0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CXA3086

CXA3086

  • 厂商:

    SONY(索尼)

  • 封装:

  • 描述:

    CXA3086 - 6-bit 140MSPS Flash A/D Converter - Sony Corporation

  • 数据手册
  • 价格&库存
CXA3086 数据手册
CXA3086Q 6-bit 140MSPS Flash A/D Converter Description The CXA3086Q is an 6-bit high-speed flash A/D converter capable of digitizing analog signals at the maximum rate of 140MSPS. ECL, PECL or TTL can be selected as the digital input level in accordance with the application. The TTL digital output level allows 1: 2 demultiplexed output. Features • Differential linearity error: ±0.2LSB or less • Integral linearity error: ±0.2LSB or less • High-speed operation with a maximum conversion rate of 140MSPS • Low input capacitance: 7pF • Wide analog input bandwidth: 200MHz • Low power consumption: 358mW • Low error rate • Excellent temperature characteristics • 1: 2 demultiplexed output • 1/2 frequency divided clock output (with reset function) • Compatible with ECL, PECL and TTL digital input levels • Single +5V power supply operation available • Surface mounting package P2D5 (MSB) RESETN/E RESET/E RESETN/T 48 pin QFP (Plastic) Structure Bipolar silicon monolithic IC Applications • Magnetic recording (PRML) • Communications (QPSK, QAM) • LCDs • Digital oscilloscopes P2D0 (LSB) 2 P2D4 P2D3 P2D2 12 11 10 DVEE3 13 AGND 14 VRBS 15 VRB 16 AVCC 17 N.C. 18 VIN 19 AVCC 20 VRT 21 VRTS 22 AGND 23 DGND3 24 9 8 7 6 5 P2D1 Pin Configuration (Top View) DGND2 4 3 DGND2 1 48 DVCC2 47 DVCC1 46 DGND1 45 N.C. 44 PS 43 CLKOUT 42 INV 41 SELECT 40 N.C. 39 DGND1 38 DVCC1 37 DVCC2 25 26 27 28 29 30 31 32 33 34 35 36 DVCC2 P1D2 P1D4 CLKN/E P1D0 (LSB) Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. –1– P1D5 (MSB) DGND2 DGND2 DVCC2 CLK/E CLK/T P1D1 P1D3 E95619C77 CXA3086Q Absolute Maximum Ratings (Ta = 25°C) • Supply voltage AVCC, DVCC1, DVCC2 DGND3 DVEE3 DGND3 – DVEE3 –0.5 to +7.0 –0.5 to +7.0 –7.0 to +0.5 –0.5 to +7.0 Unit V V V V VIN VRT – 2.7 to AVCC V VRT 2.7 to AVCC V VRB VIN – 2.7 to AVCC V |VRT – VRB| 2.5 V • Digital input voltage ECL (∗∗∗/E∗1) DVEE3 to +0.5 V PECL (∗∗∗/E) –0.5 to DGND3 V TTL (∗∗∗/T, INV, PS) –0.5 to DVCC1 V other (SELECT) –0.5 to DVCC1 V VID∗2 (|∗∗∗/E – ∗∗∗N/E|) 2.7 V • Storage temperature Tstg –65 to +150 °C • Allowable power dissipationPD 1.2 W (when mounted on a glass fabric base epoxy board with 76mm x 114mm, 1.6mm thick) Recommended Operating Conditions With a single power supply With dual power supplies Unit Min. Typ. Max. Min. Typ. Max. Supply voltage DVCC1, DVCC2, AVCC +4.75 +5.0 +5.25 +4.75 +5.0 +5.25 V DGND1, DGND2, AGND –0.05 0 +0.05 –0.05 0 +0.05 V DGND3 +4.75 +5.0 +5.25 –0.05 0 +0.05 V –0.05 0 +0.05 –5.5 –5.0 –4.75 V DVEE3 Analog input voltage VIN VRB VRT VRB VRT V Reference input voltage VRT +2.9 +4.1 +2.9 +4.1 V VRB +1.4 +2.6 +1.4 +2.6 V |VRT – VRB| 1.5 2.1 1.5 2.1 V Digital input voltage ECL (∗∗∗/E) : VIH DGND3 – 1.05 DGND3 – 0.5 V : VIL DGND3 – 3.2 DGND3 – 1.4 V PECL (∗∗∗/E) : VIH DGND3 – 1.05 DGND3 – 0.5 V : VIL DGND3 – 3.2 DGND3 – 1.4 V TTL (∗∗∗/T, INV, PS): VIH 2.0 2.0 V : VIL 0.8 0.8 V other (SELECT) : VIH DVCC1 DVCC1 V : VIL DGND1 DGND1 V ∗2 (|∗∗∗/E – ∗∗∗N/E|) VID 0.4 0.8 0.4 0.8 V Maximum conversion rate Fc (Straight mode) 100 100 MSPS (DMUX mode) 140 140 MSPS Ambient temperature Ta –20 +75 –20 +75 °C • Analog input voltage • Reference input voltage • • • • • • ∗1 ∗∗∗/E and ∗∗∗/T indicate CLK/E and CLK/T, etc. for the pin name. ∗2 VID: Input Voltage Differential ECL and PECL switching level DGND3 VIH (max.) VIL VTH (DGND3 – 1.2V) VID VIH VIL (min.) –2– CXA3086Q Block Diagram AVCC 17 20 VRTS 22 r1 VRT 21 r 1 INV 42 DVCC1 38 47 9 DVCC2 28 37 48 DGND3 24 (MSB) 35 P1D5 34 P1D4 r LATCHA TTLOUT 2 33 P1D3 32 P1D2 31 P1D1 30 P1D0 (LSB) r r VIN 19 • • • 30 6bit 31 6bit LATCH ENCODER r 32 6bit 6bit r 33 (MSB) 7 P2D5 6 P2D4 LATCHB 6bit TTLOUT r r r2 VRB 16 VRBS 15 r • • • 62 5 P2D3 4 P2D2 3 P2D1 2 P2D0 (LSB) 63 CLK/T 27 CLK/E 25 CLKN/E 26 D RESETN/T 10 RESETN/E 12 RESET/E 11 14 23 AGND 44 PS 41 SELECT 39 46 DGND1 1 8 29 36 DGND2 13 Q Q Select Delay 18 40 45 N.C. 43 CLKOUT DVEE3 –3– CXA3086Q Pin Description and I/O Pin Equivalent Circuit Pin No. 14, 23 Symbol AGND I/O Standard voltage level GND +5V (typ.) Equivalent circuit Description Analog ground. Separated from the digital ground. Analog power supply. Separated from the digital power supply. Digital ground. 17, 20 AVCC 1, 8, DGND1 29, 36, DGND2 39, 46 9, 28, DVCC1 37, 38, DVCC2 47, 48 GND +5V (typ.) +5V (typ.) (With a single power supply) GND (With dual power supplies) GND (With a single power supply) –5V (typ.) (With dual power supplies) Digital power supply. 24 DGND3 Digital power supply. Ground for ECL input. +5V for PECL and TTL input. 13 DVEE3 Digital power supply. –5V for ECL input. Ground for PECL and TTL input. 18, 40, N.C. 45 25 CLK/E I No connected pin. Not connected with the internal circuits. Clock input. CLK/E complementary input. When left open, this pin goes to the threshold potential. Only CLK/E can be used for operation, but complementary input is recommended to attain fast and stable operation. Reset input. When the input is set to low level, the built-in CLK frequency divider circuit can be reset. RESETN/E complementary input. When left open, this pin goes to the threshold voltage. Only RESETN/E can be used for operation. –4– DGND3 26 CLKN/E I r 12 25 r ECL/ PECL 12 RESETN/E I 11 26 1.2V r r DVEE3 11 RESET/E I CXA3086Q Pin No. Symbol I/O Standard voltage level Equivalent circuit DVCC1 Description 27 CLK/T I r/2 Clock input. TTL 10 27 r 1.5V 10 RESETN/T I DGND1 DVEE3 Reset input. When left open, this input goes to high level. When the input is set to low level, the built-in CLK frequency divider circuit can be reset. Data output polarity inversion input. When left open, this input goes to high level. (See Table 1. I/O Correspondence Table.) Power saving input. When the input is set to low level, the power saving mode is set. In this time the all TTL outputs go into the high-impedance state. Normally, set to high level or left open. 42 INV I DVCC1 TTL 44 PS I 42 44 DGND1 DVEE3 DVCC1 41 SELECT Vcc or GND 41 Data output mode selection. (See Table 2. Operating Mode Table.) DGND1 DVEE3 22 VRTS O +4.0V (typ.) 22 21 r1 r Comparator 1 r Reference voltage sense. By-pass to AGND with a 0.1µF chip capacitor. Top reference voltage. By-pass to AGND with a 1µF tantal capacitor and a 0.1µF chip capacitor. Bottom reference voltage. By-pass to AGND with a 1µF tantal capacitor and a 0.1µF chip capacitor. Reference voltage sense. By-pass to AGND with a 0.1µF chip capacitor. 21 VRT I VRTS +r1 x Iref r Comparator 2 r 16 VRB I VRBS –r2 x Iref r Comparator 62 r r Comparator 63 r2 r 15 VRBS O +2.0V (typ.) 16 15 –5– CXA3086Q Pin No. Symbol I/O Standard voltage level AVCC Equivalent circuit Comparator AVCC Description 19 VIN I VRT to VRB Analog input. 19 Vref DVEE3 AGND 30 to 35 2 to 7 P1D0 to P1D5 P2D0 to P2D5 O DVCC1 DVCC2 Port 1 side data output. O TTL 100k 2 to 7 30 to 35 43 DGND2 DVEE3 Port 2 side data output. DGND1 43 CLKOUT O Clock output. (See Table 2. Operating Mode Table.) –6– CXA3086Q Electrical Characteristics (DVCC1, 2, AVCC, DGND3 = +5V, DGND1, 2, AGND, DVEE3 = 0V, VRT = 4V, VRB = 2V, Ta = 25°C) Item Resolution DC characteristics Integral linearity error Differential linearity error Analog input Analog input capacitance Analog input resistance Analog input current Reference input Reference resistance Reference current Residual resistance r1 r2 Digital input (ECL, PECL) Digital input voltage: High : Low Threshold voltage Digital input current : High : Low Digital input capacitance Digital input (TTL) Digital input voltage: High : Low Threshold voltage Digital input current : High : Low Digital input capacitance EIL EDL CIN RIN IIN Rref∗3 Iref∗4 r1 r2 VIH VIL VTH IIH IIL Symbol Conditions Min. Typ. 6 ±0.2 ±0.2 7 16 0 160 6.5 3.0 3.0 DGND3 – 1.05 DGND3 – 3.2 DGND3 – 1.2 Max. Unit bits LSB LSB pF kΩ µA Ω mA Ω Ω V V V µA µA pF V V V µA µA pF V V µA MSPS ps ns ns ns ns ns ns ns ns ns ns VIN = 2Vp-p, Fc = 5MSPS VIN = +3.0V + 0.07Vrms 150 125 225 9.0 4.2 4.2 308 12.5 5.7 5.7 DGND3 – 0.5 DGND3 – 1.4 VIH = DGND3 – 0.8V VIL = DGND3 – 1.6V –50 –75 +50 0 5 VIH VIL VTH IIH IIL 2.0 0.8 1.5 VIH = 3.5V VIL = 0.2V –50 –500 0 0 5 Digital output (TTL) Digital output voltage : High VOH : Low VOL Leak current during output off IOZ Switching characteristics Maximum conversion rate Aperture jitter Sampling delay Clock high pulse width Clock low pulse width RESET Signal setup time RESET Signal hold time CLKOUT output delay Data output delay Output rise time Output fall time Fc Taj Tds Tpw1 Tpw0 T_rs T_rh Td_clk Tdo1 Tdo2 Tr Tf IOH = –2mA IOL = 1mA Power saving mode DMUX mode 2.4 –15 140 3 2.9 2.9 3.5 0 4.5 T∗5 6.5 10 4.5 6 0.5 70 CLK CLK RESETN – CLK RESETN – CLK DMUX mode 0.8 to 2.0V 0.8 to 2.0V (CL = 5pF) (CL = 5pF) (CL = 5pF) (CL = 5pF) (CL = 5pF) 7 T+1 8 2 2 8 T+2 10 ∗ These characteristics are for PECL input, unless otherwise specified. –7– CXA3086Q Item Dynamic characteristics Input bandwidth S/N ratio Symbol Conditions VIN = 2Vp-p, –3dB Fc = 140MSPS, fin = 1kHz Fs DMUX mode Fc = 140MSPS, fin = 34.999MHz Fs DMUX mode Fc = 140MSPS, fin = 1kHz Fs DMUX mode Error > 4LSB Fc = 140MSPS, fin = 34.999MHz Fs DMUX mode Error > 4LSB Fc = 100MSPS, fin = 24.999MHz Fs straight mode Error > 4LSB Min. 200 Typ. Max. Unit MHz dB { { 37.0 34.5 dB TPS∗6 Error rate { { { 10–12 10–9 TPS 10–9 TSP Power supply Supply current Supply current Power consumption Supply current Power consumption ICC IEE Pd∗7 ICC + IEE Pd Power saving mode Power saving mode 54.0 0.4 290 2.0 28 67.5 0.6 360 90 0.8 470 8.0 58 mA mA mW mA mW ∗3 Rref: Resistance value between VRT and VRB ∗4 Iref = VRT – VRB Rref 1 ∗5 T = Fc ∗6 TPS: Times Per Sample ∗7 Pd = (ICC + IEE) · VCC + (VRT – VRB) 2 Rref INV VIN Step D5 VRTS 63 62 : 32 31 : 1 0 11111 11111 : 10000 01111 : 00000 00000 1 D0 D5 10000 00000 : 00111 11000 : 11111 01111 0 D0 00 01 11 00 10 11 VRBS Table 1. I/O Correspondence Table 63 62 61 60 59 58 · · · · · · · 5 4 3 2 1 0 Step 1LSB r1 × Iref r2 × Iref VRT VRTS VIN VRBS VRB –8– CXA3086Q Electrical Characteristics Measurement Circuit Current Consumption Measurement Circuit 5V 5V 100MHz Sampling Delay Measurement Circuit Aperture Jitter Measurement Circuit A Icc 4V VRT AVCC DVCC1 DVCC2 A IEE DGND3 OSC1 φ: Variable Amp VIN fr CLK/E 5MHz PECL CLK OSC2 DVEE3 100MHz ECL Buffer CXA3086Q 6 1.95V VIN Logic Analizer 1024 samples 2V VRB DGND2 DGND1 AGND Integral Linearity Error Measurement Circuit Differential Linearity Error Measurement Circuit +V Aperture Jitter Measurement Method VRT VIN S2 S1: ON when A < B S2: ON when A > B CLK ∆υ ∆t AB Comparator VIN CXA3086Q 6 A6 to A1 A0 “0” DVM Controller B6 to B1 B0 “1” 00···0 to 11···0 6 Buffer CLK VIN 33 32 31 30 29 VRB S1 –V σ (LSB) Sampling timing fluctuation (= aperture jitter) Where σ (LSB) is the deviation of the output codes when the largest slew rate point is sampled at the clock which has exactly the same frequency as the analog input signal, the aperture jitter Taj is: Taj = σ/ ∆υ ∆t = σ/ ( 64 2 × 2πf ) Error Rate Measurement Circuit VIN 6 A B CLK CLK + Latch Signal Source CXA3086Q Latch Comparator A>B Pulse Counter FC – 1kHz 4 2Vp-p Sin Wave 4LSB Signal Source FC 1/8 –9– CXA3086Q Description of Operating Modes The CXA3086Q has two types of operating modes which are selected with Pin 41 (SELECT). Operating mode DMUX mode Straight mode SELECT VCC GND Maximum conversion rate 140MSPS 100MSPS Data output Demultiplexed output 70Mbps Straight output 100Mbps Clock output The input clock is 1/2 frequency divided and output. 70MHz The input clock is inverted and output. 100MHz Table 2. Operating Mode Table 1. DMUX mode (See Application Circuits (1), (2) and (3).) Set the SELECT pin to Vcc for this mode. In this mode, the clock frequency is divided by 2 in the IC, and the data is output after being demultiplexed by this 1/2 frequency divided clock. The 1/2 frequency divided clock, which has adequate setup time and hold time for the output data, is output from the CLKOUT pin. When resetting this 1/2 frequency divided clock, the low level of the RESET signal should be input to the RESETN pin (Pin 10 or 12). The RESET signal requires the setup time (T_rs ≥ 3.5ns) and hold time (T_rh ≥ 0ns) to the clock rising edge because it is synchronized with and taken in the clock. Therefore, set the RESET signal to low for T_rs (min.) + T_rh (min.) = 3.5ns or longer to the clock rising edge. The reset period can be extended by making the low level period of the RESET signal longer because the clock output pin is fixed to low (reset) during the low level period at the clock rising edge. If the reset start timing is regarded as not important, the timing where the RESET signal is set from high to low is not so consequence. However, when the reset is released this timing must become significant because the timing is used to commence the 1/2 frequency divided clock. In this case, the setup time (T_rs) is also necessary. See the timing chart for detail. (This chart shows the example of reset for 2T.) The A/D converter can operate at FC (min.) = 140MSPS in this mode. – 10 – CXA3086Q When the RESET signal is not used. CLK CXA3086Q CLK CLK CLKOUT 6bit DATA AA RESETN CXA3086Q CLK CLKOUT 6bit DATA BB RESETN When the RESET signal is used. CLK RESET signal CXA3086Q CLK CLK RESETN CLKOUT 6bit DATA (Reset period) A CXA3086Q CLK CLKOUT 6bit DATA (Reset period) B RESET signal RESETN 2. Straight mode (See Application Circuits (4), (5) and (6).) Set the SELECT pin to GND for this mode. In this mode, data output can be obtained in accordance with the clock frequency applied to the A/D converter for applications which use the clock applied to the A/D converter as the system clock. The A/D converter can operate at Fc (min.) = 100MSPS in this mode. Digital input level and supply voltage settings The logic input level for the CXA3086Q supports ECL, PECL and TTL levels. The power supplies (DVEE3, DGND3) for the logic input block must be set to match the logic input (CLK and RESET signals) level. Digital input level ECL PECL TTL DVEE3 –5V 0V 0V DGND3 0V +5V +5V Supply voltage Application circuits ±5V +5V +5V (1) (4) (2) (5) (3) (6) Table 3. Logic Input Level and Power Supply Settings – 11 – CXA3086Q Application Circuit 1 (1) DMUX ECL input +5V (D) DG ECL RESET Signal 12 11 10 9 –5V (D) AG 2V AG +5V (A) AG +5V (A) AG AG DG 4V 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 ECL-CLK DG +5V (D) DG P1D0 to P1D5 6 bit Digital Data Latch 6 bit Digital Data 8 7 6 5 4 3 2 1 48 47 46 45 44 43 42 41 40 39 38 37 +5V (D) DG +5V (D) DG +5V (D) DG P2D0 to P2D5 6 bit Digital Data Latch 6 bit Digital Data (2) DMUX PECL input +5V (D) DG PECL RESET Signal 12 11 10 9 DG AG 2V AG +5V (A) 13 14 15 16 17 18 AG +5V (A) AG AG +5V (D) 4V 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 PECL-CLK DG +5V (D) DG P1D0 to P1D5 6 bit Digital Data 6 bit Digital Data Latch 8 7 6 5 4 3 2 1 48 47 46 45 44 43 42 41 40 39 38 37 +5V (D) DG +5V (D) DG +5V (D) DG P2D0 to P2D5 6 bit Digital Data Latch 6 bit Digital Data (3) DMUX TTL input +5V (D) DG TTL RESET Signal 12 11 10 9 DG AG 2V AG +5V (A) 13 14 15 16 17 18 AG +5V (A) AG AG +5V (D) 4V 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 TTL-CLK DG +5V (D) DG P1D0 to P1D5 6 bit Digital Data 6 bit Digital Data Latch 8 7 6 5 4 3 2 1 48 47 46 45 44 43 42 41 40 39 38 37 +5V (D) DG +5V (D) DG +5V (D) 6 bit Digital Data Latch DG P2D0 to P2D5 6 bit Digital Data – 12 – CXA3086Q (4) Straight ECL input +5V (D) DG DG 12 11 10 9 –5V (D) AG 2V AG +5V (A) 13 14 15 16 17 18 AG +5V (A) AG AG DG 4V 19 20 21 22 23 24 8 7 6 5 4 3 2 1 48 47 46 45 44 43 42 41 40 39 38 37 +5V (D) DG +5V (D) DG DG +5V (D) 25 26 27 28 29 30 31 32 33 34 35 36 ECL-CLK DG +5V (D) DG P1D0 to P1D5 6 bit Digital Data Latch 6 bit Digital Data ECL TTL (5) Straight PECL input +5V (D) DG DG 12 11 10 9 DG AG 2V AG +5V (A) 13 14 15 16 17 18 AG +5V (A) AG AG +5V (D) 4V 19 20 21 22 23 24 8 7 6 5 4 3 2 1 48 47 46 45 44 43 42 41 40 39 38 37 +5V (D) DG +5V (D) DG DG +5V (D) 25 26 27 28 29 30 31 32 33 34 35 36 PECL-CLK DG +5V (D) DG P1D0 to P1D5 6 bit Digital Data Latch 6 bit Digital Data PECL TTL (6) Straight TTL input +5V (D) DG DG 12 11 10 9 DG AG 2V AG +5V (A) AG +5V (A) AG AG +5V (D) 4V 13 14 15 16 17 18 19 20 21 22 23 24 8 7 6 5 4 3 2 1 48 47 46 45 44 43 42 41 40 39 38 37 +5V (D) DG +5V (D) DG DG +5V (D) 25 26 27 28 29 30 31 32 33 34 35 36 TTL-CLK DG +5V (D) DG P1D0 to P1D5 6 bit Digital Data Latch 6 bit Digital Data – 13 – CXA3086Q Application Circuit 2 AG Straight Mode TTL I/O (When a single power supply is used) 1µF 4V Analog input AG AG +5V (A) AG AG 1µF VRTS short 10µF 2V VRBS short DG 24 23 22 21 20 19 18 17 16 15 14 13 VIN DGND3 N.C. AGND AVCC VRTS VRB VRBS VRT AGND AVCC 25 CLK/E TTL CLK 26 CLKN/E 27 CLK/T 28 DVCC2 29 DGND2 (LSB) P1D0 P1D1 P1D2 P1D3 P1D4 (MSB) P1D5 30 P1D0 31 P1D1 32 P1D2 33 P1D3 34 P1D4 35 P1D5 RESETN/E 12 RESET/E 11 RESETN/T 10 DVCC2 9 DGND2 8 P2D5 7 P2D4 6 P2D3 5 P2D2 4 P2D1 3 P2D0 2 P2D5 (MSB) P2D4 P2D3 P2D2 P2D1 P2D0 (LSB) CLKOUT SELECT DGND1 DGND1 36 DGND2 DVCC2 DVCC1 DVCC1 47 INV 37 38 39 40 41 42 43 44 45 46 48 10µF DG +5V (D) Short the analog system and digital system at one point immediately under the A/D converter. See the Notes on Operation. is the chip capacitor of 0.1µF. Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. – 14 – CLKOUT DVCC2 N.C. N.C. PS DVEE3 DGND2 1 CXA3086Q DMUX Mode Timing Chart (Select = VCC) Tds N–1 VIN N+3 N T N+1 CLK Tpw1 Tpw0 Tdo2; 8ns (typ.) 6.5ns (min.) 10ns (max.) P1D0 to D5 N+1 2.0V 0.8V 2.0V 0.8V ≈T N+2 N+4 4.5ns (typ.) N+5 N+6 N+7 N+3 P2D0 to D5 Td_clk; 7ns (typ.) 8ns (max.) 4.5ns (min.) CLK OUT 2.0V (Reset period) 0.8V 4.5ns (min.) 8ns (max.) T_rh T_rs T_rh T_rs Td_clk 2.0V 0.8V N N+2 ≈T Tdo1 T + 1ns (typ.) 2.0V 0.8V RESET signal – 15 – CXA3086Q Straight Mode Timing Chart (Select = GND) N–1 VIN Tds 4.5ns (typ.) T N N+1 N+2 N+3 CLK Tpw1 Tpw0 Tdo2; 8ns (typ.) 6.5ns (min.) 10ns (max.) 2.0V 0.8V P1D0 to D5 N–4 N–3 N–2 N–1 N P2D0 to D5 N–5 2.0V 0.8V N–4 N–3 N–2 N–1 Td_clk; 7ns (typ.) 4.5ns (min.) 8ns (max.) CLK OUT (CLK is inverted and output.) 2.0V 0.8V RESET signal – 16 – CXA3086Q Timing of A/D Converter and Peripheral Circuit In the maximum clock rate of the DEMUX Mode, the timing of 3 channels of ADC CLK OUT in same phase is described in detail as below. For example, the CLK OUT from one of the ADC is used as the data latch clock. The clock delay and data delay are showed in the following specification, i.e. Td_clk 4.5ns (min.) to 8.0ns (max.) Tdo2 6.5ns (min.) to 10ns (max.) These values are considered in all the temperature change and power supply variation. When the maximum clock rate 140MSPS is used, the set-up time (ts) is seemed to be very small from above specifications. But the 3 channels of ADC are in the same circuit board, so that the DATA OUT delay and CLK OUT delay will be changed in same trend at the same condition of the temperature change and power supply variation. As a result, 0.5ns of the delay will be faster, when the highest temperature and highest power supply is used. Also, 0.5ns of the delay will be later, when the lowest temperature and lowest power supply is used. These delay can be omitted in this case. When Ta = 25°C, VCC = +5V, the clock delay and data delay are Td_clk 5.0ns (min.) to 7.5ns (max.) Tdo2 7.0ns (min.) to 9.5ns (max.) The timing of the DATA OUT and CLK OUT with above delay variation is showed in below. Consequently, the set-up time for the data latching can be obtained as ts (min.) = 2.5ns. The output delay change of the DATA OUT and CLK OUT due to the temperature change and the power supply variation should have the same trend of the delay change, the minimum ts = 2.5ns can be guaranteed at any temperature change and power supply variation. Analog input R CXA3086Q Vin P1D/out CLK P2D/out RESET CLK OUT CXA3086Q Vin P1D/out CLK P2D/out RESET CLK OUT CXA3086Q Vin P1D/out CLK P2D/out RESET CLK OUT 7ns ( = 1/140MSPS) 6bit 6bit Gate Array Latch Analog input G 6bit 6bit Analog input B CLK RESET 6bit 6bit CLK th-reset RESET signal Td_clk (min.) 5.0ns Td_clk (max.) 7.5ns Tdo2 (min.) 7.0ns Tdo2 (min.) 9.5ns ts (min.) 2.5ns th (min.) 6.5ns CLK OUT P1D/out P2D/out 14ns Note: In the timing chart, the values in the brackets < > are included all the temperature change and the power supply variation. – 17 – CXA3086Q Notes on Operation • The CXA3086Q is a high-speed A/D converter which is capable of TTL, ECL and PECL level clock input. Characteristic impedance should be properly matched to ensure optimum performance during high-speed operation. • The power supply and grounding have a profound influence on converter performance. The power supply and grounding method are particularly important during high-speed operation. General points for caution are as follows. — The ground pattern should be as large as possible. It is recommended to make the power supply and ground patterns wider at an inner layer using a multi-layer board. — To prevent interference between AGND and DGND and between AVcc and DVcc, make sure the respective patterns are separated. To prevent a DC offset in the power supply pattern, connect the AVcc and DVcc lines at one point each via a ferrite-bead filter Shorting the AGND and DGND patterns in one place immediately under the A/D converter improves A/D converter performance. — Ground the power supply pins (AVcc, DVcc1, DVcc2, DVEE3) as close to each pin as possible with a 0.1µF or larger ceramic chip capacitor. (Connect the AVcc pin to the AGND pattern and the DVcc1, DVcc2 and DVEE3 pins to the DGND pattern.) — The digital output wiring should be as short as possible. If the digital output wiring is long, the wiring capacitance will increase, deteriorating the output slew rate and resulting in reflection to the output waveform since the original output slew rate is quite fast. • The analog input pin VIN has an input capacitance of approximately 7pF. To drive the A/D converter with proper frequency response, it is necessary to prevent performance deterioration due to parasitic capacitance or parasitic inductance by using a large capacity drive circuit. keeping wiring as short as possible, and using chip parts for resistors and capacitors, etc. • The VRT and VRB pins must have adequate by-pass to protect them from high-frequency noise. By-pass them to AGND with an approximately 1µF tantal capacitor and 0.1µF chip capacitor as short as possible. • The offset for residual resistance is generated each for the reference voltage pins VRT and VRB. When the offset voltage has no influence on the IC operation, the voltage should be applied to the VRT and VRB pins directly, keeping the VRBS pin open. When the reference voltage is to be supplied to these pins precisely, form the feedback loop circuit with VRT and VRB as a force pin and adjust the offset voltage to be 0V. See the “Application Circuit 2” for details. • If the CLKN/E pin is not used, by-pass this pin to DGND with an approximately 0.1µF capacitor. At this time, approximately DGND3 – 1.2V voltage is generated. However, this is not recommended for use as threshold voltage VBB as it is too weak. • When the digital input level is ECL or PECL level, ∗∗∗/E pins should be used and ∗∗∗/T pins left open. When the digital input level is TTL, ∗∗∗/T pins should be used and ∗∗∗/E pins left open. – 18 – CXA3086Q Example of Representative Characteristics Current consumption vs. Ambient temperature characteristics 70 90 Current consumption vs. Conversion rate characteristics Current consumption [mA] 65 Current consumption [mA] 80 60 70 fin = fCLK – 1kHz 4 DMUX mode CL = 5pF 55 60 50 –25 25 Ta – Ambient temperature [°C] 75 50 0 70 Fc – Conversion rate [MSPS] 140 Analog input current vs. Analog input voltage characteristics 11 100 Reference current vs. Ambient temperature characteristics Analog input current [µA] Reference current [mA] 4 10 VRT = 4V VRB = 2V 9 50 8 7 0 2 3 Analog input voltage [V] –25 25 Ta – Ambient temperature [°C] 75 – 19 – CXA3086Q SNR vs. Input frequency response 40 Error rate vs. Conversion rate characteristics 10–6 Fc = 140MSPS 10–7 35 Error rate [TPS] fin = fCLK – 1kHz 4 Error > 4LSB SNR [dB] 10–8 10–9 30 1 3 5 10 30 Input frequency [MHz] 50 100 10–10 140 160 180 Fc – Conversion rate [MSPS] 200 Maximum conversion rate vs. Ambient temperature characteristics Fc – Maximum conversion rate [MSPS] 180 fCLK – 1kHz 4 Error > 4LSB Error rate: 10–9TPS fin = 170 160 150 140 –25 25 Ta – Ambient temperature [°C] 75 – 20 – CXA3086Q CXA3086Q Evaluation Board Description The CXA3086Q Evaluation Board is a special board designed to maximize and facilitate the evaluation performance of the CXA3086Q. After latching the CXA3086Q output data with a frequency divided clock, the analog signal can be regenerated by a 10-bit high-speed D/A converter. The latched data can also be extracted externally via a 24-pin cable connector. Features • Resolution: • Maximum conversion rate: • Supply voltage: • Dual analog input pins: 6 bits 140MSPS (min.) ±5.0V DIR.IN: AC coupling input pin AMP.IN: Operational amplifier input pin • Clock frequency division: 1/1 to 1/16 Absolute Maximum Ratings • Supply voltage VCC VEE –0.5 to +7.0 –7.0 to +0.5 V V Min. +4.75 –5.25 –0.75 1.5 0.8 Typ. +5.0 0 –5.0 0 2.0 1.0 Max. +5.25 –4.75 +1.05 2.2 1.2 Recommended Operating Conditions • Supply voltage VCC GND VEE • Analog input AMP. IN DIR. IN • Clock input CLK. IN V V V V Vp-p Vp-p – 21 – Block Diagram VRB. R1 VRT. R2 OFFSET. R3 A/D D/A INV INV SELECT PS DMUX NORM NORM NORM Straight INV SW4 D/A OUT (–1.0V) FULL SCALE. R4 FULL SCALE. R5 Vrb Vrt OFFSET SW1 INV SW2 PS SW3 D/A OUT (–1.0V) CON2 DIR IN 6 Vrt P2D0 to D5 A VIN CXA3086Q Vrb VRB CLK (PECL) (TTL) CLKOUT 6 6 (TTL) B S1 P1D0 to D5 VRT (TTL) (TTL) (ECL) 6 6 LATCH AGND 270Ω TTL/ECL AGND DAC 51Ω CON4 P2 side OUT AGND CON1 130Ω AMP IN 82Ω AGND × (–2) CON3 CLK IN VBB TTL/ECL 1kΩ 390Ω LATCH (ECL) DAC Counter PECL/TTL VEE GND VCC CON8 P1 side DATA CON7 P2 side DATA CON6 TTL/ECL – 22 – 4 (PECL) (TTL) S2 4 (TTL) AGND AGND 6 CON5 P1 side OUT AGND 51Ω 0.1µF DGND DGND 1kΩ (ECL) CXA3086Q CXA3086Q Pin Description and I/O Level Pin No. CON1 CON2 Symbol AMP. IN DIR. IN I/O I I Standard I/O level 0.95Vp-p 2.0Vp-p Current Description Doubles the analog input signal amplitude using the operational amplifier. The input impedance is 50Ω. AC coupling input. Suitable for sine waves and other repeating waveforms. The input impedance is 50Ω. The CXA3086Q operates at the PECL level clock using the sine wave-to-PECL conversion circuit. The input impedance is 50Ω. Allows the D/A converted waveform of the CXA3086Q port 2 side data to be observed. The output impedance is 50Ω. Allows the D/A converted waveform of the CXA3086Q port 1 side data to be observed. The output impedance is 50Ω. 0.8A The inside of the board is divided into analog and digital systems. –0.6A The CXA3086Q port 2 side data output is latched at the frequency divided clock and then output. The CXA3086Q port 1 side data output is latched at the frequency divided clock and then output. CON3 CLK. IN I 1.0Vp-p CON4 P2 side OUT O 0 to –1V CON5 P1 side OUT VCC O I I I O O 0 to –1V +5.0V 0V –5.0V TTL TTL CON6 GND VEE CON7 CON8 P2 side DATA P1 side DATA Board Adjustments and Settings 1. VRB.R1: CXA3086Q VRB voltage adjusting volume. 2. 3. 4. 5. 6. VRT.R2: OFFSET.R3: FULL SCALE.R4: FULL SCALE.R5: S1: CXA3086Q VRT voltage adjusting volume. Adjusting volume for matching the AMP.IN input and DIR.IN input signal ranges to the CXA3086Q input range. Full-scale adjusting volume for the port 2 D/A output. (–1V: Typ.) Full-scale adjusting volume for the port 1 D/A output. (–1V: Typ.) Switching junction for the dual analog input pins. Set as follows according to the input pins used. Junction Symbol AMP.IN DIR.IN 7. S2: A OPEN 0.1µF B SHORT 10kΩ 8. 9. 10. 11. SW1 SELECT: SW2 A/D INV: SW3 PS: SW4 D/A INV: Setting junction for the clock frequency division ratio. The operating speed after latching is determined by the frequency division ratio set here. When set to CLK OUT, it operates according to the CXA3086Q clock output. CXA3086Q output mode selector switch. CXA3086Q output polarity inversion switch. CXA3086Q PS switch. D/A converter output polarity inversion switch. – 23 – CXA3086Q Notes on Board Operation 1. The factory settings for the CXA3086Q Evaluation Board are as follows. VRB.R1 = 1.5V VRT.R2 = 3.0V OFFSET.R3 = 2.25V FULL SCALE.R4 = –1V FULL SCALE.R5 = –1V S1 S2 A : OPEN, B : SHORT 8 : SHORT (1/8 frequency division) When using the board in this condition, the input signals should be input at the amplitudes shown below. (The frequency is set as desired.) Analog input signal: CON1 (AMP.IN) 0V center, 800mVp-p or less Clock input signal: CON3 (CLK.IN) 0V center, 1.0Vp-p 2. When the analog signal is input from the CON1 (AMP.IN) pin, IC2:CLC404 limits the input dynamic range of the A/D converter's analog input signal. When the analog input signal is a sine wave or other repeating waveform, the signal can be input from the CON2 (DIR.IN) pin with AC coupling. In these cases, the input dynamic range is not limited, but the VRT level may be limited by IC3: NJM3403A. In the evaluation board of the CXA3086Q, CLC404 (Comlinear) is employed for IC2 to drive the analog input signal. Though, CLC505 (Comlinear) can also be used instead of CLC404, there should be a little change in the peripheral circuit in this case. 3. 4. – 24 – CXA3086Q CXA3086Q Evaluation Board Timing Chart N N+1 CON2 DIR IN 2Vp-p 0V N+3 N+2 CON3 CLK IN 1Vp-p 0V CXA3086Q CLK (PECL) CXA3086Q P1 side DATA N–4 (TTL) Approximately 6.0ns N–3 N–2 N–1 CON8 P1 side DATA CLK (TTL) Approximately 9.0ns CON8 P1 side DATA DATA N–6 (TTL) N–4 N–2 N–6 CON5 P1 side OUT (Analog regeneration waveform) 0 to –1V N–4 N–2 Operating Conditions CXA3086Q operating mode : Straight mode Analog input : DIR IN pin input S2 setting : 1/2 frequency divided clock – 25 – CXA3086Q Circuit Diagram CON6 VEE GND VCC L1 C1 33µF L2 C2 33µF L3 L4 C3 33µF L5 L6 DGND C4 33µF SW4 D/A INV PS SW3 PS SW2 A/D INV DVCC SW1 SELECT DAINV AVEE DVEE AGND DGND AVCC DVCC ADINV SELECT C24 0.1µF DVCC AGND AVEE AGND AVEE DGND P2D5 P2D4 P2D3 P2D2 P2D1 AGND DGND R7 510 R1 2k D1 TL431CP R8 510 R2 1k R6 51 AVCC CON1 AMP IN R13 82 AGND AGND R14 130 AGND IC3C NJM3403A 10 8 9 C7 1µF AGND C16 0.1µF AVCC C8 1µF AGND C17 0.1µF AVCC DVCC AGND 2 3 R16 4 270 6 IC2 7 CLC404 R17 43 S1 AVCC C10 1µF C21 0.1µF C20 0.1µF R3 10k R10 22k 12 11 10 RESETN/E RESETN/T R9 7.5k 2 3 11 1 4 IC3A NJM3403A R12 390k R11 200k AGND DGND IC3B NJM3403A 6 7 5 AGND CON2 DIR IN AGND R18 51 A B RESET/E 9 DVCC2 8 DGND2 7 P2D5 6 P2D4 5 P2D3 4 P2D2 3 P2D1 2 P2D0 1 DGND2 P2D0 C5 1µF C14 0.1µF C6 1µF C15 0.1µF AGND 13 DVEE3 14 AGND C9 1µF AVCC C18 0.1µF C19 0.1µF 15 VRBS 16 VRB 17 AVCC 18 N.C. 19 VIN 20 AVCC 21 VRT 22 VRTS 23 AGND 24 DGND3 C27 0.1µF DVCC2 48 DVCC1 47 DGND1 46 DGND C28 0.1µF DVCC C25 N.C. 45 0.1µF PS 44 DGND PS CLKOUT ADINV SELECT R15 270 IC1 CXA3086Q CLKOUT 43 INV 42 SELECT 41 N.C. 40 C26 0.1µF DGND1 39 DGND DVCC1 38 DVCC2 37 CLKN/E DGND2 DGND2 C27 0.1µF DGND DVCC P1D0 P1D1 25 26 27 28 29 30 31 32 33 34 35 36 DGND DVCC P1D5 P1D4 P1D3 P1D2 IC4B 10H116 (PECL) 7 10 9 6 IC4A 10H116 (PECL) 3 5 4 2 IC4C 10H116 (PECL) 15 13 12 14 P1D2 P1D3 P1D4 P1D5 DGND CLK/T DVCC2 CLK/E CON3 CLK IN DGND C13 0.1µF R19 51 DGND R23 82 DVCC P1D1 P1D0 DGND C23 0.1µF R20 1k 11 R21 390 R22 1k R24 130 13 CLK DGND 9 S1 7 S2 R25 130 R26 130 R27 130 DGND R28 82 R29 82 R30 82 DVCC 12 D0 11 D1 6 D2 5 D3 IC5 10H136 (PECL) Cout 4 IC4D 10H116 (PECL) Q3 3 Q2 2 Q1 15 Q0 14 1/16 1/8 1/4 1/2 CLK CLKN – 26 – CXA3086Q DGND DVcc 1 C42 0.1µF 2 IC15 74ALS541 P2D5 P2D4 P2D3 P2D2 P2D1 P2D0 IC14 74ALS541 9 11 DVCC DGND 1 OC 11 CLK 19 E Q5 14 NQ5 13 Q4 12 NQ4 11 2 1D 3 2D P2D5 P2D4 P2D3 P2D2 P2D1 P2D0 4 3D 5 4D 6 5D 7 6D 8 7D 9 8D IC6 74AS574 1Q 19 2Q 18 3Q 17 4Q 16 5Q 15 6Q 14 7Q 13 8Q 12 P2D5 P2D4 P2D3 P2D2 P2D1 P2D0 15 5D 16 4D 17 3D 21 0D 22 1D 23 2D IC9 100324 Q3 9 DVEE 1 MSB 2 D2 3 D3 4 D4 5 D5 6 D6 7 D7 8 D8 9 D9 DVEE C44 0.1µF R48 620 R37 82 10 LSB 11 NC 12 NC 13 CLKN 14 CLK DVCC Q5 14 19 E DGND 1 OC 11 CLK P1D5 P1D4 P1D3 P1D2 P1D1 P1D0 P1D5 P1D4 P1D3 P1D2 P1D1 P1D0 IC10 100324 NQ5 13 Q4 12 NQ4 11 Q3 9 DVEE DGND C45 0.1µF R38 82 R49 620 IC12 CX20201-1 AGND 28 VREF 27 AVEE 26 NC 25 NC 24 C52 NC 23 0.1µF NC 22 NC 21 OUT 20 NC 19 AGND 18 DGND 17 INV 16 DVEE 15 C53 0.1µF DVEE AGND DGND R4 2k D2 TL431CP C11 1µF AVEE C51 0.1µF R42 1k R43 270 3 4 5 6 7 8 17 16 15 14 13 12 25 DGND 26 DGND C47 0.1µF CON7 P2 side DATA R47 620 AGND NQ3 10 Q0 24 NQ0 Q1 NQ1 Q2 NQ2 1 2 3 5 4 AGND CON4 P2 side OUT R39 130 R40 130 DVEE 1 MSB 2 D2 3 D3 4 D4 5 D5 6 D6 7 D7 8 D8 9 D9 IC13 CX20201-1 AGND 28 VREF 27 AVEE 26 NC 25 NC 24 NC 23 NC 22 NC 21 OUT 20 NC 19 AGND 18 DGND 17 INV 16 DVEE 15 C56 0.1µF DVEE AGND DGND AGND CON5 P1 side OUT R5 2k C55 0.1µF D3 TL431CP C12 1µF AVEE C54 0.1µF AGND NQ3 10 Q0 24 NQ0 Q1 NQ1 Q2 NQ2 1 2 3 5 4 R44 1k R45 270 2 1D 3 2D 4 3D 5 4D 6 5D 7 6D 8 7D 9 8D IC7 74AS574 1Q 19 2Q 18 3Q 17 4Q 16 5Q 15 6Q 14 7Q 13 8Q 12 15 5D 16 4D 17 3D 21 0D 22 1D 23 2D DVEE DAINV CLKOUT C46 0.1µF DGND DGND R51 620 DGND 1/16 19 OE 17 VBB CLKOUT 24 D0 1 D0N 23 D1 22 D1N 1/8 21 D2 20 D2N 1/4 16 D3 15 D3N 1/2 14 D4 13 D4N CLK CLKN DVCC R31 82 R32 82 C31 0.1µF R33 82 R34 130 R35 130 R36 130 DGND P1D5 P1D4 P1D3 P1D2 P1D1 P1D0 IC14 74ALS541 3 4 5 6 7 8 17 16 15 14 13 12 25 26 DGND CON8 P1 side DATA 12 D5 11 D5N Q5 10 S2 C43 0.1µF Q4 9 1/1 DVCC 1 2 IC8 100390 Q2 4 1/4 Q3 8 1/2 11 A4 10 A3 Q1 3 1/8 7 A2 Q0 2 1/16 5 A1 IC11 10H124 6B Y1 2 R50 620 10 LSB 11 NC 12 NC 13 CLKN 14 CLK Y1 4 Y2 1 Y2 3 R46 620 DVEE Y3 15 Y3 12 Y4 14 Y4 13 C50 0.1µF DGND R41 620 DVEE DGND – 27 – CXA3086Q Component List No. Product name IC1 CXA3086Q IC2 CLC404AJE IC3 NJM3403AM IC4 MC10H116L IC5 MC10H136L IC6, 7 74AS574N IC8 100390 IC9, 10 100324PC IC11 MC10H124L IC12, 13 CXA20201A-1 IC14, 15 74ALS541N D1 to 3 TL431CP SW1 to 4 ATE1D-2F3-10 S1, 2 JX-1 CON1 to 5 01K0315 CON6 TJ-563 CON7, 8 (FAP-2601-1202) L1 to 6 ZBF503D-00 C1 to 4 Tantal capacitor C5 to 12 Tantal capacitor C13 Ceramic capacitor All parts other than those listed above Chip capacitor Function 6-bit A/D converter OP-AMP OP-AMP ECL Buffer ECL Countor TTL Latch PECL→TTL conversion TTL→ECL conversion TTL→ECL conversion 10-bit D/A converter TTL Buffer Shunt regulator Toggle switch Short pin BNC connector Power supply connector Flat cable connector Ferrite-bead filter 33µF 1µF 0.1µF 0.1µF No. R2 R1, 4, 5 R3 R47 to 51 R6, 18, 19 R7.8 R9 R10 R11 R12 R13, 23, 28 to 33, 37, 38 R14, 24 to 27, 34 to 36, 39, 40 R15, 16, 43, 45 R17 R20, 22, 42, 44 R21 R41, 46 Product name RJ-5W-1K RJ-5W-2K RJ-5W-10K RGLD4X621J FRD-25SR (0.25W) FRD-25SR (0.25W) FRD-25SR (0.25W) FRD-25SR (0.25W) FRD-25SR (0.25W) FRD-25SR (0.25W) FRD-25SR (0.25W) FRD-25SR (0.25W) FRD-25SR (0.25W) FRD-25SR (0.25W) FRD-25SR (0.25W) FRD-25SR (0.25W) FRD-25SR (0.25W) Function 1kΩ volume resistor 2kΩ volume resistor 10kΩ volume resistor 620Ω network resistor 51Ω 510Ω 7.5kΩ 22kΩ 200kΩ 390kΩ 82Ω 130Ω 270Ω 43Ω 1kΩ 390Ω 620Ω ∗ CON7 and 8 are not mounted when boards are shipped. (Manufacturer: YAMAICHI Electronics Co., Ltd.) Component side silk diagram – 28 – CXA3086Q Component side pattern diagram Solder side pattern diagram – 29 – CXA3086Q Package Outline Unit: mm 48PIN QFP (PLASTIC) 15.3 ± 0.4 + 0.4 12.0 – 0.1 + 0.1 0.15 – 0.05 36 25 0.15 37 24 48 13 + 0.2 0.1 – 0.1 1 + 0.15 0.3 – 0.1 12 0.8 ± 0.12 M + 0.35 2.2 – 0.15 PACKAGE STRUCTURE PACKAGE MATERIAL SONY CODE EIAJ CODE JEDEC CODE QFP-48P-L04 ∗QFP048-P-1212-B LEAD TREATMENT LEAD MATERIAL PACKAGE WEIGHT EPOXY RESIN SOLDER / PALLADIUM PLATING COPPER / 42 ALLOY 0.7g NOTE : PALLADIUM PLATING This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame). – 30 – 0.9 ± 0.2 13.5
CXA3086 价格&库存

很抱歉,暂时无法提供与“CXA3086”相匹配的价格&库存,您可以联系我们找货

免费人工找货