0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
L4973D33-L4973D51

L4973D33-L4973D51

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    L4973D33-L4973D51 - 3.5A STEP DOWN SWITCHING REGULATOR - STMicroelectronics

  • 数据手册
  • 价格&库存
L4973D33-L4973D51 数据手册
® L4973V3.3 - L4973V5.1 L4973D3.3 - L4973D5.1 3.5A STEP DOWN SWITCHING REGULATOR UPTO 3.5ASTEP DOWNCONVERTER OPERATING INPUT VOLTAGE FROM 8V TO 55V 3.3V AND 5.1V (±1%) FIXED OUTPUT, AND ADJUSTABLE OUTPUTS FROM: 0V TO 50V (3.3V type) 5.1V TO 50V (5.1 type) FREQUENCY ADJUSTABLE UP TO 300KHz VOLTAGE FEED FORWARD ZERO LOAD CURRENT OPERATION (min 1mA) INTERNAL CURRENT LIMITING (PULSE BY PULSE AND HICCUP MODE) PRECISE 5.1V (1.5%) REFERENCE VOLTAGE EXTERNALLY AVAILABLE INPUT/OUTPUT SYNCHRONIZATION FUNCTION INHIBIT FOR ZERO CURRENT CONSUMPTION (100µA Typ. at VCC = 24V) PROTECTION AGAINST FEEDBACK DISCONNECTION THERMAL SHUTDOWN OUTPUT OVERVOLTAGE PROTECTION SOFT START FUNCTION TYPICAL APPLICATION CIRCUIT (POWERDIP) MULTIPOWER BCD TECHNOLOGY POWERDIP (12+3+3) SO20(12+4+4) ORDERING NUMBERS: L4973V3.3 (Powerdip) L4973D3.3 (SO20) L4973V5.1 (Powerdip) L4973D5.1 (SO20) DESCRIPTION The L4973 is a step down monolithic power switching regulator delivering 3.5A at fixed voltages of 3.3V or 5.1V and using a simple external divider output adjustable voltage up to 50V. Realized in BCD mixed technology, the device VCC (8V to 55V) ROSC CIN C2 7 8 10 12 CBOOT VO(3.3V or 5.1V) L1 1 4,5,6, 13,14,15 16 L4973 17 9 3 11 2 RCOMP COSC CSS CCOMP D1 COUT D97IN554A April 2000 1/16 L4973V3.3 - L4973V5.1 - L4973D3.3 - L4973D5.1 uses an internal power D-MOS transistor (with a typical Rdson of 0.15ohm) to obtain very high efficiency and very fast switching times. Switching frequency up to 300KHz are achievable (the maximum power dissipation of the packages must be observed). A wide input voltage range between 8V to 55V and output voltages regulated from 3.3V to 40V cover the majority of the today applications. Features of this new generation of DC-DC conPIN CONNECTIONS (Top view) verter includes pulse by pulse current limit, hiccup mode for output short circuit protection, voltage feed forward regulation, soft start, input/output synchronization, protection against feedback loop disconnection, inhibit for zero current consumption and thermal shutdown. Packages available are in plastic dual in line, DIP18 (12+3+3) for standard assembly, and SO20 (12+4+4) for SMD assembly. OSC OUT OUT GND GND GND VCC VCC BOOT 1 2 3 4 5 6 7 8 9 D94IN162A 18 17 16 15 14 13 12 11 10 SYNC SS V5.1 GND GND GND VFB COMP INH OSC OUT OUT GND GND GND GND VCC VCC BOOT 1 2 3 4 5 6 7 8 9 10 D94IN163A 20 19 18 17 16 15 14 13 12 11 SYNC SS V5.1 GND GND GND GND VFB COMP INH POWERDIP (12+3+3) SO20 (12+4+4) BLOCK DIAGRAM INH 10(11) V5.1 16(18) VCC 7(8) 8(9) CBOOT CHARGE ZERO CURRENT INHIBIT VREF GOOD INTERNAL REFERENCE INTERNAL SUPPLY 5.1V VCC 5.1V 3.3V SS 17(19) SOFT START HICCUP CURRENT LIMITING COMP 11(12) THERMAL SHUTDOWN 5.1V 3.3V + E/A CURRENT LIMITING R S Q Q 9(10) BOOT VFB PWM 12(13) + SYNC 18(20) OSCILLATOR DRIVER 1(1) OSC 4,5,6,13,14,15 (4,5,6,7,14,15,16,17) GND 2(2) OUT 3(3) OUT D94IN161B Pin x = Powerdip Pin (x) = S020 2/16 L4973V3 - L4973V5 - L4973D3 - L4973D5 THERMAL DATA Symbol Rth(j-pin) Rth(j-amb) Parameter Thermal Resistance Junction to pin Thermal Resistance to Ambient Max. Max. Powerdip 12 60 (*) SO20 15 80 (*) Unit °C/W °C/W (*) Package mounted on board. ABSOLUTE MAXIMUM RATINGS Symbol DIP-18 V7,V8 V2,V3 I2,I 3 V9-V8 V9 V11 V17 V12 V18 V10 Ptot S0-20 V9,V8 V2,V3 I2,I3 V10-V8 V10 V12 V19 V13 V20 V11 Bootstrap voltage Analogs input voltage (VCC = 24V) Analogs input voltage (VCC = 24V) (VCC = 20V) (VCC = 20V) Inhibit Power dissipation a Tpins ≤ 90°C (Tamb = 70°C no copper area) (Tamb = 70°C 4cm copper area on PCB) Power dissipation a Tpins = 90°C TJ,TSTG Junction and storage temperature DIP 12+3+3 SO20 Input voltage Output DC voltage Output peak voltage at t = 0.1µs f=200KHz Maximum output current Parameter Value 58 -1 -5 int. limit. 14 70 12 13 6 -0.3 5.5 -0.3 Vcc -0.3 5 1.3 2 4 -40 to 150 V V V V V V V V V V W W W W °C Unit V V V PIN FUNCTIONS Powerdip 11 10 9 18 7,8 2,3 12 SO20 12 11 10 20 8,9 2,3 13 NAME COMP INH BOOT SYNC Vcc OUT VFB DESCRIPTION E/A output to be used for frequency compensation A logic signal (active high) disables the device (sleep mode operation). If not used it must be connected to GND; if floating the device is disabled. A capacitor connected between this pin and the output allows to drive the internal D-MOS. Input/Output synchronization. Unregulated DC input voltage Stepdown regulator output. Stepdown feedback input. Connecting the output directly to this pin results in an output voltage of 3.3V for the L4973V3.3 and 5.1V. An external resistive divider is required for higher output voltages. For output voltage less than 3.3V, see note ** and Figure 32. Reference voltage externally available. Signal ground An external resistor connected between the unregulated input voltage and Pin 1 and a capacitor connected from Pin 1 to ground fixes the switching frequency. (Line feed forward is automatically obtained) 16 4,5,6 13,14,15 1 18 4,5,6,7 14,15,16,17 1 V5.1 GND OSC 3/16 L4973V3.3 - L4973V5.1 - L4973D3.3 - L4973D5.1 ELECTRICAL CHARACTERISTICS ( Refer to the test circuit,VCC = 24V; Tj = 25°C, COSC = 2.7nF; ROSC = 20KΩ; unless otherwise specified) • = specifications referred to TJ from 0 to 125 °C. Symbol Parameter Test Conditions VO = VREF to 40V; IO = 3.5A IO = 1A IO = 0.5A to 3.5A VCC = 8V to 55V IO = 1A IO = 0.5A to 3.5A VCC = 8V to 40V VCC = 10.5V IO = 3.5A VCC = 8V to 55V VO = 5.1V; IO = 3.5A VO = 3.3V; IO = 3.5A Vi = VCC +2VRMS VO = Vref; IO = 1A; fripple = 100Hz VCC = 8V to 55V Min. Typ. Max. 55 5.1 5.1 5.1 3.36 3.36 3.36 0.15 4.5 90 85 100 5.15 5.20 5.25 3.393 3.427 3.46 0.22 0.35 5.5 Unit V V V V V V V Ω Ω A % % KHz dB % DYNAMIC CHARACTERISTICS Input Voltage Range (*) Output Voltage L4973V5.1 Output Voltage L4973V3.3 R DSON Maximum Limiting Current Efficiency Switching Frequency Supply Voltage Ripple Rejection Switching Frequency Stability vs, Supply Voltage Reference Voltage Iref = 0 to 20mA; VCC = 8 to 55V Iref = 0mA; VCC = 8 to 55V Vref = 0 to 5mA; VCC = 0 to 20mA • • • • • • 8 5.05 5.00 4.95 3.326 3.292 3.26 4 η 90 60 110 ∆fsw 2 5 REFERENCE SECTION • 5.025 4.950 5.1 5.1 5 2 6 65 45 22 5.175 5.250 10 10 25 100 60 30 V V mV mV mV mA µA µA Line Regulation Load Regulation Short Circuit Current 30 30 15 SOFT START Soft Start Charge Current Soft Start Discharge Current INHIBIT High Level Voltage Low Level Voltage Isource High Level Isource Low Level VINH = 3V VINH = 0.8V Duty Cycle = 50% Duty Cycle = 0 VCC = 24V; VINH = 5V VCC = 55V; VINH = 5V • • • • 3.0 10 10 16 15 4 2.7 100 150 0.8 50 50 6 4 200 300 V V µA µA mA mA µA µA V V µA µA DC CHARACTERISTICS Total Operating Quiescent Current Quiescent Current Total stand-by quiescent current ERROR AMPLIFIER High Level Output Voltage Low Level Output Voltage Source Bias Current Source Output Current 4/16 11.0 1 200 2 300 0.65 3 600 L4973V3 - L4973V5 - L4973D3 - L4973D5 ELECTRICAL CHARACTERISTICS (continued) Sink Output Current Supply Voltage Ripple Rejection DC Open Loop Gain Transconductance VCOMP = VFB CREF =4.7µF 1-5mA load current RL = ∞ Icomp = -0.1 to 0.1mA; Vcomp = 6V 200 60 300 80 µA dB 50 60 2.5 dB mS OSCILLATOR SECTION Ramp valley Ramp peak Maximum Duty Cycle Maximum Frequency VCC = 8V VCC = 55V Duty Cycle = 0%; R OSC = 13KΩ; COSC = 820pF; VCC = 8V to 55V VCC = 8V to 55V Isource = 3mA no load, Vsync = 4.5V 3.5 0.15 4 0.20 0.25 4.5 0.35 0.9 0.45 0.78 1.9 9 95 0.85 2.1 9.6 97 0.92 2.3 10.2 500 V V V % KHz SYNC FUNCTION High Input Voltage Low Input Voltage Slave Sink Current Master Output Amplitude Output Pulse Width (*) Pulse testing with a low duty cycle. (**) The maximum power dissipation of the package must be observed. V V mA V µs Figure 1. Evaluation Board Circuit VCC (DIP18) R2 7,8 1 17 12 L4973 11 10 9 C8 L1 VO R3 C1 C2 C7 16 4,5,6 2,3 13,14,15 C3 C4 C5 R1 C6 D1 3x C0 C12 R4 D97IN515B C1=1000 µF/63V C2=220nF/63V C3=470nF C4=1µF/50V C5=220pF C6=22nF C7=2.7nF C8=220nF/63V C0=100µF/40V(C9,C10,C11) C12=Optional (220nF) L1=150µH KOOLµ 77310 - 40 Turns - 0.9mm R1=9.1K R2=20K D1=GI SB560 L4973 V3.3 VO(V) 3.3 5.1 12 15 18 24 R3(KΩ) 0 2.7 12 16 20 30 4.7 4.7 4.7 4.7 4.7 R4(KΩ) VO(V) 5.1 12 15 18 24 L4973 V5.1 R3(KΩ) 0 6.2 9.1 12 18 4.7 4.7 4.7 4.7 R4(K Ω) 5/16 L4973V3.3 - L4973V5.1 - L4973D3.3 - L4973D5.1 Typical Performance (Using Evaluation Board) fsw = 100kHz Output Voltage 3.3V 5.1V 12V Output Ripple 20mV 20mV 30mV Efficiency 81.5 (%) 86.7 (%) 93.5 (%) Line Regulator Io = 3.5A VCC = 8 to 50V 3mV 3mV 3mV (VCC =15 to 50V) Load Regulator VCC =35V IO = 1 to 3.5A 6mV 6mV 4mV Figure 1a: Evaluation Board (Components Side) Figure 1b: Evaluation Board (Solder Side) 6/16 L4973V3 - L4973V5 - L4973D3 - L4973D5 Figure 1c: Application Circuit (see fig. 1 part list) VCC R2 INH SYNC 7,8 1 17 10 18 9 C8 L4973V5.1 11 4,5,6 13,14,15 12 L1 2,3 Vo C1 C2 C7 16 C3 C4 C5 R1 C6 D1 3x C0 C12 D97IN665A Figure 1d: Application Circuit (see fig. 1 part list) VCC R2 INH SYNC 7,8 1 17 10 18 9 C8 L4973V3.3 11 4,5,6 13,14,15 L1 12 2,3 Vo C1 C2 C7 16 C3 C4 C5 R1 C6 D1 3x C0 C12 D97IN664A Figure 2: Quiescent Drain Current vs. Input Voltage (0% Duty Cycle) Ibias (mA) 5.0 4.5 4.0 100KHz-R2=20K C7=2.7nF Tamb=25°C 0% DC Figure 3: Quiescent Drain Current vs. Junction Temperature Ibias (mA) D97IN634 200KHz-R2=22K C7=1.2nF D97IN633A 200KHz-R2=22K C7=1.2nF 4.0 100KHz-R2=20K C7=2.7nF 3.5 3.5 0Hz 0% DC VCC = 35V 3.0 2.5 2.0 0 10 20 30 40 50 VCC(V) 3.0 0Hz 2.5 -50 0 50 100 Tj(°C) 7/16 L4973V3.3 - L4973V5.1 - L4973D3.3 - L4973D5.1 Figure 4: Stand by Drain Current vs. input Voltage Ibias ( µA) Vinh = 5V Figure 5: Reference Voltage vs. Junction Temperature (Pin 16) VREF (V) Pin 16 D97IN635A D97IN637 150 25°C 5.15 Vcc=35V 5.1 100 125°C 5.05 50 0 10 20 30 40 50 VCC(V) 5.0 -40 -20 80 100 Tj(°C) 0 20 40 60 Figure 6: Reference Voltage vs. Input Voltage (Pin 16) VREF (V) Tj=25°C Pin 16 Figure 7: Reference Voltage vs. Reference Input Current VREF (V) D97IN638 D97IN636A 5.15 5.2 Vcc=40V 5.1 5.1 Vcc=10V 5.05 5.0 Tj=25°C 5.0 0 10 20 30 40 50 VCC(V) 4.9 0 10 20 30 40 50 IREF(mA) Figure 8: Inhibit Current vs. Inhibit Voltage (Pin 10) Iinh (µA) Vcc=35V Pin 10 Tj=0°C Figure 9: Line Regulation (see fig. 1) VO (V) D97IN639A D97IN651 100 5.12 Tj C 5° =2 Tj=125°C 50 Tj=125°C 5.1 Tj=25°C 0 5.08 IO = 1A -50 8/16 5.06 0 5 10 15 Vinh(V) 0 10 20 30 40 50 VCC(V) L4973V3 - L4973V5 - L4973D3 - L4973D5 Figure 10: Load Regulation (see fig. 1c) VO (V) VCC = 35V Figure 11: Line Regulation (see fig. 1d) VO (V) 3.35 3.34 Tj=125°C Tj=25°C D97IN640 D97IN660A 5.15 Tj=125°C 5.1 Tj=25°C 3.33 3.32 5.05 3.31 IO = 1A 5.0 0 1 2 3 IO(A) 3.3 0 10 20 30 40 50 VCC(V) Figure 12: Load Regulation (see fig. 1d) VO (V) 3.35 3.34 Tj=125°C VCC = 35V Figure 13: Switching Frequency vs.R2 and C7 (fig. 1) fsw (KHz) 500 200 100 50 0.8 2nF 1.2 nF 2.2n F D97IN661 D97IN630 Tamb=25 °C 3.33 3.32 3.31 3.3 Tj=25°C 3.3n F 4.7n F 20 10 5 0 20 40 5.6n F 0 1 2 3 IO(A) 60 80 R2(KΩ) Figure 14: Switching Frequency vs. Input Voltage fsw (KHz) Tamb=25°C Figure 15: Switching Frequency vs. Junction temperature (see fig. 1) fsw (KHz) D97IN632 D97IN631 105 105 100 100 95 95 90 0 10 20 30 40 50 VCC(V) 90 -50 0 50 100 Tj(°C) 9/16 L4973V3.3 - L4973V5.1 - L4973D3.3 - L4973D5.1 Figure 16: Dropout Voltage Between pin 7,8 and 2,3 ∆V (V) Tj=125°C Figure 17: Efficiency vs. Output Voltage (see fig.1) η (%) 98 100KHz D97IN643 D97IN641 0.6 Tj= °C 25 96 94 200KHz 0.4 Tj=0°C 92 90 0.2 88 86 IO = 3A VCC = 50V 0 0 1 2 3 IO(A) 0 10 20 30 40 VO(V) Figure 18: Efficiency vs. Output Voltage (Diode STPS745D) η (%) 98 100KHz Figure 19: Efficiency vs. Output Current ( see fig.1c) η (%) D97IN645 D97IN642 96 94 92 90 88 86 0 5 10 15 20 25 30 VO (V) IO = 3A VCC = 35V 200KHz 95 Vcc=12V VO = 5.1V fsw = 100KHz 90 Vcc=24V 85 Vcc=48V 80 0 1 2 3 IO(A) Figure 20: Efficiency vs. Output Current (see fig.1c) η (%) Vcc=12V Figure 21: Efficiency vs. Output Current (see fig.1d) η (%) D97IN644 D97IN646 90 Vcc=24V 90 Vcc=12V V O = 3.3V fsw = 100KHz 85 Vcc=48V 85 Vcc=24V 80 VO = 5.1V fsw = 200KHz 80 Vcc=48V 75 10/16 0 1 2 3 IO (A) 75 0 1 2 3 IO(A) L4973V3 - L4973V5 - L4973D3 - L4973D5 Figure 22: Efficiency vs. Output Current (see fig.1d) η (%) 90 Vcc=12V Figure 23: Power dissipation vs. Input Voltage (Device only) (see fig.1c) Pdiss (W) D97IN647A VO = 5.1V fsw = 100KHz D97IN662 VO = 3.3V fsw = 200KHz 1.5 IO =3.5A 85 Vcc=24V 1.0 IO =3A 80 Vcc=48V IO=2.5A 75 70 0.5 IO =2A 0 0.5 1 1.5 2 2.5 3 3.5 IO (A) 0 0 10 20 30 40 50 Vcc(V) Figure 24: Power dissipation vs. Output Voltage (Device only) Pdiss (W) 3.0 2.5 VCC = 35V fsw = 100KHz Figure 25: Pulse by Pulse Limiting Current vs. Junction Temperature Ilim (A) 5.2 5 D97IN652 D97IN648 I O =3.5A 2.0 1.5 1.0 0.5 0 I O=3A 4.8 IO =2.5A Vcc=35 IO =2A I O =1A 4.6 4.4 4.2 -40 -20 0 0 5 10 15 20 25 30 V O(V) 20 40 60 80 100 120 Tj(°C) Figure 26: Load Transient IO (A) 3 2 1 2 200 µs/DIV T T Figure 27: Line Transient D97IN649 VCC (V) 30 20 10 VO (mV) 100 0 2 1 D97IN650 VO (mV) I O = 1A f sw = 100KHz 100 0 -100 1 VCC = 35V fsw = 100KHz -100 1ms/DIV 11/16 L4973V3.3 - L4973V5.1 - L4973D3.3 - L4973D5.1 Figure 28: Source Current Rise and Fall Time, pin 2, 3 (See fig1) Figure 29: Soft Start Capacitor Selection vs. Inductor and VCC max (ref. AN938) Lomax ( µH) 300 250 Css=680nF fsw = 100KHz D97IN653 Css=1µF Css=820nF 200 150 100 50 0 Css=470nF Css=220nF Css=100nF 25 30 35 40 45 50 Vi(V) Figure 30:Soft Start Capacitor Selection vs. Inductor and VCC max (ref. AN938) Lomax (µH) nF 68 Cs Figure 31: Open Loop Frequency and Phase of Error amplifier GAIN (dB) 50 GAIN D97IN654 nF D97IN663 Phase 150 nF Cs s= Cs f sw = 200KHz s= s= 56 0 -50 -100 Phase 100 Cs s 3 =3 nF 47 0 45 90 135 50 Cs s 2 =2 nF -150 -200 0 15 20 25 30 35 40 45 50 Vi(V) 10 102 103 104 105 106 107 108 f(Hz) Figure 32: 3.5A at VO< 3.3V (see part list fig. 1) VP 1 VCC R2 INH SYNC 1.5 2 2.5 7,8 1 17 C1 C2 C7 11 16 10 18 9 C8 L1 2,3 12 3 R5 3.6K 2K 4.7K 7.5K 5.1K R3 4.7K 2K 3.6K 3.6K 1K Vo VO=3.36-1.74 • R3 R5 L4973V3.3 4,5,6 13,14,15 R5 C3 C5 R1 C6 C4 D1 3x C0 R3 D97IN666A 12/16 L4973V3 - L4973V5 - L4973D3 - L4973D5 Figure 33: 12V to 3.3V High Performance Buck Converter (fsw = 200kHz) INH VCC 12V±5% R2 22k C7 1.2nF C1 560uF-25V HFQ Panasonic C2 220nF SYNC C8 220nF L1 2,3 12 Vo=3.33V Io=3.5A D1 C9 470uF-25V HFQ Panasonic η (%) 92 90 88 86 84 82 7,8 1 17 16 10 18 9 L4973V3.3 11 4,5,6 13,14,15 C3 33nF C4 1uF C5 220pF R1 9k1 C6 22nF L1 D1 KoolMm 77120- 24 Turns- 0.9mm STPS1025 D97IN668A 80 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Io(A) Figure 34: Synchronization Example VCC2 V CC1 VCC 7,8 1 7,8 18 18 7,8 1 1 18 18 7,8 L4973 4,5,6 13,14,15 L4973 4,5,6 13,14,15 L4973 4,5,6 13,14,15 1 L4973 4,5,6 13,14,15 D97IN669 Figure 35: Multioutput not Isolated (Pin out referred to DIP12+3+3) V CC R2 INH SYNC C8 D2 Vo2 7,8 1 17 10 18 9 n2 2,3 L1 n1 Vo1 L4973 11 4,5,6 13,14,15 12 C1 C2 C7 16 C3 C4 C5 R1 C6 D1 C9 C10 C11 V O2 = VO1 n1 + n 2 n1 D97IN667A PO2 < 20% P O1 13/16 L4973V3.3 - L4973V5.1 - L4973D3.3 - L4973D5.1 DIM. MIN. a1 B b b1 D E e e3 F I L Z 3.30 2.54 8.80 2.54 20.32 7.10 5.10 0.130 0.100 0.38 0.51 0.85 0.50 0.50 24.80 0.346 0.100 0.800 0.280 0.201 0.015 1.40 mm TYP. MAX. MIN. 0.020 0.033 0.020 0.020 0.976 0.055 inch TYP. MAX. OUTLINE AND MECHANICAL DATA Powerdip 18 14/16 L4973V3 - L4973V5 - L4973D3 - L4973D5 mm MIN. A A1 B C D E e H h L K 10 0.25 0.4 2.35 0.1 0.33 0.23 12.6 7.4 1.27 10.65 0.75 1.27 0.394 0.010 0.016 TYP. MAX. 2.65 0.3 0.51 0.32 13 7.6 MIN. 0.093 0.004 0.013 0.009 0.496 0.291 0.050 0.419 0.030 0.050 inch TYP. MAX. 0.104 0.012 0.020 0.013 0.512 0.299 DIM. OUTLINE AND MECHANICAL DATA 0° (min.)8° (max.) SO20 L h x 45° A B e K H D A1 C 20 11 E 1 0 1 SO20MEC 15/16 L4973V3.3 - L4973V5.1 - L4973D3.3 - L4973D5.1 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 2000 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com 16/16
L4973D33-L4973D51 价格&库存

很抱歉,暂时无法提供与“L4973D33-L4973D51”相匹配的价格&库存,您可以联系我们找货

免费人工找货