junction Temperature Symbol VCC-VEE Vid Vicm Topr Tstg Tjmax Ratings +36 36 (VEE-0.3)~(VEE+36) -40~+85 -55~+150 +150 Technical Note Unit V V V ℃ ℃ ℃ Note:Absolute maximum rating item indicates the condition which must not be exceeded. Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics. (*13) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then input terminal voltage is set to more than VEE. ●Electric Characteristics ○BA3404 family (Unless otherwise specified VCC=+15[V], VEE=-15[V], Ta=25[℃]) Limits T emperature Parameter Symbol BA3404 family Range Min. Typ. Max. Input Offset Voltage (*14) Input Offset Current (*14) Input Bias Current (*14) Large Signal Voltage Gain Maximum Output Voltage Input Common-mode Voltage Range Common-mode Rejection Ratio Power Supply Rejection Ratio Supply Current Output Source Current Output Sink Current Slew rate Unity Gain Frequency Total Harmonic Distortion (*14) Absolute value Unit Condition Vio Iio Ib AV VOM Vicm CMRR PSRR ICC Isource Isink SR ft THD 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 88 ±13 -15 70 80 20 10 - 2 5 70 100 ±14 90 94 2.0 30 20 1.2 1.2 0.1 5 50 200 13 3.5 - mV nA nA dB V V dB dB mA mA mA V/μs MHz % VOUT=0[V], Vicm=0[V] VOUT=0[V], Vicm=0[V] VOUT=0[V], Vicm=0[V] RL≧2[kΩ], VOUT=±10[V],Vicm=0[V] RL≧2[kΩ] VOUT=0[V] VOUT=0[V], Vicm=-15[V]~+13[V] Ri≦10[kΩ], VCC=+4[V]~+30[V] RL=∞ All Op-Amps, VIN+=0[V] VIN+=1[V],VIN-=0[V], VOUT=+12[V], Output of one channel only VIN+=0[V], VIN-=1[V], VOUT= -12[V], Output of one channel only AV=0[dB], RL=2[kΩ],CL=100[pF] RL=2[kΩ] VOUT=10[Vp-p],f=20[kHz], AV=0[dB],RL=2[kΩ] www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 6/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM ●Reference Data (The data is ability value of sample, it is not guaranteed. ) ○BA10358 family 1000 POWER DISSIPATION [mW] . BA10358 family Technical Note 1.0 SUPPLY CURRENT [mA]   . BA10358 family 1 BA10358 family SUPPLY CURRENT [mA] 800 BA10358F 0.8 25℃ 0.8 32V 600 0.6 0.6 400 BA10358FV 0.4 85℃ -40℃ 0.4 5V 200 0.2 0.2 3V 0 0 25 50 75 85 0.0 100 125 0 5 10 15 20 25 30 35 0 -50 AMBIENT TEMPERTURE [℃] . SUPPLY VOLTAGE [V] Fig. 1 Derating Curve Fig. 2 Supply Current - Supply Voltage 5 BA10358 family Fig. 3 Supply Current - Ambient Temperature 40 OUTPUT SOURCE CURRENT [mA] BA10358 family -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100 35 30 OUTPUT VOLTAGE [V] BA10358 family OUTPUT VOLTAGE [V] 25 20 15 10 85℃ 4 30 -40℃ 3 20 25℃ 25℃ 2 -40℃ 5 0 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35 1 10 85℃ 0 -50 0 Fig. 4 Maximum Output Voltage - Supply Voltage ((RL=10[kΩ])) 40 OUTPUT SOURCE CURRENT [mA] BA10358 family -25 0 25 50 75 AMBIENT TEMPERATURE[℃] 100 0 1 2 3 4 OUTPUT VOLTAGE [V] 5 Fig. 5 Maximum Output Voltage - Ambient Temperature (VCC=5[V],RL=2[kΩ]) 100 OUTPUT SINK CURRENT [mA] BA10358 family Fig. 6 Output Source Current - Output Voltage (VCC=5[V]) 40 OUTPUT SINK CURRENT [mA] BA10358 family 30 10 85℃ 15V 30 15V 5V 1 20 5V 3V 20 3V 0.1 25℃ 10 0.01 10 -40℃ 0 -50 0.001 -25 0 25 50 75 100 0 0.4 0.8 1.2 1.6 2 0 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [℃] OUTPUT VOLTAGE [V] Fig. 7 Output Source Current - Ambient Temperature (VOUT=0[V]) 60 LOW LEVEL SINK CURRENT [μA] 50 40 25℃ BA10358 family Fig. 8 Output Sink Current - Output Voltage (VCC=5[V]) 60 50 32V BA10358 family Fig. 9 Output Sink Current - Ambient Temperature (VOUT=VCC) 8 INPUT OFFSET VOLTAGE [mV] 6 4 2 -40℃ BA10358 family AMBIENT TEMPERAURE [℃] LOW LEVEL SINK CURRENT [μA] . 40 30 20 10 0 -50 3V 30 20 10 0 0 5 10 15 20 25 30 35 SUPPLY VOLTAGE [V] 85℃ -40℃ 5V 0 -2 -4 25℃ -6 -8 85℃ -25 0 25 50 75 100 0 5 10 15 20 25 30 35 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Fig. 10 Low Level Sink Current - Supply Voltage (VOUT=0.2[V]) Fig. 11 Low Level Sink Current - Ambient Temperature (VOUT=0.2[V]) Fig. 12 Input Offset Voltage - Supply Voltage (Vicm=0[V], VOUT=1.4[V]) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 7/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM ○BA10358 family 8 INPUT OFFSET VOLTAGE [mV] 6 4 2 0 -2 -4 32V 5V 3V BA10358 family Technical Note 50 BA10358 family 50 BA10358 family . INPUT BIAS CURRENT [nA] 85℃ INPUT BIAS CURRENT [nA] 40 40 32V 30 25℃ 30 5V 20 -40℃ 20 10 10 3V -6 -8 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [℃] 0 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35 0 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [℃] Fig. 13 Input Offset Voltage - Ambient Temperature (Vicm=0[V], VOUT=1.4[V]) BA10358 family Fig. 14 Input Bias Current - Supply Voltage (Vicm=0[V], VOUT=1.4[V]) 8 6 4 2 0 -2 -4 -6 -8 85℃ -40℃ 25℃ BA10358 family Fig. 15 Input Bias Current - Ambient Temperature (Vicm=0[V],VOUT=1.4[V]) 10 INPUT OFFSET CURRENT [nA] . BA10358 family 50 40 INPUT OFFSET VOLTAGE [mV] INPUT BIAS CURRENT [nA] . 5 -40℃ 25℃ 30 0 20 10 -5 85℃ 0 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 -10 -1 0 1 2 3 4 5 COMMON MODE INPUT VOLTAGE [V] 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35 Fig. 16 Input Bias Current - Ambient Temperature (VCC=30[V],Vicm=28[V],VOUT=1.4[V])     Fig. 17 Input Offset Voltage - Common Mode Input Voltage (VCC=5[V])     Fig. 18 Input Offset Current - Supply Voltage (Vicm=0[V],VOUT=1.4[V]) 140 BA10358 family . 10 BA10358 family 140 LARGE SIGNAL VOLTAGE GAIN [dB] 130 120 110 100 90 80 70 60 85℃ 25℃ -40℃ BA10358 family . LARGE SIGNAL VOLTAGE GAIN [dB] INPUT OFFSET CURRENT [nA] 130 120 110 100 90 80 70 60 15V 5V 5 3V 0 -5 5V 32V - 10 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [°C] 2 4 6 8 10 12 14 16 18 -50 -25 0 25 50 75 100 SUPPLY VOLTAGE[V] AMBIENT TEMPERATURE [℃] Fig. 19 Input Offset Current - Ambient Temperature (Vicm=0[V],VOUT=1.4[V]) BA10358 family Fig. 20 Large Signal Voltage Gain - Supply Voltage (RL=2[kΩ]) . BA10358 family Fig. 21 Large Signal Voltage Gain - Ambient Temperature (RL=2[kΩ]) 140 130 120 110 100 90 80 70 60 -50 BA10358 family COMMON MODE REJECTION RATIO [dB] . .. COMMON MODE REJECTION RATIO [dB] 120 120 32V 5V 100 -40℃ 25℃ 100 80 85℃ 80 60 60 3V 40 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35 40 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [℃] POWER SUPPLY REJECTION RATIO [dB] . 140 140 -25 0 25 50 75 100 AMBIENT TEMPERATURE [℃] Fig. 22 Common Mode Rejection Ratio - Supply Voltage Fig. 23 Common Mode Rejection Ratio - Ambient Temperature Fig. 24 Power Supply Rejection Ratio - Ambient Temperature www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 8/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM ○BA10324A family 1000 POWER DISSIPATION [mW] . BA10324A family Technical Note 2.0 BA10324A family 2 BA10324A family BA10324AFV  . SUPPLY CURRENT [mA] SUPPLY CURRENT [mA] 800 1.6 25℃ 1.6 32V 600 1.2 1.2 400 BA10324AF 0.8 -40℃ 85℃ 0.8 5V 200 0.4 0.4 3V 0 0 25 50 75 85 0.0 100 125 0 5 10 15 20 25 30 35 0 -50 -25 0 25 50 75 100 AMBIENT TEMPERTURE [℃] . SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig. 25 Derating Curve BA10324A family Fig. 26 Supply Current - Supply Voltage BA10324A family Fig. 27 Supply Current - Ambient Temperature BA10324A family -40℃ 35 30 OUTPUT VOLTAGE [V] 25 20 15 5 50 OUTPUT SOURCE CURRENT [mA] 4 OUTPUT VOLTAGE [V] 85℃ 40 3 30 25℃ 2 20 85℃ 25℃ 10 5 0 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35 -40℃ 1 10 0 -50 -25 0 25 50 75 AMBIENT TEMPERATURE[℃] 100 0 0 1 2 3 4 OUTPUT VOLTAGE [V] 5 Fig. 28 Maximum Output Voltage - Supply Voltage (RL=10[kΩ]) 50 OUTPUT SOURCE CURRENT [mA] 15V BA10324A family Fig. 29 Maximum Output Voltage - Ambient Temperature (VCC=5[V],RL=2[kΩ]) Fig. 30 Output Source Current - Output Voltage (VCC=5[V]) 40 OUTPUT SINK CURRENT [mA] BA10324A family 100 OUTPUT SINK CURRENT [mA] BA10324A family 40 10 30 15V 30 3V 5V 1 85℃ 20 3V 5V 20 0.1 25℃ 10 0.01 -40℃ 10 0 -50 -25 0 25 50 75 100 0.001 0.0 0.4 0.8 1.2 1.6 2.0 0 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [℃] OUTPUT VOLTAGE [V] AMBIENT TEMPERAURE [℃] Fig. 31 Output Source Current - Ambient Temperature (VOUT=0[V]) 60 LOW LEVEL SINK CURRENT [μA] 50 25℃ BA10324A family     Fig. 32 Output Sink Current - Output Voltage (VCC=5[V]) . 60 50 40 5V 32V BA10324A family Fig. 33 Output Sink Current - Ambient Temperature (VOUT=VCC) 8 INPUT OFFSET VOLTAGE [mV] 6 4 2 0 -2 -4 -6 -8 25℃ -40℃ 85℃ BA10324A family 40 30 -40℃ 85℃ LOW LEVEL SINK CURRENT [μA] 30 20 3V 20 10 0 0 5 10 15 20 25 30 35 SUPPLY VOLTAGE [V] 10 0 -50 -25 0 25 50 75 100 0 5 10 15 20 25 30 35 Fig. 34 Low Level Sink Current - Supply Voltage (VOUT=0.2[V]) Fig. 35 Low Level Sink Current - Ambient Temperature (VOUT=0.2[V]) AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Fig. 36 Input Offset Voltage - Supply Voltage (Vicm=0[V], VOUT=1.4[V]) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 9/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM ○BA10324A family     Technical Note 8 INPUT OFFSET VOLTAGE [mV] 6 BA10324A family 50 BA10324A family 50 BA10324A family . INPUT BIAS CURRENT [nA] 4 2 0 -2 -4 -6 -8 -50 32V 30 INPUT BIAS CURRENT [nA] 40 40 85℃ 30 25℃ 32V 3V 5V 20 20 5V 10 -40℃ 10 3V 0 0 0 5 10 15 20 25 30 SUPPLY VOLTAGE [V] 35 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100 -50 Fig. 37 Input Offset Voltage - Ambient Temperature (Vicm=0[V], VOUT=1.4[V]) 50 BA10324A family     Fig. 38 Input Bias Current - Supply Voltage (Vicm=0[V], VOUT=1.4[V]) 8 6 4 2 0 -2 -4 -6 -8 25℃ 85℃ -40℃ BA10324A family     -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100 Fig. 39 Input Bias Current - Ambient Temperature (Vicm=0[V],VOUT=1.4[V]) 10 BA10324A family . INPUT OFFSET VOLTAGE [mV] 40 INPUT OFFSET CURRENT [nA] INPUT BIAS CURRENT [nA] . 5 85℃ 30 0 25℃ 20 -40℃ 10 -5 0 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 -10 -1 0 1 2 3 4 5 COMMON MODE INPUT VOLTAGE [V] 0 5 Fig. 40 Input Bias Current - Ambient Temperature (VCC=30[V],Vicm=28[V],VOUT=1.4[V])     Fig. 41 Input Offset Voltage - Common Mode Input Voltage (VCC=5[V]) 140 LARGE SIGNAL VOLTAGE GAIN [dB] 130 120 110 100 90 25℃ -40℃ BA10324A family Fig. 42 Input Offset Current - Supply Voltage (Vicm=0[V],VOUT=1.4[V]) 140 LARGE SIGNAL VOLTAGE GAIN [dB] 130 120 110 100 90 5V 15V BA10324A family 10 15 20 25 SUPPLY VOLTAGE [V] 30 35 INPUT OFFSET CURRENT [nA] . 10 BA10324A family 5 5V 32V 0 3V -5 80 70 60 85℃ 80 70 60 - 10 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [°C] 4 6 Fig. 43 Input Offset Current - Ambient Temperature     (Vicm=0[V],VOUT=1.4[V]) Fig. 44 Large Signal Voltage Gain - Supply Voltage (RL=2[kΩ])     8 10 12 14 SUPPLY VOLTAGE [V] 16 -50 -25 0 25 50 75 100 Fig. 45 Large Signal Voltage Gain - Ambient Temperature (RL=2[kΩ]) POWER SUPPLY REJECTION RATIO [dB] . 140 130 120 110 100 90 80 70 60 -50 BA10324A family AMBIENT TEMPERATURE [℃] . COMMON MODE REJECTION RATIO [dB] .. 120 COMMON MODE REJECTION RATIO [dB] 140 BA10324A family . 140 BA10324A family 120 32V 5V 100 -40℃ 25℃ 100 80 85℃ 80 60 60 3V 40 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35 40 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [℃] -25 0 25 50 75 100 AMBIENT TEMPERATURE [℃] Fig. 46 Common Mode Rejection Ratio Supply Voltage www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. - Fig. 47 Common Mode Rejection Ratio - Ambient Temperature Fig. 48 Power Supply Rejection Ratio - Ambient Temperature 10/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM ○BA2904 family 1000 POWER DISSIPATION [mA] POWER DISSIPATION [mA] BA2904F BA2904FV BA2904 family Technical Note 1.0 BA2904 family 1.0 SUPPLY CURRENT [mA] BA2904 family 600 BA2904FVM SUPPLY CURRENT [mA] 800 0.8 25℃ -40℃ 0.8 0.6 0.4 0.2 0.0 5V 3V 32V 0.6 400 BA2904SF 0.4 105℃ 125℃ 200 BA2904SFV BA2904SFVM 0.2 0 0 25 50 75 105 100 125 150 0.0 0 10 20 30 SUPPLY VOLTAGE [V] 40 -50 -25 AMBIENT TEMPERATURE [℃] 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 49 Derating Curve 40 MAXIMUM OUTPUT VOLTAGE [V] BA2904 family Fig. 50 Supply Current - Supply Voltage 5 MAXIMUM OUTPUT VOLTAGE [V] BA2904 family Fig. 51 Supply Current - Ambient Temperature 50 OUTPUT SOURCE CURRENT [mA] -40℃ BA2904 family 30 125℃ -40℃ 4 3 40 25℃ 30 105℃ 20 25℃ 2 1 0 20 10 105℃ 10 125℃ 0 0 10 20 30 40 SUPPLY VOLTAGE [V] 0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] 0 1 2 3 4 OUTPUT VOLTAGE [V] 5 Fig. 52 Maximum Output Voltage - Supply Voltage (RL=10[kΩ]) Fig. 53 Maximum Output Voltage - Ambient Temperature (VCC=5[V],RL=2[kΩ]) Fig. 54 Output Source Current - Output Voltage (VCC=5[V]) 50 OUTPUT SOURCE CURRENT [mA] BA2904 family 100 105℃ BA2904 family 30 15V BA2904 family 40 3V 5V 10 125℃ -40℃ OUTPUT SINK CURRENT [mA] OUTPUT SINK CURRENT [mA] 20 5V 30 15V 1 3V 20 0.1 25℃ 10 10 0.01 0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] 0.001 0 0.4 0.8 1.2 1.6 OUTPUT VOLTAGE [V] 2 0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 55 Output Source Current - Ambient Temperature (VOUT=0[V]) 80 LOW LEVEL SINK CURRENT [ μ A] BA2904 family -40℃ Fig. 56 Output Sink Current - Output Voltage (VCC=5[V]) 80 LOW LEVEL SINK CURRENT [μ A] 70 60 50 40 30 20 10 0 3V 5V 32V BA2904 family Fig. 57 Output Sink Current - Ambient Temperature (VOUT=VCC) 8 INPUT OFFSET VOLTAGE [mV] 6 4 2 0 -2 105℃ 125℃ -40℃ 25℃ BA2904 family 70 60 50 40 30 20 10 0 0 5 25℃ 105℃ 125℃ -4 -6 -8 10 15 20 25 SUPPLY VOLTAGE [V] 30 35 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35 Fig. 58 Low Level Sink Current - Supply Voltage (VOUT=0.2[V]) Fig. 59 Fig. 60 Low Level Sink Current - Ambient Temperature Input Offset Voltage - Supply Voltage (VOUT=0.2[V]) (Vicm=0[V], VOUT=1.4[V]) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 11/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM ○BA2904 family 8 INPUT OFFSET VOLTAGE [mV] 6 INPUT BIAS CURRENT [nA] 4 3V BA2904 family Technical Note 50 BA2904 family 50 BA2904 family 40 -40℃ 25℃ INPUT BIAS CURRENT [nA] 40 32V 2 0 -2 -4 -6 -8 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] 5V 32V 30 30 20 20 3V 5V 10 125℃ 105℃ 10 0 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35 0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 61 Input Offset Voltage - Ambient Temperature (Vicm=0[V], VOUT=1.4[V]) BA2904 family Fig. 62 Input Bias Current - Supply Voltage (Vicm=0[V], VOUT=1.4[V]) 8 INPUT OFFSET VOLTAGE [mV] 6 4 25℃ -40℃ BA2904 family Fig. 63 Input Bias Current - Ambient Temperature (Vicm=0[V],VOUT=1.4[V]) BA2904 family 50 40 30 20 10 0 10 INPUT OFFSET CURRENT [nA] INPUT BIAS CURRENT[nA] 105℃ 125℃ 5 -40℃ 25℃ 2 0 -2 -4 -6 -8 0 105℃ 125℃ -5 -10 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] -10 -1 0 1 2 3 [V] INPUT VOLTAGE [Vin] 4 5 0 5 10 15 20 25 30 35 SUPPLY VOLTAGE [V] Fig. 64 Input Bias Current - Ambient Temperature (VCC=30[V],Vicm=28[V],VOUT=1.4[V]) 10 INPUT OFFSET CURRENT [nA] BA2904 family Fig. 65 Input Offset Voltage - Common Mode Input Voltage (VCC=5[V]) 140 LARGE SIGNAL VOLTAGE GAIN [dB] 130 -40℃ 25℃ BA2904 family Fig. 66 Input Offset Current - Supply Voltage (Vicm=0[V],VOUT=1.4[V]) BA2904 family 140 LARGE SIGNAL VOLTAGE GAIN [dB] 130 120 110 100 90 80 70 60 4 6 8 10 12 SUPPLY VOLTAGE [V] 14 16 5V 5 3V 120 110 100 90 80 70 60 105℃ 125℃ 15V 0 5V 32V -5 -10 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 67 Input Offset Current - Ambient Temperature (Vicm=0[V],VOUT=1.4[V]) 140 BA2904 family Fig. 68 Large Signal Voltage Gain - Supply Voltage (RL=2[kΩ]) 140 36V 32V BA2904 family Fig. 69 Large Signal Voltage Gain - Ambient Temperature (RL=2[kΩ]) 140 POWER SUPPLY REJECTION RATIO [dB] 130 120 110 100 90 80 70 60 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] BA2904 family COMMON MODE REJECTION RATIO [dB] COMMON MODE REJECTION RATIO [dB] 120 -40℃ 25℃ 120 100 100 80 125℃ 105℃ 80 5V 3V 60 60 40 0 10 20 30 SUPPLY VOLTAGE [V] 40 40 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 70 Common Mode Rejection Ratio - Supply Voltage Fig. 71 Common Mode Rejection Ratio - Ambient Temperature Fig. 72 Power Supply Rejection Ratio - Ambient Temperature www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 12/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM ○BA2902 family 1000 BA2902FV BA2902 family Technical Note 1.0 2.0 0.8 1.6 0.6 1.2 0.4 0.8 105℃ 25℃ -40℃ BA2902 family 1.0 2.0 SUPPLY CURRENT [mA] BA2902 family POWER DISSIPATION [mW] BA2902KN 600 BA2902F SUPPLY CURRENT [mA] 800 0.8 1.6 0.6 1.2 0.8 0.4 0.4 0.2 0.0 0.0 5V 3V 32V 400 BA2902SFV BA2902SKN BA2902SF 200 0.2 0.4 125℃ 0 0 25 50 75 105 100 125 0.0 0.0 150 0 10 AMBIENT TEMPERTURE [℃] 20 30 SUPPLY VOLTAGE [V] 40 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 73 Derating Curve 40 MAXIMUM OUTPUT VOLTAGE [V] BA2902 family Fig. 74 Supply Current - Supply Voltage BA2902 family Fig. 75 Supply Current - Ambient Temperature 50 OUTPUT SOURCE CURRENT [mA] -40℃ BA2902 family 5 MAXIMUM OUTPUT VOLTAGE [V] 30 100℃ -40℃ 4 3 40 25℃ 30 105℃ 20 25℃ 2 1 0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] 20 125℃ 10 105℃ 10 0 0 10 20 30 40 SUPPLY VOLTAGE [V] 0 0 1 2 3 4 OUTPUT VOLTAGE [V] 5 Fig. 76 Maximum Output Voltage - Supply Voltage (RL=10[kΩ]) 50 OUTPUT SOURCE CURRENT [mA] BA2902 family Fig. 77 Fig. 78 Maximum Output Voltage - Ambient Temperature Output Source Current - Output Voltage (VCC=5[V],RL=2[kΩ]) 100 105℃ BA2902 family (VCC=5[V]) 30 15V BA2902 family 40 3V 5V 10 125℃ -40℃ OUTPUT SINK CURRENT [mA] OUTPUT SINK CURRENT [mA] 20 5V 30 15V 1 3V 20 0.1 25℃ 10 10 0.01 0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] 0.001 0 0.4 0.8 1.2 1.6 OUTPUT VOLTAGE [V] 2 0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 79 Output Source Current - Ambient Temperature (VOUT=0[V]) 80 -40℃ BA2902 family Fig. 80 Output Sink Current - Output Voltage (VCC=5[V]) BA2902 family Fig. 81 Output Sink Current - Ambient Temperature (VOUT=VCC) 8 BA2902 family 80 LOW LEVEL SINK CURRENT [μ A] INPUT OFFSET VOLTAGE [mV] 70 60 50 40 3V 5V 32V LOW LEVEL SINK CURRENT [ μ A] 70 60 50 40 30 20 10 0 0 5 25℃ 6 4 2 0 -2 -4 -6 -8 105℃ 125℃ -40℃ 25℃ 105℃ 125℃ 30 20 10 0 10 15 20 25 SUPPLY VOLTAGE [V] 30 35 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35 Fig. 82 Low Level Sink Current - Supply Voltage (VOUT=0.2[V]) Fig. 83 Low Level Sink Current - Ambient Temperature (VOUT=0.2[V]) Fig. 84 Input Offset Voltage - Supply Voltage (Vicm=0[V], VOUT=1.4[V]) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 13/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM ○BA2902 family BA2902 family Technical Note 8 INPUT OFFSET VOLTAGE [mV] 6 INPUT BIAS CURRENT [nA] 4 2 0 -2 -4 -6 -8 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] 5V 32V 3V BA2902 family BA2902 family 50 50 40 -40℃ 25℃ INPUT BIAS CURRENT [nA] 40 32V 30 30 20 20 3V 5V 10 125℃ 105℃ 10 0 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35 0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 85 Fig. 86 Input Bias Current - Supply Voltage (Vicm=0[V], VOUT=1.4[V]) 8 INPUT OFFSET VOLTAGE [mV] 6 4 25℃ -40℃ BA2902 family Fig. 87 Input Bias Current - Ambient Temperature (Vicm=0[V],VOUT=1.4[V]) 10 INPUT OFFSET CURRENT [nA] BA2902 family Input Offset Voltage - Ambient Temperature (Vicm=0[V], VOUT=1.4[V]) 50 40 30 20 10 0 BA2902 family INPUT BIAS CURRENT[nA] 105℃ 125℃ 5 -40℃ 25℃ 2 0 -2 -4 -6 -8 0 105℃ 125℃ -5 -10 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] -10 -1 0 1 2 3 [V] INPUT VOLTAGE [Vin] 4 5 0 5 10 15 20 25 30 35 SUPPLY VOLTAGE [V] Fig. 88 Fig. 89 Input Bias Current - Ambient Temperature Input Offset Voltage - Common Mode Input Voltage (VCC=30[V],Vicm=28[V],VOUT=1.4[V]) BA2902 family Fig. 90 Input Offset Current - Supply Voltage (Vicm=0[V],VOUT=1.4[V]) BA2902 family (VCC=5[V]) BA2902 family 10 LARGE SIGNAL VOLTAGE GAIN [dB] 140 130 -40℃ 25℃ 140 LARGE SIGNAL VOLTAGE GAIN [dB] 130 120 110 100 90 80 70 60 4 6 8 10 12 SUPPLY VOLTAGE [V] 14 16 5V INPUT OFFSET CURRENT [nA] 5 3V 120 110 100 90 80 70 60 105℃ 125℃ 15V 0 5V 32V -5 -10 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 91 Input Offset Current - Ambient Temperature (Vicm=0[V],VOUT=1.4[V]) BA2902 family Fig. 92 Large Signal Voltage Gain - Supply Voltage (RL=2[kΩ]) BA2902 family Fig. 93 Large Signal Voltage Gain - Ambient Temperature (RL=2[kΩ]) BA2902 family COMMON MODE REJECTION RATIO [dB] COMMON MODE REJECTION RATIO [dB] 140 140 36V 140 POWER SUPPLY REJECTION RATIO [dB] 32V 130 120 110 100 90 80 70 60 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] 120 -40℃ 25℃ 120 100 125℃ 105℃ 100 80 80 5V 3V 60 60 40 0 40 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 94 Common Mode Rejection Ratio - Supply Voltage 10 20 30 SUPPLY VOLTAGE [V] 40 Fig. 95 Common Mode Rejection Ratio - Ambient Temperature Fig. 96 Power Supply Rejection Ratio - Ambient Temperature www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 14/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM ○BA3404 family 1000 POWER DISSIPATION [mW] . BA3404 family Technical Note 4 BA3404 family 4 BA3404 family SUPPLY CURRENT [mA]   . 800 BA3404F SUPPLY CURRENT [mA] 3 25℃ 3 ±18.0V 600 2 85℃ -40℃ 2 400 BA3404FVM 200 1 1 ±2.0V ±15.0V 0 0 25 50 75 85 0 100 0 8 16 24 32 40 0 -50 AMBIENT TEMPERTURE [℃] . SUPPLY VOLTAGE [V] -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100 Fig. 97 Derating Curve BA3404 family Fig. 98 Supply Current - Supply Voltage 20 15 OUTPUT VOLTAGE [V] OUTPUT VOLTAGE [V] 10 5 0 -5 -10 -15 -20 VOL VOH BA3404 family Fig. 99 Supply Current - Ambient Temperature BA3404 family 15 10 OUTPUT VOLTAGE [V] 5 0 -5 -10 -15 0.1 VOL VOH 15 10 VOH 5 0 -5 VOL -10 - 15 0.001 10 1000 LOAD RESISTANCE [kΩ] 100000 ±0 ±4 ±8 ±12 ±16 SUPPLY VOLTAGE [V] ±20 0.01 0.1 1 10 100 OUTPUT CURRENT [mA] Fig. 100 Maximum Output Voltage - Load Resistance (VCC/VEE=+15[V]/-15[V],Ta=25[℃]) 6 INPUT OFFSET VOLTGE [mV] 4 2 85℃ BA3404 family Fig. 101 Maximum Output Voltage - Supply Voltage BA3404 family Fig. 102 Output Voltage - Output Current (VCC/VEE=+15[V]/-15[V],Ta=25[℃]) 250 BA3404 family 6 INPUT OFFSET VOLTAGE [mV] 4 2 ±15.0V . ±18.0V 200 INPUT BIAS CURRENT [nA] 150 -40℃ 25℃ 0 -2 -4 -6 ±0 ±5 ±10 ±15 ±20 SUPPLY VOLTAGE [V] -40℃ 25℃ 0 -2 -4 -6 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [°C] ±2.0V 100 50 85℃ 0 ±0 ±5 ±10 ±15 ±20 SUPPLY VOLTAGE [V] Fig. 103 Input Offset Voltage - Supply voltage (Vicm=0[V], VOUT=0[V]) 250 BA3404 family Fig. 104 Input Offset Voltage - Ambient Temperature (Vicm=0[V], VOUT=0[V]) 40 INPUT OFFSET CURRENT [nA] 30 20 10 0 -10 -20 -30 - 40 85℃ -40℃ 25℃ BA3404 family Fig. 105 Input Bias Current - Supply Voltage (Vicm=0[V], VOUT=0[V]) BA3404 family . 40 INPUT OFFSET CURRENT [nA] 30 20 10 0 -10 -20 -30 -40 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 ±2.0V ±15.0V ±18.0V INPUT BIAS CURRENT [nA] 200 150 ±2.0V 100 ±15.0V ±18.0V 50 0 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [°C] ±0 ±5 ±10 ±15 SUPPLY VOLTAGE [V] ±20 Fig. 106 Input Bias Current - Ambient Temperature (Vicm=0[V], VOUT=0[V]) Fig. 107 Input Offset Current - Supply Voltage (Vicm=0[V], VOUT=0[V]) Fig. 108 Input Offset Current - Ambient Temperature (Vicm=0[V], VOUT=0[V]) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 15/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM ○BA3404 family 20 INPUT OFFSET VOLTAGE [mV] 15 10 5 0 -5 -40℃ 25℃ 85℃ BA3404 family Technical Note 150 125 . 100 75 50 25 0 BA3404 family 150 125 100 75 50 25 0 BA3404 family -10 -15 - 20 -3 -2 -1 0 1 2 3 COMMON MODE INPUT VOLTAGE [V] CMRR [dB] PSRR [dB] . -50 Fig. 109 Input Offset Voltage - Common Mode Input Voltage (VCC/VEE=+2.5[V]/-2.5[V]) 160 LARGE SIGNAL VOLTAGE GAIN [dB] . 140 120 -40℃ BA3404 family Fig. 110 Common Mode Rejection Ratio - Ambient Temperature (VCC/VEE=+15[V]/-15[V]) 150 125 100 75 ±2.0V ±15.0V BA3404 family ±18.0V -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 -50 Fig. 111 Power Supply Rejection Ratio - Ambient Temperature (VCC/VEE=+15[V]/-15[V]) 50 Phase BA3404 family -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 200 180 160 LARGE SIGNAL VOLTAGE GAIN [dB] . 40 Gain 140 120 100 PHASE [deg] 100 85℃ GAIN [dB] 25℃ 30 20 80 60 80 60 40 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 ±18 ±20 SUPPLY VOLTAGE [V] 50 25 0 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 10 40 20 0 0 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 FREQUENCY [Hz] Fig. 112 Large Signal Voltage Gain - Supply Voltage (RL=2[kΩ]) 1.4 25℃ BA3404 family Fig. 113 Large Signal Voltage Gain - Ambient Temperature (RL=2[kΩ]) 1.4 1.2 1.0 0.8 ±2.5V ±15.0V BA3404 family Fig. 114 Voltage Gain - Frequency (VCC=±15V) 1 BA3404 family 1.2 1.0 0.8 0.6 0.4 0.2 0.0 ±0 ±4 ±8 ±12 ±16 SUPPLY VOLTAGE[V] ±20 -40℃ 85℃ SLEW RATE L-H [V/us] . SLEW RATE H-L [V/us] . ±18.0V TOTAL HARMONIC DISTORTION [%] 0.1 20kHz 0.6 0.4 0.2 0.0 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100 0.01 20Hz 1kHz 0.001 0.01 0.1 1 OUTPUT VOLTAGE [Vrms] 10 Fig. 115 Slew Rate L-H - Supply Voltage BA3404 family Fig. 116 Slew Rate H-L - Ambient Temperature Fig. 117 Total Harmonic Distoration - Output Voltage (VCC/VEE=+4[V]/-4[V],Av=0[dB], RL=2[kΩ],80[kHz]-LPF,Ta=25[℃]) 80 EQUIVALENT INPUT NOISE VOLTAGE [nV/√Hz] . 60 40 20 0 10 100 1000 FREQUENCY [Hz] 10000 Fig. 118 Equivalent Input Noise Voltage - Frequency (VCC/VEE=+15[V]/-15[V],Rs=100[Ω],Ta=25[℃]) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 16/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM ●Circuit Diagram VCC Technical Note VCC -IN -IN +IN VOUT VOUT +IN VEE VEE Fig. 119 Schematic Diagram (BA10358/BA10324A/BA2904S/ BA2904/BA2902S/BA2902) ●Test circuit1 NULL method Fig. 120 Schematic Diagram (BA3404) VCC,VEE,EK,Vicm Unit:[V] Parameter VF S1 S2 S3 BA10358 family BA10324A family BA2904 family BA2902 family BA3404 family calculation VCC VEE EK Vicm VCC VEE EK Vicm VCC VEE EK Vicm Input Offset Voltage Input Offset Current Input Bias Current Large Signal Voltage Gain Common-mode Rejection Ratio (Input common-mode Voltage Range) Power Supply Rejection Ratio VF1 ON ON OFF 5 5 5 15 15 5 5 5 30 0 0 0 0 0 0 0 0 0 -1.4 -1.4 -1.4 -1.4 -11.4 -1.4 -1.4 -1.4 0 0 0 0 0 0 0 0 5~30 5 5 15 15 5 5 5 30 0 0 0 0 0 0 0 0 0 -1.4 -1.4 -1.4 -1.4 -11.4 -1.4 -1.4 -1.4 0 0 0 0 0 0 0 0 15 15 15 15 15 15 15 2 15 -15 -15 -15 -15 -15 -15 -15 -2 -15 0 0 0 10 -10 0 0 0 0 0 0 0 0 0 -15 13 0 0 1 2 3 4 5 6 VF2 OFF OFF OFF VF3 OFF VF4 VF5 VF6 VF7 VF8 VF9 VF10 ON ON ON ON ON OFF ON ON ON OFF ON OFF OFF -1.4 3.5 -1.4 3.5 -Calculation1. Input Offset Voltage (Vio) VF1 Vio  [V] 1 + Rf / Rs 2. Input Offset Current (Iio) VF2 - VF1 Iio  [A] Ri × (1 + Rf / Rs) Rs C2 0.1[μF] Rf 50[kΩ] RK S1 Ri 10[kΩ] 10[kΩ] Ri S2 VEE DUT S3 C3 1000[pF] RK 500[kΩ] V CC EK 500[kΩ] C1 0.1[μF] +15[V] NULL 3. Input Bias Current (Ib) VF4 - VF3 Ib  2 × Ri × (1 + Rf / Rs) 50[Ω] [A] Vic m 50[Ω] Rs 4. Large Signal Voltage Gain (Av) ΔEK × (1+ Rf/Rs) Av  20 × Log VF5 - VF6 RL -15[V] V VF [dB] Fig. 121 Test circuit1 (one channel only) 5. Common-mode Rejection Ration (CMRR) ΔVicm × (1+ Rf/Rs) CMRR  20 × Log [dB] VF8 - VF7 6. Power supply rejection ratio (PSRR) ΔVcc × (1+ Rf/Rs) PSRR  20 × Log [dB] VF10 - VF9 www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 17/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM Technical Note ●Test Circuit 2 Switch Condition SW No. Supply Current High Level Output Voltage Low Level Output Voltage Output Source Current Output Sink Current Slew Rate Gain Bandwidth Product Equivalent Input Noise Voltage SW 1 SW 2 SW 3 SW 4 SW 5 SW 6 SW 7 SW 8 SW 9 SW 10 SW 11 SW 12 SW 13 SW 14 OFF OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF ON OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF ON OFF OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON OFF OFF OFF ON OFF OFF OFF ON OFF ON OFF OFF ON ON OFF OFF OFF ON ON ON OFF OFF OFF OFF ON OFF OFF OFF OFF ON OFF OFF ON ON OFF OFF OFF OFF ON OFF OFF OFF SW4 Input voltage VH VCC SW5 R2 A VL - Input wave SW1 SW2 SW3 SW6 RS R1 SW7 SW8 VEE t + SW9 SW10 SW11 SW12 SW13 SW14 Output voltage VH A SR=ΔV/Δt ~ VIN- VIN+ ~ RL CL V ~ V VOU T ΔV VL Δt Fig.122 Test Circuit 2 (each Op-Amp) Output wave t Fig. 123 Slew Rate Input Waveform ●Measurement Circuit 3 Amplifier To Amplifier Coupling VCC VCC R1//R2 R1//R2 OTHER CH VEE R1 VIN R2 R1 R2 VEE V VOUT1 =0.5[Vrms] V VOUT2 CS=20×log 100×VOUT1 VOUT2 Fig. 124 Test Circuit 3 www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 18/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM Technical Note ●Examples of circuit ○Voltage follower VCC Vout Vin Voltage gain is 0 [dB]. This circuit controls output voltage (Vout) equal input voltage (Vin), and keeps Vout with stable because of high input impedance and low output impedance. Vout is shown next formula. Vout=Vin VEE ○Inverting amplifier R2 VCC R1 Vin Vout For inverting amplifier, Vin is amplified by voltage gain decided R1 and R2, and phase reversed voltage is outputed. Vout is shown next formula. Vout=-(R2/R1)・Vin Input impedance is R1. R1//R2 VEE ○Non-inverting amplifier R1 R2 VCC Vout Vin For non-inverting amplifier, Vin is amplified by voltage gain decided R1 and R2, and phase is same with Vin. Vout is shown next formula. Vout=(1+R2/R1)・Vin This circuit realizes high input impedance because Input impedance is operational amplifier’s input Impedance. VEE www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 19/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM Technical Note ●Description of Electrical Characteristics Described below are descriptions of the relevant electrical terms Please note that item names, symbols and their meanings may differ from those on another manufacturer’s documents. 1. Absolute maximum ratings The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of electrical characteristics or damage to the part itself as well as peripheral components. 1.1 Power supply voltage (VCC-VEE) Expresses the maximum voltage that can be supplied between the positive and negative supply terminals without causing deterioration of the electrical characteristics or destruction of the internal circuitry. 1.2 Differential input voltage (Vid) Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without damaging the IC. 1.3 Input common-mode voltage range (Vicm) Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing deterioration of the characteristics or damage to the IC itself. Normal operation is not guaranteed within the common-mode voltage range of the maximum ratings - use within the input common-mode voltage range of the electric characteristics instead. 1.4 Operating and storage temperature ranges (Topr,Tstg) The operating temperature range indicates the temperature range within which the IC can operate. The higher the ambient temperature, the lower the power consumption of the IC. The storage temperature range denotes the range of temperatures the IC can be stored under without causing excessive deterioration of the electrical characteristics. 1.5 Power dissipation (Pd) Indicates the power that can be consumed by a particular mounted board at ambient temperature (25℃). For packaged products, Pd is determined by the maximum junction temperature and the thermal resistance. 2. Electrical characteristics 2.1 Input offset voltage (Vio) Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input voltage difference required for setting the output voltage to 0 V. 2.2 Input offset voltage drift (△Vio/△T) Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation. 2.3 Input offset current (Iio) Indicates the difference of input bias current between the non-inverting and inverting terminals. 2.4 Input offset current drift (△Iio/△T) Signifies the ratio of the input offset current fluctuation to the ambient temperature fluctuation. 2.5 Input bias current (Ib) Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at the non-inverting terminal and the input bias current at the inverting terminal. 2.6 Circuit current (ICC) Indicates the current of the IC itself that flows under specified conditions and during no-load steady state. 2.7 High level output voltage/low level output voltage (VOH/VOL) Signifying the voltage range that can be output under specified load conditions, it is in general divided into high level output voltage and low level output voltage. High level output voltage indicates the upper limit of the output voltage, while low level output voltage the lower limit. 2.8 Large signal voltage gain (AV) The amplifying rate (gain) of the output voltage against the voltage difference between non-inverting and inverting terminals, it is (normally) the amplifying rate (gain) with respect to DC voltage. AV = (output voltage fluctuation) / (input offset fluctuation) 2.9 Input common-mode voltage range (Vicm) Indicates the input voltage range under which the IC operates normally. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 20/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM Technical Note 2.10 Common-mode rejection ratio (CMRR) Signifies the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation). CMRR = (change in input common-mode voltage) / (input offset fluctuation) 2.11 Power supply rejection ratio (PSRR) Denotes the ratio of fluctuation of the input offset voltage when supply voltage is changed (DC fluctuation). SVR = (change in power supply voltage) / (input offset fluctuation) 2.12 Output source current/ output sink current (IOH/IOL) The maximum current that can be output under specific output conditions, it is divided into output source current and output sink current. The output source current indicates the current flowing out of the IC, and the output sink current the current flowing into the IC. 2.13 Channel separation (CS) Expresses the amount of fluctuation of the input offset voltage or output voltage with respect to the change in the output voltage of a driven channel. 2.14 Slew rate (SR) Indicates the time fluctuation ratio of the output voltage when an input step signal is supplied. 2.15 Gain bandwidth product (GBW) The product of the specified signal frequency and the gain of the op-amp at such frequency, it gives the approximate value of the frequency where the gain of the op-amp is 1 (maximum frequency, and unity gain frequency). www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 21/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM Technical Note ●Derating curves Power dissipation(total loss) indicates the power that can be consumed by IC at Ta=25℃(normal temperature). IC is heated when it consumed power, and the temperature of IC chip becomes higher than ambient temperature. The temperature that can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited. Power dissipation is determined by the temperature allowed in IC chip(maximum junction temperature) and thermal resistance of package(heat dissipation capability). The maximum junction temperature is typically equal to the maximum value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin or lead frame of the package. The parameter which indicatesthis heat dissipation capability(hardness of heat release)is called thermal resistance, represented by the symbol θja[℃/W].The temperature of IC inside the package can be estimated by this thermal resistance. Fig.125(a) shows the model of thermal resistance of the package. Thermal resistance θja, ambient temperature Ta, junction temperature Tj, and power dissipation Pd can be calculated by the equation below: θja = (Tj-Ta) / Pd [℃/W] ・・・・・ (Ⅰ) Derating curve in Fig.125(b) indicates power that can be consumed by IC with reference to ambient temperature.Power that can be consumed by IC begins to attenuate at certain ambient temperature. This gradient iis determined by thermal resistance θja. Thermal resistance θja depends on chip size, power consumption, package,ambient temperature, package condition, wind velocity, etc even when the same of package is used. Thermal reduction curve indicates a reference value measured at a specified condition. Fig.126(c)~(f) show a derating curve for an example of BA10358, BA10324A, BA2904S, BA2904, BA2902S, BA2902, BA3404. LSI の 消 of LSI Power dissipation 費 電 力 [ W] θja = ( Tj ー Ta ) / Pd [℃/W] Ambient temperature 周囲温度 Ta [℃] Pd (max) P2 θja2 < θja1 P1 θ' ja2 θ ja2 Tj ' (max) Tj (max) θ' ja1 Chip surface temperature Power dissipation Pd[W] θ ja1 75 100 125 150 チップ 表面温度 Tj [℃] 消費電力 P [W] 0 25 50 (a)Thermal resistance 1000 (b) Derating curve Fig. 125 Thermal resistance and derating 1000 周囲温度 Ambient temperature Ta [ ℃ ] 800 POWER許容損失 Pd  [Pd [mW] DISSIPATION mW] 800 BA10358F 620mW(*15) 620mW (*1) BA10324AFV 700mW ((*3)) 700mW *17 600 550mW(*16) 550mW (*2) 許容損失 Pd  Pd [mW] POWER DISSIPATION[mW] BA10358FV 600 490mW(*18) 490mW (*4) BA10324AF 400 400 200 200 0 0 25 50 75 100 125 0 0 25 50 75 100 125 Ambient temperature [:Ta [℃] 周囲温度 Ta  ℃] (c) BA10358 family (a) BA10358 ファミリ Ambient temperature ]:Ta [℃] 周囲温度 Ta [℃ (d) BA10324 family (b) (a) BA10324A ファミリ 1000 BA2904F BA3404F 許容損失 Pd  [ Pd POWER DISSIPATIONmW][mW] 800 780mW(*19) 780mW( *5) 1000 870mW(*22) 870mW( *8) BA2902FV 800 BA2904FV 許容損失 Pd  [ Pd [mW] POWER DISSIPATION mW] BA2902KN 660mW(*23) 660mW( *9) 600 690mW( *6) 690mW(*20) 590mW (*7) 590mW(*21) BA2904FVM BA2904FVM BA3404FVM 600 610mW(*24) 610mW (*10) BA2902F BA3404F 400 BA3404FVM 200 400 BA2902SFV BA2902SKN BA2902SF BA2904SF BA2904SFV BA2904SFVM 200 0 0 25 (e) BA2904/BA3404 family (a) BA2904 ファミリ Ambient temperature :Ta [℃] Ta [ ] 周囲温度   ℃ 50 75 85 100 105 0 125 150 0 25 50 75 周囲温度  Ambient temperature :Ta [℃] Ta [ ] 105 100 125 150 (f) BA2902 family (a) BA2902 ファミリ  ℃ (*15) 6.2 (*16) 5.5 (*17) 7.0 (*18) 4.9 (*19) 6.2 (*20) 5.5 (*21) 4.8 (*22) 7.0 (*23) 5.3 (*24) 4.9 Unit [mW/℃] When using the unit above Ta=25[℃], subtract the value above per degree [℃]. Permissible dissipation is the value when FR4 glass epoxy board 70[mm] ×70[mm] ×1.6[mm] (cooper foil area below 3[%]) is mounted. Fig. 126 Derating curve www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 22/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM Technical Note ●Notes for use 1) Unused circuits When there are unused circuits, it is recommended that they be connected as in Fig.127, setting the non-inverting input terminal to a potential within the in-phase input voltage range (Vicm). Please keep this 同相入力電圧 potencial in Vicm 範囲内の電位 2) Input voltage Applying VEE+32[V] (BA2904S / BA2904 /BA2902S / BA2902 family, BA2904HFVM-C) and VEE+36[V](BA3404 family) to the input terminal is possible without causing deterioration of the electrical characteristics or destruction, VEE irrespective of the supply voltage. However, this does not ensure normal circuit operation. Please note that the circuit operates normally only when the input voltage is within the common mode input voltage range of the electric characteristics. Fig. 127 Example of processing unused circuit 3) Power supply (single / dual) The op-amp operates when the voltage supplied is between VCC and VEE Therefore, the single supply op-mp can be used as a dual supply op-amp as well. VCC 4) Power dissipation (Pd) Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to the rise in chip temperature, including reduced current capability. Therefore, please take into consideration the power dissipation (Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating curves for more information. 5) Short-circuit between pins and erroneous mounting Incorrect mounting may damage the IC. In addition, the presence of foreign substances between the outputs, the output and the power supply, or the output and GND may result in IC destruction. 6) Operation in a strong electromagnetic field Operation in a strong electromagnetic field may cause malfunctions. 7) Radiation This IC is not designed to withstand radiation. 8) IC handing Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuation of the electrical characteristics due to piezoelectric (piezo) effects. 9) IC operation The output stage of the IC is configured using Class C push-pull circuits. Therefore, when the load resistor is connected to the middle potential of VCC and VEE, crossover distortion occurs at the changeover between discharging and charging of the output current. Connecting a resistor between the output terminal and GND, and increasing the bias current for Class A operation will suppress crossover distortion. 10) Board inspection Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every process is recommended. In addition, when attaching and detaching the jig during the inspection phase, ensure that the power is turned OFF before inspection and removal. Furthermore, please take measures against ESD in the assembly process as well as during transportation and storage. 11) Output capacitor Discharge of the external output capacitor to VCC is possible via internal parasitic elements when VCC is shorted to VEE, causing damage to the internal circuitry due to thermal stress. Therefore, when using this IC in circuits where oscillation due to output capacitive load does not occur, such as in voltage comparators, use an output capacitor with a capacitance less than 0.1μF. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 23/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM Technical Note ●Ordering part number B A 2 9 0 4 F V - E 2 Part No. Part No. 10358,10324A 2904S,2904 2902S, 2902 3404 Package F : SOP8 SOP14 FV : SSOP-B8 SSOP-B14 FVM : MSOP8 KN : VQFN16 Packaging and forming specification E2: Embossed tape and reel (SOP8/SOP14/SSOP-B8/ SSOP-B14/VQFN16) TR: Embossed tape and reel (MSOP8) SOP8 5.0±0.2 (MAX 5.35 include BURR) 8 7 6 5 +6° 4° −4° Tape Quantity 0.9±0.15 0.3MIN Embossed carrier tape 2500pcs E2 The direction is the 1pin of product is at the upper left when you hold 6.2±0.3 4.4±0.2 Direction of feed ( reel on the left hand and you pull out the tape on the right hand ) 12 3 4 0.595 1.5±0.1 +0.1 0.17 -0.05 S 0.11 1.27 0.42±0.1 1pin (Unit : mm) Direction of feed Reel ∗ Order quantity needs to be multiple of the minimum quantity. SOP14 8.7 ± 0.2 (MAX 9.05 include BURR) 14 8 Tape Quantity Direction of feed 0.3MIN Embossed carrier tape 2500pcs E2 The direction is the 1pin of product is at the upper left when you hold 6.2 ± 0.3 4.4 ± 0.2 ( reel on the left hand and you pull out the tape on the right hand ) 1 7 0.15 ± 0.1 1.5 ± 0.1 0.11 1.27 0.4 ± 0.1 0.1 1pin (Unit : mm) Direction of feed Reel ∗ Order quantity needs to be multiple of the minimum quantity. SSOP-B8 3.0 ± 0.2 (MAX 3.35 include BURR) 876 5 Tape Quantity 0.3MIN Embossed carrier tape 2500pcs E2 The direction is the 1pin of product is at the upper left when you hold 6.4 ± 0.3 4.4 ± 0.2 Direction of feed ( reel on the left hand and you pull out the tape on the right hand ) 1234 1.15 ± 0.1 0.15 ± 0.1 S 0.1 +0.06 0.22 -0.04 0.08 M 0.1 (0.52) 0.65 1pin (Unit : mm) Direction of feed Reel ∗ Order quantity needs to be multiple of the minimum quantity. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 24/25 2011.08 - Rev.B BA10358F/FV, BA10324AF/FV, BA2904SF/FV/FVM, BA2904F/FV/FVM BA2902SF/FV/KN, BA2902F/FV/KN, BA3404F/FVM Technical Note SSOP-B14 5.0 ± 0.2 14 8 Tape Quantity 0.3Min. Embossed carrier tape 2500pcs E2 The direction is the 1pin of product is at the upper left when you hold 6.4 ± 0.3 4.4 ± 0.2 Direction of feed ( reel on the left hand and you pull out the tape on the right hand ) 1 7 0.15 ± 0.1 1.15 ± 0.1 0.10 0.65 0.1 0.22 ± 0.1 1pin (Unit : mm) Direction of feed Reel ∗ Order quantity needs to be multiple of the minimum quantity. MSOP8 2.9±0.1 (MAX 3.25 include BURR) 8765 Tape 0.29±0.15 0.6±0.2 +6° 4° −4° Embossed carrier tape 3000pcs TR The direction is the 1pin of product is at the upper right when you hold Quantity Direction of feed 4.0±0.2 2.8±0.1 ( reel on the left hand and you pull out the tape on the right hand 1pin ) 1 234 1PIN MARK 0.475 S +0.05 0.22 –0.04 0.08 S 0.65 +0.05 0.145 –0.03 0.9MAX 0.75±0.05 0.08±0.05 Direction of feed (Unit : mm) Reel ∗ Order quantity needs to be multiple of the minimum quantity. VQFN16 4.2±0.1 (1.35) 4.0±0.1 12 9 8 5 1 4 Tape Quantity Direction of feed 0.05 M Embossed carrier tape (with dry pack) 2500pcs E2 The direction is the 1pin of product is at the upper left when you hold 4.2±0.1 4.0±0.1 13 16 0.22±0.05 ( reel on the left hand and you pull out the tape on the right hand ) 0.22±0.05 +0.03 0.02 −0.02 0.5 0.05 (0 .2 2 ) 0.95MAX .5 ) Notice : Do not use the dotted line area for soldering +0.1 0.6 −0.3 (0 1pin Reel Direction of feed 3(0 .3 5) (Unit : mm) ∗ Order quantity needs to be multiple of the minimum quantity. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 25/25 2011.08 - Rev.B Notice Notes No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us. ROHM Customer Support System http://www.rohm.com/contact/ www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. R1120A
BA2904SFV 价格&库存

很抱歉,暂时无法提供与“BA2904SFV”相匹配的价格&库存,您可以联系我们找货

免费人工找货
BA2904SFVM-TR
  •  国内价格
  • 1+0.86211
  • 30+0.83132
  • 100+0.80053
  • 500+0.73895
  • 1000+0.70816
  • 2000+0.68969

库存:80