0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
S-8341C30AFT-T2-U

S-8341C30AFT-T2-U

  • 厂商:

    SII(精工半导体)

  • 封装:

    TSSOP8

  • 描述:

    ICREGCTRLRBOOST8TSSOP

  • 数据手册
  • 价格&库存
S-8341C30AFT-T2-U 数据手册
S-8340/8341 Series STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER www.ablicinc.com N Rev.4.0_02 DE SI G © ABLIC Inc., 1999-2010 NE W The S-8340/8341 Series is a CMOS step-up switching regulator controller which mainly consists of a reference voltage source, oscillation circuit, error amplifier, phase compensation circuit, PWM control circuit (S-8340 Series), and PWM/PFM switching control circuit (S-8341 Series). Since the oscillation frequency is a high 300 kHz or 600 kHz, with the addition of a small external part, the S-8340/8341 Series functions as a highly efficient step-up switching regulator with a high output current. The speed of the output stage is enhanced so that the N-channel power MOS with a low on-resistance can be switched quickly. The S-8340 Series realizes low ripple, high efficiency, and excellent transient characteristics thanks to a PMW control circuit capable of varying the duty ratio linearly from 0 to 82%, optimized error amplifier, and phase compensation circuit. The S-8341 Series contains a PWM/PFM switching control circuit so that it operates using PWM control with a duty ratio of 27% or higher and using PFM control with a duty ratio of lower than 27% to ensure high efficiency in all load ranges. These S-8340/8341 Series serve as ideal main power supply units for portable devices when coupled with the 8-Pin TSSOP package and high oscillation frequencies. FO D DE      Oscillation frequency : 600 kHz (A and B types), 300 kHz (C and D types). Output voltage : Selectable in 0.1 V steps between 2.5 to 6.0 V (output voltage fixed output type) Output voltage accuracy : 2.0% Output voltage external setting (FB) type available. FB terminal voltage (VFB) 1.0 V External parts : Coil, diode, capacitors (3), transistor, and resistor only Duty ratio : 0 to 82% (typ.) PWM control (S-8340 Series) 27 to 82% (typ.) PWM/PFM switching control (S-8341 Series A and B types) 21 to 82% (typ.) PWM/PFM switching control (S-8341 Series C and D types) Low-voltage operation: Oscillation guaranteed to start when VDD  0.9 V Built-in current limit circuit: Can be set with an external resistor (RSENSE) Soft-start function set by an external capacitor (CSS) Shutdown function Lead-free, Sn 100%, halogen-free*1 MM EN       R  Features *1. Refer to “ Product Name Structure” for details. Power supplies for portable equipments such as PDAs, electronic notebooks, and cellular phones Power supplies for audio equipments such as portable CD players, portable MD players, and headphone stereos Main or local power supplies for notebook PCs and peripherals Constant voltage power supplies for cameras, VCRs, and communication devices  Package RE     CO  Applications NO T  8-Pin TSSOP 1 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series  Block Diagrams SD VDD Phase compensation circuit Triangular wave oscillation circuit IC internal power supply PWM comparator EXT VIN CC Nch Power MOS FET R1 RS PWM, PWM/PFM switching control circuit Shutdown circuit VSS Voltage/current reference Soft-start circuit CVREF FO CSS CSS ON/OFF CL R2 VREF =1.0 V NE RSENSE  R 120 mV VOUT W Error amplifier CS SENSE VOUT DE SI G L N (1) S-8340/8341 Series A and C Types (Output Voltage Fixed Output Type) CVREF D Figure 1 DE (2) S-8340/8341 Series B and D Types (Output Voltage External Setting Type) L MM EN SD Phase compensation circuit Triangular wave oscillation circuit PWM comparator EXT VIN Nch Power MOS FET VOUT VDD IC internal power supply CFB CO RS SENSE NO T RE RSENSE 2 FB Error amplifier RFB1 CL CS 120 mV Shutdown circuit PWM, PW M/PFM switching control circuit Soft-start circuit Voltage/current reference CVREF CSS ON/OFF RFB2 VREF =1.0 V CSS Figure 2 CVREF  VSS STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series  Product Name Structure 1. Product Name S-834 x x xx A FT – T2 – x DE SI G N The control method, product type, and output voltage values for the S-8340/8341 Series can be selected depending on usage. Refer to “1. Product Name” for the definition of the product name, “2. Package” regarding the package drawings and “3. Product Name List” for the full product names. Environmental code U : Lead-free (Sn 100%), halogen-free G : Lead-free (for details, please contact our sales office) IC direction in tape specifications *1 W Package name (abbreviation) FT : 8-Pin TSSOP NE Output voltage 25 to 60 (E.g., when the output voltage is 2.5 V, it is expressed as 25.) FO R Product type A : Output voltage fixed output type, fOSC = 600 kHz B : Output voltage external setting type, fOSC = 600 kHz C : Output voltage fixed output type, fOSC = 300 kHz D : Output voltage external setting type, fOSC = 300 kHz *1. Package MM EN 2. Refer to the tape drawing. DE D Control method 0 : PWM control 1 : PWM/PFM switching control Package Name Environmental code = G Environmental code = U Drawing Code Tape FT008-E-C-SD FT008-E-C-SD Reel FT008-E-R-SD FT008-E-R-S1 NO T RE CO 8-Pin TSSOP Package FT008-A-P-SD FT008-A-P-SD 3 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series 3. Product Name List N (1) Output Voltage Fixed Output Type S-8340 Series A Type fOSC = 600 kHz PWM Control Output Voltage (V) DE SI G Table 1 S-8341 Series A Type fOSC = 600 kHz PWM/PFM Switching Control S-8340 Series C Type fOSC = 300 kHz PWM Control S-8341 Series C Type fOSC = 300 kHz PWM/PFM Switching Control D (2) Output Voltage External Setting Type FO R NE W 2.5 V S-8340A25AFT-T2-x S-8341A25AFT-T2-x S-8340C25AFT-T2-x S-8341C25AFT-T2-x 3.0 V S-8340A30AFT-T2-x S-8341A30AFT-T2-x S-8340C30AFT-T2-x S-8341C30AFT-T2-x 3.3 V S-8340A33AFT-T2-x S-8341A33AFT-T2-x S-8340C33AFT-T2-x S-8341C33AFT-T2-x 3.4 V S-8340A34AFT-T2-x    3.5 V S-8340A35AFT-T2-x    5.0 V S-8340A50AFT-T2-x S-8341A50AFT-T2-x S-8340C50AFT-T2-x S-8341C50AFT-T2-x 5.1 V S-8340A51AFT-T2-x   S-8341C51AFT-T2-x 5.6 V S-8340A56AFT-T2-x    6.0 V S-8340A60AFT-T2-x  S-8340C60AFT-T2-x  Remark 1. Contact the ABLIC Inc. marketing department for products with an output voltage other than those specified above. 2. x: G or U 3. Please select products of environmental code = U for Sn 100%, halogen-free products. S-8340 Series B Type fOSC = 600 kHz PWM Control S-8341 Series B Type fOSC = 600 kHz PWM/PFM Switching Control MM EN Output Voltage (V) DE Table 2 S-8340 Series D Type fOSC = 300 kHz PWM Control S-8341 Series D Type fOSC = 300 kHz PWM/PFM Switching Control NO T RE CO External setting S-8340B00AFT-T2-x S-8341B00AFT-T2-x S-8340D00AFT-T2-x S-8341D00AFT-T2-x Remark 1. x: G or U 2. Please select products of environmental code = U for Sn 100%, halogen-free products. 4 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series  Pin Configurations Table 3 CVREF 3 CSS 4 ON/OFF 5 VDD 6 VOUT (FB) 7 8 EXT SENSE N 2 Pin Description GND pin Reference voltage source pass capacitor connection pin Soft-start capacitor connection pin Shutdown pin “H” : Normal operation (step-up operating) “L” : Entire circuit stopped (step-up stopped) IC power supply pin Output voltage fixed output type : Output voltage monitoring pin [Output voltage external setting type : Feedback pin] External transistor connection pin Current limit detection pin NO T RE CO MM EN DE D FO R Figure 3 VSS DE SI G 8 7 6 5 Symbol 1 W 1 2 3 4 Pin No. NE 8-Pin TSSOP Top view 5 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series  Absolute Maximum Ratings Table 4 Symbol Absolute Maximum Rating Unit DE SI G Parameter N (Ta = 25C unless otherwise specified) VDD VSS  0.3 to VSS  12 V VOUT pin voltage VOUT VSS  0.3 to VSS  12 V FB pin voltage VFB VSS  0.3 to VSS  12 V CVREF pin voltage VCVREF VSS  0.3 to VDD  0.3 V CSS pin voltage VCSS VSS  0.3 to VDD  0.3 V ON/OFF pin voltage VON/OFF VSS  0.3 to VSS  12 V SENSE pin voltage VSENSE VSS  0.3 to VSS  12 V EXT pin voltage VEXT VSS  0.3 to VDD  0.3 V EXT pin current IEXT 100 mA Power dissipation PD 300 (When not mounted on board) mW NE W VDD pin voltage *1 700 Tdpr Storage temperature Tstg 40 to 85 C 40 to 125 C R Operating ambient temperature mW D FO *1. When mounted on board [Mounted board] (1) Board size : 114.3 mm × 76.2 mm × t1.6 mm (2) Board name : JEDEC STANDARD51-7 When mounted on board MM EN 700 600 500 400 300 200 100 RE 0 (2) CO Power dissipation PD (mW) 800 0 50 150 100 NO T Ambient temperature Ta (C) 6 Figure 4 When not mounted on board 400 Power dissipation PD (mW) (1) DE Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions. 300 200 100 0 0 50 100 150 Ambient temperature Ta (C) Power Dissipation of Packages STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series  Electrical Characteristics N (1) 600 kHz, Output Voltage Fixed Type (A Type) Table 5 Parameter Output voltage Symbol *1 Conditions Min. VIN  VOUT(S)  0.6, IOUT  VOUT(S)/50  VOUT(E) VOUT(S)  0.98   No external parts. The voltage is applied to VOUT. VOUT  VOUT(S)  0.95, EXT pin open 2      350 460 630 810 180 640 810 1060 1250 300 A A A A A 2 2 2 2 2   3.0 A 2 13 17 21 23 32 42 50 56 24 30 34 37 56 69 78 85 VOUT(S)  0.5% VOUT(S)  0.5%         mA mA mA mA mA mA mA mA         VOUT(S)  1% VOUT(S)  1% V 1 V 1  100  ppm/C 1 510 600 690 kHz 2 73 82 89 % 2 19 27 35 % 1 90 120 150 mV 2 0.8   V 2   0.3 V 2 0.1 0.1   0.1 0.1 A A 2 2 3.0 6.0 14.0 ms 1 3.0 8.0 14.0 ms 1     83 85 87 87     % % % % 1 1 1 1 ISS1 Current consumption 2 Current consumption at shutdown EXT pin output current ISS2 S-834xA25  34 S-834xA35  44 S-834xA45  54 S-834xA55  60 VOUT  VOUT(S)  0.5 V, EXT pin open ISSS VOUT  VOUT(S)  0.95, VON/OFF  0 V IEXTH VEXT  VOUT(E)  0.2 V IEXTL VEXT  0.2 V Line regulation VOUT1 VIN  VOUT(S)  0.4 to VOUT(S)  0.6 IOUT  VOUT(S)/50   Load regulation VOUT2 VIN  VOUT(S)  0.6, 10 A  IOUT  VOUT(S)/40   Output voltage *2 temperature coefficient VOUT VIN  VOUT(S)  0.6, IOUT  VOUT(S)/50 , TaVOUT Ta  40 to 85C VOUT  VOUT(S)  0.95 fOSC Measure waveform at the EXT pin VIN  VOUT(S)  0.95 MaxDuty Measure waveform at the EXT pin NE R FO D DE MM EN CO VSENSE RE Current limit detection voltage ON/OFF pin input voltage VSH NO T VSL ON/OFF pin input leakage current Soft-start time Efficiency ISH ISL tSS EFFI VOUT  VOUT(S)  0.95 Judge oscillation at the EXT pin or oscillation stop at “L” VOUT  VOUT(S)  0.95 Judge oscillation at the EXT pin. VOUT  VOUT(S)  0.95 Judge oscillation stop at the EXT pin. VOUT  6 V, VON/OFF  6 V VOUT  6 V, VON/OFF  0 V VIN  VOUT(S)  0.6, CSS  4700 S-8340Axx pF, IOUT  VOUT(S)/50  Measure time until oscillation occurs at the EXT pin. VIN  VOUT(S)  0.6, IOUT VOUT(S)/50  S-8341Axx S-834xA25  34 S-834xA35  44 S-834xA45  54 S-834xA55  60 VOUT(S) W  VIN  VOUT(E)  0.1 V, under no load Circuit V Current consumption 1 PFMDuty Measurement 0.9 VST PWM/PFM switching duty ratio (S-8341 Series A type) Unit  Oscillation start voltage Maximum duty ratio Max.  VIN S-834xA25  34 S-834xA35  44 S-834xA45  54 S-834xA55  60 S-834xA25  34 S-834xA35  44 S-834xA45  54 S-834xA55  60 Typ. VOUT(S)  1.02 6 Input voltage Oscillation frequency DE SI G (Ta = 25C unless otherwise specified) V 1 V 1 7 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series Sumida Corporation CD54 (10 H) Matsushita Electronic Industrial Co., Ltd. MA735 (Schottky type) Nichicon Corporation F93 (16 V, 47 F, tantalum type) Sanyo Electric Co., Ltd. 2SD1628G 1.0 k 2200 pF (ceramic type) 0.01 F 4700 pF N Coil : Diode : Capacitor : Transistor : Base resistor (Rb) : Base capacitor (Cb) : CVREF : CSS : DE SI G External parts The VDD pin is connected to the VOUT pin. The ON/OFF pin is connected to the VOUT pin unless otherwise specified. Connect the SENSE pin to the VSS pin. VOUT [mV/C] = VOUT(S) [V]  Ta value) coefficient) The S-8340/8341 Series steps up from VDD = 0.9 V. However, 2.5 V or more for VDD is recommended to stabilize the output voltage and oscillation frequency. If VDD is taken from VIN or other power sources, instead of VOUT, VDD should be 2.5 V or more. However, if VDD is not taken from VOUT, note that the output voltage accuracy of 2.0% is not guaranteed due to dependency of output voltage on VDD. In particular, accuracy of output voltage is degraded significantly when the VDD voltage is 6.0 V or more. Therefore, do not use this IC when the VDD voltage is 6.0 V or more. If VDD of 2.5 V or more is applied, increase power supply so that VDD becomes 2.5 V or more within the soft-start time (3.0 ms). NO T RE CO MM EN DE D Caution (Set output voltage (Output voltage temperature FO with temperature) VOUT [ppm/C]  1000 Ta  VOUT R (Change of output voltage NE W *1. VOUT(S) : Set output voltage value VOUT(E) : Actual output voltage value : Output voltage value when IOUT  VOUT(S)/50  and VIN  VOUT(S)  0.6. *2. The change of output voltage with temperature [mV/C] is calculated from the following formula. 8 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series (2) 600 kHz, Output Voltage External Setting Type (B Type) Table 6 Symbol *1 Conditions Min. Typ. Max. Unit DE SI G Parameter N (Ta = 25C unless otherwise specified) Measurement Circuit VOUT(E) VIN  2.4 V, IOUT  80 mA 3.920 4.000 4.080 V 3 FB pin voltage VFB VIN  2.4 V, IOUT  80 mA 0.980 1.000 1.020 V 3 Input voltage VIN   6 V 3  0.9 V 4  No external parts. Oscillation start voltage VST2 Current consumption 1 ISS1 VOUT  3.8 V Current consumption 2 ISS2 VOUT ISSS VOUT  3.8 V, VON/OFF  0 V IEXTH VEXT  VOUT(E)  0.2 V IEXTL VEXT  0.2 V Line regulation VOUT1 1.6 V  VIN  2.4 V, IOUT  80 mA Load regulation VOUT2 VIN  2.4 V, 10 A  IOUT  100 mA VOUT Output voltage temperature coefficient *2 TaVOUT VIN  2.4 V, IOUT  80 mA, Ta  40 to 85°C FO EXT pin output current 740 A 4 180 300 A 4   3.0 A 4 19 30  mA  46 69  mA   20 40 mV 3  20 40 mV 3  100  ppm/°C 3 W at shutdown 460    4.5 V NE Current consumption  The voltage is applied to VDD. R Output voltage Oscillation frequency fOSC VOUT  3.8 V, measure waveform at the EXT pin 510 600 690 kHz 4 Maximum duty ratio MaxDuty VIN  3.8 V, measure waveform at the EXT pin 73 82 89 % 4 PFMDuty VIN  VOUT(E)  0.1 V, under no load 19 27 35 % 3 VSENSE Judge oscillation at the EXT pin or oscillation 90 120 150 mV 4 50  50 nA 4 0.8   V 4   0.3 V 4 VOUT  6 V, VON/OFF  6 V 0.1  0.1 A 4 VOUT  6 V, VON/OFF  0 V 0.1  0.1 A 4 S-8340B00 3.0 6.0 14.0 ms 3 S-8341B00 3.0 8.0 14.0 ms 3  85  % 3 duty ratio D PWM/PFM switching Current limit detection voltage VOUT  3.8 V stop at “L” IFB ON/OFF pin input voltage VSH VOUT  6 V, VFB  1.5 V MM EN FB pin input current DE (S-8341 Series B type) VOUT  3.8 V Judge oscillation at the EXT pin. VSL VOUT  3.8 V Judge oscillation stop at the EXT pin. ISH leakage current ISL Soft-start time tSS VIN  2.4 V, CO ON/OFF pin input CSS  4700 pF, IOUT  80 mA, EFFI occurs at the EXT pin. VIN  2.4 V, IOUT  80 mA NO T Efficiency RE Measure time until oscillation 9 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series Sumida Corporation CD54 (10 H) Matsushita Electronic Industrial Co., Ltd. MA735 (Schottky type) Nichicon Corporation F93 (16 V, 47 F, tantalum type) Sanyo Electric Co., Ltd. 2SD1628G 1.0 k 2200 pF (ceramic type) 0.01 F 4700 pF 300 k 100 k 50 pF The ON/OFF pin is connected to the VOUT pin unless otherwise specified. Connect the SENSE pin to the VSS pin. DE SI G N Coil : Diode : Capacitor : Transistor : Base resistor (Rb) : Base capacitor (Cb) : CVREF : CSS : RFB1 : RFB2 : CFB : W External parts (Change of output voltage (Set output voltage value) VOUT [ppm/C]  1000 Ta  VOUT (Output voltage temperature coefficient) DE The S-8340/8341 Series steps up from VDD = 0.9 V. However, 2.5 V or more for VDD is recommended to stabilize the output voltage and oscillation frequency. If VDD is taken from VIN or other power sources, instead of VOUT, VDD should be 2.5 V or more. However, if VDD is other than 4.0 V, note that the output voltage accuracy of 2.0% is not guaranteed due to dependency of output voltage on VDD. In particular, accuracy of output voltage is degraded significantly when the VDD voltage is 6.0 V or more. Therefore, do not use this IC when the VDD voltage is 6.0 V or more. If VDD of 2.5 V or more is applied, increase power supply so that VDD becomes 2.5 V or more within the soft-start time (3.0 ms). NO T RE CO MM EN Caution  D with temperature) RFB1 RFB2 10 FO VOUT [mV/C]  1  Ta R NE *1. VOUT(E) : Actual output voltage value : Output voltage value when IOUT  80 mA and VIN = 2.4 V is applied. 300 k The Typ. value (set output voltage value) is 1 + [V] 100 k *2. The change of output voltage with temperature [mV/C] is calculated from the following formula. However, the temperature change rates for RFB1 and RFB2 are assumed to be the same. STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series (3) 300 kHz, Output Voltage Fixed Type (C Type) Table 7 Output voltage Symbol *1 Conditions Min. VIN  VOUT(S)  0.6, IOUT  VOUT(S)/50  VOUT(E) VOUT(S)  0.98   No external parts. The voltage is applied to VOUT. VOUT  VOUT(S)  0.95, EXT pin open V 2 210 270 350 440 110 430 520 650 740 185 A A A A A 2 2 2 2 2   3.0 A 2 13 17 21 23 32 42 50 56 24 30 34 37 56 69 78 85 VOUT(S)  0.5% VOUT(S)  0.5%         mA mA mA mA mA mA mA mA         VOUT(S)  1% VOUT(S)  1% V 1 V 1  100  ppm/C 1 255 300 345 kHz 2 73 82 89 % 2 15 21 31 % 1 90 120 150 mV 2 0.8   V 2   0.3 V 2 0.1 0.1   0.1 0.1 A A 2 2 6.0 14.3 28.0 ms 1 6.0 17.2 28.0 ms 1     83 85 87 87     % % % % 1 1 1 1 Current consumption 1 ISS1 Current consumption 2 Current consumption at shutdown EXT pin output current ISS2 S-834xC25  34 S-834xC35  44 S-834xC45  54 S-834xC55  60 VOUT  VOUT(S)  0.5 V, EXT pin open ISSS VOUT  VOUT(S)  0.95, VON/OFF  0 V IEXTH VEXT  VOUT(E)  0.2 V IEXTL VEXT  0.2 V Line regulation VOUT1 VIN  VOUT(S)  0.4 to VOUT(S)  0.6 IOUT  VOUT(S)/50   Load regulation VOUT2 VIN  VOUT(S)  0.6, 10 A  IOUT  VOUT(S)/40   Output voltage *2 temperature coefficient VOUT VIN  VOUT(S)  0.6, IOUT  VOUT(S)/50  TaVOUT Ta  40 to 85C VOUT  VOUT(S)  0.95 fOSC Measure waveform at the EXT pin VIN  VOUT(S)  0.95 MaxDuty Measure waveform at the EXT pin VSENSE RE ON/OFF pin input voltage VSH VSL ISH ISL tSS NO T Soft-start time Efficiency VIN  VOUT(E)  0.1 V, under no load VOUT  VOUT(S)  0.95 Judge oscillation at the EXT pin or oscillation stop at “L” VOUT  VOUT(S)  0.95 Judge oscillation at the EXT pin. VOUT  VOUT(S)  0.95 Judge oscillation stop at the EXT pin. VOUT  6 V, VON/OFF  6 V VOUT  6 V, VON/OFF  0 V VIN  VOUT(S)  0.6, CSS  4700 S-8340Cxx pF, IOUT  VOUT(S)/50 , EFFI Measure time until oscillation occurs at EXT pin. VIN  VOUT(S)  0.6, IOUT VOUT(S)/50  S-8341Cxx S-834xC25  34 S-834xC35  44 S-834xC45  54 S-834xC55  60 VOUT(S) W      NE R FO D DE MM EN Current limit detection voltage ON/OFF pin input leakage current  CO PFMDuty Circuit 0.9 VST PWM/PFM switching duty ratio (S-8341 Series C type) Measurement  Oscillation start voltage Maximum duty ratio Unit  VIN Oscillation frequency Max. VOUT(S)  1.02 6 Input voltage S-834xC25  34 S-834xC35  44 S-834xC45  54 S-834xC55  60 S-834xC25  34 S-834xC35  44 S-834xC45  54 S-834xC55  60 Typ. DE SI G Parameter N (Ta = 25C unless otherwise specified) V 1 V 1 11 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series Sumida Corporation CD54 (10 H) Matsushita Electronic Industrial Co., Ltd. MA735 (Schottky type) Nichicon Corporation F93 (16 V, 47 F, tantalum type) Sanyo Electric Co., Ltd. 2SD1628G 1.0 k 2200 pF (ceramic type) 0.01 F 4700 pF N Coil : Diode : Capacitor : Transistor : Base resistor (Rb) : Base capacitor (Cb) : CVREF : CSS : DE SI G External parts The VDD pin is connected to the VOUT pin. The ON/OFF pin is connected to the VOUT pin unless otherwise specified. Connect the SENSE pin to the VSS pin. VOUT [mV/C] = VOUT(S) [V]  Ta value) coefficient) The S-8340/8341 Series steps up from VDD = 0.9 V. However, 2.5 V or more for VDD is recommended to stabilize the output voltage and oscillation frequency. If VDD is taken from VIN or other power sources, instead of VOUT, VDD should be 2.5 V or more. However, if VDD is not taken from VOUT, note that the output voltage accuracy of 2.0% is not guaranteed due to dependency of output voltage on VDD. In particular, accuracy of output voltage is degraded significantly when the VDD voltage is 6.0 V or more. Therefore, do not use this IC when the VDD voltage is 6.0 V or more. If VDD of 2.5 V or more is applied, increase power supply so that VDD becomes 2.5 V or more within the soft-start time (6.0 ms). NO T RE CO MM EN DE D Caution (Set output voltage (Output voltage temperature FO with temperature) VOUT [ppm/C]  1000 Ta  VOUT R (Change of output voltage NE W *1. VOUT(S) : Set output voltage value VOUT(E) : Actual output voltage value : Output voltage value when IOUT  VOUT(S)/50  and VIN  VOUT(S)  0.6. *2. The change of output voltage with temperature [mV/C] is calculated from the following formula. 12 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series (4) 300 kHz, Output Voltage External Setting Type (D Type) Table 8 Output voltage Symbol *1 Conditions Min. Typ. Max. Unit DE SI G Parameter N (Ta = 25C unless otherwise specified) Measurement Circuit VOUT(E) VIN = 2.4 V, IOUT = 80 mA 3.920 4.000 4.080 V 3 FB pin voltage VFB VIN = 2.4 V, IOUT = 80 mA 0.980 1.000 1.020 V 3 Input voltage VIN   6 V 3  0.9 V 4 255 460 A 4 110 185 A 4 3.0 A 4  No external parts.  Oscillation start voltage VST2 Current consumption 1 ISS1 VOUT = 3.8 V  Current consumption 2 ISS2 VOUT = 4.5 V  ISSS VOUT = 3.8 V, VON/OFF = 0 V W at shutdown VEXT = VOUT(E)  0.2 V VEXT = 0.2 V Line regulation VOUT1 1.6 V  VIN  2.4 V, IOUT = 80 mA Load regulation VOUT2 VIN = 2.4 V, 10 A  IOUT  100 mA VOUT Output voltage temperature coefficient *2 TaVOUT R IEXTH IEXTL EXT pin output current   19 30  mA  46 69  mA   20 40 mV 3  20 40 mV 3  100  ppm/°C 3 NE Current consumption The voltage is applied to VDD. VIN = 2.4 V, IOUT = 80 mA, Ta = 40to 85°C fOSC VOUT = 3.8 V, Measure waveform at the EXT pin 255 300 345 kHz 4 Maximum duty ratio MaxDuty VIN = 3.8 V, Measure waveform at the EXT pin 73 82 89 % 4 PFMDuty VIN = VOUT(E) 0.1 V, Under no load 15 21 31 % 3 VSENSE Judge oscillation at the EXT pin or oscillation 90 120 150 mV 4 50  50 nA 4 0.8   V 4   0.3 V 4 VOUT = 6 V, VON/OFF = 6 V 0.1  0.1 A 4 VOUT = 6 V, VON/OFF = 0 V 0.1  0.1 A 4 S-8340D00 6.0 14.3 28.0 ms 3 S-8341D00 6.0 17.2 28.0 ms 3  85  % 3 FO Oscillation frequency duty ratio D PWM/PFM switching Current limit detection voltage VOUT = 3.8 V stop at “L” IFB ON/OFF pin input voltage VSH VOUT = 6 V, VFB = 1.5 V MM EN FB pin input current DE (S-8341 Series D type) VOUT = 3.8 V Judge oscillation at the EXT pin. VSL VOUT = 3.8 V Judge oscillation stop at the EXT pin. ON/OFF pin input ISH leakage current ISL Soft-start time tSS VIN = 2.4 V, CO CSS = 4700 pF, IOUT = 80 mA, Measure time until oscillation EFFI VIN = 2.4 V, IOUT = 80 mA NO T Efficiency RE occurs at the EXT pin. 13 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series Sumida Corporation CD54 (10 H) Matsushita Electronic Industrial Co., Ltd. MA735 (Schottky type) Nichicon Corporation F93 (16 V, 47 F, tantalum type) Sanyo Electric Co., Ltd. 2SD1628G 1.0 k 2200 pF (ceramic type) 0.01 F 4700 pF 300 k 100 k 50 pF The ON/OFF pin is connected to the VOUT pin unless otherwise specified. Connect the SENSE pin to the VSS pin. DE SI G N Coil : Diode : Capacitor : Transistor : Base resistor (Rb) : Base capacitor (Cb) : CVREF : CSS : RFB1 : RFB2 : CFB : W External parts (Change of output voltage (Set output voltage value) VOUT [ppm/C]  1000 Ta  VOUT (Output voltage temperature coefficient) DE The S-8340/8341 Series steps up from VDD = 0.9 V. However, 2.5 V or more for VDD is recommended to stabilize the output voltage and oscillation frequency. If VDD is taken from VIN or other power sources, instead of VOUT, VDD should be 2.5 V or more. However, if VDD is other than 4.0 V, note that the output voltage accuracy of 2.0% is not guaranteed due to dependency of output voltage on VDD. In particular, accuracy of output voltage is degraded significantly when the VDD voltage is 6.0 V or more. Therefore, do not use this IC when the VDD voltage is 6.0 V or more. If VDD of 2.5 V or more is applied, increase power supply so that VDD becomes 2.5 V or more within the soft-start time (6.0 ms). NO T RE CO MM EN Caution  D with temperature) RFB1 RFB2 14 FO VOUT [mV/C]  1  Ta R NE *1. VOUT(E) : Actual output voltage value : Output voltage value when IOUT  80 mA and VIN = 2.4 V is applied. 300 k The Typ. value (set output voltage value) is 1 + [V] 100 k *2. The change of output voltage with temperature [mV/C] is calculated from the following formula. However, the temperature change rates for RFB1 and RFB2 are assumed to be the same. STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series  Measurement Circuits SD L N 1. DE SI G Cb + CL  Rb + CIN  VIN EXT SENSE CVREF VDD CSS ON/OFF V NE W VSS VOUT RL R Figure 5 FO 2. EXT DE VSS CVREF MM EN CO 3. VDD RE NO T + CIN  CSS ON/OFF A Figure 6 SD L VIN VOUT +  D Oscilloscope SENSE A Cb CFB RFB1 + C  L Rb SENSE VSS EXT FB CVREF CSS VDD RL V RFB2 ON/OFF Figure 7 15 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series 4. A N RFB1 CFB EXT FB VDD A VSS CVREF CSS ON/OFF NO T RE CO MM EN DE D FO R NE W A Figure 8 16 VOUT DE SI G Oscilloscope SENSE +  RFB2 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series  Operation 1. Switching Control Method PWM Control (S-8340 Series) N 1. 1 PWM/PFM Switching Control (S-8341 Series) W 1. 2 DE SI G The S-8340 Series is a DC-DC converter using a pulse width modulation method (PWM). In conventional PFM DC-DC converters, pulses are skipped when the output load current is low, causing a fluctuation in the ripple frequency of the output voltage, resulting in an increase in the ripple voltage. The switching frequency does not change, although the pulse width changes from 0 to 82% corresponding to each load current in the S-8340 Series. The ripple voltage generated from switching can thus be eliminated easily through a filter. When the pulse width is 0% (when no load is applied or the input voltage is high), pulses are skipped and the current consumption is low. D FO R NE The S-8341 Series is a DC-DC converter that automatically switches between a pulse width modulation method (PWM) and a pulse frequency modulation method (PFM) depending on the load current. The S-8341 Series operates under PWM control with the pulse duty changing from 27 to 82% (A and B types) and from 21 to 82% (C and D types) in a high output load current area. The S-8341 Series operates under PFM control with the pulse duty fixed at 27% (A and B types) and at 21% (C and D types) in a low load current area, and pulses are skipped according to the load current. The oscillation circuit thus oscillates intermittently so that the resultant lower self current consumption prevents a reduction in the efficiency at a low load current. The switching point from PWM control to PFM control depends on the external devices (coil, diode, etc.), and input and output voltage values. The S-8341 Series is an especially highly efficient DC-DC converter at an output load current around 1 mA. 2. Soft-Start Function MM EN DE The S-8340/8341 Series has a built-in soft-start circuit. This circuit enables the output voltage (VOUT) to rise gradually over the specified soft-start time (tSS) to suppress the overshooting of the output voltage and the rush current from the power supply when the power is switched on or the ON/OFF pin is changed to “H”. Generally, a rush current flows to an output capacitor through an inductor and a diode in the step-up circuit immediately after the power is turned on as shown in Figure 9. Note that the soft-start function of this IC, however, does not limit this current. S -8 3 40 A 3 3 A F T (V IN  0  1 .9 V , R L  3 0 0 k  ) CO 3 V O u t p u t vo lta g e (1 V /d iv ) RE 0 V 1 .5 A R u s h cu r re n t NO T (0. 5 A /d iv ) Figure 9 0 A t (2 m s /d iv ) Waveforms of Output Voltage and Rush Current at Soft-Start 17 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series Figure 10 Image of EXT Pin Waveform DE SI G N The soft-start circuit of the S-8340/8341 Series increases the duty ratio gradually as shown in Figure 10. The soft-start time (tSS) can be set with an external capacitor (CSS). If fOSC  600 kHz and CSS  4700 pF, the time until the duty ratio of 50% is reached is 9.7 ms (typ.). If VIN  2 V, the approximate time until a specific duty ratio is reached is calculated from the following formula : If fOSC  300 kHz, tSS [ms] = CSS [pF]  W 8.336  Duty [%] + 682.45 535000 6.564  Duty [%] + 698 NE If fOSC  600 kHz, tSS [ms] = CSS [pF]  229000 FO R Even if the IC reaches a certain duty at a duty ratio of 0 to 43%, there may be a delay of the output voltage (VOUT) in reaching the specified voltage (VOUT(S)). This delay occurs due to the delay of the error amplifier reference voltage in reaching the specified voltage (1.0 V). Note that the maximum delay time may be the value calculated when a duty ratio is 43%. D 3. ON/OFF Pin (Shutdown Pin) RE ON/OFF CO VDD MM EN DE The ON/OFF pin stops or starts the step-up operation. When the ON/OFF pin is set to "L", all the internal circuits stop operating, reducing power consumption. The EXT pin voltage becomes equal to the VSS voltage, thereby turning off the switching transistor. The ON/OFF pin is configured as shown in Figure 11 and is not either pulled up or pulled down. So, do not use it in a floating state. Applying 0.3 to 0.8 V to the ON/OFF pin increases current consumption. So do not apply such voltage. When the ON/OFF pin is not used, connect it to the VDD pin. The ON/OFF pin does not have hysterisis. VSS NO T Figure 11 ON/OFF Pin Structure 18 ON/OFF Pin CR Oscillation Circuit Output Voltage “H” Operating Set value “L” Stopped VIN*1 *1. Voltage obtained by extracting the voltage drop due to DC resistance of the inductor and the diode forward voltage from VIN. STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series 4. Current Limit Circuit NE W DE SI G N The current limit circuit of the S-8340/8341 Series protects the external transistors from being damaged by heat due to an overload or magnetic saturation of coils. Inserting a SENSE resistor (RSENSE) between the external FET source or external NPN bipolar transistor emitter and Vss and entering a connection point with a sensor resistor into the SENSE pin enables the current limit to function. Refer to “ Standard Circuit”. A current limiting comparator in the IC monitors the SENSE pin for reaching the current limit detection voltage (VSENSE  120 mV (typ.)). Upon detection of the voltage, the external transistor is held off for one clock of the oscillator so that the current flowing in the external transistor is limited. At the ON signal of the next clock, the external transistor is turned on and the current limit detection function is resumed. However, this current limit circuit contains a CR filter with a time constant ( = 220 ns (typ.)) between the SENSE pin and the current limiting comparator in the IC to prevent detection errors caused by the spike voltage generated at the SENSE pin. If the time (pulse width tON : “H” level time at the EXT pin) after the external transistor turns on until the current limit circuit operates is short, the current value that is actually limited becomes higher than the current limit setting value determined by VSENSE/RSENSE as a side effect. The actual limit current value (ILIMIT) is expressed by the following equation : ton  0.5    ILIMIT    1  e CR  RSENSE   R VSENSE CR in the equation is determined by the internal CR filter and varies in the range 116 to 470 ns (220 ns (typ.).) Caution Therefore, this current limit function does not guarantee full protection of external parts by ILIMIT  VSENSE/RSENSE under all operating conditions. Perform a thorough evaluation using the actual devices. DE D FO Remark MM EN For example, usage when the current value that the current limit circuit actually functions to raise the current limit set value decided by VSENSE/RSENSE that includes usage under the conditions that the input voltage become close to the output voltage or situations when the output voltage falls due to the activation of the current limit circuit and become close to the input voltage. Figure 12 shows an example of the actually measured increase of the peak current flowing through the coil when the current limit circuit functions while the input voltage is nearing the output voltage. Figure 13 shows an example of the actually measured increase of the peak current flowing through the coil when the output voltage drops and approaches the input voltage by increasing the output current after the current limit circuit functions. S-8340A50 (RSENSE  51 m) RE ILPEAK (A) 3 5 VSENSE / RSENSE NO T 1 Figure 12 1 2 S-8340A50 (VIN  3V, RSENSE  51 m) Current limit circuit is activated 4 2 0 Output Current (IOUT) vs. Coil Peak Current (ILPEAK) ILPEAK (A) 4 CO Input Voltage (VIN) vs. Coil Peak Current (ILPEAK) Influence of CR filter 3 2 VSENSE / RSENSE 1 3 VIN (V) 4 5 ILPEAK Measured at Activation of Current Limit (VOUT Starts to Fall) 0 0 2 1 3 IOUT (A) Figure 13 Measuring Coil Peak Current (ILPEAK) If the current limit circuit is not used, remove RSENSE and connect the external transistor source or the emitter and the SENSE pin to VSS. 19 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series  Series Products and External Parts Selection 1. Method for Selecting Series Products 1. 1 DE SI G N The S-8340/8341 Series is classified into eight types, according to the control systems (PWM and PWM/PFM switching), oscillation frequencies, and output voltage setting types. The following describes the features of respective types. Select the type according to the applications. Control Systems 1. 2 NE W Two different control systems are available : PWM control system (S-8340 Series) and PWM/PFM switching control system (S-8341 Series). For applications for which the load current greatly differs between standby and operation, if the efficiency during standby is important, applying the PWM/PFM switching system (S-8341 Series) realizes high efficiency during standby. For applications for which switching noise is critical, applying the PWM control system (S-8340 Series) whereby switching frequency does not change due to load current allows the ripple voltage to be easily eliminated by using a filter. Oscillation Frequencies 1. 3 Output Voltage Setting D FO R Either oscillation frequencies, 600 kHz (A and B types) or 300 kHz (C and D types), can be selected. The A and B types whereby high operation frequency allows the L value to be reduced, so a small inductor can be used. In addition, use of small output capacitors is effective for downsizing devices. The C and D types, whereby lower oscillation frequency realizes smaller self-consumption current, are highly efficient under light loads. In particular, the C type, when combined with a PWM/PFM switching control system, drastically improves the operation efficiency when the output load current is approximately 1 mA. MM EN DE Either fixed output type (A and C types) or external setting type (B and D types) can be selected. The A and C types, whereby output voltage can be internally set between 2.5 and 6.0 V in the 0.1 V steps, realizes highly accurate output voltage of 2.0% with internal highly resistant and highly accurate resistors. In the B and D types, the output voltage can be adjusted in the range 2.5 to 6.0 V by adding external resistors (RFB1 and RFB2) and a capacitor (CFB). A temperature gradient can be provided by installing a thermistor in series to RFB1 and RFB2. The resistance of RFB1  RFB2 must not exceed 2 M, and set the ratio of RFB1 to RFB2 so that the FB pin is at 1.0 V. Add CFB in parallel with RFB1 to prevent unstable operation due to output oscillation. Set CFB so that fOSC  1/(2    CFB  RFB1) is 0.1 to 20 kHz (normally, 10 kHz). CO Example : VOUT  3.0 V, RFB1  200 k, RFB2  100 k, CFB  100 pF NO T RE The accuracy of the output voltage VOUT set with resistors RFB1 and RFB2 is affected by the absolute precision of external resistors RFB1 and RFB2, the FB pin input current (IFB) and IC power supply voltage (VDD) as well as the precision of the voltage at FB pin (1 V 2.0%). When it is assumed that IFB is 0 nA, the maximum absolute value variations of external resistors RFB1 and RFB2 are RFB1max. and RFB2max., the minimum absolute value variations of external resistors RFB1 and RFB2 are RFB1min. and RFB2min., and the shift of the output voltage due to the dependence of voltage on VDD is V, the minimum value (VOUT min.) and maximum value (VOUT max.) of variations of VOUT are expressed by the following formulas : 20 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series VOUT min.  (1 RFB1 min. )  0.98  V V RFB2 max. N RFB1 max. VOUT max.  (1 )  102  V V RFB2 min. DE SI G RFB1 and RFB2 must be adjusted in order to set the voltage accuracy of VOUT to the IC output voltage accuracy (VOUT 2.0) or lower. The smaller RFB1 and RFB2 are, the less VOUT is affected by the absolute value accuracy of RFB1 and RFB2. The smaller RFB1 and RFB2 are, the less VOUT is affected by IFB. To reduce the influence due to IFB that affects variations of VOUT, the RFB2 value must be set to a value sufficiently lower than the input impedance at the FB pin (1 V/50 nA  20 M (max.)). Reactive current flows through RFB1 and RFB2. Unless the reactive current value is limited as low as possible with respect to the actual load current, efficiency decreases. Therefore, RFB1 and RFB2 should be sufficiently large. W If the RFB1 and RFB2 values are too large (1 M or more), VOUT is subject to be affected by external noise, therefore, thoroughly test the performance with the actual equipment. NE Caution Since the accuracy of VOUT and reactive current must be traded off, they must be considered according to application requirements. Connect the VDD pin to the VOUT pin for both the fixed output types and external setting types as shown in “ Standard Circuit”. In the cases when VDD requires to be applied from VIN or other power source instead of VOUT, raise VDD to 2.5 V or higher within the soft-start time (3.0 ms: A and B types, 6.0 ms: C and D types). When the VDD pin is connected to the VOUT pin, VIN can be increased slowly without any problems. D FO R Caution MM EN DE The table below provides a rough guide for selecting a product type according to the application requirements of the application. Choose the product that gives you the largest number of circles (O). Table 9 A S-8340 B C D A S-8341 B C D     The set output voltage is 6 V or less Set an output voltage freely The efficiency under light loads (approx. 1mA) is an CO important factor To be operated with a medium load current (200 mA class) RE To be operated with a high load current (1 A class) It is important to have a low-ripple voltage Downsizing of external components is important                        The symbol " " denotes an indispensable condition, while the symbol "" indicates that the corresponding series has superiority in that aspect. The symbol "" indicates particularly high superiority. NO T Remark  21 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series 2. Inductor 2  IOUT  (VOUT  VF  VIN) R fosc  L FO IPK  NE W DE SI G N The inductance value (L value) greatly affects the maximum output current (IOUT) and the efficiency (). As the L value is reduced gradually, the peak current (IPK) increases and IOUT increases. As the L value is made even smaller, IOUT decreases since the efficiency degrades and the current driveability is insufficient. As the L value is increased, the dissipation in the switching transistor due to IPK decreases, and the efficiency reaches the maximum at a certain L value. As the L value is made even larger, the efficiency degrades since the dissipation due to the series resistance of the inductor increases. IOUT also decreases. In the S-8340/8341 Series, as the L value is increased, the output voltage may be unstable depending on the conditions of the input voltage, output voltage, and load current. Select the L value after performing a thorough valuation under actual use conditions. The guidelines for the L range are from 2.2 to 22 H for the A and B types, and 4.7 to 47 H for the C and D types. The recommended L value is 5 to 10 H for the A and B types, and 10 to 22 H for the C and D types. When choosing an inductor, attention to its allowable current should be paid since the current exceeding the allowable value will cause magnetic saturation in the inductor, leading to a marked decline in efficiency and a breakdown of the IC due to large current. An inductor should therefore be selected so that IPK does not surpass its allowable current. IPK is represented by the following equations in non-continuous operation mode. DE D Where fOSC is the oscillation frequency, L is the inductance value of the inductor, and VF is the forward voltage of the diode. VF should be appropriately 0.4 V. For example, if a power supply with the input voltage (VIN)  3 V, output voltage (VOUT)  5 V, and load current (IOUT)  30 mA is used, fOSC  600 kHz when the S-8340A50AFT is used. When 10 H is selected for the L value, IPK  155 mA from the above formula. Therefore, in this case, an inductor with a permissible current of 155 mA or higher for the L value of 10 H should be selected. 3. Diode 4. Capacitors (CIN, CL) MM EN Use an external diode that meets the following requirements :  Low forward voltage (Schottky barrier diode is recommended.)  High switching speed (50 ns max.)  The reverse-direction withstand voltage is VOUT  VF or higher.  The current rating is IPK or larger. NO T RE CO A capacitor inserted on the input side (CIN) improves the efficiency by reducing the power impedance and stabilizing the input current. Select a CIN value according to the impedance of the power supply used. Approximately 47 to 100 F is recommended for a capacitance depending on the impedance of the power source and load current value. For the output side capacitor (CL), select a large capacitance with low ESR (Equivalent Series Resistance) for smoothing the ripple voltage. When the input voltage is extremely high or the load current is extremely large, the output voltage may become unstable. In this case the unstable area will become narrow by selecting a large capacitance for an output capacitor. A tantalum electrolyte capacitor is recommended since the unstable area widens when a capacitor with a large ESR, such as an aluminum electrolyte capacitor, or a capacitor with a small ESR, such as a ceramic capacitor, is chosen. It is recommended that a capacitor of which the capacitance is 47 to 200 F and ESR is 40 to 270 m be selected. Fully evaluate input and output capacitors under actual operating conditions, then select them. 22 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series 5. External Transistors Enhancement (N-channel) MOS FET type or bipolar (NPN) type can be used for the external transistors. Enhancement (N-Channel) MOS FET Type N 5. 1 5. 2 Bipolar (NPN) Type DE D FO R NE W DE SI G The EXT pin can directly drive an N-channel MOS FET. When an N-channel MOS FET is used, efficiency will be 2 to 3% higher than that achieved by an NPN bipolar transistor since the MOS FET switching speed is faster and power dissipation due to the base current is avoided. A large current may flow at power on with some MOS FETs selected. Perform thorough evaluation using the actual devices to select. The recommended gate capacitance of the MOS FET to be used is 1200 pF or smaller. The important parameters in selecting a MOS FET are threshold voltage, breakdown voltage between drain and source, total gate capacitance, on-resistance, and the current rating. The EXT pin voltage swings between VDD and VSS. If VDD is low, a MOS FET of which the threshold voltage is low enough so that the MOS FET is completely turned on must be used. If VDD is high, the breakdown voltage between the gate and source must be higher by at least several volts. During the step-up operation, voltage VOUT + VF is applied between the drain and source of the MOS FET. So the breakdown voltage between the drain and source should be higher than the VOUT + VF voltage by at least several volts. The total gate capacitance and the on-resistance affect the efficiency. The larger the total gate capacitance becomes and the higher the input voltage becomes, the more the power dissipation for charging and discharging the gate capacitance by switching operation increases, and affects the efficiency at low load current region. If the efficiency at low load is important, select MOS FETs with a small total gate capacitance. In the regions where the load current is high, the efficiency is affected by power dissipation caused by the resistance of the MOS FETs. If the efficiency under heavy load is particularly important in the application, choose MOS FETs which have an on-resistance as low as possible. As for the current rating, select a MOS FET whose maximum continuous drain current rating is higher than IPK. MM EN Figures 16 and 17 in “ Standard Circuits (2) Using Bipolar Transistors” show sample circuit diagrams using Sanyo Electric Co., Ltd. 2SD1628G for the bipolar transistor (NPN). The driveability for increasing the output current by means of a bipolar transistor depend on the hFE and Rb values of that bipolar transistor. The Rb value is given by the following equation : VDD  0.7 Ib  0.4 IEXTH CO Rb= NO T RE Find the necessary base current (Ib) using the hFE value of the bipolar transistor by the equation, Ib  IPK/hFE, and select a smaller Rb value. A small Rb value can increase the output current, but the efficiency decreases. A current may flow as the pulses or voltage drops take place due to the wiring resistance or some other reason. Determine an optimum value through experimentation. In addition, if a speed-up capacitor (Cb) is inserted in parallel with the resistance (Rb) as shown in Figures 16 and 17, the switching loss will be reduced, leading to a higher efficiency. Select a Cb value by using the following equation as a guide : Cb  1 2  Rb  fosc  0.1 However, the optimum Cb value differs depending upon the characteristics of the bipolar transistor. Select a Cb value after performing a thorough evaluation. 23 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series  Standard Circuit N (1) Using MOS FET SD VDD Phase com pensation circuit Triangular w ave oscillation circuit IC internal power supply PW M comparator EXT V IN CC Nch Power MOS FET R1 RS Error am plifier PW M , PW M/PFM sw itching control circuit Shutdown circuit R2 Soft-start circuit Voltage/current reference CVREF CSS C SS FO ON/OFF VSS NE R SENSE  CL VREF =1.0 V R 120 mV VO UT W CS SENSE V OUT DE SI G L C VREF Single ground Output Voltage Fixed Output Type DE D Figure 14 L SD MM EN Triangular w ave oscillation circuit Nch Power MOS FET C FB CO RE Error am plifier R FB1 FB PW M, PW M/PFM switching control circuit Shutdown circuit Voltage/current reference Soft-start circuit VSS CVREF CSS ON/OFF R FB2 VREF =1.0 V C SS C VREF Single ground Figure 15  CL CS 120 mV R SENSE NO T IC internal pow er supply RS SENSE 24 Phase com pensation circuit PW M comparator EXT V IN V OUT VDD Output Voltage External Setting Type STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series SD NPN Bipolar Transistor IC internal power supply PW M comparator EXT V IN Phase com pensation circuit Triangular w ave oscillation circuit Cb CC Rb Error am plifier CS PW M, PW M/PFM switching control circuit  R2 W Shutdown circuit VREF =1.0 V Soft-start circuit VSS Voltage/current reference CVREF CSS C SS C VREF FO R O N/O FF CL NE 120 mV R SENSE VO UT R1 RS SENSE V OUT VDD DE SI G L N (2) Using Bipolar Transistor Single ground Output Voltage Fixed Output Type D Figure 16 L DE SD PW M comparator NPN Bipolar Transistor Rb MM EN EXT V IN Phase com pensation circuit Triangular w ave oscillation circuit Cb V OUT VDD IC internal pow er supply C FB RS SENSE NO T RE CO Shutdown circuit PW M, PW M/PFM switching control circuit Figure 17 CL VSS CVREF CSS ON/OFF  R FB2 VREF =1.0 V Voltage/current reference Soft-start circuit R FB1 FB CS 120 mV R SENSE Error am plifier C SS C VREF Single ground Output Voltage External Setting Type Caution The above connection and constant will not guarantee successful operation. evaluation using the actual application to set the constant. Perform thorough 25 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series  Precautions NO T RE CO MM EN DE D FO R NE W DE SI G N  Mount the external capacitors, diode, coil, and other peripheral parts as close to the IC as possible, and make a onepoint grounding.  Characteristic ripple voltage and spike noise occur in IC containing switching regulators. Moreover rush current flows at the time of a power supply injection. Because these largely depend on the coil, the capacitor and impedance of power supply used, fully check them using an actually mounted model.  Make sure that dissipation of the switching transistor especially at high temperature will not surpass the power dissipation of the package.  To stabilize operation, use a capacitor with a low ESR as a bypass capacitor between the VDD and VSS pins of the IC, and install and wire it with a short distance and a low impedance. Connect CVREF to the VSS pin.  The main circuit of the IC operates on the internal power supply connected to the CVREF pin. CVREF is a bypass capacitor that stabilizes the internal power supply. Use a 0.01 to 1 F ceramic capacitor as CVREF and install and wire it to assure a short distance and a low impedance.  Switching regulator performance varies depending on the design of PC patterns, peripheral circuits and parts. Thoroughly evaluate the actual device when setting. When using parts other than those which are recommended, contact the ABLIC Inc. marketing department.  Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit.  ABLIC Inc. claims no responsibility for any disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party. 26 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series  Characteristics 1. Examples of Major Characteristics (Typical Data) S-8340C33A (f OSC : 300 kHz) S-8340A33A (fOSC : 600 kHz) 1000 I SS1 (A) 300 200 Ta  40°C 200 25°C 400 Ta  40°C 100 3.0 3.5 4.0 4.5 5.0 5.5 0 2.5 6.0 (2) Current Consumption 2 (ISS2) vs. Supply Voltage (VDD) S-8340A33A (fOSC : 600 kHz) 300 85°C Ta  40°C 3.0 3.5 4.0 5.0 5.5 6.0 4.5 5.0 5.5 V DD (V) 5.0 5.5 6.0 5.5 6.0 85°C 25°C 150 100 50 D 25°C 0 2.5 4.5 VD D (V) R ISS2 (A) FO 150 6.0 DE ISS2 (A) 200 50 4.0 250 200 100 3.5 S-8340C33A (f OSC : 300 kHz) 300 250 3.0 NE VD D (V) W I SS1 (A) 400 0 2.5 85°C 500 25°C 600 DE SI G 600 85°C 800 N (1) Current Consumption 1 (ISS1) vs. Supply Voltage (VDD) Ta  40°C 0 2.5 3.0 3.5 4.0 4.5 V DD (V) (3) Current Consumption at Shutdown (ISSS) vs. Supply Voltage (VDD) MM EN S-8340A33A (f OSC : 600 kHz) / S-8340C33A (f OSC : 300 kHz) 1.0 85°C 25°C Ta  40°C 0.6 0.4 0.2 0.0 2.5 3.0 CO I SSS (A) 0.8 3.5 4.0 4.5 5.0 5.5 6.0 RE VDD (V) (4) Oscillation Frequency (fOSC) vs. Supply Voltage (VDD) S-8340A33A (fOSC : 600 kHz) S-8340C33A (f OSC : 300 kHz) 700 600 Ta  40°C fOSC (kHz) fOSC (kHz) 400 85°C NO T 800 25°C 500 400 2.5 3.0 3.5 4.0 4.5 VD D (V) 5.0 5.5 6.0 85°C 350 300 Ta  40°C 25°C 250 200 2.5 3.0 3.5 4.0 4.5 5.0 VD D (V) 27 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series (5) EXT Pin Output Current “H” (IEXTH) vs. Supply Voltage (VDD) (6) EXT Pin Output Current “L” (IEXTL) vs. Supply Voltage (VDD) S-8340A33A (f OSC : 600 kHz ) / S-8340C33A (f OSC : 300 kHz) S-8340A33A (f OSC : 600 kHz ) / S-8340C33A (f OSC : 300 kHz) 60 40 30 20 10 85°C 120 Ta  40°C 100 DE SI G 25°C IEXTL (mA) I EXTH (mA) 50 80 60 40 25°C 20 0 0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 2.5 3.5 4.0 4.5 5.0 5.5 6.0 5.5 6.0 VDD (V) S-8340A33A (f OSC : 600 kHz) NE (7) Soft-Start Time (tSS) vs. Supply Voltage (VDD) S-8340C33A (fOSC : 300 kHz) 20 40 Ta  40°C Ta  40°C 30 tSS (ms) R 15 5 25°C 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 DE VD D (V) D 85°C 0 (8) ON/OFF Pin Input Voltage “H” (VSH) vs. Supply Voltage (VDD) MM EN S-8340A33A (f OSC : 600 kH z) / S-8340C 33A (f OSC : 300 kHz ) 1.0 25°C 0.6 0.4 Ta  40°C CO 0.2 0.0 2.5 3.0 3.5 4.0 4.5 10 85°C 25°C 0 2.5 3.0 3.5 4.0 4.5 5.0 VD D (V) (9) ON/OFF Pin Input Voltage “L” (VSL) vs. Supply Voltage (VDD) S-8340A33A (f OSC : 600 kHz) / S-8340C33A (fOSC : 300 kHz) 1.0 85°C 0.8 20 FO 10 0.8 VSL (V) tSS (ms) 3.0 85°C W VD D (V) VSH (V) N 140 Ta  40°C 85°C 25°C 0.6 0.4 Ta  40°C 0.2 0.0 5.0 5.5 2.5 6.0 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V) RE VDD (V) (10) Output Voltage (VOUT) vs. Supply Voltage (VDD) S-8340A25A (f OSC : 600 kHz) / S-8340C25A (fOSC : 300 kHz) NO T 2.54 25°C 3.34 85°C 3.32 2.50 VOUT (V) VOUT (V) 2.52 2.48 2.46 Ta  40°C 2.44 2.42 25°C 85°C 3.30 3.28 3.26 3.24 Ta  40°C 3.22 2.40 3.20 2.5 3.0 3.5 4.0 4.5 VDD (V) 28 S-8340A33A (f OSC : 600 kHz ) / S-8340C33A (f OSC : 300 kHz) 5.0 5.5 6.0 2.5 3.0 3.5 4.0 4.5 VDD (V) 5.0 5.5 6.0 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series S-8340A50A (f OSC : 600 kHz) / S-8340C50A (fOSC : 300 kHz) 25°C 85°C 5.00 DE SI G VOUT (V) 5.02 N 5.04 4.98 4.96 4.94 4.92 Ta  40°C 4.90 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 W VDD (V) S-8340A33A (fOSC : 600 kHz) / S-8340C33A (f OSC : 300 kH z) 85 0.9 84 25°C R MaxDuty (%) 1.0 0.8 83 85°C FO VST (V) S-8340A33A (f OSC : 600 kHz) / S-8340C33A (fOSC : 300 kHz) NE (11) Oscillation Start Voltage (VST) vs. Temperature (Ta) (12) Maximum Duty Ratio (MaxDuty) vs. Supply Voltage (VDD) 0.7 0.6 81 80 D 0.5 82 0.4 20 20 0 40 60 80 2.5 DE 40 Ta (°C) Ta  40°C 79 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VD D (V) MM EN (13) PWM/PFM Switching Duty Ratio (PFMDuty) vs. Supply Voltage (VDD) S-8341A33A (f OSC : 600 kHz) 29 27 26 Ta  40°C 24 2.5 3.0 24 85°C 28 25 S-8341C33A (fOS C : 300 kHz ) 3.5 4.0 4.5 PFMDuty (%) 25°C CO PFMDuty (%) 30 23 25°C 22 85°C 21 20 19 Ta  40°C 18 5.0 5.5 6.0 2.5 VD D (V) 3.0 3.5 4.0 4.5 5.0 5.5 6.0 RE V D D (V) (14) Current Limit Detection Ratio (VSENSE) vs. Supply Voltage (VDD) S-8340A33A (f OSC : 600 kHz ) / S-8340C33A (f OSC : 300 kHz) NO T 135 25°C VSENSE (mV) 130 85°C 125 120 115 Ta  40°C 110 105 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V) 29 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series 2. Examples of Transient Response Characteristics (1) Power-on (Typical Data) N S-8340A33AFT, fOSC = 600 kHz, Ta = 25C VIN = 0  1.98 V, IOUT = 200 mA 3V VIN (1 V/div) 0V 3V VIN (1 V/div) 0V V OUT (1 V/div) 3V V OUT (1 V/div) 3V 0V W 0V t (2 ms/div) NE t (2 ms/div) S-8340C33AFT, fOSC = 300 kHz, Ta = 25C VIN = 0  1.98 V, IOUT = 1 mA I VIN = 0  1.98 V, IOUT = 200 mA 3V VIN (1 V/div) 0V FO R 3V VIN (1 V/div) 0V 3V 0V t (4 ms/div) (2) ON/OFF Pin Response (Typical Data) MM EN S-8340A33AFT, fOSC = 600 kHz, Ta = 25C D V OUT (1 V/div) 3V 0V t (4 ms/div) DE V OUT (1 V/div) VON /OFF  0  1.98 V, IOUT = 200 mA VON/OFF  0  1.98 V, IOU T = 1 mA 3V 0V CO 3V VON/OFF (1 V/div) 0V V OUT (1 V/div) DE SI G VIN = 0  1.98 V, IOUT = 1 mA 3V VON/OFF (1 V/div) 0V V OUT (1 V/div) 3V 0V t (2 ms/div) RE t (2 ms/div) S-8340C33AFT, fOSC = 300 kHz, Ta = 25C NO T VON/OFF  0  1.98 V, IOU T = 1 mA VON/OFF  0  1.98 V, IOU T = 200 mA 3V VON/OFF (1 V/div) 0V VON/OFF (1 V/div) 3V 3V V OUT (1 V/div) 0V V OUT (1 V/div) 3V 0V t (4 ms/div) 30 0V t (4 ms/div) STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series (3) Load Fluctuations S-8340A33AFT, fOSC = 600 kHz S-8340C33AFT, fOSC = 300 kHz VIN = 1.98 V, IOUT = 100 mA  100 A 100 mA IOUT 100 A DE SI G 100 mA IOUT 100 A V OUT (0.02 V/div) VOUT (0.02 V/div) W t (4 ms/div) t (4 ms/div) S-8340C33AFT, fOSC = 300 kHz NE S-8340A33AFT, fOSC = 600 kHz VIN = 1.98 V, IOUT = 100 A  100 mA VIN = 1.98 V, IOUT = 100 A  100 mA 100 mA IOUT 100 A FO R 100 mA IOUT 100 A VOUT (0.02 V/div) (4) Input Voltage Fluctuations MM EN S-8340A33AFT, fOSC = 600 kHz VIN = 1.98  2.64 V, IOUT = 100 mA CO 2.64 V VIN (0.3 V/div) 1.98 V S-8340C33AFT, fOSC = 300 kHz VIN = 1.98  2.64 V, IOUT = 100 mA 66 VIN 2.64 V (0.4 V/div) 1.98 V VOUT (0.02 V/div) t (0.2 ms/div) RE t (0.2 ms/div) DE t (0.2 ms/div) D V OUT (0.02 V/div) V OUT (0.02 V/div) N VIN = 1.98 V, IOUT = 100 mA  100 A S-8340A33AFT, fOSC = 600 kHz t (0.2 ms/div) S-8340C33AFT, fOSC = 300 kHz VIN = 2.64  1.98 V, IOUT = 100 mA VIN = 2.64  1.98 V, IOUT = 100 mA VIN 2.64 V (0.4 V/div) 1.98 V NO T VIN 2.64 V (0.3 V/div) 1.98 V VOUT (0.02 V/div) VOUT (0.02 V/div) t (0.2 ms/div) t (0.2 ms/div) 31 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series  Reference Data DE SI G N Reference data are intended for use in selecting external parts to the IC. The information therefore provides characteristic data in which external parts are selected with a view of wide variety of IC applications. All data shows typical value. 1. External Parts for Reference Data Voltage S-8340A25AFT 2.5 V (2) (3) S-8341A25AFT (4) (5) S-8340A33AFT 3.3 V (6) (7) S-8341A33AFT (8) (9) S-8340A50AFT 5.0 V (10) (11) S-8341A50AFT (12) Diode Output Capacitor Sense Inductor Transistor CDRH5D18/4.1 H NDS335N RB491D F920J476MB3  1 CDRH124/10 H FTS2001 RBO81L20 F951C476MG1  2 CDRH5D18/4.1 H NDS335N RB491D CDRH124/10 H FTS2001 RBO81L20 CDRH5D18/4.1 H NDS335N CDRH124/10 H FTS2001 CDRH5D18/4.1 H NDS335N RB491D F920J476MB3  1 *1 CDRH124/10 H FTS2001 RBO81L20 F951C476MG1  2 *2 CDRH5D18/4.1 H NDS335N RB491D F951A476MF1  1 *1 *2 Resistor 0 W Output Name Application *1 *2 F920J476MB3  1 *1 F951C476MG1  2 *2 RB491D F920J476MB3  1 *1 RBO81L-20 F951C476MG1  2 *2 NE (1) Product R No. External Parts List for Output Current vs. Efficiency, Output Current vs. Output Voltage Characteristics Data for A Type CDRH124/10 H FTS2001 RBO81L20 F951C476MG1  2 CDRH5D18/4.1 H NDS335N RB491D F951A476MF1  1 *1 CDRH124/10 H FTS2001 RBO81L20 F951C476MG1  2 *2 FO Table 10 No. (13) External Parts List for Output Current vs. Efficiency, Output Current vs. Output Voltage Characteristics Data for C Type Product Output Name Voltage S-8340C25AFT 2.5 V (14) (15) S-8341C25AFT (18) (20) (21) (22) (23) S-8340C50AFT S-8341C50AFT NO T (24) S-8341C33AFT 3.3 V RE (19) Transistor Diode Output Capacitor CDRH6D28/10 H FDN335N RB491D F951C476MG1  1 CDRH124/10 H FTS2001 RBO81L20 F951C476MG1  2 *4 CDRH6D28/10 H FDN335N RB491D F951C476MG1  1 *3 5.0 V 0 Application *3 FTS2001 RBO81L20 F951C476MG1  2 *4 RB491D F951C476MG1  1 *3 CDRH124/10 H FTS2001 RBO81L20 F951C476MG1  2 *4 CDRH6D28/10 H FDN335N RB491D F951C476MG1  1 *3 CDRH124/10 H FTS2001 RBO81L20 F951C476MG1  2 *4 CDRH6D28/10 H FDN335N RB491D F951C476MG1  1 *3 CDRH6D28/10 H CDRH124/10 H FTS2001 RBO81L20 F951C476MG1  2 *4 CDRH6D28/10 H FDN335N RB491D F951C476MG1  1 *3 CDRH124/10 H FTS2001 RBO81L20 F951C476MG1  2 *4 *3. CDRH6D28 + FDN335N + RB491D: For part height of 3 mm and high efficiency *4. CDRH124 + FTS2001 + RBO81L-20: For optimizing the load current driveability 32 Resistor FDN335N CO S-8340C33AFT Sense Inductor CDRH124/10 H (16) (17) MM EN Table 11 DE D *1. CDRH5D18 + NDS335N + RB491D: For small and thin parts of which height is 2 mm or shorter (The maximum current of an external part should be set to 1.7 A.) *2. CDRH124 + FTS2001 + RBO81L-20: For heavy load current (The maximum current of an external part should be set to 4.5 A.) STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series Output Name Voltage S-8341A25AFT 2.5 V (26) (27) S-8341A33AFT 3.3 V (28) (29) S-8341A50AFT 5.0 V (30) Diode Output Capacitor Sense Inductor Transistor CDRH5D18/4.1 H NDS335N RB491D F920J476MB3  1 CDRH124/10 H FTS2001 RBO81L-20 F951C476MG1  2 *2 CDRH5D18/4.1 H NDS335N RB491D F920J476MB3  1 *1 CDRH124/10 H FTS2001 RBO81L-20 F951C476MG1  2 *2 CDRH5D18/4.1 H NDS335N RB491D F951A476MF1  1 *1 CDRH124/10 H FTS2001 RBO81L-20 F951C476MG1  2 *2 Resistor Application N Product No. (25) External Parts List for Output Current vs. PFM/PWM Switching Input Voltage Characteristics Data for A Type 0 DE SI G Table 12 *1 Output Name Voltage S-8341C25AFT 2.5 V (32) (33) S-8341C33AFT 3.3 V (34) (35) S-8341C50AFT 5.0 V Inductor Transistor CDRH6D28/10 H FDN335N CDRH124/10 H FTS2001 CDRH6D28/10 H CDRH124/10 H CDRH6D28/10 H CDRH124/10 H (36) Diode Output Capacitor RB491D Sense Resistor Application R (31) Product F951C476MG1  1 RBO81L-20 F951C476MG1  2 *4 FDN335N RB491D F951C476MG1  1 *3 FTS2001 RBO81L-20 F951C476MG1  2 *4 FDN335N RB491D F951C476MG1  1 *3 FTS2001 RBO81L-20 F951C476MG1  2 *4 FO No. External Parts List for Output Current vs. PFM/PWM Switching Input Voltage Characteristics Data for C Type D Table 13 NE W *1. CDRH5D18 + NDS335N + RB491D: For small and thin parts of which height is 2 mm or shorter (The maximum current of an external part should be set to 1.7 A.) *2. CDRH124 + FTS2001 + RBO81L-20: For heavy load current (The maximum current of an external part should be set to 4.5 A.) 0 *3 NO T RE CO MM EN DE *3. CDRH6D28 + FDN335N + RB491D: For part heights of 3 mm and high efficiency *4. CDRH124 + FTS2001 + RBO81L-20: For optimizing the load current driveability 33 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series External Parts List for Ripple Data (38) (39) S-8341A25AFT (40) (41) S-8340A33AFT 3.3 V (42) (43) S-8341A33AFT (44) (45) S-8340A50AFT 5.0 V (46) S-8341A50AFT CDRH5D18/4.1 H NDS335N RB491D CDRH124/10 H FTS2001 RBO81L-20 CDRH5D18/4.1 H NDS335N RB491D CDRH124/10 H FTS2001 RBO81L-20 CDRH5D18/4.1 H NDS335N RB491D CDRH124/10 H FTS2001 RBO81L-20 CDRH5D18/4.1 H NDS335N RB491D CDRH124/10 H FTS2001 CDRH5D18/4.1 H NDS335N RB491D CDRH124/10 H FTS2001 RBO81L-20 CDRH5D18/4.1 H RB491D FTS2001 RBO81L-20 NDS335N DE (47) Diode CDRH124/10 H (48) Output Capacitor RBO81L-20 N 2.5 V Transistor Sense Resistor DE SI G S-8340A25AFT Inductor F920J476MB3  1 F920J476MB3  2 F951C476MG1  2 F951A107MG1  2 F920J476MB3  1 F920J476MB3  2 F951C476MG1  2 F951A107MG1  2 W Voltage F920J476MB3  1 F920J476MB3  2 NE Output Name R (37) Product FO No. External Parts for Output Current vs. Ripple Voltage Characteristics Data for A Type D Table 14 F951C476MG1  2 F951A107MG1  2 F920J476MB3  1 F920J476MB3  2 F951C476MG1  2 F951A107MG1  2 F951A476MF1  1 F951A476MF1  2 F951C476MG1  2 F951A107MG1  2 F951A476MF1  1 F951A476MF1  2 F951C476MG1  2 F951A107MG1  2 0 Application *1 *2 *1 *2 *1 *2 *1 *2 *1 *2 *1 *2 NO T RE CO MM EN *1. CDRH5D18 + NDS335N + RB491D: For small and thin parts of which the height is 2 mm or shorter (The maximum current of an external part should be set to 1.7 A.) *2. CDRH124 + FTS2001 + RBO81L-20: For heavy load current (The maximum current of an external part should be set to 4.5 A.) 34 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series (50) (51) S-8341C25AFT (52) (53) S-8340C33AFT 3.3 V (54) (55) S-8341C33AFT (56) (57) S-8340C50AFT 5.0 V (58) (59) S-8341C50AFT Diode CDRH6D28/10 H FDN335N RB491D CDRH124/10 H FTS2001 RBO81L-20 CDRH6D28/10 H FDN335N RB491D CDRH124/10 H FTS2001 RBO81L-20 CDRH6D28/10 H FDN335N RB491D CDRH124/10 H FTS2001 RBO81L-20 CDRH6D28/10 H FDN335N RB491D CDRH124/10 H FTS2001 RBO81L-20 CDRH6D28/10 H FDN335N CDRH124/10 H FTS2001 RBO81L-20 CDRH6D28/10 H FDN335N RB491D FTS2001 RBO81L-20 CDRH124/10 H DE (60) Output Capacitor F951C476MG1  1 F951C476MG1  2 RB491D Sense Resistor F951C476MG1  2 F951A107MG1  2 F951C476MG1  1 F951C476MG1  2 F951C476MG1  2 F951A107MG1  2 F951C476MG1  1 F951C476MG1  2 F951C476MG1  2 F951A107MG1  2 F951C476MG1  1 F951C476MG1  2 F951C476MG1  2 F951A107MG1  2 F951C476MG1  1 F951C476MG1  2 F951C476MG1  2 F951A107MG1  2 F951C476MG1  1 F951C476MG1  2 F951C476MG1  2 F951A107MG1  2 Application N 2.5 V Transistor 0 DE SI G S-8340C25AFT Inductor W Voltage NE Output Name R (49) Product FO No. External Parts for Output Current vs. Ripple Voltage Characteristics Data for C Type D Table 15 *3 *4 *3 *4 *3 *4 *3 *4 *3 *4 *3 *4 NO T RE CO MM EN *3. CDRH6D28 + FDN335N + RB491D: For part heights of 3 mm and high efficiency *4. CDRH124 + FTS2001 + RBO81L-20: For optimizing the load current driveability 35 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series Performance Data for Parts Manufacturer L 4.1 H 0.042  typ. 0.057  max. CDRH124 10 H 0.028  max. CDRH6D28 10 H 0.048  typ. 0.065  max. Rohm Corporation RB491D Diode 1.95 A 4.5 A 1.70 A Diameter 5.7 mm typ. 6.0 mm max. 12. 0 mm typ. 12.3 mm max. 6.7 mm typ. 7.0 mm max. Height 1.8 mm typ. 2.0 mm max. 4.5 mm max. 3.0 mm max. Forward current 1.0 A @VF = 0.45 V, Vrm  25 V R Sumida Corporation CDRH5D18 Performance Max. Current Forward current 5.0 A @VF = 0.45 V, Vrm  25 V RB081L20 FO Inductor DC resistance W Product Name NE Component Performance of External Parts DE SI G Table 16 N The following shows the performance of external parts. 47 F, 16 V, 5.5  4.8  2.3 mm max., ESR = 0.08  (nominal value) 47 F, 10 V, 5.5  4.8  2.0 mm max., F951A476MF1 ESR = 0.1  (nominal value) 47 F, 6.3 V, 3.6  3  1.2 mm max., F920J476MB3 ESR = 0.27  (nominal value) 100 F, 10 V, 5.5  4.8  2.3 mm max., F951A107MG1 ESR = 0.08  (nominal value) VDSS = 20 V max., VGSS = 8 V max., ID = 1.7 A max., External Fairchild transistor Vth = 0.5 V to 1 V, Ciss = 240 pF typ., Semiconductor NDS335N*1 (N-channel Corporation RDS(ON) = 0.14  max.(VGS = 2.7 V), SOT-23-3 package or FET) equivalent VDSS = 20 V max., VGSS = 8 V max., ID = 1.7 A max., Vth = 0.4 V to 1.5 V, Ciss = 310 pF typ., FDN335N RDS(ON) = 0.10  max.(VGS = 2.5 V), SOT-23-3 package or equivalent VDSS = 20 V max., VGSS = 8 V max., ID = 5 A max., Sanyo Electric FTS2001 Vth = 0.4 V to 1.3 V, Ciss = 750 pF typ., Co., Ltd. RDS(ON) = 0.046  max.(VGS = 2.5 V), 8-Pin TSSOP package *1. The manufacturer recommends the FDN335N as an alternative for the NDS335N. Nichicon Corporation DE D F951C476MG1 The value of each characteristic in Table 16 depends on the materials prepared by each manufacturer, however, confirm the specifications by referring to respective materials when using any of the above. NO T Caution RE CO MM EN Capacitor (output capacitance) (tantalum electrolytic capacitor) 36 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series 2. Output Current (IOUT) vs. Efficiency () Characteristics The following shows the actual output current (IOUT) vs. efficiency () characteristics when the S-8340/8341 Series is used under conditions (1) to (24) in Tables 10 and 11. 0.1 1 10 IOUT(mA) (mA) IOUT 1.5V 100 10 IOUT(mA) (mA) IOUT CO =1.2V VINVI N1.2 V 1 10 IOUT IOUT(mA) (mA) 1.8V 100 0.1 N 10000 100 90 80 70 60 50 40 30 20  η(%) (%) NO T 3.0V VVI N=1.2V IN  1.2 V 10 IOUT(mA) (mA) IOUT 10 100 IIOUT (mA) OUT (mA) 1000 10000 1000 10000 1000 10000 3.0V VI N=1.5V VIN  1.5 V 1.8V 1 10 100 IOUT (mA) (mA) (8) S-8341A33AFT 1.8V 1 1 1.8V (CDRH124/10 FTS2001) H, (CDRH124/10 H, FTS2001) 0.1 (CDRH5D18/4.1 H, NDS335N) (CDRH5D18/4.1 H,NDS335N) 60 50 40 30 20 VINVIN=1.5V 1.5 V (6) S-8340A33AFT 1000 (7) S-8341A33AFT  η(%) (%) 1000 2.4V 60 50 40 30 20 1000 MM EN 100 3.0V 0.1 10 100 (mA) IOUT (mA) (CDRH124/10 FTS2001) H, (CDRH124/10 H, FTS2001) R D 1.5V (CDRH5D18/4.1 NDS335N) H, (CDRH5D18/4.1 H, NDS335N) 0.1 100 90 80 70 100 90 80 70 DE 1 RE  η(%) (%) η(%)  (%) VVINI N 1.2 V =1.2V 60 50 40 30 20 1 FO 1.8V (5) S-8340A33AFT 100 90 80 70 V  1.5 V VIN I N=1.5V 0.1 (CDRH5D18/4.1 NDS335N) H, (CDRH5D18/4.1 H, NDS335N) 0.1 1.8V (4) S-8341A25AFT η(%) (%) 100 90 80 70 60 50 40 30 20 2.4V 60 50 40 30 20 1000 (3) S-8341A25AFT (CDRH124/10 FTS2001) H, (CDRH124/10 H, FTS2001) DE SI G VIN  1.2 V I N=1.2V η(%) (%) 1.8V 100 90 80 70 W (CDRH5D18/4.1 NDS335N) H, (CDRH5D18/4.1 H, NDS335N) η(%)  (%) η(%)  (%) 100 90 80 70 60 50 40 30 20 (2) S-8340A25AFT NE (1) S-8340A25AFT 100 1000 100 90 80 70 (CDRH124/10 FTS2001) H, (CDRH124/10 H, FTS2001) 3.0V 1.8V 60 50 40 30 20 VVINI N=1.5V 1.5 V 0.1 1 10 100 (mA) IOUT (mA) 37 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series 4.5V 3.0V 60 50 40 30 20 VIN V  1.8 V I N=1.8V 10 100 IOUT (mA) IOUT (mA) 10 100 IOUT (mA) IOUT (mA) 1000 10000 70 60 50 40 30 20 (CDRH124/10 H, FTS2001) (CDRH124/10 H,FTS2001) 4.5V 3.0V R 3.0V η(%) (%) 70 60 50 40 30 20 VVINI N=1.8V 1.8 V FO VVINI N=1.8V 1.8 V 10 IOUT(mA) (mA) IOUT 100 1000 MM EN 1.8V 1 10 IIOUT (mA) OUT (mA) RE (15) S-8341C25AFT CO V  1.2 V VIN I N=1.2V 0.1 1.5V 100 100 90 80 70 1000 0.1 1 1000 10000 1.8V VIINN=1.5V  1.5 V 1 10 100 1000 10000 (16) S-8341C25AFT 100 90 80 70 VVINI N=1.2V 1.2 V 10 2.4V IOUT (mA) (mA) 1.8V IIOUT (mA) OUT (mA) (CDRH124/10 FTS2001) (CDRH124/10 H,H, FTS2001) 0.1 η(%) (%) NO T 60 50 40 30 20 10 100 IIOUT (mA) OUT (mA) 60 50 40 30 20 (CDRH6D28/10 H, FDN335N) (CDRH6D28/10 H,FDN335N) 100 90 80 70 1 (14) S-8340C25AFT 100 90 80 70 60 50 40 30 20 0.1 D 1 DE η(%) (%) 100 90 80 4.5V (CDRH6D28/10 FDN335N) (CDRH6D28/10 H,H, FDN335N) η(%) (%) 1 (12) S-8341A50AFT (13) S-8340C25AFT 38 =1.8V VVINI N 1.8 V 0.1 (CDRH5D18/4.1 H,NDS335N) (CDRH5D18/4.1 H, NDS335N) 0.1 η(%)  (%) 50 40 30 20 1000 (11) S-8341A50AFT 100 90 80 3.0V 70 60 W 1 4.5V NE 0.1 (CDRH124/10 FTS2001) (CDRH124/10 H,H, FTS2001) N 100 90 80 DE SI G (CDRH5D18/4.1 H, NDS335N) (CDRH5D18/4.1 H,NDS335N) η(%) (%) 100 90 80 70 (10) S-8340A50AFT η(%) (%) η(%) (%) (9) S-8340A50AFT 1.5V 100 1000 (CDRH124/10 H, FTS2001) (CDRH124/10 H,FTS2001) 2.4V 1.8V 60 50 40 30 20 V  1.5 V VIN I N=1.5V 0.1 1 10 100 IIOUT (mA) OUT (mA) 1000 10000 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series (18) S-8340C33AFT 100 90 80 70 60 50 40 30 20 3.0V V  1.2 V VIN I N=1.2V 1 10 100 IOUT (mA) OUT (mA) 1000 10 100 IIOUT (mA) OUT (mA) 3.0V 1.8V R η(%) (%) VVINI N=1.8V 1.8 V VVINI N=1.5V 1.5 V 0.1 1 10 100 1000 10000 IOUT IOUT(mA) (mA) 10 100 (mA) IIOUT OUT(mA) (CDRH124/10 H, FTS2001) (CDRH124/10 H,FTS2001) 4.5V 3.0V 60 50 40 30 20 =1.8V VVINI N 1.8 V 0.1 1 10 100 1000 10000 IOUT(mA) (mA) IOUT RE (24) S-8341C50AFT I N=1.8V VINV 1.8 V 100 η(%) (%) 4.5V 10 IIOUT (mA) OUT (mA) 100 90 80 70 1000 (CDRH6D28/10 H, FDN335N) (CDRH6D28/10 H, FDN335N) 1 10000 FO 3.0V NO T η(%) (%) MM EN 4.5V CO η(%) (%) (CDRH6D28/10 H, FDN335N) 0.1 1000 (22) S-8340C50AFT (CDRH6D28/10H, FDN335N) 100 90 80 70 60 50 40 30 20 1000 η(%) (%) (21) S-8340C50AFT (23) S-8341C50AFT 100 (CDRH124/10 H, FTS2001) 60 50 40 30 20 D 1 1.8V DE η(%) (%) V  1.2 V VINI N=1.2V 1 10 (CDRH124/10 H, FTS2001) 100 90 80 70 3.0V 0.1 1 (20) S-8341C33AFT (CDRH6D28/10H, FDN335N) 100 90 80 70 60 50 40 30 20 VVINI N=1.5V 1.5 V 0.1 (CDRH6D28/10 H, FDN335N) 0.1 1.8V IOUT (mA) (mA) (19) S-8341C33AFT 100 90 80 70 60 50 40 30 20 3.0V W 0.1 1.8V (CDRH124/10H, FTS2001) (CDRH124/10 H, FTS2001) N (CDRH6D28/10 H, FDNS335N) NE 100 90 80 70 60 50 40 30 20 η(%) (%) η(%) (%) (CDRH6D28/10H, FDN335N) DE SI G (17) S-8340C33AFT 3.0V 1000 100 90 80 70 (CDRH124/10 FTS2001) H, (CDRH124/10 H, FTS2001) 4.5V 3.0V 60 50 40 30 20 VVINI N=1.8V  1.8 V 0.1 1 10 100 IOUT (mA) (mA) 1000 10000 39 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series 3. Output Current (IOUT) vs. Output Voltage (VOUT) Characteristics The following shows the actual output current (IOUT) vs. output voltage (VOUT) characteristics when the S-8340/8341 Series is used under conditions (1) to (24) in Tables 10 and 11. 2.62 2.52 2.50 1 10 100 1000 0.1 1 10 IOUT IOUT(mA) (mA) RE 3.25 3.20 3.60 (V) V 3.35 3.30 VOUT (V) 3.45 3.40 40 1.8V VV 1.5 V N=1.5V INI  3.0V 1 10 100 IOUT (mA) OUT (mA) 1000 10000 (8) S-8341A33AFT 3.60 100 (V) 3.45 3.40 3.35 3.30 VOUT (V) 1.8V V VVINI N=1.2V 1.2 V 10 IOUT (mA) IOUT (mA) 1000 (CDRH124/10 H, FTS2001) (CDRH124/10 H,FTS2001) 0.1 1000 (CDRH124/10 FTS2001) (CDRH124/10 H, FTS2001) H, 1.8V VVINI N=1.5V 1.5 V 3.25 3.20 3.0V 1 100 3.55 3.50 3.25 3.20 0.1 10 IOUT IOUT(mA) (mA) 3.55 3.50 (CDRH5D18/4.1 H,H, NDS335N) (CDRH5D18/4.1 NDS335N) NO T (V) V VVOUT (V) OUT(V) 3.35 3.30 1 (6) S-8340A33AFT 3.55 3.50 3.45 3.40 2.4V 3.25 3.20 (7) S-8341A33AFT 3.60 N=1.5V VV 1.5 V INI  0.1 3.0V 100 1.8V FO (V) V VOUT (V) MM EN 1000 1.8V VVINI N=1.2V 1.2 V CO (V) V 100 2.48 2.46 (CDRH5D18/4.1 H, NDS335N) (CDRH5D18/4.1 H,NDS335N) 3.55 3.50 VOUT (V) 10 IOUT IOUT(mA) (mA) 2.52 2.50 D 1.8V 1 2.56 2.54 DE (V) V VOUT (V) 1.5V (5) S-8340A33AFT 3.35 3.30 1000 (CDRH124/10 H, FTS2001) (CDRH124/10 FTS2001) H, 2.60 2.58 VVINI N=1.2V 1.2 V 2.48 2.46 3.45 3.40 100 R 2.62 2.60 2.58 3.60 10 IOUT(mA) (mA) IOUT (4) S-8341A25AFT (CDRH5D18/4.1 H,H, NDS335N) (CDRH5D18/4.1 NDS335N) 0.1 1 NE (3) S-8341A25AFT 2.52 2.50 2.4V 0.1 IOUT IOUT(mA) (mA) 2.56 2.54 1.8V 2.48 2.46 1.8V 0.1 VVINI N=1.5V 1.5 V W (V) 1.5V VVINI N=1.2V 1.2 V 2.48 2.46 2.56 2.54 V 2.54 2.52 2.50 2.62 (CDRH124/10 H, FTS2001) (CDRH124/10 FTS2001) H, 2.60 2.58 2.58 2.56 N (CDRH5D18/4.1 H, NDS335N) (CDRH5D18/4.1 H,NDS335N) VOUT (V) V VOUT (V) (V) 2.62 2.60 (2) S-8340A25AFT DE SI G (1) S-8340A25AFT 1000 3.0V 0.1 1 10 100 IOUT IOUT(mA) (mA) 1000 10000 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series 5.20 5.15 5.30 5.25 3.0V VVINI N=1.8V 1.8 V 5.10 5.05 5.00 4.95 4.5V 4.90 (CDRH124/10 FTS2001) (CDRH124/10 H,H, FTS2001) VIINN=1.8V  1.8 V V 5.20 5.15 5.10 5.05 4.5V 5.00 4.95 4.90 0.1 1 10 100 1000 0.1 1 5.30 5.25 4.5V 10 100 1000 VIN 1.8 V VI N=1.8V 5.00 4.95 0.1 4.5V MM EN (CDRH6D28/10 H, FDN335N) (CDRH6D28/10 H,FDNS335N) 2.58 2.56 1.5V VINV 1.2 V =1.2V IN 2.54 2.52 2.50 10 CO 1 2.60 2.58 10000 10 100 1.8V VVIN =1.5V 1.5 V 2.56 2.54 IN 2.52 2.50 2.48 2.46 1000 2.4V 0.1 1 100 2.56 2.54 2.52 2.50 1.8V VVINI N=1.5V 1.5 V 2.48 2.46 1.8V 10 (V) 1.5V V V  1.2 V VINI N=1.2V IIOUT (mA) OUT (mA) 1000 (CDRH124/10 FTS2001) H, (CDRH124/10 H, FTS2001) 2.60 2.58 2.48 2.46 1 2.62 VOUT (V) 2.54 2.52 2.50 100 (16) S-8341C25AFT RE NO T 2.58 2.56 10 IOUT (mA) IOUT (mA) (CDRH6D28/10 H, FDN335N) (CDRH6D28/10 H,FDNS335N) 0.1 1000 (CDRH124/10 FTS2001) H, (CDRH124/10 H, FTS2001) IIOUT (mA) OUT (mA) (15) S-8341C25AFT 100 IOUT (mA) IOUT (mA) 2.62 1.8V 2.48 2.46 0.1 1 (14) S-8340C25AFT DE (13) S-8340C25AFT (V) 3.0V 5.10 5.05 D 1 IIOUT (mA) OUT(mA) VOUT V (V) (V) 5.20 5.15 4.90 0.1 V 10000 R 5.00 4.95 4.90 VOUT (V) 1000 (CDRH124/10 H,H, FTS2001) (CDRH124/10 FTS2001) FO 5.10 5.05 VOUT V (V)(V) 3.0V VVINI N=1.8V 1.8 V VOUT V (V) (V) VOUT V (V)(V) (CDRH5D18/4.1 NDS335N) (CDRH5D18/4.1 H,H, NDS335N) 5.20 5.15 2.62 2.60 100 (12) S-8341A50AFT NE (11) S-8341A50AFT 2.62 2.60 10 IOUT (mA) IOUT (mA) W IIOUT (mA) OUT (mA) 5.30 5.25 3.0V N (CDRH5D18/4.1 NDS335N) (CDRH5D18/4.1 H,H, NDS335N) VOUT V (V)(V) VOUT V (V) (V) 5.30 5.25 (10) S-8340A50AFT DE SI G (9) S-8340A50AFT 1000 2.4V 0.1 1 10 100 1000 IOUT(mA) (mA) IOUT 41 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series (17) S-8340C33AFT (CDRH6D28/10 H, FDN335N) (CDRH6D28/10 H,FDN335N) 3.60 VV 1.2 V IN =1.2V IN 3.45 3.40 3.35 3.30 3.35 3.30 3.0V 3.25 3.20 0.1 1 10 N 1.8V VIN 1.5 V V =1.5V IN 3.0V 3.25 3.20 100 0.1 1000 1 3.60 5.00 4.95 4.5V 100 (V) R V  1.8 V VINI N=1.8V 10000 3.0V 4.5V 5.10 5.05 5.00 4.95 0.1 1 10 100 1000 10000 (24) S-8341C50AFT 5.30 5.25 (V) 3.0V V VOUT (V) 5.00 4.95 1 1000 IOUT (mA) IOUT (mA) VVINI N=1.8V 1.8 V 5.10 5.05 0.1 100 4.90 (CDRH6D28/10 FDN335N) H, (CDRH6D28/10 H, FDN335N) 5.20 5.15 10 (CDRH124/10 FTS2001) (CDRH124/10 H, FTS2001) H, 5.20 5.15 1000 4.5V 4.90 42 (V) 3.0V RE 10 IIOUT (mA) OUT (mA) NO T (V) V VOUT (V) CO 4.90 5.30 5.25 1 IIOUT (mA) OUT (mA) 5.30 5.25 V VVINI N=1.8V 1.8 V 5.10 5.05 (23) S-8341C50AFT 0.1 DE MM EN (V) V VOUT (V) 5.20 5.15 1 V VOUT (V) 1000 (22) S-8340C50AFT (CDRH6D28/10 FDN335N) (CDRH6D28/10 H, FDN335N) H, 0.1 VVINI N=1.5V 1.5 V 3.0V D 100 IOUT IOUT(mA) (mA) (21) S-8340C50AFT 1.8V 3.25 3.20 3.0V 10 3.35 3.30 FO IN 1 3.45 3.40 VOUT (V) (V) V VOUT (V) 1.8V VVIN =1.2V 1.2 V 3.25 3.20 5.30 5.25 10000 (CDRH124/10 H, FTS2001) (CDRH124/10 H,FTS2001) 3.55 3.50 0.1 1000 W (CDRH6D28/10 H, FDN335N) (CDRH6D28/10 H,FDN335N) 3.55 3.50 3.35 3.30 100 (20) S-8341C33AFT NE (19) S-8341C33AFT 3.45 3.40 10 IOUT (mA) IOUT (mA) IOUT IOUT(mA) (mA) 3.60 DE SI G 1.8V (V) 3.45 3.40 (CDRH124/10 H, FTS2001) (CDRH124/10 H,FTS2001) 3.55 3.50 VOUT (V) VOUT V (V)(V) 3.55 3.50 V 3.60 (18) S-8340C33AFT (CDRH124/10 FTS2001) (CDRH124/10 H, FTS2001) H, 5.20 5.15 3.0V VVINI N 1.8 V =1.8V 5.10 5.05 5.00 4.95 4.5V 4.90 10 IIOUT (mA) OUT (mA) 100 1000 0.1 1 10 IOUT (mA) OUT(mA) 100 1000 10000 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series 4. Output Current (IOUT) vs. PFM/PWM Switching Input Voltage (VIN) Characteristics The following shows the actual output current (IOUT) vs. PFM/PWM switching input voltage (VIN) characteristics when the S-8341 Series is used under conditions (25) to (36) in Tables 12 and 13. 1.5 PW M 1.0 2.0 V (V) V (V) 2.0 1.5 0.5 0.0 0.0 10 100 1000 1 IIOUT (mA) OUT (mA) (27) S-8341A33AFT PW M D 0.0 10 100 IOUT IOUT(mA) (mA) (29) S-8341A50AFT PFM 3.0 1.0 0.0 1 10 IOUT IOUT(mA) (mA) RE 0.1 CO 2.0 PW M N 1000 PFM 3.0 2.0 PW M 0.0 100 1000 1 10 100 IOUT IOUT(mA) (mA) 1000 (32) S-8341C25AFT 3.5 NO T (CDRH124/10 FTS2001) H, (CDRH124/10 H, FTS2001) 3.0 PFM 2.5 2.0 VIN (V) V (V) VIN (V) 10 100 IOUT IOUT(mA) (mA) (CDRH124/10 FTS2001) (CDRH124/10 H, FTS2001) H, 4.0 2.0 V (V) 0.0 5.0 PFM 2.5 0.5 (30) S-8341A50AFT (CDRH6D28/10 FDN335N) H, (CDRH6D28/10 H, NDS335N) 3.0 1.0 1.0 (31) S-8341C25AFT 3.5 PW M 1.5 1 (CDRH5D18/4.1 NDS335N) (CDRH5D18/4.1 H,H, NDS335N) 4.0 2.0 1000 MM EN 1 DE 0.5 V VIN (V) (V) (V) V VIN(V) 1.5 1.0 PFM FO 2.5 2.0 5.0 100 (CDRH124/10 FTS2001) (CDRH124/10 H, FTS2001) H, 3.0 PFM 2.5 (V) V VIN(V) 3.5 R 3.0 10 IOUT IOUT(mA) (mA) (28) S-8341A33AFT (CDRH5D18/4.1 NDS335N) H, (CDRH5D18/4.1 H, NDS335N) VIN (V) V (V) 3.5 PW M 1.0 0.5 1 PFM 2.5 VIN (V) VIN (V) 3.0 PFM 2.5 (CDRH124/10 FTS2001) (CDRH124/10 H, FTS2001) H, W 3.0 3.5 NE 3.5 (26) S-8341A25AFT (CDRH5D18/4.1 NDS335N) H, (CDRH5D18/4.1 H, NDS335N) DE SI G (25) S-8341A25AFT 1.5 PW M 1.0 1.5 PW M 1.0 0.5 0.5 0.0 0.0 1 10 IOUT IOUT(mA) (mA) 100 1 10 IOUT(mA) (mA) IOUT 100 43 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series 3.0 PFM 2.5 VIN (V) PW M 1.0 2.0 V (V) 1.5 0.5 0.0 0.0 1 10 100 1000 1 IIOUT (mA) OUT(mA) (35) S-8341C50AFT 5.0 4.0 PFM 3.0 100 1.0 PFM R PW M (CDRH124/10 FTS2001) (CDRH124/10 H, H,FTS2001) 2.0 FO 2.0 V (V) 3.0 IN V (V) V (V) 10 IOUT (mA) IOUT (mA) (36) S-8341C50AFT (CDRH6D28/10 FDN335N) H, (CDRH6D28/10 H, FDN335N) 4.0 IN V (V) PW M 1.0 W V (V) IN V (V) 1.5 0.5 PW M 1.0 0.0 0.0 10 100 NO T RE CO MM EN DE IIOUT (mA) OUT (mA) 1000 D 1 44 PFM 2.5 2.0 5.0 (CDRH124/10 FTS2001) (CDRH124/10 H, FTS2001) H, DE SI G 3.0 3.5 NE 3.5 (34) S-8341C33AFT (CDRH6D28/10 FDN335N) H, (CDRH6D28/10 H, FDN335N) N (33) S-8341C33AFT 1 10 100 IIOUT (mA) OUT (mA) 1000 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series 5. Output Current (IOUT) vs. Ripple Voltage (Ripple) Characteristics The following shows the actual output current (IOUT) vs. ripple voltage (Ripple) characteristics when the S-8340/8341 Series is used under conditions (37) to (60) in Tables 14 and 15. (CDRH5D18/4.1 H,NDS335N, 47 F) F) (CDRH5D18/4.1 H, NDS335N,47 Ripple (mV) 200 1.5V 150 100 50 IOUT IOUT(mA) (mA) 100 1 Ripple(mV) Ripple (mV) 1.8V 200 D 100 0 100 1000 IOUT IOUT(mA) (mA) 250 CO 100 50 1 10 RE 0 IOUT (mA) IOUT (mA) IOUT (mA) Ripple(mV) 1.5V 2.4V 100 0 100 1000 IOUT (mA) IOUT (mA) 1.8V 10000 (CDRH5D18/4.1 H, NDS335N,47 (CDRH5D18/4.1 H,NDS335N, 47 F  2) F  2) 250 Ripple (mV) 150 VIN 1.5 V VI N=1.5V 200 300 VINVI N1.2 V =1.2V 200 300 10 NDS335N,47 ((CDRH5D18/4.1 CDRH5D18/4.1 H,H, NDS335N, 47 F) F) 1000 1.8V 400 10000 MM EN (39) S-8341A25AFT 100 (CDRH124/10H, (CDRH5D18/4.1 NDS335N, 47 FF  2)2) H,FTS2001,100 FO 2.4V 400 10 IOUT(mA) (mA) IOUT 500 VVINI N=1.5V 1.5 V 300 10 R 600 DE Ripple (mV) Ripple(mV) VINVIN1.2 V =1.2V 1000 (CDRH124/10 H, FTS2000, 47 F F 2) 2) (CDRH124/10 H,FTS2001,47 500 Ripple(mV) 100 NE 10 (38) S-8340A25AFT Ripple (mV) 1.5V 150 0 1 300 1.8V 200 50 1.8V 0 600 DE SI G 250 VVININ=1.2V 1.2 V Ripple(mV) Ripple (mV) Ripple(mV) 250 (CDRH5D18/4.1 H,NDS335N, 47 F 2) (CDRH5D18/4.1 H,NDS335N,47 F2) 300 W 300 N (37) S-8340A25AFT 1.8V 200 1.5V 150 VIN=1.2V VIN 1.2 V 100 50 0 100 1000 1 10 IOUT IOUT(mA) (mA) 100 1000 (40) S-8341A25AFT (CDRH124/10H, FTS2001,47F  2) NO T Ripple (mV) Ripple(mV) 500 600 400 300 200 1.8V 100 2.4V 0 10 100 1000 IOUT IOUT(mA) (mA) (CDRH124/10H,FTS2001,100F  2) 500 VV 1.5 V N=1.5V INI  Ripple (mV) Ripple(mV) 600 10000 400 1.8V 300 2.4V VIN=1.5V VIN 1.5 V 200 100 0 10 100 1000 IOUT IOUT(mA) (mA) 10000 45 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series (41) S-8340A33AFT 250 1.8V 200 Ripple (mV) 150 100 50 3.0V 0 150 100 VINVIN=1.2V 1.2 V 50 0 1 10 IIOUT (mA) OUT (mA) 100 1000 1 (42) S-8340A33AFT (CDRH124/10 H,H, FTS2001, 47 F  2)F 2) (CDRH124/10 FTS2001,47 Ripple (mV) 3.0V 100 0 IOUT (mA) OUT (mA) 1000 3.0V 100 DE MM EN 150 100 50 Ripple (mV) 3.0V 1.8V 0 1 10 100 NO T 10000 VINVIN=1.2V 1.2 V 150 3.0V 100 50 1.8V 1 600 10 IOUT IOUT(mA) (mA) 100 1000 (CDRH124/10 F 2) (CDRH124/10 H, FTS2001, 100 F 2) H,FTS2001,100 500 V VININ1.5 1.5VV 400 1000 (CDRH5D18/4.1 H,NDS335N,47 F 2) (CDRH5D18/4.1 H,NDS335N, 47 F 2) 200 1000 (CDRH124/10 FTS2001,47 F 2) (CDRH124/10 H, FTS2001, 47 F 2) H, 500 IOUT IOUT(mA) (mA) 0 RE (44) S-8341A33AFT (mA) IOUT (mA) 100 250 Ripple(mV) 200 10 300 VV 1.2 V INI  N=1.2V CO Ripple (mV) Ripple(mV) 1.8V 200 10000 (CDRH5D18/4.1 NDS335N,47 (CDRH5D18/4.1 H,H, NDS335N, 47 F) F) 250 Ripple (mV) IN 300 D 100 (43) S-8341A33AFT Ripple(mV) VIN 1.5 V V =1.5V 400 0 10 VI N=1.5V 3.0V 300 200 1.8V 100 0 VINV  =1.5V 1.5 V 400 IN 1.8V 300 200 3.0V 100 0 10 46 1000 FO 200 600 100 (CDRH124/10 FTS2001,100 (CDRH124/10 H, FTS2001, 100 F  2)F 2) H, R Ripple(mV) 1.8V 300 300 IIOUT (mA) OUT(mA) 500 Ripple (mV) Ripple (mV) 400 10 NE VINVI N1.5 V =1.5V 500 Ripple(mV) 600 Ripple(mV) 600 3.0V 1.8V W Ripple (mV) 200 IN (CDRH5D18/4.1 H, NDS335N,47 (CDRH5D18/4.1 H,NDS335N, 47 F  2) F 2) N VINV =1.2V 1.2 V 250 Ripple(mV) 300 DE SI G (CDRH5D18/4.1 NDS335N,47 (CDRH5D18/4.1 H,H, NDS335N, 47 F) F) Ripple(mV) 300 100 IOUT (mA) (mA) 1000 10000 10 100 IOUT(mA) (mA) IOUT 1000 10000 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series (45) S-8340A50AFT (CDRH5D18/4.1 H, NDS335N,47 (CDRH5D18/4.1 H,NDS335N, 47 F) F) 4.5V 150 100 50 3.0V 0 N 200 10 IOUT (mA) OUT(mA) 100 150 VV 1.8 V INI  N=1.8V 100 50 1000 1 (46) S-8340A50AFT (CDRH124/10 FTS2001,47 F 2) (CDRH124/10 H,H, FTS2001, 47 F 2) 4.5V IN Ripple (mV) 50 IOUT IOUT(mA) (mA) 1000 DE (CDRH5D18/4.1 H, NDS335N,47 (CDRH5D18/4.1 H,NDS335N, 47 F) F) MM EN 100 3.0V 0 1 CO 50 10 100 200 500 VVINI N=1.8V 1.8 V 400 3.0V 100 0 3.0V 1 4.5V 200 4.5V 100 600 300 VV 1.8 V IN =1.8V IN 150 1000 Ripple (mV) NO T 400 10000 (CDRH5D18/4.1 H, NDS335N,47 (CDRH5D18/4.1 H,NDS335N, 47 F  2) F 2) 0 (CDRH124/10 FTS2001,47 (CDRH124/10 H,H, FTS2001, 47 F 2)F 2) 500 1000 50 RE (48) S-8341A50AFT IOUT IOUT(mA) (mA) Ripple (mV) 150 IOUT (mA) (mA) 250 Ripple(mV) 200 100 300 VVINI N=1.8V 1.8 V 250 10 350 4.5V 300 Ripple (mV) 10000 D 100 (47) S-8341A50AFT Ripple(mV) 100 0 10 Ripple (mV) 4.5V 150 50 0 Ripple(mV) 200 3.0V FO 100 1000 VVINI N 1.8 V =1.8V R Ripple(mV) 3.0V Ripple(mV) Ripple (mV) Ripple(mV) 200 600 100 (CDRH124/10 H,FTS2001, 100 F 2) (CDRH124/10 H,FTS2001,100 F 2) 250 150 IIOUT (mA) OUT (mA) 300 250 350 10 NE VV 1.8 V IN =1.8V 300 350 4.5V 3.0V 0 1 350 DE SI G Ripple (mV) 200 (CDRH5D18/4.1 H,NDS335N,47 F 2) (CDRH5D18/4.1 H,NDS335N, 47 F 2) 250 VV 1.8 V INI  N=1.8V Ripple(mV) Ripple (mV) 250 Ripple(mV) 300 W 300 10 IOUT IOUT(mA) (mA) 100 1000 (CDRH124/10 H, FTS2001,100 (CDRH124/10 H,FTS2001, 100 F   2)F 2) VVINI N 1.8 V =1.8V 300 4.5V 200 3.0V 100 0 10 100 IOUT (mA) (mA) 1000 10000 10 100 IOUT (mA) (mA) 1000 10000 47 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series (49) S-8340C25AFT (CDRH6D28/10 H, FDN335N,47 (CDRH6D28/10 H,FDN335N, 47 F) F) 300 VINVIN=1.2V 1.2 V 150 100 50 1.5V 0 1.8V 200 150 VIN 1.2 V V  =1.2V 100 IN 50 0 1 10 IOUT (mA) OUT (mA) 100 1000 1 (50) S-8340C25AFT (CDRH124/10 FTS2001,47 (CDRH124/10 H,H, FTS2001, 47 F  2)F 2) 500 2.4V 0 IIOUT (mA) OUT (mA) 1000 DE MM EN 2.4V VVIN =1.5V 1.5 V IN VV 1.2 V IN =1.2V IN 150 100 50 1.8V 0 1 10 RE (52) S-8341C25AFT IOUT IOUT(mA) (mA) 100 NO T 1.8V 1000 10000 (CDRH6D28/10 H, FDN335N,100 CDRH6D28/10 H,FDN335N, 100 F) F) 1.8V 1.5V 150 VINVI N=1.2V 1.2 V 100 50 0 1 500 10 IIOUT (mA) OUT (mA) 100 1000 (CDRH124/10 FTS2001,100 (CDRH124/10 H,H, FTS2001, 100 F   2)F 2) 400 2.4V Ripple(mV) Ripple (mV) VV 1.5 V IN =1.5V IN 300 IOUT IOUT(mA) (mA) 200 1000 (CDRH124/10 H, FTS2001,47 (CDRH124/10 H,FTS2001, 47 F   2)F 2) 400 100 250 Ripple (mV) 200 10 300 1.5V CO Ripple (mV) Ripple(mV) 10000 (CDRH6D28/10 H, FDN335N,47 (CDRH6D28/10 H,FDN335N, 47 F) F) 250 Ripple (mV) 1.8V 100 D 100 (51) S-8341C25AFT Ripple(mV) 200 0 10 200 100 0 1.8V 300 VINVIN=1.5V 1.5 V 200 2.4V 100 0 10 48 1000 300 FO VV 1.5 V IN =1.5V IN 100 500 100 (CDRH124/10 FTS2001,100 (CDRH124/10 H,H, FTS2001, 100 F   2)F 2) R 200 Ripple (mV) 1.8V Ripple(mV) 300 300 IIOUT (mA) OUT(mA) 400 Ripple(mV) Ripple(mV) Ripple (mV) 400 10 1.5V NE 500 DE SI G Ripple (mV) 200 N 250 1.8V Ripple(mV) Ripple(mV) Ripple (mV) 250 (CDRH6D28/10 H, FDN335N,100 (CDRH6D28/10 H,FDN335N, 100 F) F) W 300 100 IOUT IOUT(mA) (mA) 1000 10000 10 100 IOUT IOUT(mA) (mA) 1000 10000 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series (53) S-8340C33AFT (CDRH6D28/10 H, FDN335N,47 (CDRH6D28/10 H,FDN335N, 47 F) F) 300 VVIN =1.2V 1.2 V 150 IN 100 50 3.0V 0 1 10 IIOUT (mA) OUT (mA) 100 200 VIN 1.2 V VIN=1.2V 100 50 0 1000 1 (CDRH124/10 FTS2001,47 F 2) (CDRH124/10 H, FTS2001, 47 F 2) H, Ripple (mV) 1.8V 200 0 IIOUT (mA) OUT (mA) 1000 DE 3.0V IN 150 100 50 1.8V 0 1 10 100 (CDRH6D28/10 H, FDN335N,100 (CDRH6D28/10 H,FDN335N, 100 F) F) 3.0V VINV  =1.2V 1.2 V 150 IN 100 50 1.8V 1 500 Ripple (mV) 3.0V VVINI N=1.5V 1.5 V Ripple(mV) NO T 10000 10 IOUT IOUT(mA) (mA) 100 1000 (CDRH124/10 FTS2001,100 (CDRH124/10 H,H, FTS2001, 100 F   2)F 2) 400 300 200 1000 200 1000 (CDRH124/10 FTS2001,47 F 2) (CDRH124/10 H, FTS2001, 47 F 2) H, 400 (mA) IIOUT OUT(mA) 0 RE (56) S-8341C33AFT IOUT(mA) (mA) IOUT 100 250 Ripple (mV) MM EN VIN 1.2 V V  =1.2V 200 10 300 3.0V CO Ripple (mV) 1.8V VIN 1.5 V VI N=1.5V 100 10000 (CDRH6D28/10 H,FDN335N, 47 F) F) (CDRH6D28/10 H, FDN335N,47 250 Ripple(mV) 200 D 100 (55) S-8341C33AFT Ripple (mV) 300 0 10 Ripple(mV) 1000 FO VIN 1.5 V VIN=1.5V 100 500 100 (CDRH124/10 FTS2001,100 (CDRH124/10 H,H, FTS2001, 100 F   2)F 2) R Ripple(mV) 3.0V 300 300 IIOUT (mA) OUT (mA) 400 Ripple(mV) Ripple(mV) Ripple (mV) 400 10 NE 500 3.0V 1.8V 150 (54) S-8340C33AFT 500 DE SI G Ripple (mV) 200 N 250 1.8V Ripple(mV) Ripple(mV) Ripple (mV) 250 (CDRH6D28/10 H, FDN335N,100 (CDRH6D28/10 H,FDN335N, 100 F) F) W 300 1.8V 100 0 300 3.0V 200 VINVIN=1.5V 1.5 V 1.8V 100 0 10 100 IOUT(mA) (mA) IOUT 1000 10000 10 100 (mA) IIOUT OUT(mA) 1000 10000 49 STEP-UP, 600 kHz, PWM CONTROL OR PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_02 S-8340/8341 Series (57) S-8340C50AFT (CDRH6D28/10 H, FDN335N,47 (CDRH6D28/10 H,FDN335N, 47 F) F) 4.5V 150 VIN 1.8 V V =1.8V IN 100 50 0 N 4.5V 3.0V 200 150 VIN 1.8 V VIN=1.8V 100 50 0 10 IIOUT (mA) OUT (mA) 100 1000 1 (58) S-8340C50AFT (CDRH124/10 H, FTS2001,47 (CDRH124/10 H,FTS2001, 47 F   2)F 2) 4.5V Ripple (mV) 100 IIOUT (mA) OUT (mA) 1000 (CDRH6D28/10 H, FDN335N,47 (CDRH6D28/10 H,FDN335N, 47 F) F) 4.5V 100 50 Ripple (mV) 150 3.0V 0 1 10 RE (60) S-8341C50AFT IIOUT (mA) OUT (mA) 100 1000 10000 (CDRH6D28/10 H, FDN335N,100 (CDRH6D28/10 H,FDN335N, 100 F) F) 200 4.5V 150 VV 1.8 V IN =1.8V IN 100 50 1000 3.0V 1 500 10 IOUT(mA) (mA) IOUT 100 1000 (CDRH124/10 FTS2001,100 F 2) (CDRH124/10 H, FTS2001, 100 F 2) H, 4.5V 400 VVIN =1.8V 1.8 V IN 300 3.0V 200 100 0 Ripple (mV) NO T (mA) IIOUT OUT (mA) 0 (CDRH124/10 FTS2001,47 (CDRH124/10 H,H, FTS2001, 47 F  2)F 2) 400 100 250 Ripple(mV) MM EN VIN 1.8 V VIN=1.8V CO Ripple (mV) 200 10 300 4.5V 250 Ripple(mV) VV =1.8V 1.8 V INI N 100 10000 DE (59) S-8341C50AFT Ripple (mV) 200 D 10 Ripple(mV) 3.0V 300 0 0 4.5V 300 VV 1.8 V IN =1.8V IN 200 100 3.0V 0 10 50 (CDRH124/10 FTS2001,100 (CDRH124/10 H,H, FTS2001, 100 F   2)F 2) R Ripple(mV) 100 500 1000 FO 200 300 100 400 VVINI N=1.8V 1.8 V 300 IOUT IOUT(mA) (mA) NE 3.0V Ripple(mV) Ripple(mV) Ripple (mV) 400 500 10 W 1 500 DE SI G 200 (CDRH6D28/10 H, FDN335N,100 (CDRH6D28/10 H,FDN335N, 100 F) F) 250 3.0V Ripple (mV) Ripple (mV) 250 Ripple(mV) 300 Ripple(mV) 300 100 IOUT IOUT(mA) (mA) 1000 10000 10 100 IOUT(mA) (mA) IOUT 1000 10000 +0.3 5 1 4 NE W DE SI G 8 N 3.00 -0.2 DE D FO R 0.17±0.05 MM EN 0.2±0.1 CO 0.65 NO T RE No. FT008-A-P-SD-1.2 TITLE TSSOP8-E-PKG Dimensions No. FT008-A-P-SD-1.2 ANGLE UNIT mm ABLIC Inc. 4.0±0.1 2.0±0.05 ø1.55±0.05 DE SI G N 0.3±0.05 +0.1 8.0±0.1 NE W ø1.55 -0.05 FO R (4.4) +0.4 MM EN DE D 6.6 -0.2 8 1 4 Feed direction NO T RE CO 5 No. FT008-E-C-SD-1.0 TITLE TSSOP8-E-Carrier Tape FT008-E-C-SD-1.0 No. ANGLE UNIT mm ABLIC Inc. N DE SI G W NE R FO D 2±0.5 ø13±0.5 CO MM EN ø21±0.8 17.5±1.0 DE Enlarged drawing in the central part 13.4±1.0 NO T RE No. FT008-E-R-SD-1.0 TITLE TSSOP8-E-Reel No. FT008-E-R-SD-1.0 QTY. ANGLE UNIT mm ABLIC Inc. 3,000 N DE SI G W NE R FO D 2±0.5 ø13±0.5 CO MM EN ø21±0.8 17.5±1.0 DE Enlarged drawing in the central part 13.4±1.0 NO T RE No. FT008-E-R-S1-1.0 TITLE TSSOP8-E-Reel FT008-E-R-S1-1.0 No. QTY. ANGLE UNIT mm ABLIC Inc. 4,000 Disclaimers (Handling Precautions) All the information described herein (product data, specifications, figures, tables, programs, algorithms and application circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice. 2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of any specific mass-production design. ABLIC Inc. is not responsible for damages caused by the reasons other than the products described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use of the information described herein. 3. ABLIC Inc. is not responsible for damages caused by the incorrect information described herein. 4. Be careful to use the products within their specified ranges. Pay special attention to the absolute maximum ratings, operation voltage range and electrical characteristics, etc. ABLIC Inc. is not responsible for damages caused by failures and / or accidents, etc. that occur due to the use of the products outside their specified ranges. 5. When using the products, confirm their applications, and the laws and regulations of the region or country where they are used and verify suitability, safety and other factors for the intended use. 6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related laws, and follow the required procedures. 7. The products must not be used or provided (exported) for the purposes of the development of weapons of mass destruction or military use. ABLIC Inc. is not responsible for any provision (export) to those whose purpose is to develop, manufacture, use or store nuclear, biological or chemical weapons, missiles, or other military use. 8. The products are not designed to be used as part of any device or equipment that may affect the human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses. Do not apply the products to the above listed devices and equipments without prior written permission by ABLIC Inc. Especially, the products cannot be used for life support devices, devices implanted in the human body and devices that directly affect human life, etc. Prior consultation with our sales office is required when considering the above uses. ABLIC Inc. is not responsible for damages caused by unauthorized or unspecified use of our products. 9. Semiconductor products may fail or malfunction with some probability. The user of the products should therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction. The entire system must be sufficiently evaluated and applied on customer's own responsibility. MM EN DE D FO R NE W DE SI G N 1. 10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the product design by the customer depending on the intended use. CO 11. The products do not affect human health under normal use. However, they contain chemical substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be careful when handling these with the bare hands to prevent injuries, etc. 12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used. RE 13. The information described herein contains copyright information and know-how of ABLIC Inc. The information described herein does not convey any license under any intellectual property rights or any other rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this document described herein for the purpose of disclosing it to a third-party without the express permission of ABLIC Inc. is strictly prohibited. NO T 14. For more details on the information described herein, contact our sales office. 2.0-2018.01 www.ablicinc.com
S-8341C30AFT-T2-U 价格&库存

很抱歉,暂时无法提供与“S-8341C30AFT-T2-U”相匹配的价格&库存,您可以联系我们找货

免费人工找货