0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BGM13P22F512GA-V2

BGM13P22F512GA-V2

  • 厂商:

    SILABS(芯科科技)

  • 封装:

    -

  • 描述:

  • 数据手册
  • 价格&库存
BGM13P22F512GA-V2 数据手册
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet The BGM13P is Silicon Labs' first PCB module solution for Bluetooth 5.0 LE connectivity. It supports long range, high throughput, and regular LE Bluetooth PHYs. Also, with 512 kB of flash and 64 kB of RAM, the BGM13P is suited to meet Bluetooth Mesh networking memory requirements effectively. Based on the Silicon Labs EFR32BG13 Blue Gecko SoC, the BGM13P delivers robust RF performance, low energy consumption, a wide selection of MCU peripherals, regulatory test certificates for various regions and countries, and a simplified development experience, all in a small form factor. Together with the certified software stacks and powerful tools also offered by Silicon Labs, the BGM13P can minimize the engineering efforts and development costs associated with adding Bluetooth 5.0 or Bluetooth Mesh connectivity to any product, accelerating its time-to-market. Crystals 38.4 MHz RAM Memory • Up to +19 dBm TX power • -94.8 dBm RX sensitivity at 1 Mbps • 32-bit ARM® Cortex®-M4 core at 38.4 MHz • 512/64 kB of flash/RAM memory • 12.9 × 15.0 × 2.2 mm Flash Program Memory Debug Interface • Antenna or U.FL connector variants • 25 GPIO pins Core / Memory ETM • Fit for Bluetooth Mesh • True Random Number Generator IoT end devices and gateways Health, sports and wellness Industrial, home and building automation Beacons Smart phone, tablet, and PC accessories ARM CortexTM M4 processor with DSP extensions, FPU and MPU • Bluetooth 5.0 LE compliant • Autonomous Hardware Crypto Accelerators BGM13P modules can be used in a wide variety of applications: • • • • • KEY FEATURES LDMA Controller 32.768 kHz Clock Management Energy Management H-F Crystal Oscillator H-F RC Oscillator Voltage Regulator Voltage Monitor Auxiliary H-F RC Oscillator L-F RC Oscillator DC-DC Converter Power-On Reset L-F Crystal Oscillator Ultra L-F RC Oscillator Brown-Out Detector Other CRYPTO CRC True Random Number Generator SMU 32-bit bus Peripheral Reflex System Radio Transceiver DEMOD LNA I PGA IFADC Q I/O Ports Timers and Triggers External Interrupts Timer/Counter General Purpose I/O Low Energy Timer Protocol Timer Low Energy Sensor Interface AGC Frequency Synthesizer RAC PA USART Low Energy UARTTM RF Frontend CRC BALUN FRC Chip Antenna or U.FL Connector Matching Serial Interfaces BUFC Antenna I2C Pin Reset Pulse Counter Watchdog Timer Pin Wakeup Real Time Counter and Calendar Cryotimer MOD Analog I/F ADC Analog Comparator IDAC Capacitive Touch VDAC Op-Amp Lowest power mode with peripheral operational: EM0—Active EM1—Sleep silabs.com | Building a more connected world. EM2—Deep Sleep EM3—Stop Copyright © 2022 by Silicon Laboratories EM4—Hibernate EM4—Shutoff Rev. 1.4 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Feature List 1. Feature List • Supported Protocols • Bluetooth 5.0 LE • Bluetooth Mesh • Wireless System-on-Chip. • 2.4 GHz radio • TX power up to +19 dBm • High Performance 32-bit 38.4 MHz ARM Cortex®-M4 with DSP instruction and floating-point unit for efficient signal processing • 512 kB flash program memory • 64 kB RAM data memory • Embedded Trace Macrocell (ETM) for advanced debugging • Integrated dc-dc • High Receiver Performance • -103.2 dBm sensitivity at 125 kbit/s GFSK • -98.8 dBm sensitivity at 500 kbit/s GFSK • -94.8 dBm sensitivity at 1 Mbit/s GFSK • -91.2 dBm sensitivity at 2 Mbit/s GFSK • Low Energy Consumption • 9.9 mA RX current • 8.5 mA TX current at 0 dBm output power • 87 μA/MHz in Active Mode (EM0) • 1.4 μA EM2 DeepSleep current (full RAM retention and RTCC running from LFXO) • 1.14 μA EM3 Stop current (State/RAM retention) • Regulatory Certifications • FCC • CE / UKCA • IC / ISEDC • MIC / Telec • Wide Operating Range • 1.8 V to 3.8 V single power supply • -40 °C to +85 °C • Dimensions • 12.9 × 15.0 × 2.2 mm (W × L × H) silabs.com | Building a more connected world. • Support for Internet Security • General Purpose CRC • True Random Number Generator (TRNG) • 2 × Hardware Cryptographic Accelerators (CRYPTO) for AES 128/256, SHA-1, SHA-2 (SHA-224 and SHA-256) and ECC • Wide Selection of MCU Peripherals • 12-bit 1 Msps SAR Analog to Digital Converter (ADC) • 2 × Analog Comparator (ACMP) • 2 × Digital to Analog Converter (VDAC) • 3 × Operational Amplifier (Opamp) • Digital to Analog Current Converter (IDAC) • Low-Energy Sensor Interface (LESENSE) • Multi-channel Capacitive Sense Interface (CSEN) • 25 pins connected to analog channels (APORT) shared between analog peripherals • 25 General Purpose I/O pins with output state retention and asynchronous interrupts • 8 Channel DMA Controller • 12 Channel Peripheral Reflex System (PRS) • 2 × 16-bit Timer/Counter • 3 or 4 Compare/Capture/PWM channels • 1 × 32-bit Timer/Counter • 3 Compare/Capture/PWM channels • 32-bit Real Time Counter and Calendar • 16-bit Low Energy Timer for waveform generation • 32-bit Ultra Low Energy Timer/Counter for periodic wake-up from any Energy Mode • 16-bit Pulse Counter with asynchronous operation • 2 × Watchdog Timer • 3 × Universal Synchronous/Asynchronous Receiver/Transmitter (UART/SPI/SmartCard (ISO 7816)/IrDA/I2S) • Low Energy UART (LEUART™) • 2 × I2C interface with SMBus support and address recognition in EM3 Stop Rev. 1.4 | 2 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Ordering Information 2. Ordering Information Table 2.1. Ordering Information Max TX Power Antenna Flash (kB) RAM (kB) GPIO Packaging Bluetooth LE 19 dBm Built-in 512 64 25 Cut Tape BGM13P32F512GA-V2R Bluetooth LE 19 dBm Built-in 512 64 25 Reel BGM13P32F512GE-V2 Bluetooth LE 19 dBm U.FL 512 64 25 Cut Tape BGM13P32F512GE-V2R Bluetooth LE 19 dBm U.FL 512 64 25 Reel BGM13P22F512GA-V2 Bluetooth LE 8 dBm Built-in 512 64 25 Cut Tape BGM13P22F512GA-V2R Bluetooth LE 8 dBm Built-in 512 64 25 Reel BGM13P22F512GE-V2 Bluetooth LE 8 dBm U.FL 512 64 25 Cut Tape BGM13P22F512GE-V2R Bluetooth LE 8 dBm U.FL 512 64 25 Reel Ordering Code Protocol Stack BGM13P32F512GA-V2 For BGM13P32 devices, the maximum TX power for the 125 kbps Bluetooth LE PHY is limited to 14 dBm in order to remain compliant with FCC requirements. End-product manufacturers must verify that the module is configured to meet regulatory limits for each region in accordance with the formal certification test reports. Devices ship with the Gecko UART DFU bootloader 1.4.1 + NCP application from Bluetooth SDK 2.7.0.0. The firmware settings conform to the diagram shown in 5.1 Network Co-Processor (NCP) Application with UART Host. silabs.com | Building a more connected world. Rev. 1.4 | 3 Table of Contents 1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Power . . . . . . . . . . . 3.3.1 Energy Management Unit (EMU) 3.3.2 DC-DC Converter . . . . . 3.3.3 Power Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 . 9 .10 .10 3.4 General Purpose Input/Output (GPIO) . . . . . . . . . . . . . . . . . . . . . .10 3.5 Clocking . . . . . . . . . . 3.5.1 Clock Management Unit (CMU) . 3.5.2 Internal Oscillators and Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 .10 .11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 .11 .11 .11 .11 .11 .12 .12 3.7 Communications and Other Digital Peripherals . . . . . . . . . . 3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) . 3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) . 3.7.3 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . . . 3.7.4 Peripheral Reflex System (PRS) . . . . . . . . . . . . . 3.7.5 Low Energy Sensor Interface (LESENSE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 .12 .12 .12 .12 .12 3.8 Security Features . . . . . . . . . . . . . . 3.8.1 General Purpose Cyclic Redundancy Check (GPCRC) 3.8.2 Crypto Accelerator (CRYPTO) . . . . . . . . 3.8.3 True Random Number Generator (TRNG) . . . . 3.8.4 Security Management Unit (SMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 .12 .13 .13 .13 3.9 Analog. . . . . . . . . . . . . . 3.9.1 Analog Port (APORT) . . . . . . . 3.9.2 Analog Comparator (ACMP) . . . . . 3.9.3 Analog to Digital Converter (ADC) . . . 3.9.4 Capacitive Sense (CSEN) . . . . . . 3.9.5 Digital to Analog Current Converter (IDAC) 3.9.6 Digital to Analog Converter (VDAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 .13 .13 .13 .13 .14 .14 3.2 Radio . . . . . . . . . 3.2.1 Antenna Interface . . . 3.2.2 Packet and State Trace . 3.2.3 Random Number Generator . . . 3.6 Counters/Timers and PWM . . . . . . . . . 3.6.1 Timer/Counter (TIMER) . . . . . . . . 3.6.2 Wide Timer/Counter (WTIMER) . . . . . . 3.6.3 Real Time Counter and Calendar (RTCC) . . 3.6.4 Low Energy Timer (LETIMER) . . . . . . 3.6.5 Ultra Low Power Wake-up Timer (CRYOTIMER) 3.6.6 Pulse Counter (PCNT) . . . . . . . . . 3.6.7 Watchdog Timer (WDOG) . . . . . . . . silabs.com | Building a more connected world. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7 8 8 Rev. 1.4 | 4 3.9.7 Operational Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . .14 3.10 Reset Management Unit (RMU) . . . . . . . . . . . . . . . . . . . . . . . .14 3.11 Core and Memory . . . . . . . . . . . . 3.11.1 Processor Core . . . . . . . . . . . . 3.11.2 Memory System Controller (MSC) . . . . . 3.11.3 Linked Direct Memory Access Controller (LDMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 .14 .14 .14 3.12 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 3.13 Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . .16 4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1 Electrical Characteristics . . . . . . . . 4.1.1 Absolute Maximum Ratings . . . . . . 4.1.2 Operating Conditions . . . . . . . . 4.1.3 DC-DC Converter . . . . . . . . . 4.1.4 Current Consumption . . . . . . . . 4.1.5 Wake Up Times . . . . . . . . . . 4.1.6 Brown Out Detector (BOD) . . . . . . 4.1.7 Frequency Synthesizer . . . . . . . . 4.1.8 2.4 GHz RF Transceiver Characteristics . . 4.1.9 Oscillators . . . . . . . . . . . . 4.1.10 Flash Memory Characteristics . . . . . 4.1.11 General-Purpose I/O (GPIO) . . . . . 4.1.12 Voltage Monitor (VMON) . . . . . . . 4.1.13 Analog to Digital Converter (ADC) . . . 4.1.14 Analog Comparator (ACMP) . . . . . 4.1.15 Digital to Analog Converter (VDAC) . . . 4.1.16 Current Digital to Analog Converter (IDAC) 4.1.17 Capacitive Sense (CSEN) . . . . . . 4.1.18 Operational Amplifier (OPAMP) . . . . 4.1.19 Pulse Counter (PCNT) . . . . . . . 4.1.20 Analog Port (APORT) . . . . . . . . 4.1.21 I2C . . . . . . . . . . . . . . 4.1.22 USART SPI . . . . . . . . . . . 5. Typical Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 .18 .19 .20 .21 .24 .24 .25 .26 .29 .31 .32 .33 .34 .36 .38 .41 .43 .45 .48 .48 .49 .52 . . . . . . . . . . . . . . . . . . . . . . . . 54 5.1 Network Co-Processor (NCP) Application with UART Host . . . . . . . . . . . . . . .54 5.2 SoC Application . . . . . . . . . . . . . .54 6. Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.1 Module Placement and Application PCB Layout Guidelines . . . . . . . . . . . . . . .55 6.2 Effect of Plastic and Metal Materials . . . . . . . . . . . . . . . . . . . . .56 6.3 Locating the Module Close to Human Body . . . . . . . . . . . . . . . . . . . .56 6.4 2D Radiation Pattern Plots . . . . . . . . . . . . . . . . . . . .57 . 7. Hardware Design Guidelines 7.1 Power Supply Requirements . silabs.com | Building a more connected world. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 . . . . . . . . . . . . . . . . . . . . . . . .59 Rev. 1.4 | 5 7.2 Reset Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 7.3 Debug and Firmware Updates . . . . . 7.3.1 Programming and Debug Connections 7.3.2 Packet Trace Interface (PTI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 .59 .59 8. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 8.1 BGM13P Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . .60 8.2 GPIO Functionality Table . . . . . . . . . . . . . . . . . . . . . . . . . .62 8.3 Alternate Functionality Overview . . . . . . . . . . . . . . . . . . . . . . . .71 8.4 Analog Port (APORT) Client Maps . . . . . . . . . . . . . . . . . . . . . . .82 9. Package Specifications 9.1 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 . . . . . . . . . . . . . . . . . . . . . . . . .91 9.2 Recommended PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . .92 9.3 Package Marking . . . . . . . . . . . . . . . . . . . . . . .93 . . . . . . . . . 10. Soldering Recommendations . . . . . . . . . . . . . . . . . . . . . . . . 94 11. Certifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 11.1 Qualified Antenna Types . . . . . . . . . . . . . . . . . . . . . . . . . .95 11.2 Bluetooth . . . . . . . . . . . . . . . . . . . . . . . . . .95 11.3 CE and UKCA - EU and UK . . . . . . . . . . . . . . . . . . . . . . . . .95 11.4 FCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 11.5 ISED Canada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 11.6 Japan . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 11.7 KC South Korea . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 . . . . 11.8 NCC Taiwan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 12. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 silabs.com | Building a more connected world. Rev. 1.4 | 6 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet System Overview 3. System Overview 3.1 Introduction The BGM13P product family combines an energy-friendly MCU with a highly integrated radio transceiver and a high performance, ultra robust antenna. The devices are well suited for any battery operated application, as well as other system where ultra-small size, reliable high performance RF, low-power consumption and easy application development are key requirements. This section gives a short introduction to the full radio and MCU system. A detailed block diagram of the BGM13P module is shown in the figure below. Radio Transciever Port I/O Configuration IFADC PGA IOVDD Digital Peripherals LETIMER LNA TIMER Frequency Synthesizer Q Matching AGC MOD Port A Drivers PAn Port B Drivers PBn Port C Drivers PCn Port D Drivers PDn Port F Drivers PFn CRYOTIMER RAC PA CRC BALUN RF Frontend I FRC DEMOD Chip Antenna or U.FL Connector BUFC Antenna PCNT RTC / RTCC 512 KB ISP Flash Program Memory I2C 64 KB RAM CRYPTO Memory Protection Unit Energy Management A A H P B B CRC LESENSE DMA Controller IOVDD 1V8 Floating Point Unit PAVDD / RFVDD / DVDD bypass Watchdog Timer Analog Peripherals IDAC VDAC DC-DC Converter VBAT Voltage Monitor VREGVDD / AVDD Voltage Regulator Clock Management ULFRCO Internal Crystals 32.768 kHz Crystal 38.4 MHz Crystal AUXHFRCO Internal Reference 12-bit ADC LFRCO LFXO HFRCO Op-Amp VDD APORT Brown Out / Power-On Reset LEUART Mux & FB Debug Signals (shared w/GPIO) Port Mapper USART ARM Cortex-M4 Core Input Mux Serial Wire and ETM Debug / Programming Reset Management Unit + - RESETn Temp Sense Capacitive Touch HFXO + Analog Comparator Figure 3.1. BGM13P Block Diagram 3.2 Radio The BGM13P features a radio transceiver supporting Bluetooth® low energy protocol. It features a memory buffer and a low-voltage circuit that can withstand extremely high data rates. 3.2.1 Antenna Interface The BGM13P has two antenna solution variants. One of them is a high-performance integrated chip antenna (BGM13PxxFxxxxA) and the other is a U.FL connector to attach an external antenna to the module (BGM13PxxFxxxxE). silabs.com | Building a more connected world. Rev. 1.4 | 7 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet System Overview Table 3.1. Antenna Efficiency and Peak Gain Parameter With optimal layout Note Efficiency -2 to -4 dB Peak gain 1 dBi Antenna efficiency, gain and radiation pattern are highly dependent on the application PCB layout and mechanical design. Refer to 6. Layout Guidelines for PCB layout and antenna integration guidelines for optimal performance. 3.2.2 Packet and State Trace The BGM13P Frame Controller has a packet and state trace unit that provides valuable information during the development phase. It features: • Non-intrusive trace of transmit data, receive data and state information • Data observability on a single-pin UART data output, or on a two-pin SPI data output • Configurable data output bitrate / baudrate • Multiplexed transmitted data, received data and state / meta information in a single serial data stream 3.2.3 Random Number Generator The Frame Controller (FRC) implements a random number generator that uses entropy gathered from noise in the RF receive chain. The data is suitable for use in cryptographic applications. Output from the random number generator can be used either directly or as a seed or entropy source for software-based random number generator algorithms such as Fortuna. silabs.com | Building a more connected world. Rev. 1.4 | 8 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet System Overview 3.3 Power The BGM13P has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a single external supply voltage is required, from which all internal voltages are created. An integrated dc-dc buck regulator is utilized to further reduce the current consumption. Figure 3.2 Power Supply Configuration for +8 dBm Devices on page 9 and Figure 3.3 Power Supply Configuration for +19 dBm Devices on page 9 show how the external and internal supplies of the module are connected for different part numbers. DVDD PAVDD RFVDD VDD VREGVDD AVDD IOVDD Digital RF PA RF DC-DC Analog I/O Interfaces Figure 3.2. Power Supply Configuration for +8 dBm Devices DVDD RFVDD VDD VREGVDD AVDD PAVDD IOVDD Digital RF DC-DC Analog RF PA I/O Interfaces Figure 3.3. Power Supply Configuration for +19 dBm Devices 3.3.1 Energy Management Unit (EMU) The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM blocks, and it contains control registers for the dc-dc regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold. silabs.com | Building a more connected world. Rev. 1.4 | 9 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet System Overview 3.3.2 DC-DC Converter The dc-dc buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2 and EM3. Patented RF noise mitigation allows operation of the dc-dc converter without degrading sensitivity of radio components. Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The dc-dc converter may also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the dc-dc input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients. 3.3.3 Power Domains The BGM13P has two peripheral power domains for operation in EM2 and EM3. If all of the peripherals in a peripheral power domain are configured as unused, the power domain for that group will be powered off in the low-power mode, reducing the overall current consumption of the device. Table 3.2. Peripheral Power Subdomains Peripheral Power Domain 1 Peripheral Power Domain 2 ACMP0 ACMP1 PCNT0 CSEN ADC0 VDAC0 LETIMER0 LEUART0 LESENSE I2C0 APORT I2C1 - IDAC 3.4 General Purpose Input/Output (GPIO) BGM13P has up to 25 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals. The GPIO subsystem supports asynchronous external pin interrupts. 3.5 Clocking 3.5.1 Clock Management Unit (CMU) The Clock Management Unit controls oscillators and clocks in the BGM13P. Individual enabling and disabling of clocks to all peripherals is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators. silabs.com | Building a more connected world. Rev. 1.4 | 10 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet System Overview 3.5.2 Internal Oscillators and Crystals The BGM13P fully integrates several oscillator sources and two crystals. • The high-frequency crystal oscillator (HFXO) and integrated 38.4 MHz crystal provide a precise timing reference for the MCU and radio. • The low-frequency crystal oscillator (LFXO) and integrated 32.768 kHz crystal provide an accurate timing reference for low energy modes and the real-time-clock circuits. • An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range. • An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial Wire Viewer port with a wide frequency range. • An integrated low frequency 32.768 kHz RC oscillator (LFRCO) for low power operation where high accuracy is not required. • An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes. 3.6 Counters/Timers and PWM 3.6.1 Timer/Counter (TIMER) TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit TIMER_0 only. 3.6.2 Wide Timer/Counter (WTIMER) WTIMER peripherals function just as TIMER peripherals, but are 32 bits wide. They keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each WTIMER is a 32-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the WTIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit WTIMER_0 only. 3.6.3 Real Time Counter and Calendar (RTCC) The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. When receiving frames, the RTCC value can be used for timestamping. The RTCC includes 128 bytes of general purpose data retention, allowing easy and convenient data storage in all energy modes down to EM4H. A secondary RTC is used by the RF protocol stack for event scheduling, leaving the primary RTCC block available exclusively for application software. 3.6.4 Low Energy Timer (LETIMER) The unique LETIMER is a 16-bit timer that is available in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop. This allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC. 3.6.5 Ultra Low Power Wake-up Timer (CRYOTIMER) The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation. silabs.com | Building a more connected world. Rev. 1.4 | 11 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet System Overview 3.6.6 Pulse Counter (PCNT) The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from among any of the internal oscillators, except the AUXHFRCO. The peripheral may operate in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop. 3.6.7 Watchdog Timer (WDOG) The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can also monitor autonomous systems driven by PRS. 3.7 Communications and Other Digital Peripherals 3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O interface. It supports full duplex asynchronous UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting: • ISO7816 SmartCards • IrDA • I2S 3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication possible with a minimum of software intervention and energy consumption. 3.7.3 Inter-Integrated Circuit Interface (I2C) The I2C interface enables communication between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The interface provided to software by the I2C peripheral allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes. 3.7.4 Peripheral Reflex System (PRS) The Peripheral Reflex System provides a communication network between different peripherals without software involvement. Peripherals producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals, which in turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT) can be applied by the PRS to the signals. The PRS allows peripheral to act autonomously without waking the MCU core, saving power. 3.7.5 Low Energy Sensor Interface (LESENSE) The Low Energy Sensor Interface LESENSETM is a highly configurable sensor interface with support for up to 16 individually configurable sensors. By controlling the analog comparators, ADC, and DAC, LESENSE is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable finite state machine which enables simple processing of measurement results without CPU intervention. LESENSE is available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget. 3.8 Security Features 3.8.1 General Purpose Cyclic Redundancy Check (GPCRC) The GPCRC block implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the needs of the application. silabs.com | Building a more connected world. Rev. 1.4 | 12 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet System Overview 3.8.2 Crypto Accelerator (CRYPTO) The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFR32 devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2m), SHA-1 and SHA-2 (SHA-224 and SHA-256). Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM. Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233. The CRYPTO1 block is tightly linked to the Radio Buffer Controller (BUFC) enabling fast and efficient autonomous cipher operations on data buffer content. It allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations. 3.8.3 True Random Number Generator (TRNG) The TRNG is a non-deterministic random number generator based on a full hardware solution. The TRNG is validated with NIST800-22 and AIS-31 test suites as well as being suitable for FIPS 140-2 certification (for the purposes of cryptographic key generation). 3.8.4 Security Management Unit (SMU) The Security Management Unit (SMU) allows software to set up fine-grained security for peripheral access, which is not possible in the Memory Protection Unit (MPU). Peripherals may be secured by hardware on an individual basis, such that only priveleged accesses to the peripheral's register interface will be allowed. When an access fault occurs, the SMU reports the specific peripheral involved and can optionally generate an interrupt. 3.9 Analog 3.9.1 Analog Port (APORT) The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog peripherals on a flexible selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X/Y pairs. 3.9.2 Analog Comparator (ACMP) The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the programmable threshold. 3.9.3 Analog to Digital Converter (ADC) The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples. The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of sources, including pins configurable as either single-ended or differential. 3.9.4 Capacitive Sense (CSEN) The CSEN peripheral is a dedicated Capacitive Sensing block for implementing touch-sensitive user interface elements such a switches and sliders. The CSEN peripheral uses a charge ramping measurement technique, which provides robust sensing even in adverse conditions including radiated noise and moisture. The peripheral can be configured to take measurements on a single port pin or scan through multiple pins and store results to memory through DMA. Several channels can also be shorted together to measure the combined capacitance or implement wake-on-touch from very low energy modes. Hardware includes a digital accumulator and an averaging filter, as well as digital threshold comparators to reduce software overhead. silabs.com | Building a more connected world. Rev. 1.4 | 13 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet System Overview 3.9.5 Digital to Analog Current Converter (IDAC) The IDAC can source or sink a configurable constant current. This current can be driven on an output pin or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between 0.05 µA and 64 µA with several ranges consisting of various step sizes. 3.9.6 Digital to Analog Converter (VDAC) The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500 ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per singleended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any CPU intervention. The VDAC is available in all energy modes down to and including EM3. 3.9.7 Operational Amplifiers The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas, and are available down to EM3. With flexible built-in programming for gain and interconnection they can be configured to support multiple common opamp functions. All pins are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to rail output. They can be used in conjunction with the VDAC peripheral or in stand-alone configurations. The opamps save energy, PCB space, and cost as compared with standalone opamps because they are integrated on-chip. 3.10 Reset Management Unit (RMU) The RMU is responsible for handling reset of the BGM13P. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset. 3.11 Core and Memory 3.11.1 Processor Core The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system: • ARM Cortex-M4 RISC processor achieving 1.25 Dhrystone MIPS/MHz • Memory Protection Unit (MPU) supporting up to 8 memory segments • Up to 512 kB flash program memory • Up to 64 kB RAM data memory • Configuration and event handling of all peripherals • 2-pin Serial-Wire debug interface 3.11.2 Memory System Controller (MSC) The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep. 3.11.3 Linked Direct Memory Access Controller (LDMA) The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling sophisticated operations to be implemented. silabs.com | Building a more connected world. Rev. 1.4 | 14 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet System Overview 3.12 Memory Map The BGM13P memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration. Figure 3.4. BGM13P Memory Map — Core Peripherals and Code Space silabs.com | Building a more connected world. Rev. 1.4 | 15 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet System Overview Figure 3.5. BGM13P Memory Map — Peripherals 3.13 Configuration Summary Many peripherals on the BGM13P are available in multiple instances. However, certain USART, TIMER and WTIMER instances implement only a subset of the full features for that peripheral type. The table below describes the specific features available on these peripheral instances. All remaining peripherals support full configuration. Table 3.3. Configuration Summary Peripheral Configuration Pin Connections USART0 IrDA SmartCard US0_TX, US0_RX, US0_CLK, US0_CS USART1 IrDA I2S SmartCard US1_TX, US1_RX, US1_CLK, US1_CS USART2 IrDA SmartCard US2_TX, US2_RX, US2_CLK, US2_CS TIMER0 with DTI TIM0_CC[2:0], TIM0_CDTI[2:0] TIMER1 - TIM1_CC[3:0] WTIMER0 with DTI WTIM0_CC[2:0], WTIM0_CDTI[2:0] silabs.com | Building a more connected world. Rev. 1.4 | 16 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4. Electrical Specifications 4.1 Electrical Characteristics All electrical parameters in all tables are specified under the following conditions, unless stated otherwise: • Typical values are based on TAMB=25 °C and VDD= 3.3 V, by production test and/or technology characterization. • Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output power-specific external RF impedance-matching networks for interfacing to a 50 Ω antenna. • Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature, unless stated otherwise. The BGM13P module has only one external supply pin (VDD). There are several internal supply rails mentioned in the electrical specifications, whose connections vary based on transmit power configuration. Refer to 3.3 Power for the relationship between the module's external VDD pin and internal voltage supply rails. Refer to Table 4.2 General Operating Conditions on page 19 for more details about operational supply and temperature limits. silabs.com | Building a more connected world. Rev. 1.4 | 17 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.1 Absolute Maximum Ratings Stress levels beyond those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions beyond those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx. Table 4.1. Absolute Maximum Ratings Parameter Symbol Storage temperature range Min Typ Max Unit TSTG -40 — 85 °C Voltage on any supply pin VDDMAX -0.3 — 3.8 V Voltage ramp rate on any supply pin VDDRAMPMAX — — 1 V / µs DC voltage on any GPIO pin VDIGPIN 5V tolerant GPIO pins1 2 3 -0.3 — Min of 5.25 and IOVDD +2 V Standard GPIO pins -0.3 — IOVDD+0.3 V — — 10 dBm Maximum RF level at input Test Condition PRFMAX2G4 Total current into supply pins IVDDMAX Source — — 200 mA Total current into VSS ground lines IVSSMAX Sink — — 200 mA Current per I/O pin IIOMAX Sink — — 50 mA Source — — 50 mA Sink — — 200 mA Source — — 200 mA -40 — 105 °C Current for all I/O pins Junction temperature IIOALLMAX TJ Note: 1. When a GPIO pin is routed to the analog block through the APORT, the maximum voltage = IOVDD. 2. Valid for IOVDD in valid operating range or when IOVDD is undriven (high-Z). If IOVDD is connected to a low-impedance source below the valid operating range (e.g. IOVDD shorted to VSS), the pin voltage maximum is IOVDD + 0.3 V, to avoid exceeding the maximum IO current specifications. 3. To operate above the IOVDD supply rail, over-voltage tolerance must be enabled according to the GPIO_Px_OVTDIS register. Pins with over-voltage tolerance disabled have the same limits as Standard GPIO. silabs.com | Building a more connected world. Rev. 1.4 | 18 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.2 Operating Conditions The following subsections define the recommended operating conditions for the module. 4.1.2.1 General Operating Conditions Table 4.2. General Operating Conditions Parameter Symbol Test Condition Min Typ Max Unit Operating ambient temperature range TA -G temperature grade -40 25 85 °C VDD operating supply voltage VVDD DCDC in regulation 2.4 3.3 3.8 V DCDC in bypass, 50mA load 1.8 3.3 3.8 V HFCORECLK frequency fCORE VSCALE2, MODE = WS1 — — 40 MHz VSCALE0, MODE = WS0 — — 20 MHz VSCALE2 — — 40 MHz VSCALE0 — — 20 MHz HFCLK frequency fHFCLK silabs.com | Building a more connected world. Rev. 1.4 | 19 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.3 DC-DC Converter Test conditions: V_DCDC_I=3.3 V, V_DCDC_O=1.8 V, I_DCDC_LOAD=50 mA, Heavy Drive configuration, F_DCDC_LN=7 MHz, unless otherwise indicated. Table 4.3. DC-DC Converter Parameter Symbol Test Condition Min Typ Max Unit Input voltage range VDCDC_I Bypass mode, IDCDC_LOAD = 50 mA 1.8 — VVREGVDD_ V Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 100 mA, or Low power (LP) mode, 1.8 V output, IDCDC_LOAD = 10 mA 2.4 Output voltage programmable range1 VDCDC_O Max load current ILOAD_MAX MAX — VVREGVDD_ V MAX 1.8 — VVREGVDD V Low noise (LN) mode, Medium or Heavy Drive2 — — 70 mA Low noise (LN) mode, Light Drive2 — — 50 mA Low power (LP) mode, LPCMPBIASEMxx3 = 0 — — 75 µA Low power (LP) mode, LPCMPBIASEMxx3 = 3 — — 10 mA Note: 1. Due to internal dropout, the dc-dc output will never be able to reach its input voltage, VVREGVDD. 2. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15. 3. LPCMPBIASEMxx refers to either LPCMPBIASEM234H in the EMU_DCDCMISCCTRL register or LPCMPBIASEM01 in the EMU_DCDCLOEM01CFG register, depending on the energy mode. silabs.com | Building a more connected world. Rev. 1.4 | 20 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.4 Current Consumption 4.1.4.1 Current Consumption 3.3 V using DC-DC Converter Unless otherwise indicated, typical conditions are: VDD = 3.3 V. T = 25 °C. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C. Table 4.4. Current Consumption 3.3 V using DC-DC Converter Parameter Symbol Min Typ Max Unit 38.4 MHz crystal, CPU running while loop from flash2 — 87 — µA/MHz 38 MHz HFRCO, CPU running Prime from flash — 69 — µA/MHz 38 MHz HFRCO, CPU running while loop from flash — 70 — µA/MHz 38 MHz HFRCO, CPU running CoreMark from flash — 82 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 76 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 615 — µA/MHz 38.4 MHz crystal, CPU running while loop from flash2 — 97 — µA/MHz 38 MHz HFRCO, CPU running Prime from flash — 80 — µA/MHz 38 MHz HFRCO, CPU running while loop from flash — 81 — µA/MHz 38 MHz HFRCO, CPU running CoreMark from flash — 92 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 94 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 1145 — µA/MHz Current consumption in EM0 IACTIVE_CCM_VS mode with all peripherals disabled and voltage scaling enabled, DCDC in Low Noise CCM mode3 19 MHz HFRCO, CPU running while loop from flash — 101 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 1124 — µA/MHz Current consumption in EM1 IEM1_DCM mode with all peripherals disabled, dc-dc in Low Noise DCM mode1 38.4 MHz crystal2 — 56 — µA/MHz 38 MHz HFRCO — 39 — µA/MHz 26 MHz HFRCO — 46 — µA/MHz 1 MHz HFRCO — 588 — µA/MHz 19 MHz HFRCO — 50 — µA/MHz 1 MHz HFRCO — 572 — µA/MHz Current consumption in EM0 IACTIVE_DCM mode with all peripherals disabled, dc-dc in Low Noise DCM mode1 Current consumption in EM0 IACTIVE_CCM mode with all peripherals disabled, dc-dc in Low Noise CCM mode3 Current consumption in EM1 IEM1_DCM_VS mode with all peripherals disabled and voltage scaling enabled, dc-dc in Low Noise DCM mode1 silabs.com | Building a more connected world. Test Condition Rev. 1.4 | 21 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications Parameter Symbol Min Typ Max Unit Full 64 kB RAM retention and RTCC running from LFXO — 1.4 — µA Full 64 kB RAM retention and RTCC running from LFRCO — 1.5 — µA 1 bank RAM retention and RTCC running from LFRCO5 — 1.3 — µA Current consumption in EM3 IEM3_VS mode, with voltage scaling enabled Full 64 kB RAM retention and CRYOTIMER running from ULFRCO — 1.14 — µA Current consumption in EM4H mode, with voltage scaling enabled 128 byte RAM retention, RTCC running from LFXO — 0.75 — µA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.44 — µA 128 byte RAM retention, no RTCC — 0.42 — µA No RAM retention, no RTCC — 0.07 — µA Current consumption in EM2 IEM2_VS mode, with voltage scaling enabled, dc-dc in LP mode4 Current consumption in EM4S mode IEM4H_VS IEM4S Test Condition Note: 1. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD. 2. CMU_HFXOCTRL_LOWPOWER=0. 3. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD. 4. DCDC Low Power Mode = Medium Drive, LPOSCDIV=1, LPCMPBIASEM234H=0, LPCLIMILIMSEL=1, ANASW=DVDD. 5. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1 silabs.com | Building a more connected world. Rev. 1.4 | 22 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.4.2 Current Consumption Using Radio Unless otherwise indicated, typical conditions are: VDD = 3.3 V. T = 25 °C. DC-DC on. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C. Table 4.5. Current Consumption Using Radio Parameter Symbol Test Condition Current consumption in receive mode, active packet reception (MCU in EM1 @ 38.4 MHz, peripheral clocks disabled), T ≤ 85 °C IRX_ACTIVE Current consumption in reIRX_LISTEN ceive mode, listening for packet (MCU in EM1 @ 38.4 MHz, peripheral clocks disabled), T ≤ 85 °C Current consumption in transmit mode (MCU in EM1 @ 38.4 MHz, peripheral clocks disabled), T ≤ 85 °C ITX silabs.com | Building a more connected world. Min Typ Max Unit 125 kbit/s, 2GFSK, F = 2.4 GHz, Radio clock prescaled by 4 — 10.5 — mA 500 kbit/s, 2GFSK, F = 2.4 GHz, Radio clock prescaled by 4 — 10.4 — mA 1 Mbit/s, 2GFSK, F = 2.4 GHz, Radio clock prescaled by 4 — 9.9 — mA 2 Mbit/s, 2GFSK, F = 2.4 GHz, Radio clock prescaled by 4 — 10.6 — mA 125 kbit/s, 2GFSK, F = 2.4 GHz, No radio clock prescaling — 10.5 — mA 500 kbit/s, 2GFSK, F = 2.4 GHz, No radio clock prescaling — 10.5 — mA 1 Mbit/s, 2GFSK, F = 2.4 GHz, No radio clock prescaling — 10.9 — mA 2 Mbit/s, 2GFSK, F = 2.4 GHz, No radio clock prescaling — 11.6 — mA F = 2.4 GHz, CW, 0 dBm output power, Radio clock prescaled by 3 — 8.5 — mA F = 2.4 GHz, CW, 0 dBm output power, Radio clock prescaled by 1 — 9.6 — mA F = 2.4 GHz, CW, 8 dBm output power — 27.1 — mA F = 2.4 GHz, CW, 19 dBm output power — 131 — mA Rev. 1.4 | 23 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.5 Wake Up Times Table 4.6. Wake Up Times Parameter Symbol Wake up time from EM1 tEM1_WU Wake up from EM2 tEM2_WU Wake up from EM3 Test Condition tEM3_WU Min Typ Max Unit — 3 — AHB Clocks Code execution from flash — 10.9 — µs Code execution from RAM — 3.8 — µs Code execution from flash — 10.9 — µs Code execution from RAM — 3.8 — µs Wake up from EM4H1 tEM4H_WU Executing from flash — 90 — µs Wake up from EM4S1 tEM4S_WU Executing from flash — 300 — µs Time from release of reset source to first instruction execution tRESET Soft Pin Reset released — 51 — µs Any other reset released — 358 — µs Power mode scaling time tSCALE VSCALE0 to VSCALE2, HFCLK = 19 MHz2 3 — 31.8 — µs VSCALE2 to VSCALE0, HFCLK = 19 MHz4 — 4.3 — µs Note: 1. Time from wake up request until first instruction is executed. Wakeup results in device reset. 2. Scaling up from VSCALE0 to VSCALE2 requires approximately 30.3 µs + 28 HFCLKs. 3. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV/µs for approximately 20 µs. During this transition, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 µF capacitor) to 70 mA (with a 2.7 µF capacitor). 4. Scaling down from VSCALE2 to VSCALE0 requires approximately 2.8 µs + 29 HFCLKs. 4.1.6 Brown Out Detector (BOD) Table 4.7. Brown Out Detector (BOD) Parameter Symbol Test Condition Min Typ Max Unit AVDD BOD threshold VAVDDBOD AVDD rising — — 1.8 V AVDD falling (EM0/EM1) 1.62 — — V AVDD falling (EM2/EM3) 1.53 — — V AVDD BOD hysteresis VAVDDBOD_HYST — 20 — mV AVDD BOD response time tAVDDBOD_DELAY Supply drops at 0.1V/µs rate — 2.4 — µs EM4 BOD threshold VEM4DBOD AVDD rising — — 1.7 V AVDD falling 1.45 — — V — 25 — mV — 300 — µs EM4 BOD hysteresis VEM4BOD_HYST EM4 BOD response time tEM4BOD_DELAY silabs.com | Building a more connected world. Supply drops at 0.1V/µs rate Rev. 1.4 | 24 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.7 Frequency Synthesizer Table 4.8. Frequency Synthesizer Parameter Symbol Test Condition Min Typ Max Unit RF synthesizer frequency range fRANGE 2400 - 2483.5 MHz 2400 — 2483.5 MHz LO tuning frequency resolution with 38.4 MHz crystal fRES 2400 - 2483.5 MHz — — 73 Hz Frequency deviation resolution with 38.4 MHz crystal dfRES 2400 - 2483.5 MHz — — 73 Hz Maximum frequency deviation with 38.4 MHz crystal dfMAX 2400 - 2483.5 MHz — — 1677 kHz silabs.com | Building a more connected world. Rev. 1.4 | 25 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.8 2.4 GHz RF Transceiver Characteristics 4.1.8.1 RF Transmitter General Characteristics for 2.4 GHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VDD = 3.3 V. DC-DC on. Crystal frequency = 38.4 MHz. RF center frequency 2.45 GHz. Conducted measurement from the antenna feedpoint. Table 4.9. RF Transmitter General Characteristics for 2.4 GHz Band Parameter Symbol Test Condition Min Typ Max Unit Maximum TX power1 POUTMAX 19 dBm-rated part numbers. — 19 — dBm 8 dBm-rated part numbers — 8 — dBm -27 — dBm Minimum active TX Power POUTMIN CW Output power step size POUTSTEP -5 dBm< Output power < 0 dBm — 0.5 — dB 0 dBm < output power < POUTMAX — 0.5 — dB 1.8 V < VVDD < 3.3 V, dc-dc in bypass, BGM13P32 — 4.8 — dB 2.4 V < VVDD < 3.3 V, BGM13P22 — 0.05 — dB 2.4 V < VVDD < 3.3 V using dc-dc converter, BGM13P32 — 1.9 — dB From -40 to +85 °C, BGM13P22 — 1.7 — dB From -40 to +85 °C, BGM13P32 — 1.6 — dB Over RF tuning frequency range — 0.3 — dB 2400 — 2483.5 MHz Output power variation vs supply at POUTMAX Output power variation vs temperature at POUTMAX POUTVAR_V POUTVAR_T Output power variation vs RF POUTVAR_F frequency at POUTMAX RF tuning frequency range FRANGE Note: 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table. 4.1.8.2 RF Receiver General Characteristics for 2.4 GHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VDD = 3.3 V. DC-DC on. Crystal frequency = 38.4 MHz. RF center frequency 2.45 GHz. Conducted measurement from the antenna feedpoint. Table 4.10. RF Receiver General Characteristics for 2.4 GHz Band Parameter Symbol RF tuning frequency range FRANGE Receive mode maximum spurious emission SPURRX Max spurious emissions dur- SPURRX_FCC ing active receive mode, per FCC Part 15.109(a) silabs.com | Building a more connected world. Test Condition Min Typ Max Unit 2400 — 2483.5 MHz 30 MHz to 1 GHz — -57 — dBm 1 GHz to 12 GHz — -47 — dBm 216 MHz to 960 MHz, Conducted Measurement — -55.2 — dBm Above 960 MHz, Conducted Measurement — -47.2 — dBm Rev. 1.4 | 26 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.8.3 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 125 kbps Data Rate Unless otherwise indicated, typical conditions are: T = 25 °C, VDD = 3.3 V. DC-DC on. Crystal frequency = 38.4 MHz. RF center frequency 2.45 GHz. Conducted measurement from the antenna feedpoint. Table 4.11. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 125 kbps Data Rate Parameter Symbol Test Condition Min Typ Max Unit Sensitivity, 0.1% BER SENS Signal is reference signal1. Using dc-dc converter. — -103.2 — dBm With non-ideal signals as specified in RF-PHY.TS.4.2.2, section 4.6.1. — -102.8 — dBm Note: 1. Reference signal is defined 2GFSK at -79 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 125 kbps, desired data = PRBS9; interferer data = PRBS15; frequency accuracy better than 1 ppm. 4.1.8.4 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 500 kbps Data Rate Unless otherwise indicated, typical conditions are: T = 25 °C, VDD = 3.3 V. DC-DC on. Crystal frequency = 38.4 MHz. RF center frequency 2.45 GHz. Conducted measurement from the antenna feedpoint. Table 4.12. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 500 kbps Data Rate Parameter Symbol Test Condition Min Typ Max Unit Sensitivity, 0.1% BER SENS Signal is reference signal1. Using dc-dc converter. — -98.8 — dBm With non-ideal signals as specified in RF-PHY.TS.4.2.2, section 4.6.1. — -97.6 — dBm Note: 1. Reference signal is defined 2GFSK at -72 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 500 kbps, desired data = PRBS9; interferer data = PRBS15; frequency accuracy better than 1 ppm. 4.1.8.5 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate Unless otherwise indicated, typical conditions are: T = 25 °C, VDD = 3.3 V. DC-DC on. Crystal frequency = 38.4 MHz. RF center frequency 2.45 GHz. Conducted measurement from the antenna feedpoint. Table 4.13. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate Parameter Symbol Test Condition Min Typ Max Unit Sensitivity, 0.1% BER SENS Signal is reference signal1. Using dc-dc converter. — -94.8 — dBm With non-ideal signals as specified in RF-PHY.TS.4.2.2, section 4.6.1. — -94.4 — dBm Note: 1. Reference signal is defined 2GFSK at -67 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 1 Mbps, desired data = PRBS9; interferer data = PRBS15; frequency accuracy better than 1 ppm. silabs.com | Building a more connected world. Rev. 1.4 | 27 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.8.6 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 2 Mbps Data Rate Unless otherwise indicated, typical conditions are: T = 25 °C, VDD = 3.3 V. DC-DC on. Crystal frequency = 38.4 MHz. RF center frequency 2.45 GHz. Conducted measurement from the antenna feedpoint. Table 4.14. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 2 Mbps Data Rate Parameter Symbol Test Condition Min Typ Max Unit Sensitivity, 0.1% BER SENS Signal is reference signal1. Using dc-dc converter. — -91.2 — dBm With non-ideal signals as specified in RF-PHY.TS.4.2.2, section 4.6.1. — -91.1 — dBm Note: 1. Reference signal is defined 2GFSK at -67 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 2 Mbps, desired data = PRBS9; interferer data = PRBS15; frequency accuracy better than 1 ppm. silabs.com | Building a more connected world. Rev. 1.4 | 28 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.9 Oscillators 4.1.9.1 Low-Frequency Crystal Oscillator (LFXO) Table 4.15. Low-Frequency Crystal Oscillator (LFXO) Parameter Symbol Crystal frequency fLFXO Overall frequency tolerance in all conditions1 FTLFXO Test Condition Min Typ Max Unit — 32.768 — kHz -100 — 100 ppm Min Typ Max Unit — 38.4 — MHz -40 — 40 ppm Note: 1. Nominal crystal frequency tolerance of ± 20 ppm. 4.1.9.2 High-Frequency Crystal Oscillator (HFXO) Table 4.16. High-Frequency Crystal Oscillator (HFXO) Parameter Symbol Test Condition Crystal frequency fHFXO 38.4 MHz required for radio transciever operation Frequency tolerance for the crystal FTHFXO 4.1.9.3 Low-Frequency RC Oscillator (LFRCO) Table 4.17. Low-Frequency RC Oscillator (LFRCO) Parameter Symbol Test Condition Min Typ Max Unit Oscillation frequency fLFRCO ENVREF1 = 1 31.3 32.768 33.6 kHz ENVREF1 = 0 31.3 32.768 33.4 kHz — 500 — µs ENVREF = 1 in CMU_LFRCOCTRL — 342 — nA ENVREF = 0 in CMU_LFRCOCTRL — 494 — nA Startup time tLFRCO Current consumption 2 ILFRCO Note: 1. In CMU_LFRCOCTRL register. 2. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register. silabs.com | Building a more connected world. Rev. 1.4 | 29 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.9.4 High-Frequency RC Oscillator (HFRCO) Table 4.18. High-Frequency RC Oscillator (HFRCO) Parameter Symbol Test Condition Min Typ Max Unit Frequency accuracy fHFRCO_ACC At production calibrated frequencies, across supply voltage and temperature -2.5 — 2.5 % Start-up time tHFRCO fHFRCO ≥ 19 MHz — 300 — ns 4 < fHFRCO < 19 MHz — 1 — µs fHFRCO ≤ 4 MHz — 2.5 — µs fHFRCO = 38 MHz — 267 299 µA fHFRCO = 32 MHz — 224 248 µA fHFRCO = 26 MHz — 189 211 µA fHFRCO = 19 MHz — 154 172 µA fHFRCO = 16 MHz — 133 148 µA fHFRCO = 13 MHz — 118 135 µA fHFRCO = 7 MHz — 89 100 µA fHFRCO = 4 MHz — 34 44 µA fHFRCO = 2 MHz — 29 40 µA fHFRCO = 1 MHz — 26 36 µA — 0.8 — % Current consumption on all supplies IHFRCO Coarse trim step size (% of period) SSHFRCO_COARS Fine trim step size (% of period) SSHFRCO_FINE — 0.1 — % Period jitter PJHFRCO — 0.2 — % RMS Frequency limits fHFRCO_BAND FREQRANGE = 0, FINETUNINGEN = 0 3.47 — 6.15 MHz FREQRANGE = 3, FINETUNINGEN = 0 6.24 — 11.45 MHz FREQRANGE = 6, FINETUNINGEN = 0 11.3 — 19.8 MHz FREQRANGE = 7, FINETUNINGEN = 0 13.45 — 22.8 MHz FREQRANGE = 8, FINETUNINGEN = 0 16.5 — 29.0 MHz FREQRANGE = 10, FINETUNINGEN = 0 23.11 — 40.63 MHz FREQRANGE = 11, FINETUNINGEN = 0 27.27 — 48 MHz FREQRANGE = 12, FINETUNINGEN = 0 33.33 — 54 MHz E silabs.com | Building a more connected world. Rev. 1.4 | 30 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.9.5 Ultra-low Frequency RC Oscillator (ULFRCO) Table 4.19. Ultra-low Frequency RC Oscillator (ULFRCO) Parameter Symbol Oscillation frequency fULFRCO Test Condition Min Typ Max Unit 0.95 1 1.07 kHz Min Typ Max Unit 10000 — — cycles 10 — — years Burst write, 128 words, average time per word 20 26.3 30 µs Single word 62 68.9 80 µs 4.1.10 Flash Memory Characteristics1 Table 4.20. Flash Memory Characteristics1 Parameter Symbol Flash erase cycles before failure ECFLASH Flash data retention RETFLASH Word (32-bit) programming time tW_PROG Test Condition Page erase time2 tPERASE 20 29.5 40 ms Mass erase time3 tMERASE 20 30 40 ms Device erase time4 5 tDERASE — 56.2 70 ms Erase current6 IERASE — — 2.0 mA Write current6 IWRITE — — 3.5 mA Supply voltage during flash erase and write VFLASH 1.62 — 3.6 V Page Erase Note: 1. Flash data retention information is published in the Quarterly Quality and Reliability Report. 2. From setting the ERASEPAGE bit in MSC_WRITECMD to 1 until the BUSY bit in MSC_STATUS is cleared to 0. Internal setup and hold times for flash control signals are included. 3. Mass erase is issued by the CPU and erases all flash. 4. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock Word (ULW). 5. From setting the DEVICEERASE bit in AAP_CMD to 1 until the ERASEBUSY bit in AAP_STATUS is cleared to 0. Internal setup and hold times for flash control signals are included. 6. Measured at 25 °C. silabs.com | Building a more connected world. Rev. 1.4 | 31 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.11 General-Purpose I/O (GPIO) Table 4.21. General-Purpose I/O (GPIO) Parameter Symbol Test Condition Min Typ Max Unit Input low voltage VIL GPIO pins — — VDD*0.3 V Input high voltage VIH GPIO pins VDD*0.7 — — V Output high voltage relative to IOVDD VOH Sourcing 3 mA, VDD ≥ 3 V, VDD*0.8 — — V VDD*0.6 — — V VDD*0.8 — — V VDD*0.6 — — V — — VDD*0.2 V — — VDD*0.4 V — — VDD*0.2 V — — VDD*0.4 V DRIVESTRENGTH1 = WEAK Sourcing 1.2 mA, VDD ≥ 1.62 V, DRIVESTRENGTH1 = WEAK Sourcing 20 mA, VDD ≥ 3 V, DRIVESTRENGTH1 = STRONG Sourcing 8 mA, VDD ≥ 1.62 V, DRIVESTRENGTH1 = STRONG Output low voltage relative to VOL IOVDD Sinking 3 mA, IOVDD ≥ 3 V, DRIVESTRENGTH1 = WEAK Sinking 1.2 mA, VDD ≥ 1.62 V, DRIVESTRENGTH1 = WEAK Sinking 20 mA, VDD ≥ 3 V, DRIVESTRENGTH1 = STRONG Sinking 8 mA, VDD ≥ 1.62 V, DRIVESTRENGTH1 = STRONG Input leakage current IIOLEAK GPIO ≤ VDD — 0.1 30 nA Input leakage current on 5VTOL pads above VDD I5VTOLLEAK VDD < GPIO ≤ VDD + 2 V — 3.3 15 µA I/O pin pull-up/pull-down resistor RPUD 30 40 65 kΩ 15 25 45 ns — 1.8 — ns — 4.5 — ns Pulse width of pulses retIOGLITCH moved by the glitch suppression filter Output fall time, From 70% to 30% of VDD tIOOF CL = 50 pF, DRIVESTRENGTH1 = STRONG, SLEWRATE1 = 0x6 CL = 50 pF, DRIVESTRENGTH1 = WEAK, SLEWRATE1 = 0x6 silabs.com | Building a more connected world. Rev. 1.4 | 32 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications Parameter Symbol Test Condition Output rise time, From 30% to 70% of VDD tIOOR CL = 50 pF, Min Typ Max Unit — 2.2 — ns — 7.4 — ns 100 — — ns Min Typ Max Unit DRIVESTRENGTH1 = STRONG, SLEWRATE = 0x61 CL = 50 pF, DRIVESTRENGTH1 = WEAK, SLEWRATE1 = 0x6 RESETn low time to ensure pin reset TRESET Note: 1. In GPIO_Pn_CTRL register. 4.1.12 Voltage Monitor (VMON) Table 4.22. Voltage Monitor (VMON) Parameter Symbol Test Condition Supply current (including I_SENSE) IVMON In EM0 or EM1, 1 active channel — 6.3 8 µA In EM0 or EM1, All channels active — 12.5 15 µA In EM2, EM3 or EM4, 1 channel active and above threshold — 62 — nA In EM2, EM3 or EM4, 1 channel active and below threshold — 62 — nA In EM2, EM3 or EM4, All channels active and above threshold — 99 — nA In EM2, EM3 or EM4, All channels active and below threshold — 99 — nA In EM0 or EM1 — 2 — µA In EM2, EM3 or EM4 — 2 — nA 1.62 — 3.4 V Coarse — 200 — mV Fine — 20 — mV Supply drops at 1V/µs rate — 460 — ns — 26 — mV Loading of monitored supply ISENSE Threshold range VVMON_RANGE Threshold step size NVMON_STESP Response time tVMON_RES Hysteresis VVMON_HYST silabs.com | Building a more connected world. Rev. 1.4 | 33 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.13 Analog to Digital Converter (ADC) Specified at 1 Msps, ADCCLK = 16 MHz, BIASPROG = 0, GPBIASACC = 0, unless otherwise indicated. Table 4.23. Analog to Digital Converter (ADC) Parameter Symbol Resolution VRESOLUTION Input voltage range1 VADCIN Test Condition Single ended Differential Input range of external refer- VADCREFIN_P ence voltage, single ended and differential Min Typ Max Unit 6 — 12 Bits — — VFS V -VFS/2 — VFS/2 V 1 — VAVDD V Power supply rejection2 PSRRADC At DC — 80 — dB Analog input common mode rejection ratio CMRRADC At DC — 80 — dB 1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 4 — 270 290 µA 250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 1 4 — 125 — µA 62.5 ksps / 1 MHz ADCCLK, BIASPROG = 15, GPBIASACC = 1 4 — 80 — µA Current from all supplies, us- IADC_NORMAL_LP 35 ksps / 16 MHz ADCCLK, BIAing internal reference buffer. SPROG = 0, GPBIASACC = 1 4 Duty-cycled operation. WAR5 ksps / 16 MHz ADCCLK BIAMUPMODE3 = NORMAL SPROG = 0, GPBIASACC = 1 4 — 45 — µA — 8 — µA Current from all supplies, us- IADC_STANDing internal reference buffer. BY_LP Duty-cycled operation. AWARMUPMODE3 = KEEPINSTANDBY or KEEPINSLOWACC 125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 4 — 105 — µA 35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 4 — 70 — µA Current from all supplies, us- IADC_CONTINUing internal reference buffer. OUS_HP Continuous operation. WARMUPMODE3 = KEEPADCWARM 1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 4 — 325 — µA 250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 0 4 — 175 — µA 62.5 ksps / 1 MHz ADCCLK, BIASPROG = 15, GPBIASACC = 0 4 — 125 — µA Current from all supplies, us- IADC_NORMAL_HP 35 ksps / 16 MHz ADCCLK, BIAing internal reference buffer. SPROG = 0, GPBIASACC = 0 4 Duty-cycled operation. WAR5 ksps / 16 MHz ADCCLK BIAMUPMODE3 = NORMAL SPROG = 0, GPBIASACC = 0 4 — 85 — µA — 16 — µA Current from all supplies, us- IADC_CONTINUing internal reference buffer. OUS_LP Continuous operation. WARMUPMODE3 = KEEPADCWARM Current from all supplies, us- IADC_STANDing internal reference buffer. BY_HP Duty-cycled operation. AWARMUPMODE3 = KEEPINSTANDBY or KEEPINSLOWACC 125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 4 — 160 — µA 35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 4 — 125 — µA Current from HFPERCLK HFPERCLK = 16 MHz — 140 — µA IADC_CLK silabs.com | Building a more connected world. Rev. 1.4 | 34 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications Parameter Symbol ADC clock frequency Min Typ Max Unit fADCCLK — — 16 MHz Throughput rate fADCRATE — — 1 Msps Conversion time5 tADCCONV 6 bit — 7 — cycles 8 bit — 9 — cycles 12 bit — 13 — cycles WARMUPMODE3 = NORMAL — — 5 µs WARMUPMODE3 = KEEPINSTANDBY — — 2 µs WARMUPMODE3 = KEEPINSLOWACC — — 1 µs Internal reference6, differential measurement 58 67 — dB External reference7, differential measurement — 68 — dB Spurious-free dynamic range SFDRADC (SFDR) 1 MSamples/s, 10 kHz full-scale sine wave — 75 — dB Differential non-linearity (DNL) DNLADC 12 bit resolution, No missing codes -1 — 2 LSB Integral non-linearity (INL), End point method INLADC 12 bit resolution -6 — 6 LSB Offset error VADCOFFSETERR -3 0 3 LSB Gain error in ADC VADCGAIN Using internal reference — -0.2 3.5 % Using external reference — -1 — % — -1.84 — mV/°C Startup time of reference generator and ADC core SNDR at 1Msps and fIN = 10kHz Temperature sensor slope tADCSTART SNDRADC VTS_SLOPE Test Condition Note: 1. The absolute voltage allowed at any ADC input is dictated by the power rail supplied to on-chip circuitry, and may be lower than the effective full scale voltage. All ADC inputs are limited to the ADC supply (AVDD or DVDD depending on EMU_PWRCTRL_ANASW). Any ADC input routed through the APORT will further be limited by the IOVDD supply to the pin. 2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL. 3. In ADCn_CNTL register. 4. In ADCn_BIASPROG register. 5. Derived from ADCCLK. 6. Internal reference option used corresponds to selection 2V5 in the SINGLECTRL_REF or SCANCTRL_REF register field. The differential input range with this configuration is ± 1.25 V. Typical value is characterized using full-scale sine wave input. Minimum value is production-tested using sine wave input at 1.5 dB lower than full scale. 7. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL_REF or SCANCTRL_REF register field and VREFP in the SINGLECTRLX_VREFSEL or SCANCTRLX_VREFSEL field. The differential input range with this configuration is ± 1.25 V. silabs.com | Building a more connected world. Rev. 1.4 | 35 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.14 Analog Comparator (ACMP) Table 4.24. Analog Comparator (ACMP) Parameter Symbol Test Condition Input voltage range VACMPIN Supply voltage VACMPVDD Active current not including voltage reference3 IACMP Current consumption of inter- IACMPREF nal voltage reference3 Hysteresis (VCM = 1.25 V, BIASPROG2 = 0x10, FULLBIAS2 = 1) VACMPHYST silabs.com | Building a more connected world. Min Typ Max Unit ACMPVDD = ACMPn_CTRL_PWRSEL 1 — — VACMPVDD V BIASPROG2 ≤ 0x10 or FULLBIAS2 = 0 1.8 — VVREGVDD_ V 0x10 < BIASPROG2 ≤ 0x20 and FULLBIAS2 = 1 2.1 BIASPROG2 = 0x10, FULLBIAS2 =0 — 306 — nA BIASPROG2 = 0x02, FULLBIAS2 =1 — 6.1 11 µA BIASPROG2 = 0x20, FULLBIAS2 =1 — 74 92 µA VLP selected as input using 2.5 V Reference / 4 (0.625 V) — 50 — nA VLP selected as input using VDD — 20 — nA VBDIV selected as input using 1.25 V reference / 1 — 4.1 — µA VADIV selected as input using VDD/1 — 2.4 — µA HYSTSEL4 = HYST0 -3 0 3 mV HYSTSEL4 = HYST1 5 18 27 mV HYSTSEL4 = HYST2 12 33 50 mV HYSTSEL4 = HYST3 17 46 67 mV HYSTSEL4 = HYST4 23 57 86 mV HYSTSEL4 = HYST5 26 68 104 mV HYSTSEL4 = HYST6 30 79 130 mV HYSTSEL4 = HYST7 34 90 155 mV HYSTSEL4 = HYST8 -3 0 3 mV HYSTSEL4 = HYST9 -27 -18 -5 mV HYSTSEL4 = HYST10 -50 -33 -12 mV HYSTSEL4 = HYST11 -67 -45 -17 mV HYSTSEL4 = HYST12 -86 -57 -23 mV HYSTSEL4 = HYST13 -104 -67 -26 mV HYSTSEL4 = HYST14 -130 -78 -30 mV HYSTSEL4 = HYST15 -155 -88 -34 mV MAX — VVREGVDD_ V MAX Rev. 1.4 | 36 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Comparator delay5 tACMPDELAY BIASPROG2 = 0x10, FULLBIAS2 =0 — 3.7 10 µs BIASPROG2 = 0x02, FULLBIAS2 =1 — 360 1000 ns BIASPROG2 = 0x20, FULLBIAS2 =1 — 35 — ns -35 — 35 mV Offset voltage VACMPOFFSET BIASPROG2 =0x10, FULLBIAS2 =1 Reference voltage VACMPREF Internal 1.25 V reference 1 1.25 1.47 V Internal 2.5 V reference 1.98 2.5 2.8 V CSRESSEL6 = 0 — infinite — kΩ CSRESSEL6 = 1 — 15 — kΩ CSRESSEL6 = 2 — 27 — kΩ CSRESSEL6 = 3 — 39 — kΩ CSRESSEL6 = 4 — 51 — kΩ CSRESSEL6 = 5 — 102 — kΩ CSRESSEL6 = 6 — 164 — kΩ CSRESSEL6 = 7 — 239 — kΩ Capacitive sense internal re- RCSRES sistance Note: 1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD. 2. In ACMPn_CTRL register. 3. The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference. IACMPTOTAL = IACMP + IACMPREF. 4. In ACMPn_HYSTERESIS registers. 5. ± 100 mV differential drive. 6. In ACMPn_INPUTSEL register. silabs.com | Building a more connected world. Rev. 1.4 | 37 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.15 Digital to Analog Converter (VDAC) DRIVESTRENGTH = 2 unless otherwise specified. Primary VDAC output. Table 4.25. Digital to Analog Converter (VDAC) Parameter Symbol Output voltage VDACOUT Test Condition Min Typ Max 0 — VVREF V -VVREF — VVREF V 500 ksps, 12-bit, DRIVESTRENGTH = 2, REFSEL = 4 — 396 — µA 44.1 ksps, 12-bit, DRIVESTRENGTH = 1, REFSEL = 4 — 72 — µA 200 Hz refresh rate, 12-bit Sample-Off mode in EM2, DRIVESTRENGTH = 2, REFSEL = 4, SETTLETIME = 0x02, WARMUPTIME = 0x0A — 1.2 — µA µA/MHz Single-Ended Differential1 Current consumption including references (2 channels)2 IDAC Unit Current from HFPERCLK3 IDAC_CLK — 5.8 — Sample rate SRDAC — — 500 ksps DAC clock frequency fDAC — — 1 MHz Conversion time tDACCONV fDAC = 1 MHz 2 — — µs Settling time tDACSETTLE 50% fs step settling to 5 LSB — 2.5 — µs Startup time tDACSTARTUP Enable to 90% fs output, settling to 10 LSB — — 12 µs Output impedance ROUT DRIVESTRENGTH = 2, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -8 mA < IOUT < 8 mA, Full supply range — 2 — Ω DRIVESTRENGTH = 0 or 1, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -400 µA < IOUT < 400 µA, Full supply range — 2 — Ω DRIVESTRENGTH = 2, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -2 mA < IOUT < 2 mA, Full supply range — 2 — Ω DRIVESTRENGTH = 0 or 1, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -100 µA < IOUT < 100 µA, Full supply range — 2 — Ω Vout = 50% fs. DC — 65.5 — dB Power supply rejection ratio4 PSRR silabs.com | Building a more connected world. Rev. 1.4 | 38 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications Parameter Symbol Signal to noise and distortion SNDRDAC ratio (1 kHz sine wave), Noise band limited to 250 kHz Test Condition Min Typ Max 500 ksps, single-ended, internal 1.25 V reference — 60.4 — dB 500 ksps, single-ended, internal 2.5 V reference — 61.6 — dB 500 ksps, single-ended, 3.3 V VDD reference — 64.0 — dB 500 ksps, differential, internal 1.25 V reference — 63.3 — dB 500 ksps, differential, internal 2.5 V reference — 64.4 — dB 500 ksps, differential, 3.3 V VDD reference — 65.8 — dB — 65.3 — dB — 66.7 — dB 500 ksps, single-ended, 3.3 V VDD reference — 70.0 — dB 500 ksps, differential, internal 1.25 V reference — 67.8 — dB 500 ksps, differential, internal 2.5 V reference — 69.0 — dB 500 ksps, differential, 3.3 V VDD reference — 68.5 — dB — 70.2 — dB Signal to noise and distortion SNDRDAC_BAND 500 ksps, single-ended, internal ratio (1 kHz sine wave), 1.25 V reference Noise band limited to 22 kHz 500 ksps, single-ended, internal 2.5 V reference Unit Total harmonic distortion THD Differential non-linearity5 DNLDAC -0.99 — 1 LSB Intergral non-linearity INLDAC -4 — 4 LSB Offset error6 VOFFSET T = 25 °C -8 — 8 mV Across operating temperature range -25 — 25 mV T = 25 °C, Low-noise internal reference (REFSEL = 1V25LN or 2V5LN) -2.5 — 2.5 % T = 25 °C, Internal reference (REFSEL = 1V25 or 2V5) -5 — 5 % T = 25 °C, External reference (REFSEL = VDD or EXT) -1.8 — 1.8 % Across operating temperature range, Low-noise internal reference (REFSEL = 1V25LN or 2V5LN) -3.5 — 3.5 % Across operating temperature range, Internal reference (REFSEL = 1V25 or 2V5) -7.5 — 7.5 % Across operating temperature range, External reference (REFSEL = VDD or EXT) -2.0 — 2.0 % Gain error6 VGAIN silabs.com | Building a more connected world. Rev. 1.4 | 39 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications Parameter Symbol External load capactiance, OUTSCALE=0 CLOAD Test Condition Min Typ Max — — 75 Unit pF Note: 1. In differential mode, the output is defined as the difference between two single-ended outputs. Absolute voltage on each output is limited to the single-ended range. 2. Supply current specifications are for VDAC circuitry operating with static output only and do not include current required to drive the load. 3. Current from HFPERCLK is dependent on HFPERCLK frequency. This current contributes to the total supply current used when the clock to the DAC peripheral is enabled in the CMU. 4. PSRR calculated as 20 * log10(ΔVDD / ΔVOUT), VDAC output at 90% of full scale 5. Entire range is monotonic and has no missing codes. 6. Gain is calculated by measuring the slope from 10% to 90% of full scale. Offset is calculated by comparing actual VDAC output at 10% of full scale to ideal VDAC output at 10% of full scale with the measured gain. silabs.com | Building a more connected world. Rev. 1.4 | 40 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.16 Current Digital to Analog Converter (IDAC) Table 4.26. Current Digital to Analog Converter (IDAC) Parameter Symbol Number of ranges NIDAC_RANGES Output current IIDAC_OUT Linear steps within each range NIDAC_STEPS Step size SSIDAC Total accuracy, STEPSEL1 = ACCIDAC 0x10 Start up time tIDAC_SU silabs.com | Building a more connected world. Test Condition Min Typ Max Unit — 4 — ranges RANGSEL1 = RANGE0 0.05 — 1.6 µA RANGSEL1 = RANGE1 1.6 — 4.7 µA RANGSEL1 = RANGE2 0.5 — 16 µA RANGSEL1 = RANGE3 2 — 64 µA — 32 — steps RANGSEL1 = RANGE0 — 50 — nA RANGSEL1 = RANGE1 — 100 — nA RANGSEL1 = RANGE2 — 500 — nA RANGSEL1 = RANGE3 — 2 — µA EM0 or EM1, AVDD=3.3 V, T = 25 °C -3 — 3 % EM0 or EM1, Across operating temperature range -18 — 22 % EM2 or EM3, Source mode, RANGSEL1 = RANGE0, AVDD = 3.3 V, T = 25 °C — -2 — % EM2 or EM3, Source mode, RANGSEL1 = RANGE1, AVDD = 3.3 V, T = 25 °C — -1.7 — % EM2 or EM3, Source mode, RANGSEL1 = RANGE2, AVDD = 3.3 V, T = 25 °C — -0.8 — % EM2 or EM3, Source mode, RANGSEL1 = RANGE3, AVDD = 3.3 V, T = 25 °C — -0.5 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE0, AVDD = 3.3 V, T = 25 °C — -0.7 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE1, AVDD = 3.3 V, T = 25 °C — -0.6 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE2, AVDD=3.3 V, T = 25 °C — -0.5 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE3, AVDD = 3.3 V, T = 25 °C — -0.5 — % Output within 1% of steady state value — 5 — µs Rev. 1.4 | 41 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications Parameter Symbol Settling time, (output settled tIDAC_SETTLE within 1% of steady state value), Current consumption2 IIDAC Output voltage compliance in ICOMP_SRC source mode, source current change relative to current sourced at 0 V Output voltage compliance in ICOMP_SINK sink mode, sink current change relative to current sunk at IOVDD Test Condition Min Typ Max Unit Range setting is changed — 5 — µs Step value is changed — 1 — µs EM0 or EM1 Source mode, excluding output current, Across operating temperature range — 11 15 µA EM0 or EM1 Sink mode, excluding output current, Across operating temperature range — 13 18 µA EM2 or EM3 Source mode, excluding output current, T = 25 °C — 0.023 — µA EM2 or EM3 Sink mode, excluding output current, T = 25 °C — 0.041 — µA EM2 or EM3 Source mode, excluding output current, T ≥ 85 °C — 11 — µA EM2 or EM3 Sink mode, excluding output current, T ≥ 85 °C — 13 — µA RANGESEL1=0, output voltage = min(VIOVDD, VAVDD2-100 mV) — 0.11 — % RANGESEL1=1, output voltage = min(VIOVDD, VAVDD2-100 mV) — 0.06 — % RANGESEL1=2, output voltage = min(VIOVDD, VAVDD2-150 mV) — 0.04 — % RANGESEL1=3, output voltage = min(VIOVDD, VAVDD2-250 mV) — 0.03 — % RANGESEL1=0, output voltage = 100 mV — 0.12 — % RANGESEL1=1, output voltage = 100 mV — 0.05 — % RANGESEL1=2, output voltage = 150 mV — 0.04 — % RANGESEL1=3, output voltage = 250 mV — 0.03 — % Note: 1. In IDAC_CURPROG register. 2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects between AVDD (0) and DVDD (1). silabs.com | Building a more connected world. Rev. 1.4 | 42 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.17 Capacitive Sense (CSEN) Table 4.27. Capacitive Sense (CSEN) Parameter Symbol Test Condition Single conversion time (1x accumulation) tCNV Maximum external capacitive CEXTMAX load Min Typ Max Unit 12-bit SAR Conversions — 20.2 — µs 16-bit SAR Conversions — 26.4 — µs Delta Modulation Conversion (single comparison) — 1.55 — µs IREFPROG=7 (Gain = 1x), including routing parasitics — 68 — pF IREFPROG=0 (Gain = 10x), including routing parasitics — 680 — pF — 1 — kΩ 12-bit SAR conversions, 20 ms conversion rate, IREFPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF)1 — 326 — nA Delta Modulation conversions, 20 ms conversion rate, IREFPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF)1 — 226 — nA 12-bit SAR conversions, 200 ms conversion rate, IREFPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF)1 — 33 — nA Delta Modulation conversions, 200 ms conversion rate, IREFPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF)1 — 25 — nA 12-bit SAR conversions, 20 ms scan rate, IREFPROG=0 (Gain = 10x), 8 samples per scan1 — 690 — nA Delta Modulation conversions, 20 ms scan rate, 8 comparisons per sample (DMCR = 1, DMR = 2), IREFPROG=0 (Gain = 10x), 8 samples per scan1 — 515 — nA 12-bit SAR conversions, 200 ms scan rate, IREFPROG=0 (Gain = 10x), 8 samples per scan1 — 79 — nA Delta Modulation conversions, 200 ms scan rate, 8 comparisons per sample (DMCR = 1, DMR = 2), IREFPROG=0 (Gain = 10x), 8 samples per scan1 — 57 — nA Maximum external series im- REXTMAX pedance Supply current, EM2 bonded ICSEN_BOND conversions, WARMUPMODE=NORMAL, WARMUPCNT=0 Supply current, EM2 scan conversions, WARMUPMODE=NORMAL, WARMUPCNT=0 ICSEN_EM2 silabs.com | Building a more connected world. Rev. 1.4 | 43 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Supply current, continuous conversions, WARMUPMODE=KEEPCSENWARM ICSEN_ACTIVE SAR or Delta Modulation conversions of 33 pF capacitor, IREFPROG=0 (Gain = 10x), always on — 90.5 — µA HFPERCLK supply current ICSEN_HFPERCLK Current contribution from HFPERCLK when clock to CSEN block is enabled. — 2.25 — µA/MHz Note: 1. Current is specified with a total external capacitance of 33 pF per channel. Average current is dependent on how long the peripheral is actively sampling channels within the scan period, and scales with the number of samples acquired. Supply current for a specific application can be estimated by multiplying the current per sample by the total number of samples per period (total_current = single_sample_current * (number_of_channels * accumulation)). silabs.com | Building a more connected world. Rev. 1.4 | 44 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.18 Operational Amplifier (OPAMP) Unless otherwise indicated, specified conditions are: Non-inverting input configuration, VDD = 3.3 V, DRIVESTRENGTH = 2, MAINOUTEN = 1, CLOAD = 75 pF with OUTSCALE = 0, or CLOAD = 37.5 pF with OUTSCALE = 1. Unit gain buffer and 3X-gain connection as specified in table footnotes1 2. Table 4.28. Operational Amplifier (OPAMP) Parameter Symbol Test Condition Supply voltage (from AVDD) VOPA HCMDIS = 0, Rail-to-rail input range Input voltage VIN Min Typ Max Unit 2 — 3.8 V HCMDIS = 1 1.62 — 3.8 V HCMDIS = 0, Rail-to-rail input range VVSS — VOPA V HCMDIS = 1 VVSS — VOPA-1.2 V Input impedance RIN 100 — — MΩ Output voltage VOUT VVSS — VOPA V Load capacitance3 CLOAD OUTSCALE = 0 — — 75 pF OUTSCALE = 1 — — 37.5 pF DRIVESTRENGTH = 2 or 3, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -8 mA < IOUT < 8 mA, Buffer connection, Full supply range — 0.25 — Ω DRIVESTRENGTH = 0 or 1, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -400 µA < IOUT < 400 µA, Buffer connection, Full supply range — 0.6 — Ω DRIVESTRENGTH = 2 or 3, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -2 mA < IOUT < 2 mA, Buffer connection, Full supply range — 0.4 — Ω DRIVESTRENGTH = 0 or 1, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -100 µA < IOUT < 100 µA, Buffer connection, Full supply range — 1 — Ω Buffer connection 0.99 1 1.01 - 3x Gain connection 2.93 2.99 3.05 - 16x Gain connection 15.07 15.7 16.33 - DRIVESTRENGTH = 3, OUTSCALE = 0 — 580 — µA DRIVESTRENGTH = 2, OUTSCALE = 0 — 176 — µA DRIVESTRENGTH = 1, OUTSCALE = 0 — 13 — µA DRIVESTRENGTH = 0, OUTSCALE = 0 — 4.7 — µA Output impedance Internal closed-loop gain Active current4 ROUT GCL IOPA silabs.com | Building a more connected world. Rev. 1.4 | 45 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications Parameter Symbol Test Condition Open-loop gain GOL Loop unit-gain frequency5 Phase margin Output voltage noise UGF PM NOUT silabs.com | Building a more connected world. Min Typ Max Unit DRIVESTRENGTH = 3 — 135 — dB DRIVESTRENGTH = 2 — 137 — dB DRIVESTRENGTH = 1 — 121 — dB DRIVESTRENGTH = 0 — 109 — dB DRIVESTRENGTH = 3, Buffer connection — 3.38 — MHz DRIVESTRENGTH = 2, Buffer connection — 0.9 — MHz DRIVESTRENGTH = 1, Buffer connection — 132 — kHz DRIVESTRENGTH = 0, Buffer connection — 34 — kHz DRIVESTRENGTH = 3, 3x Gain connection — 2.57 — MHz DRIVESTRENGTH = 2, 3x Gain connection — 0.71 — MHz DRIVESTRENGTH = 1, 3x Gain connection — 113 — kHz DRIVESTRENGTH = 0, 3x Gain connection — 28 — kHz DRIVESTRENGTH = 3, Buffer connection — 67 — ° DRIVESTRENGTH = 2, Buffer connection — 69 — ° DRIVESTRENGTH = 1, Buffer connection — 63 — ° DRIVESTRENGTH = 0, Buffer connection — 68 — ° DRIVESTRENGTH = 3, Buffer connection, 10 Hz - 10 MHz — 146 — µVrms DRIVESTRENGTH = 2, Buffer connection, 10 Hz - 10 MHz — 163 — µVrms DRIVESTRENGTH = 1, Buffer connection, 10 Hz - 1 MHz — 170 — µVrms DRIVESTRENGTH = 0, Buffer connection, 10 Hz - 1 MHz — 176 — µVrms DRIVESTRENGTH = 3, 3x Gain connection, 10 Hz - 10 MHz — 313 — µVrms DRIVESTRENGTH = 2, 3x Gain connection, 10 Hz - 10 MHz — 271 — µVrms DRIVESTRENGTH = 1, 3x Gain connection, 10 Hz - 1 MHz — 247 — µVrms DRIVESTRENGTH = 0, 3x Gain connection, 10 Hz - 1 MHz — 245 — µVrms Rev. 1.4 | 46 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Slew rate6 SR DRIVESTRENGTH = 3, INCBW=17 — 4.7 — V/µs DRIVESTRENGTH = 3, INCBW=0 — 1.5 — V/µs DRIVESTRENGTH = 2, INCBW=17 — 1.27 — V/µs DRIVESTRENGTH = 2, INCBW=0 — 0.42 — V/µs DRIVESTRENGTH = 1, INCBW=17 — 0.17 — V/µs DRIVESTRENGTH = 1, INCBW=0 — 0.058 — V/µs DRIVESTRENGTH = 0, INCBW=17 — 0.044 — V/µs DRIVESTRENGTH = 0, INCBW=0 — 0.015 — V/µs Startup time8 TSTART DRIVESTRENGTH = 2 — — 12 µs Input offset voltage VOSI DRIVESTRENGTH = 2 or 3, T = 25 °C -2 — 2 mV DRIVESTRENGTH = 1 or 0, T = 25 °C -2 — 2 mV DRIVESTRENGTH = 2 or 3, across operating temperature range -12 — 12 mV DRIVESTRENGTH = 1 or 0, across operating temperature range -30 — 30 mV DC power supply rejection ratio9 PSRRDC Input referred — 70 — dB DC common-mode rejection ratio9 CMRRDC Input referred — 70 — dB Total harmonic distortion THDOPA DRIVESTRENGTH = 2, 3x Gain connection, 1 kHz, VOUT = 0.1 V to VOPA - 0.1 V — 90 — dB DRIVESTRENGTH = 0, 3x Gain connection, 0.1 kHz, VOUT = 0.1 V to VOPA - 0.1 V — 90 — dB silabs.com | Building a more connected world. Rev. 1.4 | 47 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. Specified configuration for Unit gain buffer configuration is: INCBW = 0, HCMDIS = 0, RESINSEL = DISABLE. VINPUT = 0.5 V, VOUTPUT = 0.5 V. 2. Specified configuration for 3X-Gain configuration is: INCBW = 1, HCMDIS = 1, RESINSEL = VSS, VINPUT = 0.5 V, VOUTPUT = 1.5 V. Nominal voltage gain is 3. 3. If the maximum CLOAD is exceeded, an isolation resistor is required for stability. See AN0038 for more information. 4. Current into the load resistor is excluded. When the OPAMP is connected with closed-loop gain > 1, there will be extra current to drive the resistor feedback network. The internal resistor feedback network has total resistance of 143.5 kOhm, which will cause another ~10 µA current when the OPAMP drives 1.5 V between output and ground. 5. In unit gain connection, UGF is the gain-bandwidth product of the OPAMP. In 3x Gain connection, UGF is the gain-bandwidth product of the OPAMP and 1/3 attenuation of the feedback network. 6. Step between 0.2V and VOPA-0.2V, 10%-90% rising/falling range. 7. When INCBW is set to 1 the OPAMP bandwidth is increased. This is allowed only when the non-inverting close-loop gain is ≥ 3, or the OPAMP may not be stable. 8. From enable to output settled. In sample-and-off mode, RC network after OPAMP will contribute extra delay. Settling error < 1mV. 9. When HCMDIS=1 and input common mode transitions the region from VOPA-1.4V to VOPA-1V, input offset will change. PSRR and CMRR specifications do not apply to this transition region. 4.1.19 Pulse Counter (PCNT) Table 4.29. Pulse Counter (PCNT) Parameter Symbol Test Condition Min Typ Max Unit Input frequency FIN Asynchronous Single and Quadrature Modes — — 10 MHz Sampled Modes with Debounce filter set to 0. — — 8 kHz Min Typ Max Unit 4.1.20 Analog Port (APORT) Table 4.30. Analog Port (APORT) Parameter Symbol Test Condition Supply current1 2 IAPORT Operation in EM0/EM1 — 7 — µA Operation in EM2/EM3 — 63 — nA Note: 1. Supply current increase that occurs when an analog peripheral requests access to APORT. This current is not included in reported peripheral currents. Additional peripherals requesting access to APORT do not incur further current. 2. Specified current is for continuous APORT operation. In applications where the APORT is not requested continuously (e.g. periodic ACMP requests from LESENSE in EM2), the average current requirements can be estimated by mutiplying the duty cycle of the requests by the specified continuous current number. silabs.com | Building a more connected world. Rev. 1.4 | 48 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.21 I2C 4.1.21.1 I2C Standard-mode (Sm)1 Table 4.31. I2C Standard-mode (Sm)1 Parameter Symbol SCL clock frequency2 Test Condition Min Typ Max Unit fSCL 0 — 100 kHz SCL clock low time tLOW 4.7 — — µs SCL clock high time tHIGH 4 — — µs SDA set-up time tSU_DAT 250 — — ns SDA hold time3 tHD_DAT 100 — 3450 ns Repeated START condition set-up time tSU_STA 4.7 — — µs (Repeated) START condition tHD_STA hold time 4 — — µs STOP condition set-up time tSU_STO 4 — — µs Bus free time between a STOP and START condition tBUF 4.7 — — µs Note: 1. For CLHR set to 0 in the I2Cn_CTRL register. 2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual. 3. The maximum SDA hold time (tHD_DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). silabs.com | Building a more connected world. Rev. 1.4 | 49 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.21.2 I2C Fast-mode (Fm)1 Table 4.32. I2C Fast-mode (Fm)1 Parameter Symbol SCL clock frequency2 Test Condition Min Typ Max Unit fSCL 0 — 400 kHz SCL clock low time tLOW 1.3 — — µs SCL clock high time tHIGH 0.6 — — µs SDA set-up time tSU_DAT 100 — — ns SDA hold time3 tHD_DAT 100 — 900 ns Repeated START condition set-up time tSU_STA 0.6 — — µs (Repeated) START condition tHD_STA hold time 0.6 — — µs STOP condition set-up time tSU_STO 0.6 — — µs Bus free time between a STOP and START condition tBUF 1.3 — — µs Note: 1. For CLHR set to 1 in the I2Cn_CTRL register. 2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual. 3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). silabs.com | Building a more connected world. Rev. 1.4 | 50 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.21.3 I2C Fast-mode Plus (Fm+)1 Table 4.33. I2C Fast-mode Plus (Fm+)1 Parameter Symbol SCL clock frequency2 Test Condition Min Typ Max Unit fSCL 0 — 1000 kHz SCL clock low time tLOW 0.5 — — µs SCL clock high time tHIGH 0.26 — — µs SDA set-up time tSU_DAT 50 — — ns SDA hold time tHD_DAT 100 — — ns Repeated START condition set-up time tSU_STA 0.26 — — µs (Repeated) START condition tHD_STA hold time 0.26 — — µs STOP condition set-up time tSU_STO 0.26 — — µs Bus free time between a STOP and START condition tBUF 0.5 — — µs Note: 1. For CLHR set to 0 or 1 in the I2Cn_CTRL register. 2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual. silabs.com | Building a more connected world. Rev. 1.4 | 51 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications 4.1.22 USART SPI SPI Master Timing Table 4.34. SPI Master Timing Parameter Symbol SCLK period 1 2 3 tSCLK CS to MOSI 1 2 Test Condition Min Typ Max Unit 2* tHFPERCLK — — ns tCS_MO -12.5 — 14 ns SCLK to MOSI 1 2 tSCLK_MO -8.5 — 10.5 ns MISO setup time 1 2 tSU_MI IOVDD = 1.62 V 90 — — ns IOVDD = 3.0 V 42 — — ns -9 — — ns tH_MI MISO hold time 1 2 Note: 1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0). 2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD). 3. tHFPERCLK is one period of the selected HFPERCLK. CS tCS_MO tSCKL_MO SCLK CLKPOL = 0 tSCLK SCLK CLKPOL = 1 MOSI tSU_MI tH_MI MISO Figure 4.1. SPI Master Timing Diagram silabs.com | Building a more connected world. Rev. 1.4 | 52 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Electrical Specifications SPI Slave Timing Table 4.35. SPI Slave Timing Parameter Symbol SCLK period 1 2 3 Test Condition Min Typ Max Unit tSCLK 6* tHFPERCLK — — ns SCLK high time1 2 3 tSCLK_HI 2.5 * tHFPERCLK — — ns SCLK low time1 2 3 tSCLK_LO 2.5 * tHFPERCLK — — ns CS active to MISO 1 2 tCS_ACT_MI 4 — 70 ns CS disable to MISO 1 2 tCS_DIS_MI 4 — 50 ns MOSI setup time 1 2 tSU_MO 12.5 — — ns MOSI hold time 1 2 3 tH_MO 13 — — ns SCLK to MISO 1 2 3 tSCLK_MI 6 + 1.5 * tHFPERCLK — 45 + 2.5 * tHFPERCLK ns Note: 1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0). 2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD). 3. tHFPERCLK is one period of the selected HFPERCLK. CS tCS_ACT_MI tCS_DIS_MI SCLK CLKPOL = 0 SCLK CLKPOL = 1 tSCLK_HI tSU_MO tSCLK_LO tSCLK tH_MO MOSI tSCLK_MI MISO Figure 4.2. SPI Slave Timing Diagram silabs.com | Building a more connected world. Rev. 1.4 | 53 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Typical Connection Diagrams 5. Typical Connection Diagrams 5.1 Network Co-Processor (NCP) Application with UART Host The BGM13P can be controlled over the UART interface as a peripheral to an external host processor. Typical power supply, programming/debug, and host interface connections are shown in the figure below. Refer to AN958: Debugging and Programming Interfaces for Custom Designs for more details. RESETn GPIO GND PD13 RESETn PD14 VDD PD15 PF7 PA0 PF6 Wireless Module +3.3 V RESETn RX RESETn TMS / SWDIO (PF1) PTI_FRAME (PB13) PF5 CTS PA3 PF3 TDI PA4 PF2 TDO / SWO PA5 PF1 TMS / SWDIO PB11 PF0 TCK / SWCLK PTI_FRAME PTI_DATA PC11 PF4 PC10 PC9 PA2 PC8 PA1 PC7 TX GND 1 3 5 7 9 +3.3 V RTS PC6 VSS Host CPU GND PB13 VDD +3.3 V 2 4 6 8 10 TDO / SWO (PF2) TCK / SWCLK (PF0) PTI_DATA (PB11) Mini Simplicity Debug Connector GND (optional) Figure 5.1. Connection Diagram: UART NCP Configuration 5.2 SoC Application The BGM13P can be used in a standalone SoC configuration with no external host processor. Typical power supply and programming/ debug connections are shown in the figure below. Refer to AN958: Debugging and Programming Interfaces for Custom Designs for more details. PF7 RESETn +3.3 V +3.3 V PF6 Wireless Module PA2 PF5 VDD PA1 PF4 PF3 TDI nCS PA4 PF2 TDO / SWO SCLK PA5 PF1 TMS / SWDIO MISO PB11 PF0 TCK / SWCLK MOSI GND PC11 PA3 Serial Flash (optional) VSS PA0 PC10 PTI_DATA PD15 PC9 Mini Simplicity Debug Connector VDD PC8 TDO / SWO (PF2) TCK / SWCLK (PF0) PTI_DATA (PB11) PD14 PC7 TMS / SWDIO (PF1) PTI_FRAME (PB13) 2 4 6 8 10 RESETn PC6 RESETn 1 3 5 7 9 GND PD13 PB13 +3.3 V GND GND (optional) PTI_FRAME Figure 5.2. Connection Diagram: SoC Configuration silabs.com | Building a more connected world. Rev. 1.4 | 54 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Layout Guidelines 6. Layout Guidelines For optimal performance of the BGM13P (with integrated antenna), please follow the PCB layout guidelines and ground plane recommendations indicated in this section. 6.1 Module Placement and Application PCB Layout Guidelines • Place the module at the edge of the PCB, as shown in Figure 6.1 Recommended Application PCB Layout for BGM13P with Integrated Antenna on page 55. • Do not place any metal (traces, components, battery, etc.) within the clearance area of the antenna. • Connect all ground pads directly to a solid ground plane. • Place the ground vias as close to the ground pads as possible. • Do not place plastic or any other dielectric material in contact with the antenna. Align module edge with PCB edge GND Place vias close to each of the module’s GND pads Antenna Clearance No metal in this area GND Wireless Module (Top View) GND GND Place vias along all PCB edges Figure 6.1. Recommended Application PCB Layout for BGM13P with Integrated Antenna silabs.com | Building a more connected world. Rev. 1.4 | 55 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Layout Guidelines Figure 6.2 Non-optimal Module Placements for BGM13P with Integrated Antenna on page 56 shows examples of layouts that will result in severely degraded RF performance. Figure 6.2. Non-optimal Module Placements for BGM13P with Integrated Antenna The amount of ground plane surrounding the sides of the module will also impact the maximum RF range, as shown in Figure 6.3 Impact of GND Plane Size vs. Range for BGM13P on page 56. Figure 6.3. Impact of GND Plane Size vs. Range for BGM13P 6.2 Effect of Plastic and Metal Materials Do not place plastic or any other dielectric material in close proximity to the antenna. Any metallic objects in close proximity to the antenna will prevent the antenna from radiating freely. The minimum recommended distance of metallic and/or conductive objects is 10 mm in any direction from the antenna except in the directions of the application PCB ground planes. 6.3 Locating the Module Close to Human Body Placing the module in contact with or very close to the human body will negatively impact antenna efficiency and reduce range. silabs.com | Building a more connected world. Rev. 1.4 | 56 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Layout Guidelines 6.4 2D Radiation Pattern Plots Figure 6.4. Typical 2D Radiation Pattern – Front View Figure 6.5. Typical 2D Radiation Pattern – Side View silabs.com | Building a more connected world. Rev. 1.4 | 57 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Layout Guidelines Figure 6.6. Typical 2D Radiation Pattern – Top View silabs.com | Building a more connected world. Rev. 1.4 | 58 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Hardware Design Guidelines 7. Hardware Design Guidelines The BGM13P is an easy-to-use module with regard to hardware application design. The guidelines in this section should be followed to guarantee optimal performance. 7.1 Power Supply Requirements Coin cell batteries cannot withstand high peak currents (e.g. higher than 15 mA). If the peak current exceeds 15 mA it is recommended to place a 47 - 100 µF capacitor in parallel with the coin cell battery to improve battery life time. Note that the total current consumption of the application is a combination of the radio, peripherals and MCU current consumption, and all power consumers must be taken into account. BGM13P should be powered by a unipolar supply voltage with nominal value of 3.3 V. 7.2 Reset Functions The BGM13P can be reset by three different methods: by pulling the RESET line low, by the internal watchdog timer or by software command. The reset state in BGM13P does not provide any power saving functionality and is not recommended as a means to conserve power. BGM13P has an internal system power-up reset function. The RESET pin includes an on-chip pull-up resistor and can be left unconnected if no external reset switch or source is used. 7.3 Debug and Firmware Updates Refer to the following application note: AN958: Debugging and Programming Interfaces for Custom Designs. 7.3.1 Programming and Debug Connections It is recommended to expose the debug pins in your own hardware design for firmware update and debug purposes. The following table lists the required pins for JTAG connection and SWD connections. Certain debug pins have internal pull-down or pull-ups enabled by default, and leaving them enabled may increase current consumption if left connected to supply or ground. If the JTAG pins are enabled, the module must be power cycled to return to a SWD debug configuration. Table 7.1. Debug Pins Pin Name Pin Number JTAG Signal SWD Signal Comments PF3 24 TDI N/A This pin is disabled after reset. Once enabled the pin has a built-in pull-up. PF2 23 TDO N/A This pin is disabled after reset. PF1 22 TMS SWDIO Pin is enabled after reset and has a built-in pull-up. PF0 21 TCK SWCLK Pin is enabled after reset and has a built-in pull-down. 7.3.2 Packet Trace Interface (PTI) The BGM13P integrates a true PHY-level packet trace interface (PTI) with the MAC, allowing complete, non-intrusive capture of all packets to and from the EFR32 Wireless STK development tools. The PTI_DATA and PTI_FRAME signals are configurable via software. Refer to Table 8.3 Alternate Functionality Overview on page 71 for pin availability. silabs.com | Building a more connected world. Rev. 1.4 | 59 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions 8. Pin Definitions 8.1 BGM13P Device Pinout Figure 8.1. BGM13P Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 8.2 GPIO Functionality Table or 8.3 Alternate Functionality Overview. Table 8.1. BGM13P Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description GND 1 12 20 31 Ground PD13 2 GPIO PD14 3 GPIO PD15 4 GPIO PA0 5 GPIO PA1 6 GPIO PA2 7 GPIO PA3 8 GPIO silabs.com | Building a more connected world. Rev. 1.4 | 60 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PA4 9 GPIO PA5 10 GPIO (5V) PB11 11 GPIO PB13 13 GPIO PC6 14 GPIO (5V) PC7 15 GPIO (5V) PC8 16 GPIO (5V) PC9 17 GPIO (5V) PC10 18 GPIO (5V) PC11 19 GPIO (5V) PF0 21 GPIO (5V) PF1 22 GPIO (5V) PF2 23 GPIO (5V) PF3 24 GPIO (5V) PF4 25 GPIO (5V) PF5 26 GPIO (5V) PF6 27 GPIO (5V) PF7 28 GPIO (5V) 30 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. VDD 29 Module Power Supply RESETn Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.4 | 61 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions 8.2 GPIO Functionality Table A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of each GPIO pin, followed by the functionality available on that pin. Refer to 8.3 Alternate Functionality Overview for a list of GPIO locations available for each function. Table 8.2. GPIO Functionality Table GPIO Name PA0 PA1 PA2 Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSDY BUSCX ADC0_EXTN TIM0_CC0 #0 TIM0_CC1 #31 TIM0_CC2 #30 TIM0_CDTI0 #29 TIM0_CDTI1 #28 TIM0_CDTI2 #27 TIM1_CC0 #0 TIM1_CC1 #31 TIM1_CC2 #30 TIM1_CC3 #29 WTIM0_CC0 #0 LETIM0_OUT0 #0 LETIM0_OUT1 #31 PCNT0_S0IN #0 PCNT0_S1IN #31 US0_TX #0 US0_RX #31 US0_CLK #30 US0_CS #29 US0_CTS #28 US0_RTS #27 US1_TX #0 US1_RX #31 US1_CLK #30 US1_CS #29 US1_CTS #28 US1_RTS #27 LEU0_TX #0 LEU0_RX #31 I2C0_SDA #0 I2C0_SCL #31 FRC_DCLK #0 FRC_DOUT #31 FRC_DFRAME #30 MODEM_DCLK #0 MODEM_DIN #31 MODEM_DOUT #30 CMU_CLK1 #0 PRS_CH6 #0 PRS_CH7 #10 PRS_CH8 #9 PRS_CH9 #8 ACMP0_O #0 ACMP1_O #0 LES_CH8 BUSCY BUSDX ADC0_EXTP VDAC0_EXT TIM0_CC0 #1 TIM0_CC1 #0 TIM0_CC2 #31 TIM0_CDTI0 #30 TIM0_CDTI1 #29 TIM0_CDTI2 #28 TIM1_CC0 #1 TIM1_CC1 #0 TIM1_CC2 #31 TIM1_CC3 #30 WTIM0_CC0 #1 LETIM0_OUT0 #1 LETIM0_OUT1 #0 PCNT0_S0IN #1 PCNT0_S1IN #0 US0_TX #1 US0_RX #0 US0_CLK #31 US0_CS #30 US0_CTS #29 US0_RTS #28 US1_TX #1 US1_RX #0 US1_CLK #31 US1_CS #30 US1_CTS #29 US1_RTS #28 LEU0_TX #1 LEU0_RX #0 I2C0_SDA #1 I2C0_SCL #0 FRC_DCLK #1 FRC_DOUT #0 FRC_DFRAME #31 MODEM_DCLK #1 MODEM_DIN #0 MODEM_DOUT #31 CMU_CLK0 #0 PRS_CH6 #1 PRS_CH7 #0 PRS_CH8 #10 PRS_CH9 #9 ACMP0_O #1 ACMP1_O #1 LES_CH9 VDAC0_OUT1ALT / OPA1_OUTALT #1 BUSDY BUSCX OPA0_P TIM0_CC0 #2 TIM0_CC1 #1 TIM0_CC2 #0 TIM0_CDTI0 #31 TIM0_CDTI1 #30 TIM0_CDTI2 #29 TIM1_CC0 #2 TIM1_CC1 #1 TIM1_CC2 #0 TIM1_CC3 #31 WTIM0_CC0 #2 WTIM0_CC1 #0 LETIM0_OUT0 #2 LETIM0_OUT1 #1 PCNT0_S0IN #2 PCNT0_S1IN #1 US0_TX #2 US0_RX #1 US0_CLK #0 US0_CS #31 US0_CTS #30 US0_RTS #29 US1_TX #2 US1_RX #1 US1_CLK #0 US1_CS #31 US1_CTS #30 US1_RTS #29 LEU0_TX #2 LEU0_RX #1 I2C0_SDA #2 I2C0_SCL #1 FRC_DCLK #2 FRC_DOUT #1 FRC_DFRAME #0 MODEM_DCLK #2 MODEM_DIN #1 MODEM_DOUT #0 PRS_CH6 #2 PRS_CH7 #1 PRS_CH8 #0 PRS_CH9 #10 ACMP0_O #2 ACMP1_O #2 LES_CH10 silabs.com | Building a more connected world. Rev. 1.4 | 62 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions GPIO Name PA3 PA4 PA5 Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSCY BUSDX VDAC0_OUT0 / OPA0_OUT TIM0_CC0 #3 TIM0_CC1 #2 TIM0_CC2 #1 TIM0_CDTI0 #0 TIM0_CDTI1 #31 TIM0_CDTI2 #30 TIM1_CC0 #3 TIM1_CC1 #2 TIM1_CC2 #1 TIM1_CC3 #0 WTIM0_CC0 #3 WTIM0_CC1 #1 LETIM0_OUT0 #3 LETIM0_OUT1 #2 PCNT0_S0IN #3 PCNT0_S1IN #2 US0_TX #3 US0_RX #2 US0_CLK #1 US0_CS #0 US0_CTS #31 US0_RTS #30 US1_TX #3 US1_RX #2 US1_CLK #1 US1_CS #0 US1_CTS #31 US1_RTS #30 LEU0_TX #3 LEU0_RX #2 I2C0_SDA #3 I2C0_SCL #2 FRC_DCLK #3 FRC_DOUT #2 FRC_DFRAME #1 MODEM_DCLK #3 MODEM_DIN #2 MODEM_DOUT #1 PRS_CH6 #3 PRS_CH7 #2 PRS_CH8 #1 PRS_CH9 #0 ACMP0_O #3 ACMP1_O #3 LES_CH11 GPIO_EM4WU8 VDAC0_OUT1ALT / OPA1_OUTALT #2 BUSDY BUSCX OPA0_N TIM0_CC0 #4 TIM0_CC1 #3 TIM0_CC2 #2 TIM0_CDTI0 #1 TIM0_CDTI1 #0 TIM0_CDTI2 #31 TIM1_CC0 #4 TIM1_CC1 #3 TIM1_CC2 #2 TIM1_CC3 #1 WTIM0_CC0 #4 WTIM0_CC1 #2 WTIM0_CC2 #0 LETIM0_OUT0 #4 LETIM0_OUT1 #3 PCNT0_S0IN #4 PCNT0_S1IN #3 US0_TX #4 US0_RX #3 US0_CLK #2 US0_CS #1 US0_CTS #0 US0_RTS #31 US1_TX #4 US1_RX #3 US1_CLK #2 US1_CS #1 US1_CTS #0 US1_RTS #31 LEU0_TX #4 LEU0_RX #3 I2C0_SDA #4 I2C0_SCL #3 FRC_DCLK #4 FRC_DOUT #3 FRC_DFRAME #2 MODEM_DCLK #4 MODEM_DIN #3 MODEM_DOUT #2 PRS_CH6 #4 PRS_CH7 #3 PRS_CH8 #2 PRS_CH9 #1 ACMP0_O #4 ACMP1_O #4 LES_CH12 VDAC0_OUT0ALT / OPA0_OUTALT #0 BUSCY BUSDX TIM0_CC0 #5 TIM0_CC1 #4 TIM0_CC2 #3 TIM0_CDTI0 #2 TIM0_CDTI1 #1 TIM0_CDTI2 #0 TIM1_CC0 #5 TIM1_CC1 #4 TIM1_CC2 #3 TIM1_CC3 #2 WTIM0_CC0 #5 WTIM0_CC1 #3 WTIM0_CC2 #1 LETIM0_OUT0 #5 LETIM0_OUT1 #4 PCNT0_S0IN #5 PCNT0_S1IN #4 US0_TX #5 US0_RX #4 US0_CLK #3 US0_CS #2 US0_CTS #1 US0_RTS #0 US1_TX #5 US1_RX #4 US1_CLK #3 US1_CS #2 US1_CTS #1 US1_RTS #0 US2_TX #0 US2_RX #31 US2_CLK #30 US2_CS #29 US2_CTS #28 US2_RTS #27 LEU0_TX #5 LEU0_RX #4 I2C0_SDA #5 I2C0_SCL #4 FRC_DCLK #5 FRC_DOUT #4 FRC_DFRAME #3 MODEM_DCLK #5 MODEM_DIN #4 MODEM_DOUT #3 CMU_CLKI0 #4 PRS_CH6 #5 PRS_CH7 #4 PRS_CH8 #3 PRS_CH9 #2 ACMP0_O #5 ACMP1_O #5 LES_CH13 ETM_TCLK #1 silabs.com | Building a more connected world. Rev. 1.4 | 63 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions GPIO Name PB11 PB13 PC6 Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSCY BUSDX OPA2_P TIM0_CC0 #6 TIM0_CC1 #5 TIM0_CC2 #4 TIM0_CDTI0 #3 TIM0_CDTI1 #2 TIM0_CDTI2 #1 TIM1_CC0 #6 TIM1_CC1 #5 TIM1_CC2 #4 TIM1_CC3 #3 WTIM0_CC0 #15 WTIM0_CC1 #13 WTIM0_CC2 #11 WTIM0_CDTI0 #7 WTIM0_CDTI1 #5 WTIM0_CDTI2 #3 LETIM0_OUT0 #6 LETIM0_OUT1 #5 PCNT0_S0IN #6 PCNT0_S1IN #5 US0_TX #6 US0_RX #5 US0_CLK #4 US0_CS #3 US0_CTS #2 US0_RTS #1 US1_TX #6 US1_RX #5 US1_CLK #4 US1_CS #3 US1_CTS #2 US1_RTS #1 LEU0_TX #6 LEU0_RX #5 I2C0_SDA #6 I2C0_SCL #5 FRC_DCLK #6 FRC_DOUT #5 FRC_DFRAME #4 MODEM_DCLK #6 MODEM_DIN #5 MODEM_DOUT #4 PRS_CH6 #6 PRS_CH7 #5 PRS_CH8 #4 PRS_CH9 #3 ACMP0_O #6 ACMP1_O #6 BUSCY BUSDX OPA2_N TIM0_CC0 #8 TIM0_CC1 #7 TIM0_CC2 #6 TIM0_CDTI0 #5 TIM0_CDTI1 #4 TIM0_CDTI2 #3 TIM1_CC0 #8 TIM1_CC1 #7 TIM1_CC2 #6 TIM1_CC3 #5 WTIM0_CC0 #17 WTIM0_CC1 #15 WTIM0_CC2 #13 WTIM0_CDTI0 #9 WTIM0_CDTI1 #7 WTIM0_CDTI2 #5 LETIM0_OUT0 #8 LETIM0_OUT1 #7 PCNT0_S0IN #8 PCNT0_S1IN #7 US0_TX #8 US0_RX #7 US0_CLK #6 US0_CS #5 US0_CTS #4 US0_RTS #3 US1_TX #8 US1_RX #7 US1_CLK #6 US1_CS #5 US1_CTS #4 US1_RTS #3 LEU0_TX #8 LEU0_RX #7 I2C0_SDA #8 I2C0_SCL #7 FRC_DCLK #8 FRC_DOUT #7 FRC_DFRAME #6 MODEM_DCLK #8 MODEM_DIN #7 MODEM_DOUT #6 CMU_CLKI0 #0 PRS_CH6 #8 PRS_CH7 #7 PRS_CH8 #6 PRS_CH9 #5 ACMP0_O #8 ACMP1_O #8 DBG_SWO #1 GPIO_EM4WU9 BUSBY BUSAX TIM0_CC0 #11 TIM0_CC1 #10 TIM0_CC2 #9 TIM0_CDTI0 #8 TIM0_CDTI1 #7 TIM0_CDTI2 #6 TIM1_CC0 #11 TIM1_CC1 #10 TIM1_CC2 #9 TIM1_CC3 #8 WTIM0_CC0 #26 WTIM0_CC1 #24 WTIM0_CC2 #22 WTIM0_CDTI0 #18 WTIM0_CDTI1 #16 WTIM0_CDTI2 #14 LETIM0_OUT0 #11 LETIM0_OUT1 #10 PCNT0_S0IN #11 PCNT0_S1IN #10 US0_TX #11 US0_RX #10 US0_CLK #9 US0_CS #8 US0_CTS #7 US0_RTS #6 US1_TX #11 US1_RX #10 US1_CLK #9 US1_CS #8 US1_CTS #7 US1_RTS #6 LEU0_TX #11 LEU0_RX #10 I2C0_SDA #11 I2C0_SCL #10 FRC_DCLK #11 FRC_DOUT #10 FRC_DFRAME #9 MODEM_DCLK #11 MODEM_DIN #10 MODEM_DOUT #9 CMU_CLK0 #2 CMU_CLKI0 #2 PRS_CH0 #8 PRS_CH9 #11 PRS_CH10 #0 PRS_CH11 #5 ACMP0_O #11 ACMP1_O #11 ETM_TCLK #3 silabs.com | Building a more connected world. Rev. 1.4 | 64 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions GPIO Name PC7 PC8 PC9 Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSAY BUSBX TIM0_CC0 #12 TIM0_CC1 #11 TIM0_CC2 #10 TIM0_CDTI0 #9 TIM0_CDTI1 #8 TIM0_CDTI2 #7 TIM1_CC0 #12 TIM1_CC1 #11 TIM1_CC2 #10 TIM1_CC3 #9 WTIM0_CC0 #27 WTIM0_CC1 #25 WTIM0_CC2 #23 WTIM0_CDTI0 #19 WTIM0_CDTI1 #17 WTIM0_CDTI2 #15 LETIM0_OUT0 #12 LETIM0_OUT1 #11 PCNT0_S0IN #12 PCNT0_S1IN #11 US0_TX #12 US0_RX #11 US0_CLK #10 US0_CS #9 US0_CTS #8 US0_RTS #7 US1_TX #12 US1_RX #11 US1_CLK #10 US1_CS #9 US1_CTS #8 US1_RTS #7 LEU0_TX #12 LEU0_RX #11 I2C0_SDA #12 I2C0_SCL #11 FRC_DCLK #12 FRC_DOUT #11 FRC_DFRAME #10 MODEM_DCLK #12 MODEM_DIN #11 MODEM_DOUT #10 CMU_CLK1 #2 PRS_CH0 #9 PRS_CH9 #12 PRS_CH10 #1 PRS_CH11 #0 ACMP0_O #12 ACMP1_O #12 ETM_TD0 BUSBY BUSAX TIM0_CC0 #13 TIM0_CC1 #12 TIM0_CC2 #11 TIM0_CDTI0 #10 TIM0_CDTI1 #9 TIM0_CDTI2 #8 TIM1_CC0 #13 TIM1_CC1 #12 TIM1_CC2 #11 TIM1_CC3 #10 WTIM0_CC0 #28 WTIM0_CC1 #26 WTIM0_CC2 #24 WTIM0_CDTI0 #20 WTIM0_CDTI1 #18 WTIM0_CDTI2 #16 LETIM0_OUT0 #13 LETIM0_OUT1 #12 PCNT0_S0IN #13 PCNT0_S1IN #12 US0_TX #13 US0_RX #12 US0_CLK #11 US0_CS #10 US0_CTS #9 US0_RTS #8 US1_TX #13 US1_RX #12 US1_CLK #11 US1_CS #10 US1_CTS #9 US1_RTS #8 LEU0_TX #13 LEU0_RX #12 I2C0_SDA #13 I2C0_SCL #12 FRC_DCLK #13 FRC_DOUT #12 FRC_DFRAME #11 MODEM_DCLK #13 MODEM_DIN #12 MODEM_DOUT #11 PRS_CH0 #10 PRS_CH9 #13 PRS_CH10 #2 PRS_CH11 #1 ACMP0_O #13 ACMP1_O #13 ETM_TD1 BUSAY BUSBX TIM0_CC0 #14 TIM0_CC1 #13 TIM0_CC2 #12 TIM0_CDTI0 #11 TIM0_CDTI1 #10 TIM0_CDTI2 #9 TIM1_CC0 #14 TIM1_CC1 #13 TIM1_CC2 #12 TIM1_CC3 #11 WTIM0_CC0 #29 WTIM0_CC1 #27 WTIM0_CC2 #25 WTIM0_CDTI0 #21 WTIM0_CDTI1 #19 WTIM0_CDTI2 #17 LETIM0_OUT0 #14 LETIM0_OUT1 #13 PCNT0_S0IN #14 PCNT0_S1IN #13 US0_TX #14 US0_RX #13 US0_CLK #12 US0_CS #11 US0_CTS #10 US0_RTS #9 US1_TX #14 US1_RX #13 US1_CLK #12 US1_CS #11 US1_CTS #10 US1_RTS #9 LEU0_TX #14 LEU0_RX #13 I2C0_SDA #14 I2C0_SCL #13 FRC_DCLK #14 FRC_DOUT #13 FRC_DFRAME #12 MODEM_DCLK #14 MODEM_DIN #13 MODEM_DOUT #12 PRS_CH0 #11 PRS_CH9 #14 PRS_CH10 #3 PRS_CH11 #2 ACMP0_O #14 ACMP1_O #14 ETM_TD2 silabs.com | Building a more connected world. Rev. 1.4 | 65 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions GPIO Name PC10 PC11 PD13 Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSBY BUSAX TIM0_CC0 #15 TIM0_CC1 #14 TIM0_CC2 #13 TIM0_CDTI0 #12 TIM0_CDTI1 #11 TIM0_CDTI2 #10 TIM1_CC0 #15 TIM1_CC1 #14 TIM1_CC2 #13 TIM1_CC3 #12 WTIM0_CC0 #30 WTIM0_CC1 #28 WTIM0_CC2 #26 WTIM0_CDTI0 #22 WTIM0_CDTI1 #20 WTIM0_CDTI2 #18 LETIM0_OUT0 #15 LETIM0_OUT1 #14 PCNT0_S0IN #15 PCNT0_S1IN #14 US0_TX #15 US0_RX #14 US0_CLK #13 US0_CS #12 US0_CTS #11 US0_RTS #10 US1_TX #15 US1_RX #14 US1_CLK #13 US1_CS #12 US1_CTS #11 US1_RTS #10 LEU0_TX #15 LEU0_RX #14 I2C0_SDA #15 I2C0_SCL #14 I2C1_SDA #19 I2C1_SCL #18 FRC_DCLK #15 FRC_DOUT #14 FRC_DFRAME #13 MODEM_DCLK #15 MODEM_DIN #14 MODEM_DOUT #13 CMU_CLK1 #3 PRS_CH0 #12 PRS_CH9 #15 PRS_CH10 #4 PRS_CH11 #3 ACMP0_O #15 ACMP1_O #15 ETM_TD3 GPIO_EM4WU12 BUSAY BUSBX TIM0_CC0 #16 TIM0_CC1 #15 TIM0_CC2 #14 TIM0_CDTI0 #13 TIM0_CDTI1 #12 TIM0_CDTI2 #11 TIM1_CC0 #16 TIM1_CC1 #15 TIM1_CC2 #14 TIM1_CC3 #13 WTIM0_CC0 #31 WTIM0_CC1 #29 WTIM0_CC2 #27 WTIM0_CDTI0 #23 WTIM0_CDTI1 #21 WTIM0_CDTI2 #19 LETIM0_OUT0 #16 LETIM0_OUT1 #15 PCNT0_S0IN #16 PCNT0_S1IN #15 US0_TX #16 US0_RX #15 US0_CLK #14 US0_CS #13 US0_CTS #12 US0_RTS #11 US1_TX #16 US1_RX #15 US1_CLK #14 US1_CS #13 US1_CTS #12 US1_RTS #11 LEU0_TX #16 LEU0_RX #15 I2C0_SDA #16 I2C0_SCL #15 I2C1_SDA #20 I2C1_SCL #19 FRC_DCLK #16 FRC_DOUT #15 FRC_DFRAME #14 MODEM_DCLK #16 MODEM_DIN #15 MODEM_DOUT #14 CMU_CLK0 #3 PRS_CH0 #13 PRS_CH9 #16 PRS_CH10 #5 PRS_CH11 #4 ACMP0_O #16 ACMP1_O #16 DBG_SWO #3 VDAC0_OUT0ALT / OPA0_OUTALT #1 BUSCY BUSDX OPA1_P TIM0_CC0 #21 TIM0_CC1 #20 TIM0_CC2 #19 TIM0_CDTI0 #18 TIM0_CDTI1 #17 TIM0_CDTI2 #16 TIM1_CC0 #21 TIM1_CC1 #20 TIM1_CC2 #19 TIM1_CC3 #18 WTIM0_CDTI0 #29 WTIM0_CDTI1 #27 WTIM0_CDTI2 #25 LETIM0_OUT0 #21 LETIM0_OUT1 #20 PCNT0_S0IN #21 PCNT0_S1IN #20 US0_TX #21 US0_RX #20 US0_CLK #19 US0_CS #18 US0_CTS #17 US0_RTS #16 US1_TX #21 US1_RX #20 US1_CLK #19 US1_CS #18 US1_CTS #17 US1_RTS #16 LEU0_TX #21 LEU0_RX #20 I2C0_SDA #21 I2C0_SCL #20 FRC_DCLK #21 FRC_DOUT #20 FRC_DFRAME #19 MODEM_DCLK #21 MODEM_DIN #20 MODEM_DOUT #19 PRS_CH3 #12 PRS_CH4 #4 PRS_CH5 #3 PRS_CH6 #15 ACMP0_O #21 ACMP1_O #21 LES_CH5 silabs.com | Building a more connected world. Rev. 1.4 | 66 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions GPIO Name PD14 PD15 PF0 Pin Alternate Functionality / Description Analog Timers Communication BUSDY BUSCX VDAC0_OUT1 / OPA1_OUT TIM0_CC0 #22 TIM0_CC1 #21 TIM0_CC2 #20 TIM0_CDTI0 #19 TIM0_CDTI1 #18 TIM0_CDTI2 #17 TIM1_CC0 #22 TIM1_CC1 #21 TIM1_CC2 #20 TIM1_CC3 #19 WTIM0_CDTI0 #30 WTIM0_CDTI1 #28 WTIM0_CDTI2 #26 LETIM0_OUT0 #22 LETIM0_OUT1 #21 PCNT0_S0IN #22 PCNT0_S1IN #21 US0_TX #22 US0_RX #21 US0_CLK #20 US0_CS #19 US0_CTS #18 US0_RTS #17 US1_TX #22 US1_RX #21 US1_CLK #20 US1_CS #19 US1_CTS #18 US1_RTS #17 LEU0_TX #22 LEU0_RX #21 I2C0_SDA #22 I2C0_SCL #21 VDAC0_OUT0ALT / OPA0_OUTALT #2 BUSCY BUSDX OPA1_N TIM0_CC0 #23 TIM0_CC1 #22 TIM0_CC2 #21 TIM0_CDTI0 #20 TIM0_CDTI1 #19 TIM0_CDTI2 #18 TIM1_CC0 #23 TIM1_CC1 #22 TIM1_CC2 #21 TIM1_CC3 #20 WTIM0_CDTI0 #31 WTIM0_CDTI1 #29 WTIM0_CDTI2 #27 LETIM0_OUT0 #23 LETIM0_OUT1 #22 PCNT0_S0IN #23 PCNT0_S1IN #22 TIM0_CC0 #24 TIM0_CC1 #23 TIM0_CC2 #22 TIM0_CDTI0 #21 TIM0_CDTI1 #20 TIM0_CDTI2 #19 TIM1_CC0 #24 TIM1_CC1 #23 TIM1_CC2 #22 TIM1_CC3 #21 WTIM0_CDTI1 #30 WTIM0_CDTI2 #28 LETIM0_OUT0 #24 LETIM0_OUT1 #23 PCNT0_S0IN #24 PCNT0_S1IN #23 BUSBY BUSAX silabs.com | Building a more connected world. Radio Other FRC_DCLK #22 FRC_DOUT #21 FRC_DFRAME #20 MODEM_DCLK #22 MODEM_DIN #21 MODEM_DOUT #20 CMU_CLK0 #5 PRS_CH3 #13 PRS_CH4 #5 PRS_CH5 #4 PRS_CH6 #16 ACMP0_O #22 ACMP1_O #22 LES_CH6 GPIO_EM4WU4 US0_TX #23 US0_RX #22 US0_CLK #21 US0_CS #20 US0_CTS #19 US0_RTS #18 US1_TX #23 US1_RX #22 US1_CLK #21 US1_CS #20 US1_CTS #19 US1_RTS #18 LEU0_TX #23 LEU0_RX #22 I2C0_SDA #23 I2C0_SCL #22 FRC_DCLK #23 FRC_DOUT #22 FRC_DFRAME #21 MODEM_DCLK #23 MODEM_DIN #22 MODEM_DOUT #21 CMU_CLK1 #5 PRS_CH3 #14 PRS_CH4 #6 PRS_CH5 #5 PRS_CH6 #17 ACMP0_O #23 ACMP1_O #23 LES_CH7 DBG_SWO #2 US0_TX #24 US0_RX #23 US0_CLK #22 US0_CS #21 US0_CTS #20 US0_RTS #19 US1_TX #24 US1_RX #23 US1_CLK #22 US1_CS #21 US1_CTS #20 US1_RTS #19 US2_TX #14 US2_RX #13 US2_CLK #12 US2_CS #11 US2_CTS #10 US2_RTS #9 LEU0_TX #24 LEU0_RX #23 I2C0_SDA #24 I2C0_SCL #23 FRC_DCLK #24 FRC_DOUT #23 FRC_DFRAME #22 MODEM_DCLK #24 MODEM_DIN #23 MODEM_DOUT #22 PRS_CH0 #0 PRS_CH1 #7 PRS_CH2 #6 PRS_CH3 #5 ACMP0_O #24 ACMP1_O #24 DBG_SWCLKTCK BOOT_TX Rev. 1.4 | 67 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog PF1 PF2 PF3 Timers Communication Radio Other BUSAY BUSBX TIM0_CC0 #25 TIM0_CC1 #24 TIM0_CC2 #23 TIM0_CDTI0 #22 TIM0_CDTI1 #21 TIM0_CDTI2 #20 TIM1_CC0 #25 TIM1_CC1 #24 TIM1_CC2 #23 TIM1_CC3 #22 WTIM0_CDTI1 #31 WTIM0_CDTI2 #29 LETIM0_OUT0 #25 LETIM0_OUT1 #24 PCNT0_S0IN #25 PCNT0_S1IN #24 US0_TX #25 US0_RX #24 US0_CLK #23 US0_CS #22 US0_CTS #21 US0_RTS #20 US1_TX #25 US1_RX #24 US1_CLK #23 US1_CS #22 US1_CTS #21 US1_RTS #20 US2_TX #15 US2_RX #14 US2_CLK #13 US2_CS #12 US2_CTS #11 US2_RTS #10 LEU0_TX #25 LEU0_RX #24 I2C0_SDA #25 I2C0_SCL #24 FRC_DCLK #25 FRC_DOUT #24 FRC_DFRAME #23 MODEM_DCLK #25 MODEM_DIN #24 MODEM_DOUT #23 PRS_CH0 #1 PRS_CH1 #0 PRS_CH2 #7 PRS_CH3 #6 ACMP0_O #25 ACMP1_O #25 DBG_SWDIOTMS BOOT_RX BUSBY BUSAX TIM0_CC0 #26 TIM0_CC1 #25 TIM0_CC2 #24 TIM0_CDTI0 #23 TIM0_CDTI1 #22 TIM0_CDTI2 #21 TIM1_CC0 #26 TIM1_CC1 #25 TIM1_CC2 #24 TIM1_CC3 #23 WTIM0_CDTI2 #30 LETIM0_OUT0 #26 LETIM0_OUT1 #25 PCNT0_S0IN #26 PCNT0_S1IN #25 US0_TX #26 US0_RX #25 US0_CLK #24 US0_CS #23 US0_CTS #22 US0_RTS #21 US1_TX #26 US1_RX #25 US1_CLK #24 US1_CS #23 US1_CTS #22 US1_RTS #21 LEU0_TX #26 LEU0_RX #25 I2C0_SDA #26 I2C0_SCL #25 FRC_DCLK #26 FRC_DOUT #25 FRC_DFRAME #24 MODEM_DCLK #26 MODEM_DIN #25 MODEM_DOUT #24 CMU_CLK0 #6 PRS_CH0 #2 PRS_CH1 #1 PRS_CH2 #0 PRS_CH3 #7 ACMP0_O #26 ACMP1_O #26 DBG_TDO DBG_SWO #0 GPIO_EM4WU0 TIM0_CC0 #27 TIM0_CC1 #26 TIM0_CC2 #25 TIM0_CDTI0 #24 TIM0_CDTI1 #23 TIM0_CDTI2 #22 TIM1_CC0 #27 TIM1_CC1 #26 TIM1_CC2 #25 TIM1_CC3 #24 WTIM0_CDTI2 #31 LETIM0_OUT0 #27 LETIM0_OUT1 #26 PCNT0_S0IN #27 PCNT0_S1IN #26 US0_TX #27 US0_RX #26 US0_CLK #25 US0_CS #24 US0_CTS #23 US0_RTS #22 US1_TX #27 US1_RX #26 US1_CLK #25 US1_CS #24 US1_CTS #23 US1_RTS #22 US2_TX #16 US2_RX #15 US2_CLK #14 US2_CS #13 US2_CTS #12 US2_RTS #11 LEU0_TX #27 LEU0_RX #26 I2C0_SDA #27 I2C0_SCL #26 FRC_DCLK #27 FRC_DOUT #26 FRC_DFRAME #25 MODEM_DCLK #27 MODEM_DIN #26 MODEM_DOUT #25 CMU_CLK1 #6 PRS_CH0 #3 PRS_CH1 #2 PRS_CH2 #1 PRS_CH3 #0 ACMP0_O #27 ACMP1_O #27 DBG_TDI BUSAY BUSBX silabs.com | Building a more connected world. Rev. 1.4 | 68 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog PF4 PF5 BUSBY BUSAX BUSAY BUSBX silabs.com | Building a more connected world. Timers Communication Radio Other TIM0_CC0 #28 TIM0_CC1 #27 TIM0_CC2 #26 TIM0_CDTI0 #25 TIM0_CDTI1 #24 TIM0_CDTI2 #23 TIM1_CC0 #28 TIM1_CC1 #27 TIM1_CC2 #26 TIM1_CC3 #25 LETIM0_OUT0 #28 LETIM0_OUT1 #27 PCNT0_S0IN #28 PCNT0_S1IN #27 US0_TX #28 US0_RX #27 US0_CLK #26 US0_CS #25 US0_CTS #24 US0_RTS #23 US1_TX #28 US1_RX #27 US1_CLK #26 US1_CS #25 US1_CTS #24 US1_RTS #23 US2_TX #17 US2_RX #16 US2_CLK #15 US2_CS #14 US2_CTS #13 US2_RTS #12 LEU0_TX #28 LEU0_RX #27 I2C0_SDA #28 I2C0_SCL #27 FRC_DCLK #28 FRC_DOUT #27 FRC_DFRAME #26 MODEM_DCLK #28 MODEM_DIN #27 MODEM_DOUT #26 PRS_CH0 #4 PRS_CH1 #3 PRS_CH2 #2 PRS_CH3 #1 ACMP0_O #28 ACMP1_O #28 TIM0_CC0 #29 TIM0_CC1 #28 TIM0_CC2 #27 TIM0_CDTI0 #26 TIM0_CDTI1 #25 TIM0_CDTI2 #24 TIM1_CC0 #29 TIM1_CC1 #28 TIM1_CC2 #27 TIM1_CC3 #26 LETIM0_OUT0 #29 LETIM0_OUT1 #28 PCNT0_S0IN #29 PCNT0_S1IN #28 US0_TX #29 US0_RX #28 US0_CLK #27 US0_CS #26 US0_CTS #25 US0_RTS #24 US1_TX #29 US1_RX #28 US1_CLK #27 US1_CS #26 US1_CTS #25 US1_RTS #24 US2_TX #18 US2_RX #17 US2_CLK #16 US2_CS #15 US2_CTS #14 US2_RTS #13 LEU0_TX #29 LEU0_RX #28 I2C0_SDA #29 I2C0_SCL #28 FRC_DCLK #29 FRC_DOUT #28 FRC_DFRAME #27 MODEM_DCLK #29 MODEM_DIN #28 MODEM_DOUT #27 PRS_CH0 #5 PRS_CH1 #4 PRS_CH2 #3 PRS_CH3 #2 ACMP0_O #29 ACMP1_O #29 Rev. 1.4 | 69 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog PF6 PF7 BUSBY BUSAX BUSAY BUSBX silabs.com | Building a more connected world. Timers Communication Radio Other TIM0_CC0 #30 TIM0_CC1 #29 TIM0_CC2 #28 TIM0_CDTI0 #27 TIM0_CDTI1 #26 TIM0_CDTI2 #25 TIM1_CC0 #30 TIM1_CC1 #29 TIM1_CC2 #28 TIM1_CC3 #27 LETIM0_OUT0 #30 LETIM0_OUT1 #29 PCNT0_S0IN #30 PCNT0_S1IN #29 US0_TX #30 US0_RX #29 US0_CLK #28 US0_CS #27 US0_CTS #26 US0_RTS #25 US1_TX #30 US1_RX #29 US1_CLK #28 US1_CS #27 US1_CTS #26 US1_RTS #25 US2_TX #19 US2_RX #18 US2_CLK #17 US2_CS #16 US2_CTS #15 US2_RTS #14 LEU0_TX #30 LEU0_RX #29 I2C0_SDA #30 I2C0_SCL #29 FRC_DCLK #30 FRC_DOUT #29 FRC_DFRAME #28 MODEM_DCLK #30 MODEM_DIN #29 MODEM_DOUT #28 CMU_CLK1 #7 PRS_CH0 #6 PRS_CH1 #5 PRS_CH2 #4 PRS_CH3 #3 ACMP0_O #30 ACMP1_O #30 TIM0_CC0 #31 TIM0_CC1 #30 TIM0_CC2 #29 TIM0_CDTI0 #28 TIM0_CDTI1 #27 TIM0_CDTI2 #26 TIM1_CC0 #31 TIM1_CC1 #30 TIM1_CC2 #29 TIM1_CC3 #28 LETIM0_OUT0 #31 LETIM0_OUT1 #30 PCNT0_S0IN #31 PCNT0_S1IN #30 US0_TX #31 US0_RX #30 US0_CLK #29 US0_CS #28 US0_CTS #27 US0_RTS #26 US1_TX #31 US1_RX #30 US1_CLK #29 US1_CS #28 US1_CTS #27 US1_RTS #26 US2_TX #20 US2_RX #19 US2_CLK #18 US2_CS #17 US2_CTS #16 US2_RTS #15 LEU0_TX #31 LEU0_RX #30 I2C0_SDA #31 I2C0_SCL #30 FRC_DCLK #31 FRC_DOUT #30 FRC_DFRAME #29 MODEM_DCLK #31 MODEM_DIN #30 MODEM_DOUT #29 CMU_CLKI0 #1 CMU_CLK0 #7 PRS_CH0 #7 PRS_CH1 #6 PRS_CH2 #5 PRS_CH3 #4 ACMP0_O #31 ACMP1_O #31 GPIO_EM4WU1 Rev. 1.4 | 70 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions 8.3 Alternate Functionality Overview A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings and the associated GPIO pin. Refer to 8.2 GPIO Functionality Table for a list of functions available on each GPIO pin. Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0. Table 8.3. Alternate Functionality Overview Alternate Functionality ACMP0_O LOCATION 0-3 4-7 8 - 11 12 - 15 0: PA0 4: PA4 8: PB13 12: PC7 1: PA1 5: PA5 11: PC6 2: PA2 6: PB11 3: PA3 ACMP1_O 16 - 19 20 - 23 16: PC11 21: PD13 24: PF0 28: PF4 13: PC8 22: PD14 25: PF1 29: PF5 14: PC9 23: PD15 26: PF2 30: PF6 27: PF3 31: PF7 21: PD13 24: PF0 28: PF4 15: PC10 28 - 31 0: PA0 4: PA4 8: PB13 12: PC7 1: PA1 5: PA5 11: PC6 13: PC8 22: PD14 25: PF1 29: PF5 2: PA2 6: PB11 14: PC9 23: PD15 26: PF2 30: PF6 27: PF3 31: PF7 3: PA3 15: PC10 16: PC11 24 - 27 Description Analog comparator ACMP0, digital output. Analog comparator ACMP1, digital output. 0: PA0 Analog to digital converter ADC0 external reference input negative pin. 0: PA1 Analog to digital converter ADC0 external reference input positive pin. BOOT_RX 0: PF1 Bootloader RX. BOOT_TX 0: PF0 Bootloader TX. ADC0_EXTN ADC0_EXTP CMU_CLK0 CMU_CLK1 CMU_CLKI0 0: PA1 5: PD14 2: PC6 6: PF2 3: PC11 7: PF7 0: PA0 5: PD15 2: PC7 6: PF3 3: PC10 7: PF6 0: PB13 4: PA5 1: PF7 2: PC6 silabs.com | Building a more connected world. Clock Management Unit, clock output number 0. Clock Management Unit, clock output number 1. Clock Management Unit, clock input number 0. Rev. 1.4 | 71 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 0: PF0 DBG_SWCLKTCK DBG_SWDIOTMS 16 - 19 20 - 23 24 - 27 28 - 31 Description Debug-interface Serial Wire clock input and JTAG Test Clock. Debug-interface Serial Wire data input / output and JTAG Test Mode Select. Note that this function is enabled to the pin out of reset, and has a built-in pull up. 0: PF2 1: PB13 2: PD15 3: PC11 0: PF3 Debug-interface Serial Wire viewer Output. Note that this function is not enabled after reset, and must be enabled by software to be used. Debug-interface JTAG Test Data In. Note that this function becomes available after the first valid JTAG command is received, and has a built-in pull up when JTAG is active. DBG_TDI 0: PF2 Debug-interface JTAG Test Data Out. Note that this function becomes available after the first valid JTAG command is received. DBG_TDO ETM_TCLK 12 - 15 Note that this function is enabled to the pin out of reset, and has a built-in pull down. 0: PF1 DBG_SWO 8 - 11 1: PA5 3: PC6 3: PC7 ETM_TD0 silabs.com | Building a more connected world. Embedded Trace Module ETM clock . Embedded Trace Module ETM data 0. Rev. 1.4 | 72 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 3: PC8 Embedded Trace Module ETM data 1. 3: PC9 Embedded Trace Module ETM data 2. 3: PC10 Embedded Trace Module ETM data 3. ETM_TD1 ETM_TD2 ETM_TD3 FRC_DCLK 0: PA0 4: PA4 8: PB13 12: PC7 1: PA1 5: PA5 11: PC6 2: PA2 6: PB11 3: PA3 FRC_DFRAME 21: PD13 24: PF0 28: PF4 13: PC8 22: PD14 25: PF1 29: PF5 14: PC9 23: PD15 26: PF2 30: PF6 16: PC11 27: PF3 31: PF7 20: PD14 24: PF2 28: PF6 15: PC10 0: PA2 4: PB11 9: PC6 12: PC9 1: PA3 6: PB13 10: PC7 13: PC10 21: PD15 25: PF3 29: PF7 11: PC8 14: PC11 22: PF0 26: PF4 30: PA0 23: PF1 27: PF5 31: PA1 2: PA4 3: PA5 FRC_DOUT 19: PD13 0: PA1 4: PA5 10: PC6 12: PC8 20: PD13 24: PF1 28: PF5 1: PA2 5: PB11 11: PC7 13: PC9 21: PD14 25: PF2 29: PF6 2: PA3 7: PB13 14: PC10 22: PD15 26: PF3 30: PF7 15: PC11 23: PF0 27: PF4 31: PA0 3: PA4 Frame Controller, Data Sniffer Clock. Frame Controller, Data Sniffer Frame active Frame Controller, Data Sniffer Output. 0: PF2 Pin can be used to wake the system up from EM4 0: PF7 Pin can be used to wake the system up from EM4 0: PD14 Pin can be used to wake the system up from EM4 0: PA3 Pin can be used to wake the system up from EM4 0: PB13 Pin can be used to wake the system up from EM4 0: PC10 Pin can be used to wake the system up from EM4 GPIO_EM4WU0 GPIO_EM4WU1 GPIO_EM4WU4 GPIO_EM4WU8 GPIO_EM4WU9 GPIO_EM4WU12 I2C0_SCL Description 0: PA1 4: PA5 10: PC6 12: PC8 20: PD13 24: PF1 28: PF5 1: PA2 5: PB11 11: PC7 13: PC9 21: PD14 25: PF2 29: PF6 2: PA3 7: PB13 14: PC10 22: PD15 26: PF3 30: PF7 15: PC11 23: PF0 27: PF4 31: PA0 3: PA4 silabs.com | Building a more connected world. I2C0 Serial Clock Line input / output. Rev. 1.4 | 73 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions Alternate Functionality I2C0_SDA LOCATION 0-3 4-7 8 - 11 12 - 15 0: PA0 4: PA4 8: PB13 12: PC7 1: PA1 5: PA5 11: PC6 2: PA2 6: PB11 3: PA3 16 - 19 20 - 23 16: PC11 21: PD13 24: PF0 28: PF4 13: PC8 22: PD14 25: PF1 29: PF5 14: PC9 23: PD15 26: PF2 30: PF6 27: PF3 31: PF7 15: PC10 19: PC10 LES_CH7 LES_CH8 LES_CH9 LES_CH10 LES_CH11 LES_CH12 LES_CH13 LETIM0_OUT0 20: PC11 I2C1 Serial Data input / output. LESENSE channel 5. 0: PD14 LESENSE channel 6. 0: PD15 LESENSE channel 7. 0: PA0 LESENSE channel 8. 0: PA1 LESENSE channel 9. 0: PA2 LESENSE channel 10. 0: PA3 LESENSE channel 11. 0: PA4 LESENSE channel 12. 0: PA5 LESENSE channel 13. 0: PA0 4: PA4 8: PB13 12: PC7 1: PA1 5: PA5 11: PC6 2: PA2 6: PB11 16: PC11 21: PD13 24: PF0 28: PF4 13: PC8 22: PD14 25: PF1 29: PF5 14: PC9 23: PD15 26: PF2 30: PF6 27: PF3 31: PF7 15: PC10 0: PA1 4: PA5 10: PC6 12: PC8 20: PD13 24: PF1 28: PF5 1: PA2 5: PB11 11: PC7 13: PC9 21: PD14 25: PF2 29: PF6 2: PA3 7: PB13 14: PC10 22: PD15 26: PF3 30: PF7 15: PC11 23: PF0 27: PF4 31: PA0 3: PA4 LEU0_RX I2C0 Serial Data input / output. 0: PD13 3: PA3 LETIM0_OUT1 Description I2C1 Serial Clock Line input / output. 19: PC11 I2C1_SDA LES_CH6 28 - 31 18: PC10 I2C1_SCL LES_CH5 24 - 27 0: PA1 4: PA5 10: PC6 12: PC8 20: PD13 24: PF1 28: PF5 1: PA2 5: PB11 11: PC7 13: PC9 21: PD14 25: PF2 29: PF6 2: PA3 7: PB13 14: PC10 22: PD15 26: PF3 30: PF7 15: PC11 23: PF0 27: PF4 31: PA0 3: PA4 silabs.com | Building a more connected world. Low Energy Timer LETIM0, output channel 0. Low Energy Timer LETIM0, output channel 1. LEUART0 Receive input. Rev. 1.4 | 74 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions Alternate Functionality LEU0_TX LOCATION 0-3 4-7 8 - 11 12 - 15 0: PA0 4: PA4 8: PB13 12: PC7 1: PA1 5: PA5 11: PC6 2: PA2 6: PB11 3: PA3 MODEM_DCLK 16: PC11 21: PD13 24: PF0 28: PF4 13: PC8 22: PD14 25: PF1 29: PF5 14: PC9 23: PD15 26: PF2 30: PF6 27: PF3 31: PF7 21: PD13 24: PF0 28: PF4 16: PC11 24 - 27 28 - 31 0: PA0 4: PA4 8: PB13 12: PC7 1: PA1 5: PA5 11: PC6 13: PC8 22: PD14 25: PF1 29: PF5 2: PA2 6: PB11 14: PC9 23: PD15 26: PF2 30: PF6 27: PF3 31: PF7 15: PC10 0: PA1 4: PA5 10: PC6 12: PC8 20: PD13 24: PF1 28: PF5 1: PA2 5: PB11 11: PC7 13: PC9 21: PD14 25: PF2 29: PF6 2: PA3 7: PB13 14: PC10 22: PD15 26: PF3 30: PF7 15: PC11 23: PF0 27: PF4 31: PA0 20: PD14 24: PF2 28: PF6 3: PA4 MODEM_DOUT 20 - 23 15: PC10 3: PA3 MODEM_DIN 16 - 19 0: PA2 4: PB11 9: PC6 12: PC9 1: PA3 6: PB13 10: PC7 13: PC10 21: PD15 25: PF3 29: PF7 11: PC8 14: PC11 22: PF0 26: PF4 30: PA0 23: PF1 27: PF5 31: PA1 2: PA4 19: PD13 3: PA5 LEUART0 Transmit output. Also used as receive input in half duplex communication. MODEM data clock out. MODEM data in. MODEM data out. 0: PA4 Operational Amplifier 0 external negative input. 0: PA2 Operational Amplifier 0 external positive input. 0: PD15 Operational Amplifier 1 external negative input. 0: PD13 Operational Amplifier 1 external positive input. 0: PB13 Operational Amplifier 2 external negative input. 0: PB11 Operational Amplifier 2 external positive input. OPA0_N OPA0_P OPA1_N OPA1_P OPA2_N OPA2_P PCNT0_S0IN Description 0: PA0 4: PA4 8: PB13 12: PC7 1: PA1 5: PA5 11: PC6 2: PA2 6: PB11 3: PA3 silabs.com | Building a more connected world. 21: PD13 24: PF0 28: PF4 13: PC8 22: PD14 25: PF1 29: PF5 14: PC9 23: PD15 26: PF2 30: PF6 27: PF3 31: PF7 15: PC10 16: PC11 Pulse Counter PCNT0 input number 0. Rev. 1.4 | 75 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions Alternate Functionality PCNT0_S1IN LOCATION 0-3 4-7 8 - 11 12 - 15 0: PA1 4: PA5 10: PC6 12: PC8 20: PD13 24: PF1 28: PF5 1: PA2 5: PB11 11: PC7 13: PC9 21: PD14 25: PF2 29: PF6 2: PA3 7: PB13 14: PC10 22: PD15 26: PF3 30: PF7 15: PC11 23: PF0 27: PF4 31: PA0 3: PA4 PRS_CH0 PRS_CH1 PRS_CH2 PRS_CH3 0: PF0 4: PF4 8: PC6 12: PC10 1: PF1 5: PF5 9: PC7 13: PC11 2: PF2 6: PF6 10: PC8 3: PF3 7: PF7 11: PC9 0: PF1 4: PF5 1: PF2 5: PF6 2: PF3 6: PF7 3: PF4 7: PF0 0: PF2 4: PF6 1: PF3 5: PF7 2: PF4 6: PF0 3: PF5 7: PF1 0: PF3 4: PF7 12: PD13 1: PF4 5: PF0 13: PD14 2: PF5 6: PF1 14: PD15 3: PF6 7: PF2 16 - 19 Peripheral Reflex System PRS, channel 4. PRS_CH6 Peripheral Reflex System PRS, channel 5. 5: PD15 4: PA4 1: PA1 5: PA5 2: PA2 6: PB11 Pulse Counter PCNT0 input number 1. Peripheral Reflex System PRS, channel 3. 4: PD14 0: PA0 Description Peripheral Reflex System PRS, channel 2. 6: PD15 3: PD13 28 - 31 Peripheral Reflex System PRS, channel 1. 5: PD14 PRS_CH5 24 - 27 Peripheral Reflex System PRS, channel 0. 4: PD13 PRS_CH4 20 - 23 8: PB13 15: PD13 16: PD14 17: PD15 Peripheral Reflex System PRS, channel 6. 3: PA3 PRS_CH7 0: PA1 4: PA5 1: PA2 5: PB11 2: PA3 7: PB13 10: PA0 Peripheral Reflex System PRS, channel 7. 3: PA4 silabs.com | Building a more connected world. Rev. 1.4 | 76 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions Alternate Functionality PRS_CH8 LOCATION 0-3 4-7 8 - 11 12 - 15 0: PA2 4: PB11 9: PA0 1: PA3 6: PB13 10: PA1 5: PB13 8: PA0 12: PC7 1: PA4 9: PA1 13: PC8 2: PA5 10: PA2 14: PC9 3: PB11 11: PC6 15: PC10 16 - 19 20 - 23 24 - 27 28 - 31 Description Peripheral Reflex System PRS, channel 8. 2: PA4 3: PA5 0: PA3 PRS_CH9 PRS_CH10 0: PC6 4: PC10 1: PC7 5: PC11 16: PC11 Peripheral Reflex System PRS, channel 9. Peripheral Reflex System PRS, channel 10. 2: PC8 3: PC9 PRS_CH11 0: PC7 4: PC11 1: PC8 5: PC6 Peripheral Reflex System PRS, channel 11. 2: PC9 3: PC10 TIM0_CC0 0: PA0 4: PA4 8: PB13 12: PC7 1: PA1 5: PA5 11: PC6 2: PA2 6: PB11 3: PA3 TIM0_CC1 21: PD13 24: PF0 28: PF4 13: PC8 22: PD14 25: PF1 29: PF5 14: PC9 23: PD15 26: PF2 30: PF6 27: PF3 31: PF7 15: PC10 0: PA1 4: PA5 10: PC6 12: PC8 20: PD13 24: PF1 28: PF5 1: PA2 5: PB11 11: PC7 13: PC9 21: PD14 25: PF2 29: PF6 2: PA3 7: PB13 14: PC10 22: PD15 26: PF3 30: PF7 15: PC11 23: PF0 27: PF4 31: PA0 20: PD14 24: PF2 28: PF6 3: PA4 TIM0_CC2 16: PC11 0: PA2 4: PB11 9: PC6 12: PC9 1: PA3 6: PB13 10: PC7 13: PC10 21: PD15 25: PF3 29: PF7 11: PC8 14: PC11 22: PF0 26: PF4 30: PA0 23: PF1 27: PF5 31: PA1 2: PA4 19: PD13 3: PA5 0: PA3 TIM0_CDTI0 TIM0_CDTI1 5: PB13 8: PC6 12: PC10 18: PD13 20: PD15 24: PF3 28: PF7 1: PA4 9: PC7 13: PC11 19: PD14 21: PF0 25: PF4 29: PA0 2: PA5 10: PC8 22: PF1 26: PF5 30: PA1 3: PB11 11: PC9 23: PF2 27: PF6 31: PA2 17: PD13 20: PF0 24: PF4 28: PA0 0: PA4 4: PB13 8: PC7 1: PA5 7: PC6 9: PC8 18: PD14 21: PF1 25: PF5 29: PA1 10: PC9 19: PD15 22: PF2 26: PF6 30: PA2 23: PF3 27: PF7 31: PA3 2: PB11 11: PC10 silabs.com | Building a more connected world. 12: PC11 Timer 0 Capture Compare input / output channel 0. Timer 0 Capture Compare input / output channel 1. Timer 0 Capture Compare input / output channel 2. Timer 0 Complimentary Dead Time Insertion channel 0. Timer 0 Complimentary Dead Time Insertion channel 1. Rev. 1.4 | 77 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions Alternate Functionality TIM0_CDTI2 TIM1_CC0 LOCATION 0-3 4-7 0: PA5 6: PC6 8: PC8 16: PD13 20: PF1 24: PF5 28: PA1 1: PB11 7: PC7 9: PC9 17: PD14 21: PF2 25: PF6 29: PA2 10: PC10 18: PD15 22: PF3 26: PF7 30: PA3 11: PC11 19: PF0 23: PF4 27: PA0 31: PA4 16: PC11 21: PD13 24: PF0 28: PF4 3: PB13 8 - 11 1: PA1 5: PA5 11: PC6 13: PC8 22: PD14 25: PF1 29: PF5 2: PA2 6: PB11 14: PC9 23: PD15 26: PF2 30: PF6 27: PF3 31: PF7 15: PC10 0: PA1 4: PA5 10: PC6 12: PC8 20: PD13 24: PF1 28: PF5 1: PA2 5: PB11 11: PC7 13: PC9 21: PD14 25: PF2 29: PF6 2: PA3 7: PB13 14: PC10 22: PD15 26: PF3 30: PF7 15: PC11 23: PF0 27: PF4 31: PA0 20: PD14 24: PF2 28: PF6 0: PA2 4: PB11 9: PC6 12: PC9 1: PA3 6: PB13 10: PC7 13: PC10 21: PD15 25: PF3 29: PF7 11: PC8 14: PC11 22: PF0 26: PF4 30: PA0 23: PF1 27: PF5 31: PA1 2: PA4 19: PD13 5: PB13 8: PC6 12: PC10 18: PD13 20: PD15 24: PF3 28: PF7 1: PA4 9: PC7 13: PC11 19: PD14 21: PF0 25: PF4 29: PA0 2: PA5 10: PC8 22: PF1 26: PF5 30: PA1 3: PB11 11: PC9 23: PF2 27: PF6 31: PA2 20: PD14 24: PF2 28: PF6 0: PA2 4: PB11 9: PC6 12: PC9 1: PA3 6: PB13 10: PC7 13: PC10 21: PD15 25: PF3 29: PF7 11: PC8 14: PC11 22: PF0 26: PF4 30: PA0 23: PF1 27: PF5 31: PA1 2: PA4 19: PD13 3: PA5 0: PA3 US0_CS US0_CTS 5: PB13 8: PC6 12: PC10 18: PD13 20: PD15 24: PF3 28: PF7 1: PA4 9: PC7 13: PC11 19: PD14 21: PF0 25: PF4 29: PA0 2: PA5 10: PC8 22: PF1 26: PF5 30: PA1 3: PB11 11: PC9 23: PF2 27: PF6 31: PA2 17: PD13 20: PF0 24: PF4 28: PA0 0: PA4 4: PB13 8: PC7 1: PA5 7: PC6 9: PC8 18: PD14 21: PF1 25: PF5 29: PA1 10: PC9 19: PD15 22: PF2 26: PF6 30: PA2 23: PF3 27: PF7 31: PA3 2: PB11 12: PC11 11: PC10 US0_RTS 28 - 31 12: PC7 0: PA3 US0_CLK 24 - 27 8: PB13 3: PA5 TIM1_CC3 20 - 23 4: PA4 3: PA4 TIM1_CC2 16 - 19 0: PA0 3: PA3 TIM1_CC1 12 - 15 0: PA5 6: PC6 8: PC8 16: PD13 20: PF1 24: PF5 28: PA1 1: PB11 7: PC7 9: PC9 17: PD14 21: PF2 25: PF6 29: PA2 10: PC10 18: PD15 22: PF3 26: PF7 30: PA3 11: PC11 19: PF0 23: PF4 27: PA0 31: PA4 3: PB13 silabs.com | Building a more connected world. Description Timer 0 Complimentary Dead Time Insertion channel 2. Timer 1 Capture Compare input / output channel 0. Timer 1 Capture Compare input / output channel 1. Timer 1 Capture Compare input / output channel 2. Timer 1 Capture Compare input / output channel 3. USART0 clock input / output. USART0 chip select input / output. USART0 Clear To Send hardware flow control input. USART0 Request To Send hardware flow control output. Rev. 1.4 | 78 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions Alternate Functionality US0_RX LOCATION 0-3 4-7 8 - 11 12 - 15 0: PA1 4: PA5 10: PC6 12: PC8 20: PD13 24: PF1 28: PF5 1: PA2 5: PB11 11: PC7 13: PC9 21: PD14 25: PF2 29: PF6 2: PA3 7: PB13 14: PC10 22: PD15 26: PF3 30: PF7 15: PC11 23: PF0 27: PF4 31: PA0 21: PD13 24: PF0 28: PF4 3: PA4 US0_TX US1_CLK 16 - 19 8: PB13 12: PC7 1: PA1 5: PA5 11: PC6 13: PC8 22: PD14 25: PF1 29: PF5 2: PA2 6: PB11 14: PC9 23: PD15 26: PF2 30: PF6 27: PF3 31: PF7 20: PD14 24: PF2 28: PF6 15: PC10 0: PA2 4: PB11 9: PC6 12: PC9 1: PA3 6: PB13 10: PC7 13: PC10 21: PD15 25: PF3 29: PF7 11: PC8 14: PC11 22: PF0 26: PF4 30: PA0 23: PF1 27: PF5 31: PA1 2: PA4 0: PA3 US1_CTS 19: PD13 5: PB13 8: PC6 12: PC10 18: PD13 20: PD15 24: PF3 28: PF7 1: PA4 9: PC7 13: PC11 19: PD14 21: PF0 25: PF4 29: PA0 2: PA5 10: PC8 22: PF1 26: PF5 30: PA1 3: PB11 11: PC9 23: PF2 27: PF6 31: PA2 17: PD13 20: PF0 24: PF4 28: PA0 0: PA4 4: PB13 8: PC7 1: PA5 7: PC6 9: PC8 18: PD14 21: PF1 25: PF5 29: PA1 10: PC9 19: PD15 22: PF2 26: PF6 30: PA2 23: PF3 27: PF7 31: PA3 2: PB11 12: PC11 11: PC10 US1_RTS US1_RX 28 - 31 4: PA4 3: PA5 US1_CS 24 - 27 0: PA0 3: PA3 16: PC11 20 - 23 0: PA5 6: PC6 8: PC8 16: PD13 20: PF1 24: PF5 28: PA1 1: PB11 7: PC7 9: PC9 17: PD14 21: PF2 25: PF6 29: PA2 10: PC10 18: PD15 22: PF3 26: PF7 30: PA3 11: PC11 19: PF0 23: PF4 27: PA0 31: PA4 3: PB13 0: PA1 4: PA5 10: PC6 12: PC8 20: PD13 24: PF1 28: PF5 1: PA2 5: PB11 11: PC7 13: PC9 21: PD14 25: PF2 29: PF6 2: PA3 7: PB13 14: PC10 22: PD15 26: PF3 30: PF7 15: PC11 23: PF0 27: PF4 31: PA0 3: PA4 silabs.com | Building a more connected world. Description USART0 Asynchronous Receive. USART0 Synchronous mode Master Input / Slave Output (MISO). USART0 Asynchronous Transmit. Also used as receive input in half duplex communication. USART0 Synchronous mode Master Output / Slave Input (MOSI). USART1 clock input / output. USART1 chip select input / output. USART1 Clear To Send hardware flow control input. USART1 Request To Send hardware flow control output. USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO). Rev. 1.4 | 79 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions Alternate Functionality US1_TX LOCATION 0-3 4-7 8 - 11 12 - 15 0: PA0 4: PA4 8: PB13 12: PC7 1: PA1 5: PA5 11: PC6 2: PA2 6: PB11 3: PA3 16 - 19 20 - 23 16: PC11 21: PD13 24: PF0 28: PF4 13: PC8 22: PD14 25: PF1 29: PF5 14: PC9 23: PD15 26: PF2 30: PF6 27: PF3 31: PF7 15: PC10 US2_CLK 12: PF0 16: PF5 13: PF1 17: PF6 14: PF3 18: PF7 24 - 27 28 - 31 Description USART1 Asynchronous Transmit. Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI). 30: PA5 USART2 clock input / output. 15: PF4 11: PF0 US2_CS 12: PF1 16: PF6 13: PF3 17: PF7 29: PA5 USART2 chip select input / output. 14: PF4 15: PF5 US2_CTS 10: PF0 12: PF3 11: PF1 13: PF4 16: PF7 28: PA5 USART2 Clear To Send hardware flow control input. 14: PF5 15: PF6 US2_RTS 9: PF0 12: PF4 10: PF1 13: PF5 11: PF3 14: PF6 27: PA5 USART2 Request To Send hardware flow control output. 15: PF7 US2_RX 13: PF0 16: PF4 14: PF1 17: PF5 15: PF3 18: PF6 31: PA5 USART2 Synchronous mode Master Input / Slave Output (MISO). 19: PF7 0: PA5 14: PF0 16: PF3 15: PF1 17: PF4 18: PF5 US2_TX 19: PF6 0: PA1 VDAC0_EXT silabs.com | Building a more connected world. USART2 Asynchronous Receive. 20: PF7 USART2 Asynchronous Transmit. Also used as receive input in half duplex communication. USART2 Synchronous mode Master Output / Slave Input (MOSI). Digital to analog converter VDAC0 external reference input pin. Rev. 1.4 | 80 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 0: PA3 Digital to Analog Converter DAC0 output channel number 0. 0: PA5 Digital to Analog Converter DAC0 alternative output for channel 0. VDAC0_OUT0 / OPA0_OUT VDAC0_OUT0AL T / OPA0_OUTALT 1: PD13 2: PD15 0: PD14 Digital to Analog Converter DAC0 output channel number 1. 1: PA2 Digital to Analog Converter DAC0 alternative output for channel 1. VDAC0_OUT1 / OPA1_OUT VDAC0_OUT1AL T / OPA1_OUTALT WTIM0_CC0 WTIM0_CC1 2: PA4 0: PA0 4: PA4 1: PA1 5: PA5 15: PB11 17: PB13 26: PC6 28: PC8 27: PC7 29: PC9 2: PA2 30: PC10 3: PA3 31: PC11 0: PA2 13: PB11 24: PC6 28: PC10 1: PA3 15: PB13 25: PC7 29: PC11 2: PA4 26: PC8 3: PA5 27: PC9 0: PA4 WTIM0_CC2 Description 11: PB11 13: PB13 1: PA5 22: PC6 24: PC8 23: PC7 25: PC9 Wide timer 0 Capture Compare input / output channel 0. Wide timer 0 Capture Compare input / output channel 1. Wide timer 0 Capture Compare input / output channel 2. 26: PC10 27: PC11 7: PB11 9: PB13 WTIM0_CDTI0 18: PC6 20: PC8 29: PD13 19: PC7 21: PC9 30: PD14 22: PC10 31: PD15 Wide timer 0 Complimentary Dead Time Insertion channel 0. 23: PC11 WTIM0_CDTI1 3: PB11 5: PB11 16: PC6 20: PC10 7: PB13 17: PC7 21: PC11 5: PB13 WTIM0_CDTI2 28: PD14 29: PD15 18: PC8 30: PF0 19: PC9 31: PF1 14: PC6 16: PC8 25: PD13 28: PF0 15: PC7 17: PC9 26: PD14 29: PF1 18: PC10 27: PD15 30: PF2 19: PC11 silabs.com | Building a more connected world. 27: PD13 Wide timer 0 Complimentary Dead Time Insertion channel 1. Wide timer 0 Complimentary Dead Time Insertion channel 2. 31: PF3 Rev. 1.4 | 81 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions 8.4 Analog Port (APORT) Client Maps The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. Figure 8.2 APORT Connection Diagram on page 82 shows the APORT routing for this device family (note that available features may vary by part number). A complete description of APORT functionality can be found in the Reference Manual. PF1 ACMP0 PF2 NEG PF3 PF4 PF5 1X 2X 3X 4X NEXT0 NEXT2 NEG 1Y 2Y 3Y 4Y NEXT1 ADC0 AX AY BX BY EXTP EXTN POS NEG OPA0 OUT POS DY DX CY CX PB13 NEG OPA2_N OUT2 1X IDAC0 OPA1_P 1X 2X 3X 4X POS OPA1_N 1Y 2Y 3Y 4Y NEG 1Y OUT0ALT OPA0_N OUT1ALT OUT0 OPA1 OUT2 OUT2ALT OUT1 OUT2 OUT3 OUT4 NEXT2 VDAC0_OUT1ALT PA5 PA4 PA3 OPA0_P OUT1 OUT1ALT OUT1 OUT2 OUT3 OUT4 NEXT1 VDAC0_OUT0ALT OUT1ALT ADC_EXTP OUT VDAC0_OUT1ALT PA2 PA1 ADC_EXTN PA0 OPA1_N OUT0ALT PD15 VDAC0_OUT0ALT OUT1 OUT PB11 OPA2_P OPA2_P 1X 2X 3X 4X OPA2_N 1Y 2Y 3Y 4Y PB12 1X 1Y 3X 3Y 2X 2Y 4X 4Y VDAC0_OUT0ALT BUSAX, BUSBY, ... PB14 VDAC0_OUT0ALT APORTnX, APORTnY AX, BY, … PB15 ACMP1 OPA1_P CEXT_SENSE OUT0 OUT0ALT OUT1 OUT2 OUT3 OUT4 NEXT0 1Y 2Y 3Y 4Y NEXT1 NEXT0 POS OUT0ALT CSEN OPA0_N 1Y 2Y 3Y 4Y 1X 2X 3X 4X NEXT1 NEXT0 OUT1ALT CEXT OPA0_P 1X 2X 3X 4X NEG OPA2 nX, nY 1Y 2Y 3Y 4Y NEXT1 NEXT0 POS PF6 PF7 PC6 PC7 PC9 PC8 PC10 PC11 POS PF0 1X 2X 3X 4X NEXT1 NEXT0 PD14 PD13 PD12 PD11 PD10 PD9 Figure 8.2. APORT Connection Diagram Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins. silabs.com | Building a more connected world. Rev. 1.4 | 82 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared bus used by this connection is indicated in the Bus column. CH0 CH1 CH2 CH3 CH4 CH5 CH6 PC6 PC6 PA0 PD13 PD14 PD15 PD13 PD14 PD15 PA0 PA1 PA1 PA2 CH7 PC8 PC7 PC7 PC8 PC9 PC10 PA4 PA3 PA3 PA4 PA5 PA5 PA2 PF0 PB11 PB11 CH8 CH9 PC9 PC11 PC11 PF1 PF1 PB13 PB13 silabs.com | Building a more connected world. CH10 PC10 CH11 CH12 CH13 CH14 CH15 CH16 PF0 CH17 CH18 PF2 PF3 PF3 PF2 CH19 CH20 CH21 PF4 PF4 PF6 PF5 PF7 PF7 PF5 PF6 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus BUSAX BUSAY BUSBX BUSBY BUSCX BUSCY BUSDX BUSDY APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port Table 8.4. ACMP0 Bus and Pin Mapping Rev. 1.4 | 83 silabs.com | Building a more connected world. PD14 PA0 PA2 PA4 BUSDY PB11 PA5 PB11 PA5 PD13 PD15 PA1 PD13 PD15 PA1 PA3 PB13 PB13 PA3 BUSCY BUSDX PD14 PA0 PA2 PA4 BUSCX PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSBY PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSBX PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSAX CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions Table 8.5. ACMP1 Bus and Pin Mapping Rev. 1.4 | 84 silabs.com | Building a more connected world. PD14 PA0 PA2 PA4 BUSDY PB11 PA5 PB11 PA5 PD13 PD15 PA1 PD13 PD15 PA1 PA3 PB13 PB13 PA3 BUSCY BUSDX PD14 PA0 PA2 PA4 BUSCX PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSBY PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSBX PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSAX CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions Table 8.6. ADC0 Bus and Pin Mapping Rev. 1.4 | 85 silabs.com | Building a more connected world. PD13 PD15 PA1 PA3 PA5 PB11 PB13 BUSCY PD14 PA0 PA2 PA4 BUSCX PC6 PC8 PC10 PC7 PC9 PC11 PF1 PF3 PD13 PD15 PA1 PA3 PA5 PD14 PA0 PA2 PA4 BUSCX PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSAX CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port CH2 CH1 CH0 CH2 CH1 CH0 CH3 Table 8.8. IDAC0 Bus and Pin Mapping CH3 PD13 PD15 PA1 PA3 PA5 PF0 PF2 PF4 PF5 PB11 BUSCY PB11 PF7 BUSBX PB13 PF6 BUSBY APORT3Y APORT3X APORT1Y APORT1X PB13 BUSDX CEXT_SENSE CH4 PD14 PA0 PA2 PA4 BUSDY APORT4Y APORT4X APORT2Y APORT2X CEXT CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus APORT1Y APORT1X Port BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions Table 8.7. CSEN Bus and Pin Mapping Rev. 1.4 | 86 silabs.com | Building a more connected world. PD13 PD15 PA1 PA3 PA5 PD14 PA0 PA2 PA4 PC7 PC9 PC11 PF1 PF3 PF5 PF7 PC6 PC8 PC10 PF0 PF2 PF4 PF6 PD14 PA0 PA2 PA4 BUSDY BUSCY PD13 PD15 PA1 PA3 PA5 PB11 BUSAX PB11 BUSBX PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSBY PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y PB13 BUSCX OPA0_P PB13 BUSDX APORT4X APORT3X APORT2X APORT1X CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions Table 8.9. VDAC0 / OPA Bus and Pin Mapping OPA0_N Rev. 1.4 | 87 silabs.com | Building a more connected world. PD14 PA0 PA2 PA4 BUSDY PD13 PD15 PA1 PA3 PA5 PC6 PC8 PC10 PF0 PF2 PF4 PF6 PC7 PC9 PC11 PF1 PF3 PF5 PF7 PD13 PD15 PA1 PA3 PA5 PB11 BUSDX PB11 BUSAY PD14 PA0 PA2 PA4 BUSCX PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSBX PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSAX APORT4X APORT3X APORT2X APORT1X PB13 BUSBY OPA2_N PB13 BUSCY APORT4Y APORT3Y APORT2Y APORT1Y PD14 PA0 PA2 PA4 BUSDY PD13 PD15 PA1 PA3 PA5 PB11 PB13 BUSCY PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSBY PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions OPA1_N OPA1_P Rev. 1.4 | 88 silabs.com | Building a more connected world. PD14 PA0 PA2 PA4 BUSDY PD13 PD15 PA1 PA3 PA5 PB11 PB13 BUSCY PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSBY PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y PD13 PD15 PA1 PA3 PA5 PB11 PB13 BUSDX PD14 PA0 PA2 PA4 BUSCX PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSBX PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSAX APORT4X APORT3X APORT2X APORT1X PD14 PA0 PA2 PA4 BUSDY PD13 PD15 PA1 PA3 PA5 PB11 PB13 BUSCY PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSBY PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions OPA2_OUT OPA2_P VDAC0_OUT0 / OPA0_OUT Rev. 1.4 | 89 silabs.com | Building a more connected world. PD14 PA0 PA2 PA4 BUSDY PD13 PD15 PA1 PA3 PA5 PB11 PB13 BUSCY PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSBY PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Pin Definitions VDAC0_OUT1 / OPA1_OUT Rev. 1.4 | 90 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Package Specifications 9. Package Specifications 9.1 Package Outline Figure 9.1. BGM13P with Antenna - Top and Side View Figure 9.2. BGM13P with U.FL - Top and Side View silabs.com | Building a more connected world. Rev. 1.4 | 91 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Package Specifications Figure 9.3. BGM13P - Bottom View 9.2 Recommended PCB Land Pattern The figure below shows the recommended land pattern. The antenna clearance section is not required for BGM13P module versions with a U.FL connector. Figure 9.4. BGM13P Recommended PCB Land Pattern silabs.com | Building a more connected world. Rev. 1.4 | 92 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Package Specifications 9.3 Package Marking The figure below shows the module markings printed on the RF-shield. Figure 9.5. BGM13P Package Marking Note: Module memory size in the Ordering Code (F512) is encoded as "H" in the package top mark. Mark Description The package marking consists of: • BGM13Pxxxxxxx - Part number designation. • Model: BGM13Pxxxx – Model number designation. • QR Code: YYWWMMABCDE • YY - Last two digits of the assembly year. • WW - Two-digit workweek when the device was assembled. • MMABCDE - Silicon Labs unit code. • YYWWTTTTTT • YY – Last two digits of the assembly year. • WW – Two-digit workweek when the device was assembled. • TTTTTT – Manufacturing trace code. The first letter is the device revision. • Certification marks such as the CE logo, FCC and IC IDs, etc. will be engraved on the grayed out area, according to regulatory body requirements. silabs.com | Building a more connected world. Rev. 1.4 | 93 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Soldering Recommendations 10. Soldering Recommendations The BGM13P is compatible with industrial standard reflow profile for Pb-free solders. The reflow profile used is dependent on the thermal mass of the entire populated PCB, heat transfer efficiency of the oven, and particular type of solder paste used. • • • • • • • • Refer to technical documentations of particular solder paste for profile configurations. Avoid using more than two reflow cycles. A no-clean, type-3 solder paste is recommended. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. Recommended stencil thickness is 0.100mm (4 mils). Refer to the recommended PCB land pattern for an example stencil aperture size. For further recommendation, please refer to the JEDEC/IPC J-STD-020, IPC-SM-782 and IPC 7351 guidelines. Above notes and stencil design are shared as recommendations only. A customer or user may find it necessary to use different parameters and fine tune their SMT process as required for their application and tooling. silabs.com | Building a more connected world. Rev. 1.4 | 94 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Certifications 11. Certifications 11.1 Qualified Antenna Types The BGM13P variants supporting an external antenna have been designed to operate with a standard 2.14 dBi dipole antenna. Any antenna of a different type or with a gain higher than 2.14 dBi is strictly prohibited for use with this device. Using an antenna of a different type or gain more than 2.14 dBi will require additional testing for FCC, CE and IC. The required antenna impedance is 50 Ω. Table 11.1. Qualified Antennas for BGM13P Antenna Type Maximum Gain Dipole 2.14 dBi 11.2 Bluetooth The BGM13P is pre-qualified as a Low Energy RF-PHY tested component, having Declaration ID of D037287 and QDID of 101562. For the qualification of an end product embedding the BGM13P, the above should be combined with the most up to date Wireless Gecko Link Layer and Host components. 11.3 CE and UKCA - EU and UK The BGM13P22 module is in conformity with the essential requirements and other relevant requirements of the Radio Equipment Directive (RED) (2014/53/EU) and of the UK's Radio Equipment Regulations (RER) (S.I. 2017/1206). Please note that every application using the BGM13P22 will need to perform the radio EMC tests on the end product, according to EN 301 489-17. It is ultimately the responsibility of the manufacturer to ensure the compliance of the end-product. The specific product assembly may have an impact to RF radiated characteristics, and manufacturers should carefully consider RF radiated testing with the end-product assembly. The modules are entitled to carry the CE and UKCA Marks, and a formal Declaration of Conformity (DoC) is available at the product web page which is reachable starting from https://www.silabs.com/. With regards to the Bluetooth Low Energy protocol, the BGM13P32 module is in conformity with the essential requirements and other relevant requirements of the Radio Equipment Directive (RED) and of the UK's Radio Equipment Regulations (RER) at up to 10 dBm RF transmit power when not using Adaptive Frequency Hopping (AFH). With early module firmware versions that do not support AFH and that do not have built-in functionality to limit the max RF transmit power to 10 dBm automatically, it is responsibility of the endproduct's manufacturer to limit output power accordingly. With newer firmware versions supporting AFH, the end-product’s manufacturer has the option to enable AFH and transmit at full output power while the module remains compliant or, alternatively, to disable AFH in which case the max RF transmit power will be automatically limited to 10 dBm, making the module compliant in all cases. Please refer to the firmware change log to verify which version introduced AFH. silabs.com | Building a more connected world. Rev. 1.4 | 95 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Certifications 11.4 FCC This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: 1. This device may not cause harmful interference, and 2. This device must accept any interference received, including interference that may cause undesirable operation. Any changes or modifications not expressly approved by Silicon Labs could void the user’s authority to operate the equipment. FCC RF Radiation Exposure Statement: This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End users must follow the specific operating instructions for satisfying RF exposure compliance. This transmitter meets both portable and mobile limits as demonstrated in the RF Exposure Analysis. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter except in accordance with FCC multi-transmitter product procedures. OEM Responsibilities to comply with FCC Regulations: OEM integrator is responsible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.). • With BGM13P32 the antenna(s) must be installed such that a minimum separation distance of 50.5 mm is maintained between the radiator (antenna) and all persons at all times. • With BGM13P22 the antenna(s) must be installed such that a minimum separation distance of 9 mm is maintained between the radiator (antenna) and all persons at all times. • The transmitter module must not be co-located or operating in conjunction with any other antenna or transmitter except in accordance with FCC multi-transmitter product procedures. Important Note: In the event that the above conditions cannot be met (for certain configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization. End Product Labeling The variants of BGM13P Modules are labeled with their own FCC ID. If the FCC ID is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. In that case, the final end product must be labeled in a visible area with the following: "Contains Transmitter Module FCC ID: QOQBGM13P" Or "Contains FCC ID: QOQBGM13P" The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module or change RF related parameters in the user manual of the end product. silabs.com | Building a more connected world. Rev. 1.4 | 96 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Certifications 11.5 ISED Canada ISEDC This radio transmitter (IC: 5123A-BGM13P) has been approved by Industry Canada to operate with the antenna types listed above, with the maximum permissible gain indicared. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device. This device complies with Industry Canada’s license-exempt RSS standards. Operation is subject to the following two conditions: 1. This device may not cause interference; and 2. This device must accept any interference, including interference that may cause undesired operation of the device RF Exposure Statement Exception from routine SAR evaluation limits are given in RSS-102 Issue 5. The models BGM13P32A and BGM13P32E meet the given requirements when the minimum separation distance to human body is 40 mm. The models BGM13P22A and BGM13P22E meet the given requirements when the minimum separation distance to human body is 20 mm. RF exposure or SAR evaluation is not required when the separation distance is same or more than stated above. If the separation distance is less than stated above the OEM integrator is responsible for evaluating the SAR. OEM Responsibilities to comply with IC Regulations The BGM13P modules have been certified for integration into products only by OEM integrators under the following conditions: • The antenna(s) must be installed such that a minimum separation distance as stated above is maintained between the radiator (antenna) and all persons at all times. • The transmitter module must not be co-located or operating in conjunction with any other antenna or transmitter. As long as the two conditions above are met, further transmitter testing will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.). IMPORTANT NOTE In the event that these conditions cannot be met (for certain configurations or co-location with another transmitter), then the ISEDC authorization is no longer considered valid and the IC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate ISEDC authorization. End Product Labeling The BGM13P module is labeled with its own IC ID. If the IC ID is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. In that case, the final end product must be labeled in a visible area with the following: “Contains Transmitter Module IC: 5123A-BGM13P ” or “Contains IC: 5123A-BGM13P” The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module or change RF related parameters in the user manual of the end product. silabs.com | Building a more connected world. Rev. 1.4 | 97 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Certifications ISEDC (Français) Industrie Canada a approuvé l’utilisation de cet émetteur radio (IC: 5123A-BGM13P) en conjonction avec des antennes de type dipolaire à 2.14dBi ou des antennes embarquées, intégrée au produit. L’utilisation de tout autre type d’antenne avec ce composant est proscrite. Ce composant est conforme aux normes RSS, exonérées de licence d'Industrie Canada. Son mode de fonctionnement est soumis aux deux conditions suivantes: 1. Ce composant ne doit pas générer d’interférences. 2. Ce composant doit pouvoir est soumis à tout type de perturbation y compris celle pouvant nuire à son bon fonctionnement. Déclaration d'exposition RF L'exception tirée des limites courantes d'évaluation SAR est donnée dans le document RSS-102 Issue 5. Les modules BGM13P32A and BGM13P32E répondent aux exigences requises lorsque la distance minimale de séparation avec le corps humain est de 40 mm. Les modules BGM13P22A and BGM13P22E répondent aux exigences requises lorsque la distance minimale de séparation avec le corps humain est de 20 mm. La déclaration d’exposition RF ou l'évaluation SAR n'est pas nécessaire lorsque la distance de séparation est identique ou supérieure à celle indiquée ci-dessus. Si la distance de séparation est inférieure à celle mentionnées plus haut, il incombe à l'intégrateur OEM de procédé à une évaluation SAR. Responsabilités des OEM pour une mise en conformité avec le Règlement du Circuit Intégré Le module BGM13P a été approuvé pour l'intégration dans des produits finaux exclusivement réalisés par des OEM sous les conditions suivantes: • L'antenne (s) doit être installée de sorte qu'une distance de séparation minimale indiquée ci-dessus soit maintenue entre le radiateur (antenne) et toutes les personnes avoisinante, ce à tout moment. • Le module émetteur ne doit pas être localisé ou fonctionner avec une autre antenne ou un autre transmetteur que celle indiquée plus haut. Tant que les deux conditions ci-dessus sont respectées, il n’est pas nécessaire de tester ce transmetteur de façon plus poussée. Cependant, il incombe à l’intégrateur OEM de s’assurer de la bonne conformité du produit fini avec les autres normes auxquelles il pourrait être soumis de fait de l’utilisation de ce module (par exemple, les émissions des périphériques numériques, les exigences de périphériques PC, etc.). REMARQUE IMPORTANTE ans le cas où ces conditions ne peuvent être satisfaites (pour certaines configurations ou co-implantation avec un autre émetteur), l'autorisation ISEDC n'est plus considérée comme valide et le numéro d’identification ID IC ne peut pas être apposé sur le produit final. Dans ces circonstances, l'intégrateur OEM sera responsable de la réévaluation du produit final (y compris le transmetteur) et de l'obtention d'une autorisation ISEDC distincte. Étiquetage des produits finis Les modules BGM13P sont étiquetés avec leur propre ID IC. Si l'ID IC n'est pas visible lorsque le module est intégré au sein d'un autre produit, cet autre produit dans lequel le module est installé devra porter une étiquette faisant apparaitre les référence du module intégré. Dans un tel cas, sur le produit final doit se trouver une étiquette aisément lisible sur laquelle figurent les informations suivantes: “Contient le module transmetteur: 5123A-BGM13P ” or “Contient le circuit: 5123A-BGM13P” L'intégrateur OEM doit être conscient qu’il ne doit pas fournir, dans le manuel d’utilisation, d'informations relatives à la façon d'installer ou de d’enlever ce module RF ainsi que sur la procédure à suivre pour modifier les paramètres liés à la radio. silabs.com | Building a more connected world. Rev. 1.4 | 98 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Certifications 11.6 Japan The BGM13P22A and BGM13P22E are certified in Japan with certification number 209-J00282. Since September 1, 2014 it is allowed (and highly recommended) that a manufacturer who integrates a radio module in their host equipment can place the certification mark and certification number (the same marking/number as depicted on the label of the radio module) on the outside of the host equipment. The certification mark and certification number must be placed close to the text in the Japanese language which is provided below. This change in the Radio Law has been made in order to enable users of the combination of host and radio module to verify if they are actually using a radio device which is approved for use in Japan. Certification Text to be Placed on the Outside Surface of the Host Equipment: Translation of the text: “This equipment contains specified radio equipment that has been certified to the Technical Regulation Conformity Certification under the Radio Law.” The "Giteki" marking shown in the figures below must be affixed to an easily noticeable section of the specified radio equipment. Note that additional information may be required if the device is also subject to a telecom approval. Figure 11.1. GITEKI Mark and ID Figure 11.2. GITEKI Mark 11.7 KC South Korea The BGM13P22A and BGM13P22E have an RF certification for import and use in South-Korea. Certification number: R-C-BGT-BGM13P22 The RF-certified module is meant to be integrated into an end-product, which is then exempted from doing the RF emission testing, as long as the recommended design guidance is followed, and the approved antennas are used. EMC testing and any other relevant test applicable to the end-product, plus appropriate labelling of the end-product, might still be required for the full regulatory compliance. silabs.com | Building a more connected world. Rev. 1.4 | 99 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Certifications 11.8 NCC Taiwan The BGM13P22A and BGM13P22E are certified in Taiwan. ID: CCAM18LP1260T0 (BGM13P22A) and CCAM18LP1261T2 (BGM13P22E). According to NCC Low Power Radio Wave Radiation Equipment Management Regulations: Article 12 A low-power RF equipment that has passed the type approval shall not change the frequency, increase the power or change the characteristics and functions of the original design without permission. Article 14 The use of low-power RF equipment shall not affect flight safety and interfere with legal communications; if interference is found, it shall be immediately deactivated and improved until no interference is found. Legal communication in the preceding paragraph refers to radio communications operating in accordance with the provisions of the Telecommunications Act. Low-power RF equipment must withstand interference from legitimate communications or radiological, radiated electrical equipment for industrial, scientific, and medical applications. silabs.com | Building a more connected world. Rev. 1.4 | 100 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Revision History 12. Revision History Revision 1.4 November, 2022 • Updated certifications to reflect UK specifics: 1. Feature List and 11.3 CE and UKCA - EU and UK • Updated 9.3 Package Marking Revision 1.3 June, 2022 • Added timing specifications for RESETn low time in Table 4.21 General-Purpose I/O (GPIO) on page 32. • Removed BIASPROG = 1, FULLBIAS = 0 specifications from Table 4.24 Analog Comparator (ACMP) on page 36. • Removed all references to RFSENSE. Revision 1.21 April, 2020 • • • • • • • • • In the front page block diagram, updated the lowest energy mode for LETIMER. Removed Wake On Radio references wherever applicable since this feature is not supported by the software. Updated 3.6.4 Low Energy Timer (LETIMER) lowest energy mode. Updated PTI description 7.3.2 Packet Trace Interface (PTI). Updated Section 9.1 Package Outline. Updated dimensions 9.2 Recommended PCB Land Pattern. Updated 9.3 Package Marking images and description. Updated text in 11.3 CE and UKCA - EU and UK. Updated 11.7 KC South Korea certification. Revision 1.2 January 2019 • Moved 11.7 Taiwan NCC to 11.8 Taiwan NCC. • Updated text in 11.8 Taiwan NCC. • Added 11.7 KC South Korea. • Updated text and images in section 9.4 Package Marking. • Updated text in section 11.3 CE. Revision 1.1 September 2018 • Added 19 dBm part numbers (BGM13P32) and associated specifications and details. Revision 1.01 August 2018 • Added Electrical Specifications Tables for VDAC, CSEN, OPAMP, PCNT and APORT. • Table 8.2 GPIO Functionality Table on page 62: Sorted by GPIO name. • Removed unbonded I/O from APORT mapping tables. • Added package dimensions for devices with U.FL connection. • Removed tape and reel specifications section. Revision 1.0 February 2018 • Updated 4.1 Electrical Characteristics with latest characterization data and test limits. • Added certification details. silabs.com | Building a more connected world. Rev. 1.4 | 101 BGM13P Wireless Gecko Bluetooth ® Module Data Sheet Revision History Revision 0.2 December 2017 • Added V2 part numbers to Table 2.1 Ordering Information on page 3. Revision 0.1 September 15, 2017 • Initial Release. silabs.com | Building a more connected world. Rev. 1.4 | 102 Simplicity Studio One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux! IoT Portfolio www.silabs.com/IoT SW/HW www.silabs.com/simplicity Quality www.silabs.com/quality Support & Community www.silabs.com/community Disclaimer Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications. Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more information, visit www.silabs.com/about-us/inclusive-lexicon-project Trademark Information Silicon Laboratories Inc. ® , Silicon Laboratories ® , Silicon Labs ® , SiLabs ® and the Silicon Labs logo ® , Bluegiga ® , Bluegiga Logo ® , EFM ® , EFM32 ® , EFR, Ember® , Energy Micro, Energy Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals ® , WiSeConnect , n-Link, ThreadArch ® , EZLink® , EZRadio ® , EZRadioPRO ® , Gecko ® , Gecko OS, Gecko OS Studio, Precision32 ® , Simplicity Studio ® , Telegesis, the Telegesis Logo ® , USBXpress ® , Zentri, the Zentri logo and Zentri DMS, Z-Wave ® , and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA www.silabs.com
BGM13P22F512GA-V2 价格&库存

很抱歉,暂时无法提供与“BGM13P22F512GA-V2”相匹配的价格&库存,您可以联系我们找货

免费人工找货