0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
K4B2G0846D

K4B2G0846D

  • 厂商:

    SAMSUNG(三星)

  • 封装:

  • 描述:

    K4B2G0846D - 2Gb D-die DDR3L SDRAM - Samsung semiconductor

  • 数据手册
  • 价格&库存
K4B2G0846D 数据手册
Rev. 1.01, Nov. 2010 K4B2G0446D K4B2G0846D 2Gb D-die DDR3L SDRAM 78FBGA with Lead-Free & Halogen-Free (RoHS compliant) 1.35V datasheet SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE. Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind. This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply. For updates or additional information about Samsung products, contact your nearest Samsung office. All brand names, trademarks and registered trademarks belong to their respective owners. ⓒ 2010 Samsung Electronics Co., Ltd. All rights reserved. -1- K4B2G0446D K4B2G0846D datasheet History - First Spec. Release - Corrected typo. Draft Date Aug. 2010 Nov. 2010 Rev. 1.01 DDR3L SDRAM Revision History Revision No. 1.0 1.01 Remark Editor S.H.Kim S.H.Kim -2- K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM Table Of Contents 2Gb D-die DDR3L SDRAM 1. Ordering Information ..................................................................................................................................................... 5 2. Key Features................................................................................................................................................................. 5 3. Package pinout/Mechanical Dimension & Addressing.................................................................................................. 6 3.1 x4 Package Pinout (Top view) : 78ball FBGA Package .......................................................................................... 6 3.2 x8 Package Pinout (Top view) : 78ball FBGA Package .......................................................................................... 7 3.3 FBGA Package Dimension (x4/x8) .......................................................................................................................... 8 4. Input/Output Functional Description.............................................................................................................................. 9 5. DDR3 SDRAM Addressing ........................................................................................................................................... 10 6. Absolute Maximum Ratings .......................................................................................................................................... 11 6.1 Absolute Maximum DC Ratings............................................................................................................................... 11 6.2 DRAM Component Operating Temperature Range ................................................................................................ 11 7. AC & DC Operating Conditions..................................................................................................................................... 11 7.1 Recommended DC operating Conditions (SSTL_1.5)............................................................................................. 11 8. AC & DC Input Measurement Levels ............................................................................................................................ 12 8.1 AC & DC Logic input levels for single-ended signals .............................................................................................. 12 8.2 VREF Tolerances...................................................................................................................................................... 14 8.3 AC & DC Logic Input Levels for Differential Signals ................................................................................................ 15 8.3.1. Differential signals definition ............................................................................................................................ 15 8.3.2. Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS) .................................................. 15 8.3.3. Single-ended requirements for differential signals ........................................................................................... 17 8.4 Differential Input Cross Point Voltage...................................................................................................................... 18 8.5 Slew rate definition for Differential Input Signals ..................................................................................................... 19 8.6 Slew rate definitions for Differential Input Signals ................................................................................................... 19 9. AC & DC Output Measurement Levels ......................................................................................................................... 19 9.1 Single-ended AC & DC Output Levels..................................................................................................................... 19 9.2 Differential AC & DC Output Levels......................................................................................................................... 19 9.3 Single-ended Output Slew Rate .............................................................................................................................. 20 9.4 Differential Output Slew Rate .................................................................................................................................. 21 9.5 Reference Load for AC Timing and Output Slew Rate ............................................................................................ 21 9.6 Overshoot/Undershoot Specification ....................................................................................................................... 22 9.6.1. Address and Control Overshoot and Undershoot specifications...................................................................... 22 9.6.2. Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications ...................................................... 23 9.7 34ohm Output Driver DC Electrical Characteristics................................................................................................. 23 9.7.1. Output Drive Temperature and Voltage Sensitivity .......................................................................................... 25 9.8 On-Die Termination (ODT) Levels and I-V Characteristics ..................................................................................... 25 9.8.1. ODT DC Electrical Characteristics ................................................................................................................... 26 9.8.2. ODT Temperature and Voltage sensitivity ...................................................................................................... 28 9.9 ODT Timing Definitions ........................................................................................................................................... 29 9.9.1. Test Load for ODT Timings .............................................................................................................................. 29 9.9.2. ODT Timing Definitions .................................................................................................................................... 29 10. IDD Current Measure Method..................................................................................................................................... 32 10.1 IDD Measurement Conditions ............................................................................................................................... 32 11. 2Gb DDR3 SDRAM D-die IDD Specification Table .................................................................................................... 41 12. Input/Output Capacitance ........................................................................................................................................... 42 13. Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600 ...................................................................... 43 13.1 Clock Specification ................................................................................................................................................ 43 13.1.1. Definition for tCK(avg).................................................................................................................................... 43 13.1.2. Definition for tCK(abs).................................................................................................................................... 43 13.1.3. Definition for tCH(avg) and tCL(avg) .............................................................................................................. 43 13.1.4. Definition for note for tJIT(per), tJIT(per, Ick) ................................................................................................. 43 13.1.5. Definition for tJIT(cc), tJIT(cc, Ick) ................................................................................................................. 43 13.1.6. Definition for tERR(nper) ................................................................................................................................ 43 13.2 Refresh Parameters by Device Density................................................................................................................. 44 13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin ................................................................. 44 13.3.1. Speed Bin Table Notes .................................................................................................................................. 47 -3- K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM 14. Timing Parameters by Speed Grade .......................................................................................................................... 48 14.1 Jitter Notes ............................................................................................................................................................ 51 14.2 Timing Parameter Notes........................................................................................................................................ 52 14.3 Address/Command Setup, Hold and Derating : .................................................................................................... 53 14.4 Data Setup, Hold and Slew Rate Derating : .......................................................................................................... 59 -4- K4B2G0446D K4B2G0846D datasheet DDR3L-1066 (7-7-7) K4B2G0446D-HYF8 K4B2G0846D-HYF8 DDR3L-1333 (9-9-9)3 K4B2G0446D-HYH9 K4B2G0846D-HYH9 Rev. 1.01 DDR3L SDRAM 1. Ordering Information [ Table 1 ] Samsung 2Gb DDR3L D-die ordering information table Organization 512Mx4 256Mx8 DDR3L-1600 (11-11-11)2 K4B2G0446D-HYK0 K4B2G0846D-HYK0 Package 78 FBGA 78 FBGA NOTE : 1. Speed bin is in order of CL-tRCD-tRP. 2. Backward compatible to DDR3L-1333(9-9-9), DDR3L-1066(7-7-7) 3. Backward compatible to DDR3L-1066(7-7-7) 2. Key Features [ Table 2 ] 2Gb DDR3 D-die Speed bins Speed tCK(min) CAS Latency tRCD(min) tRP(min) tRAS(min) tRC(min) DDR3-800 6-6-6 2.5 6 15 15 37.5 52.5 DDR3-1066 7-7-7 1.875 7 13.125 13.125 37.5 50.625 DDR3-1333 9-9-9 1.5 9 13.5 13.5 36 49.5 DDR3-1600 11-11-11 1.25 11 13.75 13.75 35 48.75 Unit ns nCK ns ns ns ns • JEDEC standard 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V) • VDDQ = 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V) • 400 MHz fCK for 800Mb/sec/pin, 533MHz fCK for 1066Mb/sec/pin, 667MHz fCK for 1333Mb/sec/pin, 800MHz fCK for 1600Mb/sec/pin • 8 Banks • Programmable CAS Latency(posted CAS): 5,6,7,8,9,10,11 • Programmable Additive Latency: 0, CL-2 or CL-1 clock • Programmable CAS Write Latency (CWL) = 5(DDR3-800), 6(DDR3-1066), 7(DDR3-1333) and 8(DDR3-1600) • 8-bit pre-fetch • Burst Length: 8 (Interleave without any limit, sequential with starting address “000” only), 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS] • Bi-directional Differential Data-Strobe • Internal(self) calibration : Internal self calibration through ZQ pin (RZQ : 240 ohm ± 1%) • On Die Termination using ODT pin • Average Refresh Period 7.8us at lower than TCASE 85°C, 3.9us at 85°C < TCASE < 95 °C • Asynchronous Reset • Package : 78 balls FBGA - x4/x8 • All of Lead-Free products are compliant for RoHS • All of products are Halogen-free The 2Gb DDR3 SDRAM D-die is organized as a 64Mbit x 4 I/Os x 8banks, 32Mbit x 8 I/Os x 8banks device. This synchronous device achieves high speed double-data-rate transfer rates of up to 1600Mb/sec/pin (DDR31600) for general applications. The chip is designed to comply with the following key DDR3 SDRAM features such as posted CAS, Programmable CWL, Internal (Self) Calibration, On Die Termination using ODT pin and Asynchronous Reset . All of the control and address inputs are synchronized with a pair of externally supplied differential clocks. Inputs are latched at the crosspoint of differential clocks (CK rising and CK falling). All I/Os are synchronized with a pair of bidirectional strobes (DQS and DQS) in a source synchronous fashion. The address bus is used to convey row, column, and bank address information in a RAS/CAS multiplexing style. The DDR3 device operates with a single 1.35V(1.28V~1.45V) or 1.5V(1.425V~1.575V) power supply and 1.35V(1.28V~1.45V) or 1.5V(1.425V~1.575V). The 2Gb DDR3 D-die device is available in 78ball FBGAs(x4/x8) NOTE : 1. This data sheet is an abstract of full DDR3 specification and does not cover the common features which are described in “DDR3 SDRAM Device Operation & Timing Diagram”. 2. The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation. -5- K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM 3. Package pinout/Mechanical Dimension & Addressing 3.1 x4 Package Pinout (Top view) : 78ball FBGA Package 1 A B C D E F G H J K L M N VSS VSS VDDQ VSSQ VREFDQ NC ODT NC VSS VDD VSS VDD VSS 2 VDD VSSQ DQ2 NC VDDQ VSS VDD CS BA0 A3 A5 A7 RESET 3 NC DQ0 DQS DQS NC RAS CAS WE BA2 A0 A2 A9 A13 4 5 6 7 NC DM DQ1 VDD NC CK CK A10/AP NC A12/BC A1 A11 A14 8 VSS VSSQ DQ3 VSS NC VSS VDD ZQ VREFCA BA1 A4 A6 A8 9 VDD VDDQ VSSQ VSSQ VDDQ NC CKE NC VSS VDD VSS VDD VSS A B C D E F G H J K L M N 1 2 3 4 5 6 7 8 9 Ball Locations (x4) A B C Populated ball Ball not populated D E F G H Top view (See the balls through the package) J K L M N -6- K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM 3.2 x8 Package Pinout (Top view) : 78ball FBGA Package 1 A B C D E F G H J K L M N VSS VSS VDDQ VSSQ VREFDQ NC ODT NC VSS VDD VSS VDD VSS 2 VDD VSSQ DQ2 DQ6 VDDQ VSS VDD CS BA0 A3 A5 A7 RESET 3 NC DQ0 DQS DQS DQ4 RAS CAS WE BA2 A0 A2 A9 A13 4 5 6 7 NU/TDQS DM/TDQS DQ1 VDD DQ7 CK CK A10/AP NC A12/BC A1 A11 A14 8 VSS VSSQ DQ3 VSS DQ5 VSS VDD ZQ VREFCA BA1 A4 A6 A8 9 VDD VDDQ VSSQ VSSQ VDDQ NC CKE NC VSS VDD VSS VDD VSS A B C D E F G H J K L M N Ball Locations (x8) 1 A B C 2 3 4 5 6 7 8 9 Populated ball Ball not populated D E F G H Top view (See the balls through the package) J K L M N -7- K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM 3.3 FBGA Package Dimension (x4/x8) 7.50 ± 0.10 Units : Millimeters A 3.20 #A1 INDEX MARK B (Datum A) 0.80 1.60 987654321 A B C D E F G H J K L M N (0.95) MOLDING AREA (1.90) 4.80 0.80 (Datum B) 0.80 x 12 = 9.60 78 - ∅0.45 Solder ball (Post Reflow ∅0.50 ± 0.05) 0.2 M A B BOTTOM VIEW 0.80 11.00 ± 0.10 #A1 7.50 ± 0.10 11.00 ± 0.10 0.10MAX 0.35 ± 0.05 1.10 ± 0.10 TOP VIEW -8- K4B2G0446D K4B2G0846D datasheet Type Input Function Rev. 1.01 DDR3L SDRAM 4. Input/Output Functional Description [ Table 3 ] Input/Output function description Symbol CK, CK Clock: CK and CK are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK and negative edge of CK. Output (read) data is referenced to the crossings of CK and CK Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self Refresh operation (all banks idle), or Active Power-Down (Row Active in any bank). CKE is asynchronous for self refresh exit. After VREFCA has become stable during the power on and initialization sequence, it must be maintained during all operations (including SelfRefresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK, CK, ODT and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during Self -Refresh. Chip Select: All commands are masked when CS is registered HIGH. CS provides for external Rank selection on systems with multiple Ranks. CS is considered part of the command code. On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR3 SDRAM. When enabled, ODT is only applied to each DQ, DQS, DQS and DM/TDQS, NU/TDQS (When TDQS is enabled via Mode Register A11=1 in MR1) signal for x8 configurations. The ODT pin will be ignored if the Mode Register (MR1) is programmed to disable ODT. Command Inputs: RAS, CAS and WE (along with CS) define the command being entered. Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coincident with that input data during a Write access. DM is sampled on both edges of DQS. For x8 device, the function of DM or TDQS/TDQS is enabled by Mode Register A11 setting in MR1. Bank Address Inputs: BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines if the mode register or extended mode register is to be accessed during a MRS cycle. Address Inputs: Provided the row address for Active commands and the column address for Read/Write commands to select one location out of the memory array in the respective bank. (A10/AP and A12/BC have additional functions, see below) The address inputs also provide the op-code during Mode Register Set commands. Autoprecharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be performed to the accessed bank after the Read/Write operation. (HIGH:Autoprecharge; LOW: No Autoprecharge) A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). if only one bank is to be precharged, the bank is selected by bank addresses. Burst Chop:A12 is sampled during Read and Write commands to determine if burst chop(on-the-fly) will be performed. (HIGH : no burst chop, LOW : burst chopped). See command truth table for details Active Low Asynchronous Reset: Reset is active when RESET is LOW, and inactive when RESET is HIGH. RESET must be HIGH during normal operation. RESET is a CMOS rail to rail signal with DC high and low at 80% and 20% of VDD, i.e. Data Input/ Output: Bi-directional data bus. Data Strobe: Output with read data, input with write data. Edge-aligned with read data, centered in write data. For the x16, DQSL: corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data strobe DQS, DQSL and DQSU are paired with differential signals DQS, DQSL and DQSU, respectively, to provide differential pair signaling to the system during reads and writes. DDR3 SDRAM supports differential data strobe only and does not support single-ended. Termination Data Strobe: TDQS/TDQS is applicable for X8 DRAMs only. When enabled via Mode Register A11=1 in MR1, DRAM will enable the same termination resistance function on TDQS/TDQS that is applied to DQS/DQS. When disabled via mode register A11=0 in MR1, DM/TDQS will provide the data mask function and TDQS is not used. x4/ x16 DRAMs must disable the TDQS function via mode register A11=0 in MR1. No Connect: No internal electrical connection is present. Supply Supply Supply Supply Supply Supply Supply DQ Power Supply: 1.35V(1.28V~1.45V) or & 1.5V(1.425V~1.575V) DQ Ground Power Supply: 1.35V(1.28V~1.45V) or & 1.5V(1.425V~1.575V) Ground Reference voltage for DQ Reference voltage for CA Reference Pin for ZQ calibration CKE Input CS Input ODT Input RAS, CAS, WE DM (DMU), (DML) Input Input BA0 - BA2 Input A0 - A14 Input A10 / AP Input A12 / BC Input RESET DQ Input Input/Output DQS, (DQS) Input/Output TDQS, (TDQS) Output NC VDDQ VSSQ VDD VSS VREFDQ VREFCA ZQ NOTE : Input only pins (BA0-BA2, A0-A14, RAS, CAS, WE, CS, CKE, ODT and RESET) do not supply termination. -9- K4B2G0446D K4B2G0846D datasheet 256Mb x 4 8 BA0 - BA2 A10/AP A0 - A13 A0 - A9,A11 A12/BC 1 KB 128Mb x 8 8 BA0 - BA2 A10/AP A0 - A13 A0 - A 9 A12/BC 1 KB Rev. 1.01 DDR3L SDRAM 5. DDR3 SDRAM Addressing 1Gb Configuration # of Bank Bank Address Auto precharge Row Address Column Address BC switch on the fly Page size *1 64Mb x 16 8 BA0 - BA2 A10/AP A0 - A12 A 0 - A9 A12/BC 2 KB 2Gb Configuration # of Bank Bank Address Auto precharge Row Address Column Address BC switch on the fly Page size *1 512Mb x 4 8 BA0 - BA2 A10/AP A0 - A14 A0 - A9,A11 A12/BC 1 KB 256Mb x 8 8 BA0 - BA2 A10/AP A0 - A14 A0 - A 9 A12/BC 1 KB 128Mb x 16 8 BA0 - BA2 A10/AP A0 - A13 A 0 - A9 A12/BC 2 KB 4Gb Configuration # of Bank Bank Address Auto precharge Row Address Column Address BC switch on the fly Page size *1 1Gb x 4 8 BA0 - BA2 A10/AP A0 - A15 A0 - A9,A11 A12/BC 1 KB 512Mb x 8 8 BA0 - BA2 A10/AP A0 - A15 A0 - A 9 A12/BC 1 KB 256Mb x 16 8 BA0 - BA2 A10/AP A0 - A14 A 0 - A9 A12/BC 2 KB 8Gb Configuration # of Bank Bank Address Auto precharge Row Address Column Address BC switch on the fly Page size *1 2Gb x 4 8 BA0 - BA2 A10/AP A0 - A15 A0 - A9,A11,A13 A12/BC 2 KB 1Gb x 8 8 BA0 - BA2 A10/AP A0 - A15 A0 - A9,A11 A12/BC 2 KB 512Mb x 16 8 BA0 - BA2 A10/AP A0 - A15 A 0 - A9 A12/BC 2 KB NOTE 1 : Page size is the number of bytes of data delivered from the array to the internal sense amplifiers when an ACTIVE command is registered. Page size is per bank, calculated as follows: page size = 2 COLBITS * ORG÷8 where, COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits - 10 - K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM 6. Absolute Maximum Ratings 6.1 Absolute Maximum DC Ratings [ Table 4 ] Absolute Maximum DC Ratings Symbol VDD VDDQ VIN, VOUT TSTG Parameter Voltage on VDD pin relative to Vss Voltage on VDDQ pin relative to Vss Voltage on any pin relative to Vss Storage Temperature Rating -0.4 V ~ 1.975 V -0.4 V ~ 1.975 V -0.4 V ~ 1.975 V -55 to +100 Units V V V °C NOTE 1,3 1,3 1 1, 2 NOTE : 1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard. 3. VDD and VDDQ must be within 300mV of each other at all times;and VREF must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV. 6.2 DRAM Component Operating Temperature Range [ Table 5 ] Temperature Range Symbol TOPER Parameter Operating Temperature Range rating 0 to 95 Unit °C NOTE 1, 2, 3 NOTE : 1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2. 2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0-85°C under all operating conditions 3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply: a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b), in this case IDD6 current can be increased around 10~20% than normal Temperature range. 7. AC & DC Operating Conditions 7.1 Recommended DC operating Conditions (SSTL_1.5) [ Table 6 ] Recommended DC Operating Conditions Symbol VDD VDDQ Parameter Supply Voltage Supply Voltage for Output Operation Voltage 1.35V 1.5V 1.35V 1.5V Rating Min. 1.283 1.425 1.283 1.425 Typ. 1.35 1.5 1.35 1.5 Max. 1.45 1.575 1.45 1.575 Units V V V V Notes 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 NOTE : 1. Under all conditions VDDQ must be less than or equal to VDD. 2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together. 3. VDD & VDDQ rating are determined by operation voltage. - 11 - K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM 8. AC & DC Input Measurement Levels 8.1 AC & DC Logic input levels for single-ended signals [ Table 7 ] Single-ended AC & DC input levels for Command and Address Symbol Parameter DDR3-800/1066/1333/1600 Min. 1.35V VIH.CA(DC90) VIL.CA(DC90) DC input logic high DC input logic low VREF + 90 VSS VREF + 160 Note 2 VREF+135 Note 2 0.49*VDD 1.5V VIH.CA(DC100) DC input logic high VIL.CA(DC100) DC input logic low VIH.CA(AC175) AC input logic high VIL.CA(AC175) AC input logic low VIH.CA(AC150) AC input logic high VIL.CA(AC150) AC input logic low VREFCA(DC) Reference Voltage for ADD, CMD inputs VREF + 100 VSS VREF + 175 Note 2 VREF+150 Note 2 0.49*VDD VDD VREF - 100 Note 2 VREF - 175 Note 2 VREF-150 0.51*VDD mV mV mV mV mV mV V 1,5b) 1,6b) 1,2,7 1,2,8 1,2,7 1,2,8 3,4 VDD VREF - 90 Note 2 VREF - 160 Note 2 VREF-135 0.51*VDD mV mV mV mV mV mV V 1,5a) 1,6a) 1,2 1,2 1,2 1,2 3,4 Max. Unit NOTE VIH.CA(AC160) AC input logic high VIL.CA(AC160) AC input logic low VIH.CA(AC135) AC input logic high VIL.CA(AC135) AC input logic lowM VREFCA(DC) Reference Voltage for ADD, CMD inputs NOTE : 1. For input only pins except RESET, VREF = VREFCA(DC) 2. See "Overshoot and Undershoot specifications" section. 3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV) 4. For reference : approx. VDD/2 ± 15mV 5. VIH(dc) is used as a simplified symbol for VIH.CA(a) 1.35V : DC90, b) 1.5V : DC100) 6. VIL(dc) is used as a simplified symbol for VIL.CA(a) 1.35V : DC90, b) 1.5V : DC100) 7. VIH(ac) is used as a simplified symbol for VIH.CA(AC175) and VIH.CA(AC150); VIH.CA(AC175) value is used when VREF + 175mV is referenced and VIH.CA(AC150) value is used when VREF + 150mV is referenced. 8. VIL(ac) is used as a simplified symbol for VIL.CA(AC175) and VIL.CA(AC150); VIL.CA(AC175) value is used when VREF - 175mV is referenced and VIL.CA(AC150) value is used when VREF - 150mV is referenced. - 12 - K4B2G0446D K4B2G0846D datasheet Parameter DDR3-800/1066 Min. VREF + 90 VSS VREF + 160 Note 2 VREF + 135 Note 2 0.49*VDD Max. 1.35V VDD VREF - 90 Note 2 VREF - 160 Note 2 VREF - 135 0.51*VDD 1.5V Min. VREF + 90 VSS VREF + 135 Note 2 0.49*VDD Rev. 1.01 DDR3L SDRAM DDR3-1333/1600 Max. VDD VREF - 90 Note 2 VREF - 135 0.51*VDD Unit NOTE [ Table 8 ] Single-ended AC & DC input levels for DQ and DM Symbol VIH.DQ(DC90) DC input logic high VIL.DQ(DC90) DC input logic low mV mV mV mV mV mV V 1,5a) 1,6a) 1,2 1,2 1,2 1,2 3,4 VIH.DQ(AC160) AC input logic high VIL.DQ(AC160) AC input logic low VIH.DQ(AC135) AC input logic high VIL.DQ(AC135) AC input logic low VREFDQ(DC) Reference Voltage for DQ, DM inputs VIH.DQ(DC100) DC input logic high VIL.DQ(DC100) DC input logic low VIH.DQ(AC175) AC input logic high VIL.DQ(AC175) AC input logic low VIH.DQ(AC150) AC input logic high VIL.DQ(AC150) AC input logic low VREFDQ(DC) Reference Voltage for DQ, DM inputs VREF + 100 VSS VREF + 175 NOTE 2 VREF + 150 NOTE 2 0.49*VDD VDD VREF - 100 NOTE 2 VREF - 175 NOTE 2 VREF - 150 0.51*VDD VREF + 100 VSS VREF + 150 NOTE 2 0.49*VDD VDD VREF - 100 NOTE 2 VREF - 150 0.51*VDD mV mV mV mV mV mV V 1,5b) 1,6b) 1,2,7 1,2,8 1,2,7 1,2,8 3,4 NOTE : 1. For input only pins except RESET, VREF = VREFDQ(DC) 2. See ’Overshoot/Undershoot Specification’ on page 22. 3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV) 4. For reference : approx. VDD/2 ± 15mV 5. VIH(dc) is used as a simplified symbol for VIH.CA(a) 1.35V : DC90, b) 1.5V : DC100) 6. VIL(dc) is used as a simplified symbol for VIL.CA(a) 1.35V : DC90, b) 1.5V : DC100) 7. VIH(ac) is used as a simplified symbol for VIH.DQ(AC175), VIH.DQ(AC150) ; VIH.DQ(AC175) value is used when VREF + 175mV is referenced, VIH.DQ(AC150) value is used when VREF + 150mV is referenced. 8. VIL(ac) is used as a simplified symbol for VIL.DQ(AC175), VIL.DQ(AC150) ; VIL.DQ(AC175) value is used when VREF - 175mV is referenced, VIL.DQ(AC150) value is used when VREF - 150mV is referenced. - 13 - K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM 8.2 VREF Tolerances The dc-tolerance limits and ac-noise limits for the reference voltages VREFCA and VREFDQ are illustrate in Figure 1. It shows a valid reference voltage VREF(t) as a function of time. (VREF stands for VREFCA and VREFDQ likewise). VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirement in Table 7 on page 12. Furthermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD. voltage VDD VSS time Figure 1. Illustration of VREF(DC) tolerance and VREF ac-noise limits The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF. "VREF" shall be understood as VREF(DC), as defined in Figure 1 . This clarifies, that dc-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the data-eye of the input signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF ac-noise. Timing and voltage effects due to ac-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings. - 14 - K4B2G0446D K4B2G0846D datasheet tDVAC VIH.DIFF.AC.MIN Differential Input Voltage (i.e. DQS-DQS, CK-CK) Rev. 1.01 DDR3L SDRAM 8.3 AC & DC Logic Input Levels for Differential Signals 8.3.1 Differential signals definition VIH.DIFF.MIN 0.0 half cycle VIL.DIFF.MAX VIL.DIFF.AC.MAX tDVAC time Figure 2. Definition of differential ac-swing and "time above ac level" tDVAC 8.3.2 Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS) [ Table 9 ] Differential AC & DC Input Levels DDR3-800/1066/1333/1600 Symbol VIHdiff VILdiff VIHdiff(AC) VILdiff(AC) Parameter min differential input high differential input low differential input high ac differential input low ac +0.18 NOTE 3 2 x (VIH(AC) - VREF) NOTE 3 1.35V max NOTE 3 -0.18 NOTE 3 2 x (VIL(AC) - VREF) min +0.20 NOTE 3 2 x (VIH(AC) - VREF) NOTE 3 1.5V max NOTE 3 -0.20 NOTE 3 2 x (VIL(AC) - VREF) V V V V 1 1 2 2 unit NOTE NOTE : 1. Used to define a differential signal slew-rate. 2. for CK - CK use VIH/VIL(AC) of ADD/CMD and VREFCA; for DQS - DQS use VIH/VIL(AC) of DQs and VREFDQ; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here. 3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "overshoot and Undersheet Specification" - 15 - K4B2G0446D K4B2G0846D datasheet tDVAC [ps] @ |VIH/Ldiff(AC)| = 320mV min TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD max min TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD > 4.0 4.0 3.0 2.0 1.8 1.6 1.4 1.2 1.0 < 1.0 Rev. 1.01 DDR3L SDRAM tDVAC [ps] @ |VIH/Ldiff(AC)| = 270mV max - [ Table 10 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS (1.35V) Slew Rate [V/ns] [ Table 11 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS (1.5V) Slew Rate [V/ns] > 4.0 4.0 3.0 2.0 1.8 1.6 1.4 1.2 1.0 < 1.0 tDVAC [ps] @ |VIH/Ldiff(AC)| = 350mV min 75 57 50 38 34 29 22 13 0 0 max tDVAC [ps] @ |VIH/Ldiff(AC)| = 300mV min 175 170 167 163 162 161 159 155 150 150 max - - 16 - K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM 8.3.3 Single-ended requirements for differential signals Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU) has also to comply with certain requirements for single-ended signals. CK and CK have to approximately reach VSEHmin / VSELmax [approximately equal to the ac-levels { VIH(AC) / VIL(AC)} for ADD/CMD signals] in every half-cycle. DQS, DQSL, DQSU, DQS, DQSL have to reach VSEHmin / VSELmax [approximately the ac-levels { VIH(AC) / VIL(AC)} for DQ signals] in every half-cycle proceeding and following a valid transition. Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if VIH150(AC)/VIL150(AC) is used for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK and CK . VDD or VDDQ VSEH min VSEH VDD/2 or VDDQ/2 CK or DQS VSEL max VSEL time Figure 3. Single-ended requirement for differential signals VSS or VSSQ Note that while ADD/CMD and DQ signal requirements are with respect to VREF, the single-ended components of differential signals have a requirement with respect to VDD/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For singleended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode characteristics of these signals. [ Table 12 ] Single-ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU Symbol VSEH VSEL Parameter Single-ended high-level for strobes Single-ended high-level for CK, CK Single-ended low-level for strobes Single-ended low-level for CK, CK DDR3-800/1066/1333/1600 Min (VDD/2)+0.175 (VDD/2)+0.175 NOTE3 NOTE3 Max NOTE3 NOTE3 (VDD/2)-0.175 (VDD/2)-0.175 Unit V V V V NOTE 1, 2 1, 2 1, 2 1, 2 NOTE : 1. For CK, CK use VIH/VIL(AC) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH/VIL(AC) of DQs. 2. VIH(AC)/VIL(AC) for DQs is based on VREFDQ; VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here 3. These values are not defined, however the single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specification" - 17 - K4B2G0446D K4B2G0846D datasheet VDD CK, DQS VIX VDD/2 VIX VIX CK, DQS VSS Figure 4. VIX Definition Rev. 1.01 DDR3L SDRAM 8.4 Differential Input Cross Point Voltage To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signal to the mid level between of VDD and VSS. [ Table 13 ] Cross point voltage for differential input signals (CK, DQS) : 1.35V Symbol VIX VIX Parameter Differential Input Cross Point Voltage relative to VDD/2 for CK,CK Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS DDR3L-800/1066/1333/1600 Min -150 -150 Max 150 150 Unit mV mV NOTE 1 NOTE : 1. The relationbetween Vix Min/Max and VSEL/VSEH should satisfy following. (VDD/2) + Vix(Min) - VSEL ≥ 25mV VSEH - ((VDD/2) + Vix(Max)) ≥ 25mV [ Table 14 ] Cross point voltage for differential input signals (CK, DQS) : 1.5V Symbol VIX VIX Parameter Differential Input Cross Point Voltage relative to VDD/2 for CK,CK Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS DDR3-800/1066/1333/1600 Min -150 -175 -150 Max 150 175 150 Unit mV mV mV 1 NOTE NOTE : 1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CK and CK are monotonic, have a single-ended swing VSEL / VSEH of at least VDD/2 ±250 mV, and the differential slew rate of CK-CK is larger than 3 V/ ns. - 18 - K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM 8.5 Slew rate definition for Differential Input Signals See 14.3 “Address/Command Setup, Hold and Derating :” on page 50 for single-ended slew rate definitions for address and command signals. See 14.4 “Data Setup, Hold and Slew Rate Derating :” on page 56 for single-ended slew rate definitions for data signals. 8.6 Slew rate definitions for Differential Input Signals Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in Table 15 and Figure 5. [ Table 15 ] Differential input slew rate definition Description Differential input slew rate for rising edge (CK-CK and DQS-DQS) Differential input slew rate for falling edge (CK-CK and DQS-DQS) Measured From VILdiffmax VIHdiffmin To VIHdiffmin VILdiffmax Defined by VIHdiffmin - VILdiffmax Delta TRdiff VIHdiffmin - VILdiffmax Delta TFdiff NOTE : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds. VIHdiffmin 0 VILdiffmax delta TFdiff delta TRdiff Figure 5. Differential Input Slew Rate definition for DQS, DQS, and CK, CK 9. AC & DC Output Measurement Levels 9.1 Single-ended AC & DC Output Levels [ Table 16 ] Single-ended AC & DC output levels Symbol VOH(DC) VOM(DC) VOL(DC) VOH(AC) VOL(AC) Parameter DC output high measurement level (for IV curve linearity) DC output mid measurement level (for IV curve linearity) DC output low measurement level (for IV curve linearity) AC output high measurement level (for output SR) AC output low measurement level (for output SR) DDR3-800/1066/1333/1600 0.8 x VDDQ 0.5 x VDDQ 0.2 x VDDQ VTT + 0.1 x VDDQ VTT - 0.1 x VDDQ Units V V V V V 1 1 NOTE NOTE : 1. The swing of +/-0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test load of 25Ω to VTT=VDDQ/2. 9.2 Differential AC & DC Output Levels [ Table 17 ] Differential AC & DC output levels Symbol VOHdiff(AC) VOLdiff(AC) Parameter AC differential output high measurement level (for output SR) AC differential output low measurement level (for output SR) DDR3-800/1066/1333/1600 +0.2 x VDDQ -0.2 x VDDQ Units V V NOTE 1 1 NOTE : 1. The swing of +/-0.2xVDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test load of 25Ω to VTT=VDDQ/2 at each of the differential outputs. - 19 - K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM 9.3 Single-ended Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals as shown in Table 18 and Figure 6. [ Table 18 ] Single-ended output slew rate definition Description Single ended output slew rate for rising edge Single ended output slew rate for falling edge Measured From VOL(AC) VOH(AC) To VOH(AC) VOL(AC) Defined by VOH(AC)-VOL(AC) Delta TRse VOH(AC)-VOL(AC) Delta TFse NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test. [ Table 19 ] Single-ended output slew rate Parameter Symbol Operation Voltage 1.35V 1.5V DDR3-800 Min 1.75 2.5 Max 51) 5 DDR3-1066 Min 1.75 2.5 Max 51) 5 DDR3-1333 Min 1.75 2.5 Max 51) 5 DDR3-1600 Min 1.75 2.5 Max 51) 5 Units V/ns V/ns Single ended output slew rate Description : SR : Slew Rate SRQse Q : Query Output (like in DQ, which stands for Data-in, Query-Output) se : Single-ended Signals For Ron = RZQ/7 setting NOTE : 1) In two cased, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane. - Case_1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low of low to high) while all remaining DQ signals in the same byte lane are static (i.e they stay at either high or low). - Case_2 is defined for a single DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction, the regular maximum limit of 5 V/ns applies. VOH(AC) VTT VOL(AC) delta TFse delta TRse Figure 6. Single-ended Output Slew Rate Definition - 20 - K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM 9.4 Differential Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in Table 20 and Figure 7. [ Table 20 ] Differential output slew rate definition Description Differential output slew rate for rising edge Differential output slew rate for falling edge Measured From VOLdiff(AC) VOHdiff(AC) To VOHdiff(AC) VOLdiff(AC) Defined by VOHdiff(AC)-VOLdiff(AC) Delta TRdiff VOHdiff(AC)-VOLdiff(AC) Delta TFdiff NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test. [ Table 21 ] Differential output slew rate Parameter Single ended output slew rate Symbol SRQdiff Operation Voltage 1.35V 1.5V DDR3-800 Min 3.5 5 Max 12 10 DDR3-1066 Min 3.5 5 Max 12 10 DDR3-1333 Min 3.5 5 Max 12 10 DDR3-1600 Min 3.5 5 Max 12 10 Units V/ns V/ns Description : SR : Slew Rate Q : Query Output (like in DQ, which stands for Data-in, Query-Output) diff : Differential Signals For Ron = RZQ/7 setting VOHdiff(AC) VTT VOLdiff(AC) delta TFdiff delta TRdiff Figure 7. Differential Output Slew Rate Definition 9.5 Reference Load for AC Timing and Output Slew Rate Figure 8 represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate measurements. It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics. VDDQ CK/CK DUT DQ DQS DQS VTT = VDDQ/2 25Ω Reference Point Figure 8. Reference Load for AC Timing and Output Slew Rate - 21 - K4B2G0446D K4B2G0846D datasheet Specification DDR3-800 1.35V TBD TBD TBD TBD 1.5V 0.4V 0.4V 0.67V-ns 0.67V-ns DDR3-1066 TBD TBD TBD TBD 0.4V 0.4V 0.5V-ns 0.5V-ns Rev. 1.01 DDR3L SDRAM 9.6 Overshoot/Undershoot Specification 9.6.1 Address and Control Overshoot and Undershoot specifications [ Table 22 ] AC overshoot/undershoot specification for Address and Control pins (A0-A12, BA0-BA2. CS. RAS. CAS. WE. CKE, ODT) Parameter Unit DDR3-1333 TBD TBD TBD TBD 0.4V 0.4V 0.4V-ns 0.4V-ns DDR3-1600 TBD TBD TBD TBD 0.4V 0.4V 0.33V-ns 0.33V-ns Maximum peak amplitude allowed for overshoot area (See Figure 9) Maximum peak amplitude allowed for undershoot area (See Figure 9) Maximum overshoot area above VDD (See Figure 9) Maximum undershoot area below VSS (See Figure 9) Maximum peak amplitude allowed for overshoot area (See Figure 9) Maximum peak amplitude allowed for undershoot area (See Figure 9) Maximum overshoot area above VDD (See Figure 9) Maximum undershoot area below VSS (See Figure 9) V V V-ns V-ns V V V-ns V-ns Maximum Amplitude Overshoot Area Volts (V) VDD VSS Maximum Amplitude Time (ns) Undershoot Area Figure 9. Address and Control Overshoot and Undershoot Definition - 22 - K4B2G0446D K4B2G0846D datasheet Specification DDR3-800 1.35V TBD TBD TBD TBD 1.5V 0.4V 0.4V 0.25V-ns 0.25V-ns DDR3-1066 TBD TBD TBD TBD 0.4V 0.4V 0.19V-ns 0.19V-ns Rev. 1.01 DDR3L SDRAM 9.6.2 Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications [ Table 23 ] AC overshoot/undershoot specification for Clock, Data, Strobe and Mask (DQ, DQS, DQS, DM, CK, CK) Parameter Unit DDR3-1333 TBD TBD TBD TBD 0.4V 0.4V 0.15V-ns 0.15V-ns DDR3-1600 TBD TBD TBD TBD 0.4V 0.4V 0.13V-ns 0.13V-ns Maximum peak amplitude allowed for overshoot area (See Figure 10) Maximum peak amplitude allowed for undershoot area (See Figure 10) Maximum overshoot area above VDDQ (See Figure 10) Maximum undershoot area below VSSQ (See Figure 10) Maximum peak amplitude allowed for overshoot area (See Figure 10) Maximum peak amplitude allowed for undershoot area (See Figure 10) Maximum overshoot area above VDDQ (See Figure 10) Maximum undershoot area below VSSQ (See Figure 10) V V V-ns V-ns V V V-ns V-ns Maximum Amplitude Overshoot Area Volts (V) VDDQ VSSQ Maximum Amplitude Time (ns) Undershoot Area Figure 10. Clock, Data, Strobe and Mask Overshoot and Undershoot Definition 9.7 34ohm Output Driver DC Electrical Characteristics A functional representation of the output buffer is shown below. Output driver impedance RON is defined by the value of external reference resistor RZQ as follows: RON34 = RZQ/7 (Nominal 34.3ohms +/- 10% with nominal RZQ=240ohm) The individual Pull-up and Pull-down resistors (RONpu and RONpd) are defined as follows RONpu = VDDQ-VOUT l Iout l VOUT l Iout l under the condition that RONpu is turned off under the condition that RONpd is turned off RONpd = Output Driver VDDQ Ipu To other circuity RON Pu DQ RON Ipd Iout Vout VSSQ Pd Figure 11. Output Driver : Definition of Voltages and Currents - 23 - K4B2G0446D K4B2G0846D datasheet Resistor Vout VOLdc = 0.2 x VDDQ RON34pd VOMdc = 0.5 x VDDQ VOHdc = 0.8 x VDDQ VOLdc = 0.2 x VDDQ RON34pu VOMdc = 0.5 x VDDQ VOHdc = 0.8 x VDDQ VOLdc = 0.2 x VDDQ RON40pd VOMdc = 0.5 x VDDQ VOHdc = 0.8 x VDDQ VOLdc = 0.2 x VDDQ RON40pu VOMdc = 0.5 x VDDQ VOHdc = 0.8 x VDDQ Min 1.35V 0.6 0.9 0.9 0.9 0.9 0.6 0.6 0.9 0.9 0.9 0.9 0.6 -10 1.5V VOLdc = 0.2 x VDDQ RON34pd VOMdc = 0.5 x VDDQ VOHdc = 0.8 x VDDQ VOLdc = 0.2 x VDDQ RON34pu VOMdc = 0.5 x VDDQ VOHdc = 0.8 x VDDQ VOLdc = 0.2 x VDDQ RON40pd VOMdc = 0.5 x VDDQ VOHdc = 0.8 x VDDQ VOLdc = 0.2 x VDDQ RON40pu VOMdc = 0.5 x VDDQ VOHdc = 0.8 x VDDQ 0.6 0.9 0.9 0.9 0.9 0.6 0.6 0.9 0.9 0.9 0.9 0.6 -10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.4 1.4 1.1 1.1 1.1 1.1 1.4 1.4 1.1 1.1 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.15 1.15 1.45 1.45 1.15 1.15 1.15 1.15 1.45 1.45 1.15 1.15 10 Nom Max Rev. 1.01 DDR3L SDRAM Units Notes 1,2,3 1,2,3 RZQ/7 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 RZQ/6 1,2,3 1,2,3 1,2,3 1,2,3 % 1,2,4 [ Table 24 ] Output Driver DC Electrical Characteristics, assuming RZQ=240ohms ; entire operating temperature range ; after proper ZQ calibration RONnom 34Ohms 40Ohms Mismatch between Pull-up and Pull-down, MMpupd VOMdc = 0.5 x VDDQ 1,2,3 1,2,3 RZQ/7 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 RZQ/6 1,2,3 1,2,3 1,2,3 1,2,3 % 1,2,4 34Ohms 40Ohms Mismatch between Pull-up and Pull-down, MMpupd VOMdc = 0.5 x VDDQ NOTE : 1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity 2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS 3. Pull-down and pull-up output driver impedance are recommended to be calibrated at 0.5 X VDDQ. Other calibration schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.2 X VDDQ and 0.8 X VDDQ 4. Measurement definition for mismatch between pull-up and pull-down, MMpupd: Measure RONpu and RONpd. both at 0.5 X VDDQ: RONpu - RONpd RONnom MMpupd = x 100 - 24 - K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM 9.7.1 Output Drive Temperature and Voltage Sensitivity If temperature and/or voltage change after calibration, the tolerance limits widen according to Table 25 and Table 26. ∆T = T - T(@calibration); ∆V = VDDQ - VDDQ (@calibration); VDD = VDDQ *dRONdT and dRONdV are not subject to production test but are verified by design and characterization [ Table 25 ] Output Driver Sensitivity Definition Min RONPU@VOHDC RON@VOMDC RONPD@VOLDC 0.6 - dRONdTH * |∆T| - dRONdVH * |∆V| 0.9 - dRONdTM * |∆T| - dRONdVM * |∆V| 0.6 - dRONdTL * |∆T| - dRONdVL * |∆V| Max 1.1 + dRONdTH * |∆T| + dRONdVH * |∆V| 1.1 + dRONdTM * |∆T| + dRONdVM * |∆V| 1.1 + dRONdTL * |∆T| + dRONdVL * |∆V| Units RZQ/7 RZQ/7 RZQ/7 [ Table 26 ] Output Driver Voltage and Temperature Sensitivity Speed Bin Min dRONdTM dRONdVM dRONdTL dRONdVL dRONdTH dRONdVH 0 0 0 0 0 0 800/1066/1333 Max 1.5 0.15 1.5 0.15 1.5 0.15 Min 0 0 0 0 0 0 1600 Max 1.5 0.13 1.5 0.13 1.5 0.13 Units %/°C %/mV %/°C %/mV %/°C %/mV 9.8 On-Die Termination (ODT) Levels and I-V Characteristics On-Die Termination effective resistance RTT is defined by bits A9, A6 and A2 of MR1 register. ODT is applied to the DQ,DM, DQS/DQS and TDQS,TDQS (x8 devices only) pins. A functional representation of the on-die termination is shown below. The individual pull-up and pull-down resistors (RTTpu and RTTpd) are defined as follows : VDDQ-VOUT l Iout l VOUT l Iout l under the condition that RTTpu is turned off RTTpu = under the condition that RTTpd is turned off RTTpd = Chip in Termination Mode ODT VDDQ Ipu To other circuitry like RCV, ... Iout=Ipd-Ipu Pu RTT DQ RTT Ipd Iout Pd VOUT VSSQ Figure 12. On-Die Termination : Definition of Voltages and Currents - 25 - K4B2G0446D K4B2G0846D 9.8.1 ODT DC Electrical Characteristics datasheet Rev. 1.01 DDR3L SDRAM Table 27 provides and overview of the ODT DC electrical characteristics. They values for RTT60pd120, RTT60pu120, RTT120pd240, RTT120pu240, RTT40pd80, RTT40pu80, RTT30pd60, RTT30pu60, RTT20pd40, RTT20pu40 are not specification requirements, but can be used as design guide lines: [ Table 27 ] ODT DC Electrical Characteristics, assuming RZQ=240ohm +/- 1% entire operating temperature range; after proper ZQ calibration 1.35V MR1 (A9,A6,A2) RTT RESISTOR Vout VOL(DC) 0.2XVDDQ RTT120pd240 0.5XVDDQ VOH(DC) 0.8XVDDQ (0,1,0) 120 ohm RTT120pu240 VOL(DC) 0.2XVDDQ 0.5XVDDQ VOH(DC) 0.8XVDDQ RTT120 VIL(AC) to VIH(AC) VOL(DC) 0.2XVDDQ RTT60pd120 0.5XVDDQ VOH(DC) 0.8XVDDQ (0,0,1) 60 ohm RTT60pu120 VOL(DC) 0.2XVDDQ 0.5XVDDQ VOH(DC) 0.8XVDDQ RTT60 VIL(AC) to VIH(AC) VOL(DC) 0.2XVDDQ RTT40pd80 0.5XVDDQ VOH(DC) 0.8XVDDQ (0,1,1) 40 ohm RTT40pu80 VOL(DC) 0.2XVDDQ 0.5XVDDQ VOH(DC) 0.8XVDDQ RTT40 VIL(AC) to VIH(AC) VOL(DC) 0.2XVDDQ RTT30pd60 0.5XVDDQ VOH(DC) 0.8XVDDQ (1,0,1) 30 ohm RTT30pu60 VOL(DC) 0.2XVDDQ 0.5XVDDQ VOH(DC) 0.8XVDDQ RTT30 VIL(AC) to VIH(AC) VOL(DC) 0.2XVDDQ RTT20pd40 0.5XVDDQ VOH(DC) 0.8XVDDQ (1,0,0) 20 ohm RTT20pu40 VOL(DC) 0.2XVDDQ 0.5XVDDQ VOH(DC) 0.8XVDDQ RTT20 VIL(AC) to VIH(AC) Min 0.6 0.9 0.9 0.9 0.9 0.6 0.9 0.6 0.9 0.9 0.9 0.9 0.6 0.9 0.6 0.9 0.9 0.9 0.9 0.6 0.9 0.6 0.9 0.9 0.9 0.9 0.6 0.9 0.6 0.9 0.9 0.9 0.9 0.6 0.9 -5 Nom 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Max 1.15 1.15 1.45 1.45 1.15 1.15 1.65 1.15 1.15 1.45 1.45 1.15 1.15 1.65 1.15 1.15 1.45 1.45 1.15 1.15 1.65 1.15 1.15 1.45 1.45 1.15 1.15 1.65 1.15 1.15 1.45 1.45 1.15 1.15 1.65 5 Unit RZQ RZQ RZQ RZQ RZQ RZQ RZQ/2 RZQ/2 RZQ/2 RZQ/2 RZQ/2 RZQ/2 RZQ/2 RZQ/4 RZQ/3 RZQ/3 RZQ/3 RZQ/3 RZQ/3 RZQ/3 RZQ/6 RZQ/4 RZQ/4 RZQ/4 RZQ/4 RZQ/4 RZQ/4 RZQ/8 RZQ/6 RZQ/6 RZQ/6 RZQ/6 RZQ/6 RZQ/6 RZQ/12 % Notes 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,5 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,5 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,5 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,5 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,5 1,2,5,6 Deviation of VM w.r.t VDDQ/2, ∆VM - 26 - K4B2G0446D K4B2G0846D datasheet 1.5V RTT RESISTOR Vout VOL(DC) 0.2XVDDQ RTT120pd240 0.5XVDDQ VOH(DC) 0.8XVDDQ Min 0.6 0.9 0.9 0.9 0.9 0.6 0.9 0.6 0.9 0.9 0.9 0.9 0.6 0.9 0.6 0.9 0.9 0.9 0.9 0.6 0.9 0.6 0.9 0.9 0.9 0.9 0.6 0.9 0.6 0.9 0.9 0.9 0.9 0.6 0.9 -5 Nom 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Rev. 1.01 DDR3L SDRAM MR1 (A9,A6,A2) Max 1.1 1.1 1.4 1.4 1.1 1.1 1.6 1.1 1.1 1.4 1.4 1.1 1.1 1.6 1.1 1.1 1.4 1.4 1.1 1.1 1.6 1.1 1.1 1.4 1.4 1.1 1.1 1.6 1.1 1.1 1.4 1.4 1.1 1.1 1.6 5 Unit RZQ RZQ RZQ RZQ RZQ RZQ RZQ/2 RZQ/2 RZQ/2 RZQ/2 RZQ/2 RZQ/2 RZQ/2 RZQ/4 RZQ/3 RZQ/3 RZQ/3 RZQ/3 RZQ/3 RZQ/3 RZQ/6 RZQ/4 RZQ/4 RZQ/4 RZQ/4 RZQ/4 RZQ/4 RZQ/8 RZQ/6 RZQ/6 RZQ/6 RZQ/6 RZQ/6 RZQ/6 RZQ/12 % Notes 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,5 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,5 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,5 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,5 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,5 1,2,5,6 (0,1,0) 120 ohm RTT120pu240 VOL(DC) 0.2XVDDQ 0.5XVDDQ VOH(DC) 0.8XVDDQ RTT120 VIL(AC) to VIH(AC) VOL(DC) 0.2XVDDQ RTT60pd240 0.5XVDDQ VOH(DC) 0.8XVDDQ (0,0,1) 60 ohm RTT60pu240 VOL(DC) 0.2XVDDQ 0.5XVDDQ VOH(DC) 0.8XVDDQ RTT60 VIL(AC) to VIH(AC) VOL(DC) 0.2XVDDQ RTT40pd240 0.5XVDDQ VOH(DC) 0.8XVDDQ (0,1,1) 40 ohm RTT40pu240 VOL(DC) 0.2XVDDQ 0.5XVDDQ VOH(DC) 0.8XVDDQ RTT40 VIL(AC) to VIH(AC) VOL(DC) 0.2XVDDQ RTT60pd240 0.5XVDDQ VOH(DC) 0.8XVDDQ (1,0,1) 30 ohm RTT60pu240 VOL(DC) 0.2XVDDQ 0.5XVDDQ VOH(DC) 0.8XVDDQ RTT60 VIL(AC) to VIH(AC) VOL(DC) 0.2XVDDQ RTT60pd240 0.5XVDDQ VOH(DC) 0.8XVDDQ (1,0,0) 20 ohm RTT60pu240 VOL(DC) 0.2XVDDQ 0.5XVDDQ VOH(DC) 0.8XVDDQ RTT60 VIL(AC) to VIH(AC) Deviation of VM w.r.t VDDQ/2, ∆VM - 27 - K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM NOTE : 1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity 2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS 3. Pull-down and pull-up ODT resistors are recommended to be calibrated at 0.5XVDDQ. Other calibration schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.2XVDDQ and 0.8XVDDQ. 4. Not a specification requirement, but a design guide line 5. Measurement definition for RTT: Apply VIH(AC) to pin under test and measure current I(VIH(AC)), then apply VIL(AC) to pin under test and measure current I(VIL(AC)) respectively RTT = VIH(AC) - VIL(AC) I(VIH(AC)) - I(VIL(AC)) 6. Measurement definition for VM and ∆VM : Measure voltage (VM) at test pin (midpoint) with no load ∆ VM = 2 x VM VDDQ -1 x 100 9.8.2 ODT Temperature and Voltage sensitivity If temperature and/or voltage change after calibration, the tolerance limits widen according to table below ∆T = T - T(@calibration); ∆V = VDDQ - VDDQ (@calibration); VDD = VDDQ [ Table 28 ] ODT Sensitivity Definition Min RTT 0.9 - dRTTdT * |∆T| - dRTTdV * |∆V| Max 1.6 + dRTTdT * |∆T| + dRTTdV * |∆V| Units RZQ/2,4,6,8,12 [ Table 29 ] ODT Voltage and Temperature Sensitivity Min dRTTdT dRTTdV 0 0 Max 1.5 0.15 Units %/°C %/mV NOTE : These parameters may not be subject to production test. They are verified by design and characterization. - 28 - K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM 9.9 ODT Timing Definitions 9.9.1 Test Load for ODT Timings Different than for timing measurements, the reference load for ODT timings is defined in Figure 13. VDDQ CK,CK DUT DQ, DM DQS , DQS TDQS , TDQS VTT= VSSQ RTT =25 ohm VSSQ Timing Reference Points Figure 13. ODT Timing Reference Load 9.9.2 ODT Timing Definitions Definitions for tAON, tAONPD, tAOF, tAOFPD and tADC are provided in Table 30 and subsequent figures. Measurement reference settings are provided in Table 31 . [ Table 30 ] ODT Timing Definitions Symbol tAON tAONPD tAOF tAOFPD tADC Begin Point Definition Rising edge of CK - CK defined by the end point of ODTLon Rising edge of CK - CK with ODT being first registered high Rising edge of CK - CK defined by the end point of ODTLoff Rising edge of CK - CK with ODT being first registered low Rising edge of CK - CK defined by the end point of ODTLcnw, ODTLcwn4 of ODTLcwn8 End Point Definition Extrapolated point at VSSQ Extrapolated point at VSSQ End point: Extrapolated point at VRTT_Nom End point: Extrapolated point at VRTT_Nom End point: Extrapolated point at VRTT_Wr and VRTT_Nom respectively Figure Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 [ Table 31 ] Reference Settings for ODT Timing Measurements Measured Parameter tAON tAONPD tAOF tAOFPD tADC RTT_Nom Setting RZQ/4 RZQ/12 RZQ/4 RZQ/12 RZQ/4 RZQ/12 RZQ/4 RZQ/12 RZQ/12 RTT_Wr Setting NA NA NA NA NA NA NA NA RZQ/2 VSW1[V] 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.20 VSW2[V] 0.10 0.20 0.10 0.20 0.10 0.20 0.10 0.20 0.25 NOTE - 29 - K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM Begin point : Rising edge of CK - CK defined by the end point of ODTLon CK VTT CK tAON TSW2 DQ, DM DQS , DQS TDQS , TDQS TSW1 VSW2 VSW1 VSSQ VSSQ End point Extrapolated point at VSSQ Figure 14. Definition of tAON Begin point : Rising edge of CK - CK with ODT being first registered high CK VTT CK tAONPD TSW2 DQ, DM DQS , DQS TDQS , TDQS TSW1 VSW2 VSW1 VSSQ VSSQ End point Extrapolated point at VSSQ Figure 15. Definition of tAONPD Begin point : Rising edge of CK - CK defined by the end point of ODTLoff CK VTT CK tAOF VRTT_Nom DQ, DM DQS , DQS TDQS , TDQS End point Extrapolated point at VRTT_Nom TSW2 VSW2 VSW1 TSW1 VSSQ TD_TAON_DEF Figure 16. Definition of tAOF - 30 - K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM Begin point : Rising edge of CK - CK with ODT being first registered low CK VTT CK tAOFPD VRTT_Nom DQ, DM DQS , DQS TDQS , TDQS End point Extrapolated point at VRTT_Nom TSW2 VSW2 VSW1 TSW1 VSSQ Figure 17. Definition of tAOFPD Begin point : Rising edge of CK - CK defined by the end point of ODTLcnw Begin point : Rising edge of CK - CK defined by the end point of ODTLcwn4 or ODTLcwn8 CK VTT CK tADC tADC VRTT_Nom DQ, DM DQS , DQS TDQS , TDQS End point Extrapolated point at VRTT_Nom VRTT_Nom TSW21 End point Extrapolated point TSW11 at VRTT_Nom VSW1 VSW2 TSW22 TSW12 VRTT_Wr End point Extrapolated point at VRTT_Wr VSSQ Figure 18. Definition of tADC - 31 - K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM 10. IDD Current Measure Method 10.1 IDD Measurement Conditions In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure 19 shows the setup and test load for IDD and IDDQ measurements. - IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET, IDD6TC and IDD7) are measured as time-averaged currents with all VDD balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in IDD currents. - IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR3 SDRAM under test tied together. Any IDD current is not included in IDDQ currents. Attention : IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can be used to support correlation of simulated IO power to actual IO power as outlined in Figure 20. In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one merged-power layer in Module PCB. For IDD and IDDQ measurements, the following definitions apply : - "0" and "LOW" is defined as VIN = VIHAC(min). - "FLOATING" is defined as inputs are VREF = VDD / 2. - "Timing used for IDD and IDDQ Measured - Loop Patterns" are provided in Table 32 - "Basic IDD and IDDQ Measurement Conditions" are described in Table 33 - Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 32 on page 31 through Table 39. - IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting RON = RZQ/7 (34 Ohm in MR1); Qoff = 0B (Output Buffer enabled in MR1); RTT_Nom = RZQ/6 (40 Ohm in MR1); RTT_Wr = RZQ/2 (120 Ohm in MR2); TDQS Feature disabled in MR1 - Attention : The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started. - Define D = {CS, RAS, CAS, WE} := {HIGH, LOW, LOW, LOW} - Define D = {CS, RAS, CAS, WE} := {HIGH, HIGH, HIGH, HIGH} - RESET Stable time is : During a Cold Bood RESET (Initialization), current reading is valid once power is stable and RESET has been LOW for 1ms; During Warm Boot RESET(while operating), current reading is valid after RESET has been LOW for 200ns + tRFC [ Table 32 ] Timing used for IDD and IDDQ Measured - Loop Patterns Parameter tCKmin(IDD) CL(IDD) tRCDmin(IDD) tRCmin(IDD) tRASmin(IDD) tRPmin(IDD) tFAW(IDD) tRRD(IDD) x4/x8 x16 x4/x8 x16 Bin DDR3-800 6-6-6 2.5 6 6 21 15 6 16 20 4 4 36 44 64 120 140 DDR3-1066 7-7-7 1.875 7 7 27 20 7 20 27 4 6 48 59 86 160 187 DDR3-1333 9-9-9 1.5 9 9 33 24 9 20 30 4 5 60 74 107 200 234 DDR3-1600 11-11-11 1.25 11 11 39 28 11 24 32 5 6 72 88 128 240 280 Unit ns nCK nCK nCK nCK nCK nCK nCK nCK nCK nCK nCK nCK nCK nCK tRFC(IDD) - 512Mb tRFC(IDD) - 1Gb tRFC(IDD) - 2Gb tRFC(IDD) - 4Gb tRFC(IDD) - 8Gb - 32 - K4B2G0446D K4B2G0846D datasheet IDD IDDQ Rev. 1.01 DDR3L SDRAM VDD RESET CK/CK CKE CS RAS, CAS, WE A, BA ODT ZQ VDDQ DQS, DQS DQ, DM, TDQS, TDQS RTT = 25 Ohm VDDQ/2 VSS VSSQ [NOTE : DIMM level Output test load condition may be different from above] Figure 19. Measurement Setup and Test Load for IDD and IDDQ Measurements Application specific memory channel environment IDDQ Test Load Channel IO Power Simulation IDDQ Simulation IDDQ Measurement Correlation Correction Channel IO Power Number Figure 20. Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement. - 33 - K4B2G0446D K4B2G0846D datasheet Description Rev. 1.01 DDR3L SDRAM [ Table 33 ] Basic IDD and IDDQ Measurement Conditions Symbol Operating One Bank Active-Precharge Current IDD0 CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: High between ACT and PRE; Command, Address, Bank Address Inputs: partially toggling according to Table 32 on page 31 ; Data IO: FLOATING; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 32); Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 32 Operating One Bank Active-Read-Precharge Current IDD1 CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: High between ACT, RD and PRE; Command, Address, Bank Address Inputs, Data IO: partially toggling according to Table 33 on page 32 ; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 33); Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 33 Precharge Standby Current IDD2N CKE: High; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling according to Table 34 on page 32 ; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 34 Precharge Standby ODT Current IDD2NT CKE: High; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling according to Table 35 on page 33 ; Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: toggling according to Table 35 ; Pattern Details: see Table 35 IDDQ2NT Precharge Standby ODT IDDQ Current Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current Precharge Power-Down Current Slow Exit IDD2P0 CKE: Low; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exi3) Precharge Power-Down Current Fast Exit IDD2P1 CKE: Low; External clock: On; tCK, CL: see Table 32 on page 32; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exit3) Precharge Quiet Standby Current IDD2Q CKE: High; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0 Active Standby Current IDD3N CKE: High; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling according to Table 34 on page 32 ; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 34 Active Power-Down Current IDD3P CKE: Low; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0 Operating Burst Read Current IDD4R CKE: High; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: partially toggling according to Table 36 on page 33 ; Data IO: seamless read data burst with different data between one burst and the next one according to Table 36 ; DM:stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... (see Table 7 on page 12); Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 36 IDDQ4R Operating Burst Read IDDQ Current Same definition like for IDD4R, however measuring IDDQ current instead of IDD current Operating Burst Write Current IDD4W CKE: High; External clock: On; tCK, CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: partially toggling according to Table 37 on page 34 ; Data IO: seamless write data burst with different data between one burst and the next one according to Table 37; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... (see Table 37); Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at HIGH; Pattern Details: see Table 37 Burst Refresh Current IDD5B CKE: High; External clock: On; tCK, CL, nRFC: see Table 32 on page 32 ; BL: 81); AL: 0; CS: High between REF; Command, Address, Bank Address Inputs: partially toggling according to Table 38 on page 34 ; Data IO: FLOATING;DM:stable at 0; Bank Activity: REF command every nRFC (see Table 38); Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 38 Self Refresh Current: Normal Temperature Range IDD6 TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabled4); Self-Refresh Temperature Range (SRT): Normal5); CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 32 on page 32 ; BL: 81); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: SelfRefresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: FLOATING - 34 - K4B2G0446D K4B2G0846D datasheet Description Rev. 1.01 DDR3L SDRAM [ Table 33 ] Basic IDD and IDDQ Measurement Conditions Symbol Operating Bank Interleave Read Current IDD7 CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 32 on page 32 ; BL: 81); AL: CL-1; CS: High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling according to Table 39 on page 35 ; Data IO: read data bursts with different data between one burst and the next one according to Table 39 ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing, see Table 39 ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 39 IDD8 RESET Low Current RESET : Low; External clock : off; CK and CK : LOW; CKE : FLOATING ; CS, Command, Address, Bank Address, Data IO : FLOATING ; ODT Signal : FLOATING NOTE : 1) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B 2) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B 3) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit 4) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature 5) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range 6) Read Burst type : Nibble Sequential, set MR0 A[3]=0B - 35 - K4B2G0446D K4B2G0846D [ Table 34 ] IDD0 Measurement - Loop Pattern1) Command Sub-Loop datasheet A[15:11] Cycle Number BA[2:0] A[9:7] A[10] RAS CAS ODT WE CS Rev. 1.01 DDR3L SDRAM Data2) A[6:3] A[2:0] 0 0 0 0 0 0 0 0 CK/CK CKE 0 0 1,2 3,4 ... nRAS ... 1*nRC + 0 1*nRC + 1, 2 ACT D, D D, D PRE ACT D, D D, D PRE 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 00 00 00 00 00 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F F F F repeat pattern 1...4 until nRAS - 1, truncate if necessary repeat pattern 1...4 until nRC - 1, truncate if necessary Static High toggling 1*nRC + 3, 4 ... 1*nRC + nRAS ... 1 2 3 4 5 6 7 2*nRC 4*nRC 6*nRC 8*nRC 10*nRC 12*nRC 14*nRC repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary repeat 1...4 until 2*nRC - 1, truncate if necessary repeat Sub-Loop 0, use BA[2:0] = 1 instead repeat Sub-Loop 0, use BA[2:0] = 2 instead repeat Sub-Loop 0, use BA[2:0] = 3 instead repeat Sub-Loop 0, use BA[2:0] = 4 instead repeat Sub-Loop 0, use BA[2:0] = 5 instead repeat Sub-Loop 0, use BA[2:0] = 6 instead repeat Sub-Loop 0, use BA[2:0] = 7 instead NOTE : 1. DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. 2. DQ signals are MID-LEVEL. - 36 - K4B2G0446D K4B2G0846D [ Table 35 ] IDD1 Measurement - Loop Pattern1) Command Sub-Loop datasheet A[15:11] Cycle Number BA[2:0] A[9:7] A[6:3] A[10] RAS CAS ODT WE CS Rev. 1.01 DDR3L SDRAM Data2) 00000000 00110011 Data2) A[2:0] 0 0 0 0 0 0 0 0 0 0 A[2:0] 0 0 0 0 CK/CK CKE 0 0 1,2 3,4 ... nRCD ... nRAS ... 1*nRC+0 1*nRC + 1, 2 ACT D, D D, D RD PRE ACT D, D D, D RD PRE 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 00 00 00 00 00 00 00 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F F F F F repeat pattern 1...4 until nRCD- 1, truncate if necessary repeat pattern 1...4 until nRAS - 1, truncate if necessary repeat pattern 1...4 until nRC - 1, truncate if necessary Static High toggling 1*nRC + 3, 4 ... 1*nRC + nRCD ... 1*nRC + nRAS ... 1 2 3 4 5 6 7 2*nRC 4*nRC 6*nRC 8*nRC 10*nRC 12*nRC 14*nRC repeat pattern nRC + 1,..., 4 until nRC + nRCD - 1, truncate if necessary repeat pattern nRC + 1,..., 4 until nRC +nRAS - 1, truncate if necessary repeat pattern nRC + 1,..., 4 until 2 * nRC - 1, truncate if necessary repeat Sub-Loop 0, use BA[2:0] = 1 instead repeat Sub-Loop 0, use BA[2:0] = 2 instead repeat Sub-Loop 0, use BA[2:0] = 3 instead repeat Sub-Loop 0, use BA[2:0] = 4 instead repeat Sub-Loop 0, use BA[2:0] = 5 instead repeat Sub-Loop 0, use BA[2:0] = 6 instead repeat Sub-Loop 0, use BA[2:0] = 7 instead NOTE : 1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL. 2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL. [ Table 36 ] IDD2 and IDD3N Measurement - Loop Pattern1) Command Sub-Loop A[15:11] Cycle Number BA[2:0] CK/CK A[9:7] 0 0 0 0 A[6:3] 0 0 F F A[10] 0 0 0 0 CKE RAS CAS ODT 0 0 0 0 WE 0 0 1 1 0 0 1 2 3 D D D D CS 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 00 00 00 00 Static High toggling 1 2 3 4 5 6 7 4-7 8-11 12-15 16-19 20-23 24-27 28-31 repeat Sub-Loop 0, use BA[2:0] = 1 instead repeat Sub-Loop 0, use BA[2:0] = 2 instead repeat Sub-Loop 0, use BA[2:0] = 3 instead repeat Sub-Loop 0, use BA[2:0] = 4 instead repeat Sub-Loop 0, use BA[2:0] = 5 instead repeat Sub-Loop 0, use BA[2:0] = 6 instead repeat Sub-Loop 0, use BA[2:0] = 7 instead NOTE : 1. DM must be driven Low all the time. DQS, DQS are MID-LEVEL. 2. DQ signals are MID-LEVEL. - 37 - K4B2G0446D K4B2G0846D datasheet Command A[15:11] Cycle Number BA[2:0] A[9:7] A[6:3] A[10] RAS CAS ODT WE CS Rev. 1.01 DDR3L SDRAM Data2) 00000000 00110011 Data2) A[2:0] 0 0 0 0 A[2:0] 0 0 0 0 0 0 [ Table 37 ] IDD2NT and IDDQ2NT Measurement - Loop Pattern1) Sub-Loop 0 CK/CK CKE 0 1 2 3 D D D D 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 00 00 00 00 0 0 0 0 0 0 0 0 0 0 F F Static High toggling 1 2 3 4 5 6 7 4-7 8-11 12-15 16-19 20-23 24-27 28-31 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 2 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 3 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 6 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 7 NOTE : 1. DM must be driven Low all the time. DQS, DQS are MID-LEVEL. 2. DQ signals are MID-LEVEL. [ Table 38 ] IDD4R and IDDQ4R Measurement - Loop Pattern1) Command Sub-Loop A[15:11] Cycle Number BA[2:0] CK/CK A[9:7] 0 0 0 0 0 0 A[6:3] 0 0 0 F F F A[10] 0 0 0 0 0 0 ODT 0 0 0 0 0 0 CKE RAS CAS 0 0 1 0 0 1 WE 1 0 1 1 0 1 0 0 1 2,3 4 5 RD D D,D RD D D,D CS 0 1 1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 00 00 00 00 00 00 Static High toggling 6,7 1 2 3 4 5 6 7 8-15 16-23 24-31 32-39 40-47 48-55 56-63 repeat Sub-Loop 0, but BA[2:0] = 1 repeat Sub-Loop 0, but BA[2:0] = 2 repeat Sub-Loop 0, but BA[2:0] = 3 repeat Sub-Loop 0, but BA[2:0] = 4 repeat Sub-Loop 0, but BA[2:0] = 5 repeat Sub-Loop 0, but BA[2:0] = 6 repeat Sub-Loop 0, but BA[2:0] = 7 NOTE : 1. DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL. 2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL. - 38 - K4B2G0446D K4B2G0846D [ Table 39 ] IDD4W Measurement - Loop Pattern1) Command Sub-Loop datasheet A[15:11] Cycle Number BA[2:0] A[9:7] A[6:3] A[10] RAS CAS ODT WE CS Rev. 1.01 DDR3L SDRAM Data2) 00000000 00110011 Data2) A[2:0] 0 0 0 0 0 0 A[2:0] 0 0 0 CK/CK CKE 0 0 1 2,3 4 5 WR D D,D WR D D,D 0 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 00 00 00 00 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F F F Static High toggling 6,7 1 2 3 4 5 6 7 8-15 16-23 24-31 32-39 40-47 48-55 56-63 repeat Sub-Loop 0, but BA[2:0] = 1 repeat Sub-Loop 0, but BA[2:0] = 2 repeat Sub-Loop 0, but BA[2:0] = 3 repeat Sub-Loop 0, but BA[2:0] = 4 repeat Sub-Loop 0, but BA[2:0] = 5 repeat Sub-Loop 0, but BA[2:0] = 6 repeat Sub-Loop 0, but BA[2:0] = 7 NOTE : 1. DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL. 2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL. [ Table 40 ] IDD5B Measurement - Loop Pattern1) Command Sub-Loop A[15:11] Cycle Number BA[2:0] CK/CK A[9:7] 0 0 0 A[6:3] 0 0 F A[10] 0 0 0 ODT 0 0 0 CKE RAS CAS 0 0 1 WE 1 0 1 0 1 0 1,2 3,4 5...8 REF D D,D CS 0 1 1 0 0 1 0 0 0 00 00 00 repeat cycles 1...4, but BA[2:0] = 1 repeat cycles 1...4, but BA[2:0] = 2 repeat cycles 1...4, but BA[2:0] = 3 repeat cycles 1...4, but BA[2:0] = 4 repeat cycles 1...4, but BA[2:0] = 5 repeat cycles 1...4, but BA[2:0] = 6 repeat cycles 1...4, but BA[2:0] = 7 repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary. Static High toggling 9...12 13...16 17...20 21...24 25...28 29...32 2 33...nRFC - 1 NOTE : 1. DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. 2. DQ signals are MID-LEVEL. - 39 - K4B2G0446D K4B2G0846D [ Table 41 ] IDD7 Measurement - Loop Pattern1) Command Sub-Loop datasheet A[15:11] Cycle Number BA[2:0] A[9:7] A[6:3] A[10] RAS CAS ODT WE CS Rev. 1.01 DDR3L SDRAM Data2) 00000000 00110011 00110011 00000000 A[2:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CK/CK CKE 0 0 1 2 ... nRRD 1 nRRD + 1 nRRD + 2 ... 2 3 4 5 6 7 8 Static High toggling 9 2 * nRRD 3 * nRRD 4 * nRRD nFAW nFAW+nRRD nFAW+2*nRRD nFAW+3*nRRD nFAW+4*nRRD 2*nFAW+0 10 2*nFAW+1 2*nFAW+2 2*nFAW+nRRD 11 2*nFAW+nRRD+1 2*nFAW+nRRD+2 12 13 14 15 16 17 18 19 2*nFAW+2*nRRD 2*nFAW+3*nRRD 2*nFAW+4*nRRD 3*nFAW 3*nFAW+nRRD 3*nFAW+2*nRRD 3*nFAW+3*nRRD 3*nFAW+4*nRRD ACT RDA D ACT RDA D 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 00 00 00 00 00 00 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 F F F repeat above D Command until nRRD - 1 repeat above D Command until 2*nRRD-1 repeat Sub-Loop 0, but BA[2:0] = 2 repeat Sub-Loop 1, but BA[2:0] = 3 D 1 0 0 0 0 3 00 0 0 F Assert and repeat above D Command until nFAW - 1, if necessary repeat Sub-Loop 0, but BA[2:0] = 4 repeat Sub-Loop 1, but BA[2:0] = 5 repeat Sub-Loop 0, but BA[2:0] = 6 repeat Sub-Loop 1, but BA[2:0] = 7 D ACT RDA D ACT RDA D 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 7 0 0 0 1 1 1 00 00 00 00 00 00 00 0 0 1 0 0 1 0 0 0 0 0 0 0 0 F F F F 0 0 0 Assert and repeat above D Command until 2*nFAW - 1, if necessary Repeat above D Command until 2*nFAW + nRRD - 1 Repeat above D Command until 2*nFAW + 2*nRRD - 1 repeat Sub-Loop 10, but BA[2:0] = 2 repeat Sub-Loop 11, but BA[2:0] = 3 D 1 0 0 0 0 3 00 0 0 0 Assert and repeat above D Command until 3*nFAW - 1, if necessary repeat Sub-Loop 10, but BA[2:0] = 4 repeat Sub-Loop 11, but BA[2:0] = 5 repeat Sub-Loop 10, but BA[2:0] = 6 repeat Sub-Loop 11, but BA[2:0] = 7 D 1 0 0 0 0 7 00 0 0 0 Assert and repeat above D Command until 4*nFAW - 1, if necessary NOTE : 1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL. 2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation. DQ signals are MID-LEVEL. - 40 - K4B2G0446D K4B2G0846D datasheet 512Mx4 (K4B2G0446D) DDR3-1066 (7-7-7) 1.35V 1.5V 35 45 12 15 17 20 40 17 17 30 50 35 60 110 12 105 12 30 40 10 13 15 17 35 15 15 25 55 30 60 110 10 100 10 DDR3-1333 (9-9-9) 1.35V 35 45 10 13 15 20 35 15 15 25 70 30 75 115 10 125 10 1.5V 40 50 12 15 20 25 40 20 17 35 60 35 70 115 12 125 12 Rev. 1.01 DDR3L SDRAM 11. 2Gb DDR3 SDRAM D-die IDD Specification Table [ Table 42 ] IDD Specification for 2Gb DDR3 D-die Symbol IDD0 IDD1 IDD2P0(slow exit) IDD2P1(fast exit) IDD2N IDD2NT IDDQ2NT IDD2Q IDD3P IDD3N IDD4R IDDQ4R IDD4W IDD5B IDD6 IDD7 IDD8 DDR3-1600 (11-11-11) 1.35V 40 50 10 15 17 22 35 17 17 30 80 30 90 115 10 130 10 1.5V 45 55 12 15 20 25 40 20 20 35 70 35 85 120 12 130 12 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA Unit NOTE NOTE : VDD condition : 1.45V for 1.35V operation, 1.575V for 1.5V operation 256Mx8 (K4B2G0846D) Symbol IDD0 IDD1 IDD2P0(slow exit) IDD2P1(fast exit) IDD2N IDD2NT IDDQ2NT IDD2Q IDD3P IDD3N IDD4R IDDQ4R IDD4W IDD5B IDD6 IDD7 IDD8 DDR3-1066 (7-7-7) 1.35V 30 40 10 13 15 17 65 15 15 25 50 45 55 110 10 95 10 1.5V 35 45 12 15 17 20 70 17 17 30 65 50 70 110 12 105 12 DDR3-1333 (9-9-9) 1.35V 35 45 10 13 15 20 65 15 15 25 60 45 65 115 10 120 10 1.5V 40 50 12 15 20 25 70 20 17 35 75 50 80 115 12 135 12 DDR3-1600 (11-11-11) 1.35V 40 50 10 15 17 22 65 17 17 30 65 45 75 115 10 125 10 1.5V 45 55 12 15 20 25 70 20 20 35 90 50 95 120 12 140 12 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA Unit NOTE NOTE : VDD condition : 1.45V for 1.35V operation, 1.575V for 1.5V operation - 41 - K4B2G0446D K4B2G0846D datasheet Symbol DDR3-800 Min Max 1.35V DDR3-1066 Min Max DDR3-1333 Min Max Rev. 1.01 DDR3L SDRAM 12. Input/Output Capacitance [ Table 43 ] Input/Output Capacitance Parameter DDR3-1600 Min Max Units NOTE Input/output capacitance (DQ, DM, DQS, DQS, TDQS, TDQS) Input capacitance (CK and CK) Input capacitance delta (CK and CK) Input capacitance (All other input-only pins) Input/Output capacitance delta (DQS and DQS) Input capacitance delta (All control input-only pins) Input capacitance delta (all ADD and CMD input-only pins) Input/output capacitance delta (DQ, DM, DQS, DQS, TDQS, TDQS) Input/output capacitance of ZQ pin Input/output capacitance (DQ, DM, DQS, DQS, TDQS, TDQS) Input capacitance (CK and CK) Input capacitance delta (CK and CK) Input capacitance (All other input-only pins) Input capacitance delta (DQS and DQS) Input capacitance delta (All control input-only pins) Input capacitance delta (all ADD and CMD input-only pins) Input/output capacitance delta (DQ, DM, DQS, DQS, TDQS, TDQS) Input/output capacitance of ZQ pin CIO CCK CDCK CI CDDQS CDI_CTRL CDI_ADD_CMD CDIO CZQ 1.5 0.8 0 0.75 0 -0.5 -0.5 -0.5 - 2.5 1.6 0.15 1.3 0.2 0.3 0.5 0.3 3 1.5V 1.5 0.8 0 0.75 0 -0.5 -0.5 -0.5 - 2.5 1.6 0.15 1.3 0.2 0.3 0.5 0.3 3 1.5 TBD TBD 0.75 TBD TBD TBD TBD TBD 2.3 TBD TBD 1.3 TBD TBD TBD TBD TBD 1.2 TBD TBD 0.75 TBD TBD TBD TBD TBD 2.3 TBD TBD 1.3 TBD TBD TBD TBD TBD pF pF pF pF pF pF pF pF pF 1,2,3 2,3 2,3,4 2,3,6 2,3,5 2,3,7,8 2,3,9,10 2,3,11 2, 3, 12 CIO CCK CDCK CI CDDQS CDI_CTRL CDI_ADD_CMD CDIO CZQ 1.5 0.8 0 0.75 0 -0.5 -0.5 -0.5 - 3.0 1.6 0.15 1.5 0.2 0.3 0.5 0.3 3 1.5 0.8 0 0.75 0 -0.5 -0.5 -0.5 - 2.7 1.6 0.15 1.5 0.2 0.3 0.5 0.3 3 1.5 0.8 0 0.75 0 -0.4 -0.4 -0.5 - 2.5 1.4 0.15 1.3 0.15 0.2 0.4 0.3 3 1.4 0.8 0 0.75 0 -0.4 -0.4 -0.5 - 2.3 1.4 0.15 1.3 0.15 0.2 0.4 0.3 3 pF pF pF pF pF pF pF pF pF 1,2,3 2,3 2,3,4 2,3,6 2,3,5 2,3,7,8 2,3,9,10 2,3,11 2, 3, 12 NOTE : 1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS 2. This parameter is not subject to production test. It is verified by design and characterization. The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER( VNA)") with VDD, VDDQ, VSS, VSSQ applied and all other pins floating (except the pin under test, CKE, RESET and ODT as necessary). VDD=VDDQ=1.5V, VBIAS=VDD/2 and on-die termination off. 3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here 4. Absolute value of CCK-CCK 5. Absolute value of CIO(DQS)-CIO(DQS) 6. CI applies to ODT, CS, CKE, A0-A15, BA0-BA2, RAS, CAS, WE. 7. CDI_CTRL applies to ODT, CS and CKE 8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK)) 9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS, CAS and WE 10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK)) 11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS)) 12. Maximum external load capacitance on ZQ pin: 5pF - 42 - K4B2G0446D K4B2G0846D datasheet Rev. 1.01 DDR3L SDRAM 13. Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600 13.1 Clock Specification The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the min/max values may result in malfunction of the DDR3 SDRAM device. 13.1.1 Definition for tCK(avg) tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, where each clock period is calculated from rising edge to rising edge. N ∑ j=1 tCKj N N=200 13.1.2 Definition for tCK(abs) tCK(abs) is defind as the absolute clock period, as measured from one rising edge to the next consecutive rising edge. tCK(abs) is not subject to production test. 13.1.3 Definition for tCH(avg) and tCL(avg) tCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses: tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses: N N ∑ j=1 tCHj N x tCK(avg) N=200 ∑ j=1 tCLj N x tCK(avg) N=200 13.1.4 Definition for note for tJIT(per), tJIT(per, Ick) tJIT(per) is defined as the largest deviation of any single tCK from tCK(avg). tJIT(per) = min/max of {tCKi-tCK(avg) where i=1 to 200} tJIT(per) defines the single period jitter when the DLL is already locked. tJIT(per,lck) uses the same definition for single period jitter, during the DLL locking period only. tJIT(per) and tJIT(per,lck) are not subject to production test. 13.1.5 Definition for tJIT(cc), tJIT(cc, Ick) tJIT(cc) is defined as the absolute difference in clock period between two consecutive clock cycles: tJIT(cc) = Max of {tCKi+1-tCKi} tJIT(cc) defines the cycle to cycle jitter when the DLL is already locked. tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only. tJIT(cc) and tJIT(cc,lck) are not subject to production test. 13.1.6 Definition for tERR(nper) tERR is defined as the cumulative error across n multiple consecutive cycles from tCK(avg). tERR is not subject to production test. - 43 - K4B2G0446D K4B2G0846D datasheet Symbol tRFC tREFI 0 °C ≤ TCASE ≤ 85°C 85 °C < TCASE ≤ 95°C 1Gb 110 7.8 3.9 2Gb 160 7.8 3.9 4Gb 300 7.8 3.9 Rev. 1.01 DDR3L SDRAM 13.2 Refresh Parameters by Device Density [ Table 44 ] Refresh parameters by device density Parameter All Bank Refresh to active/refresh cmd time Average periodic refresh interval 8Gb 350 7.8 3.9 Units ns µs µs 1 NOTE NOTE : 1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in this material. 13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin. [ Table 45 ] DDR3-800 Speed Bins Speed CL-nRCD-nRP Parameter Internal read command to first data ACT to internal read or write delay time PRE command period ACT to ACT or REF command period ACT to PRE command period CL = 5 CL = 6 Supported CL Settings Supported CWL Settings [ Table 46 ] DDR3-1066 Speed Bins Speed CL-nRCD-nRP Parameter Internal read command to first data ACT to internal read or write delay time PRE command period ACT to ACT or REF command period ACT to PRE command period CL = 5 CL = 6 CL = 7 CL = 8 Supported CL Settings Supported CWL Settings CWL = 5 CWL = 6 CWL = 5 CWL = 6 CWL = 5 CWL = 6 CWL = 5 CWL = 6 Symbol tAA tRCD tRP tRC tRAS tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) 1.875 5,6,7,8 5,6 1.875 Reserved
K4B2G0846D 价格&库存

很抱歉,暂时无法提供与“K4B2G0846D”相匹配的价格&库存,您可以联系我们找货

免费人工找货