0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
L6208Q

L6208Q

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    VFQFN-48

  • 描述:

    IC MTR DRVR BIPOLAR 8-52V 48QFN

  • 数据手册
  • 价格&库存
L6208Q 数据手册
L6208Q DMOS driver for bipolar stepper motor Datasheet - production data Description 9)4)31  [  PP Features  Operating supply voltage from 8 to 52 V  5.6 A output peak current  RDS(on) 0.3  typ. value at Tj = 25 °C The L6208Q device is a DMOS fully integrated stepper motor driver with non-dissipative overcurrent protection, realized in BCDmultipower technology, which combines isolated DMOS power transistors with CMOS and bipolar circuits on the same chip. The device includes all the circuitry needed to drive a two-phase bipolar stepper motor including: a dual DMOS full bridge, the constant OFF time PWM current controller that performs the chopping regulation, and the phase sequence generator that generates the stepping sequence. Available in a VFQFPN48 7 x 7 mm package, the L6208Q features a nondissipative overcurrent protection on the high-side Power MOSFETs and thermal shutdown.  Operating frequency up to 100 kHz  Non-dissipative overcurrent protection  Dual independent constant tOFF PWM current controllers  Fast/slow decay synchronous rectification  Fast decay quasi-synchronous rectification  Decoding logic for stepper motor full and half step drive  Cross conduction protection  Thermal shutdown  Undervoltage lockout  Integrated fast freewheeling diodes Application  Bipolar stepper motor March 2017 This is information on a product in full production. DocID018710 Rev 4 1/34 www.st.com Contents L6208Q Contents 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5 Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.1 Power stages and charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.2 Logic inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.3 PWM current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.4 Decay mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.5 Stepping sequence generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.6 Half step mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.7 Normal drive mode (full step two-phase-on) . . . . . . . . . . . . . . . . . . . . . . 19 5.8 Wave drive mode (full step one-phase-on) . . . . . . . . . . . . . . . . . . . . . . . 19 5.9 Non-dissipative overcurrent detection and protection . . . . . . . . . . . . . . . 20 5.10 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7 Output current capability and IC power dissipation . . . . . . . . . . . . . . 26 8 Thermal management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9 Electrical characteristic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 10 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 10.1 2/34 VFQFPN48 (7 x 7 x 1.0 mm) package information . . . . . . . . . . . . . . . . . 30 DocID018710 Rev 4 L6208Q Contents 11 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 12 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 DocID018710 Rev 4 3/34 34 Block diagram 1 L6208Q Block diagram Figure 1. Block diagram 9%227 9%227 9%227 9&3 &+$5*( 3803 2&'$ 2&'% 29(5 &855(17 '(7(&7,21 287$ 9 7+(50$/ 3527(&7,21 6(16($ 3:0 +$/))8// 5(6(7 287$ 9 *$7( /2*,& (1 &21752/ &/2&. 96$ 9%227 67(33,1* 6(48(1&( *(1(5$7,21 21(6+27 021267$%/( &:&&: 0$6.,1* 7,0(   6(16( &203$5$725 %5,'*($ 92/7$*( 5(*8/$725 9 9 287% 287% 6(16(% *$7( /2*,& 95()% %5,'*(% DocID018710 Rev 4 5&$ 96% 29(5 &855(17 '(7(&7,21 ',19 4/34 95()$ 5&% L6208Q Electrical data 2 Electrical data 2.1 Absolute maximum ratings Table 1. Absolute maximum ratings Symbol VS Test condition Value Unit Supply voltage VSA = VSB = VS 60 V Differential voltage between VSA, OUT1A, OUT2A, SENSEA and VSB, OUT1B, OUT2B, SENSEB VSA = VSB = VS = 60 V; VSENSEA = VSENSEB = GND 60 V VBOOT Bootstrap peak voltage VSA = VSB = VS VS + 10 V VIN,VEN Input and enable voltage range - -0.3 to +7 V VREFA, VREFB Voltage range at pins VREFA and VREFB - -0.3 to +7 V VRCA, VRCB Voltage range at pins RCA and RCB - -0.3 to +7 V VSENSEA, VSENSEB Voltage range at pins SENSEA and SENSEB - -1 to +4 V IS(peak) Pulsed supply current (for each VS pin), internally limited by the overcurrent protection VSA = VSB = VS; tPULSE < 1 ms 7.1 A RMS supply current (for each VS pin) VSA = VSB = VS 2.5 A Storage and operating temperature range - -40 to 150 °C VOD IS Tstg, TOP 2.2 Parameter Recommended operating conditions Table 2. Recommended operating conditions Symbol Parameter Test condition Min. Max. Unit Supply voltage VSA = VSB = VS 8 52 V Differential voltage between VSA, OUT1A, OUT2A, SENSEA and VSB, OUT1B, OUT2B, SENSEB VSA = VSB = VS; VSENSEA = VSENSEB - 52 V -0.1 5 V Pulsed tW < trr -6 6 V DC -1 1 V RMS output current - - 2.5 A Tj Operating junction temperature - -25 +125 °C fsw Switching frequency - -a 100 kHz VS VOD VREFA, VREFB Voltage range at pins VREFA and VREFB - VSENSEA, Voltage range at pins SENSEA and VSENSEB SENSEB IOUT DocID018710 Rev 4 5/34 34 Pin connection 3 L6208Q Pin connection CLOCK VREFA RESET 41 OUT2A CW/CCW 42 NC SENSEA 43 VCP SENSEA 44 OUT2A NC 45 40 39 38 37 36 NC 35 VSA 3 34 VSA NC 4 33 NC NC 5 32 NC GND 6 31 GND NC 7 30 NC NC 8 29 NC NC 9 28 NC OUT1B 10 27 VSB OUT1B 11 26 VSB NC 12 25 NC 13 14 15 16 17 18 19 20 21 22 23 24 VREFB HALF/FULL CONTROL EN VBOOT OUT2B OUT2B NC EPAD SENSEB OUT1A 46 NC 2 47 SENSEB 1 48 RCB NC OUT1A RCA Figure 2.Pin connection (top view) AM02556v1 Note: The exposed PAD must be connected to GND pin. Table 3. Pin description 6/34 Pin Name Type Function 43 CLOCK Logic input Step clock input. The state machine makes one step on each rising edge. Selects the direction of the rotation. HIGH logic level sets clockwise direction, whereas low logic level sets counterclockwise direction. If not used, it must be connected to GND or +5 V. 44 CW/CCW Logic input 45, 46 SENSEA Power supply 48 RCA RC pin 2, 3 OUT1A 6, 31 GND 10, 11 OUT1B 13 RCB Bridge A source pin. This pin must be connected to power ground through a sensing power resistor. RC network pin. A parallel RC network connected between this pin and ground sets the current controller OFF time of bridge A. Power output Bridge A output 1. GND Ground terminals. In PowerDIP24 and SO24 packages, these pins are also used for heat dissipation towards the PCB. On PowerSO36 package the slug is connected to these pins. Power output Bridge B output 1. RC pin RC network pin. A parallel RC network connected between this pin and ground sets the current controller OFF time of bridge B. DocID018710 Rev 4 L6208Q Pin connection Table 3. Pin description (continued) Pin Name Type Function 15, 16 SENSEB Power supply Bridge B source pin. This pin must be connected to power ground through a sensing power resistor. 17 VREFB Analog input Bridge B current controller reference voltage. Do not leave this pin open or connected to GND. 18 HALF/ FULL Logic input Step mode selector. High logic level sets half step mode, low logic level sets full step mode. If not used, it must be connected to GND or +5 V. 19 CONTROL Logic input Decay mode selector. High logic level sets slow decay mode. Low logic level sets fast decay mode. If not used, it must be connected to GND or +5 V. Chip enable. Low logic level switches off all power MOSFETs of both bridge A and bridge B. This pin is also connected to the collector of the overcurrent and thermal protection to (1) Logic input implement overcurrent protection. If not used, it must be connected to +5 V through a resistor. 20 EN 21 VBOOT 22, 23 OUT2B 34, 35 VSA Power supply Bridge A power supply voltage. It must be connected to the supply voltage together with pin VSB. 26, 27 VSB Power supply Bridge B power supply voltage. It must be connected to the supply voltage together with pin VSA. 38, 39 OUT2A 40 VCP Output 41 RESET Logic input Reset pin. Low logic level restores the home state (state 1) on the phase sequence generator state machine. If not used, it must be connected to +5 V. 42 VREFA Analog input Bridge A current controller reference voltage. Do not leave this pin open or connected to GND. Supply voltage Bootstrap voltage needed for driving the upper power MOSFETs of both bridge A and bridge B. Power output Bridge B output 2. Power output Bridge A output 2. Charge pump oscillator output. 1. Also connected at the output drain of the overcurrent and thermal protection MOSFET. Therefore, it must be driven putting in series a resistor with a value in the range of 2.2 k - 180 k, recommended 100 k. DocID018710 Rev 4 7/34 34 Electrical characteristics 4 L6208Q Electrical characteristics VS = 48 V, TA = 25 °C, unless otherwise specified. Table 4. Electrical characteristics Symbol Parameter Test condition Min. Typ. Max. Unit VSth(ON) Turn-on threshold - 6.6 7 7.4 V VSth(OFF) Turn-off threshold - 5.6 6 6.4 V Quiescent supply current All bridges OFF; Tj = -25 °C to 125 °C(1) - 5 10 mA Thermal shutdown temperature - - 165 - °C Tj = 25 °C - 0.34 0.4 Tj = 125 °C(1) - 0.53 0.59 Tj = 25 °C - 0.28 0.34 Tj = 125 °C(1) - 0.47 0.53 EN = low; OUT = VS - - 2 mA EN = low; OUT = GND -0.15 - - mA Forward ON voltage ISD = 2.5 A, EN = low - 1.15 1.3 V trr Reverse recovery time If = 2.5 A - 300 - ns tfr Forward recovery time - - 200 - ns IS Tj(OFF) Output DMOS transistors High-side switch ON resistance RDS(ON) Low-side switch ON resistance IDSS Leakage current  Source drain diodes VSD Logic input (EN, CONTROL, HALF/FULL, CLOCK, RESET, CW/CCW) VIL Low level logic input voltage - -0.3 - 0.8 V VIH High level logic input voltage - 2 - 7 V IIL Low level logic input current GND logic input voltage -10 - IIH High level logic input current 7 V logic input voltage - - 10 µA Vth(ON) Turn-on input threshold - - 1.8 2.0 V Vth(OFF) Turn-off input threshold - 0.8 1.3 - V Vth(HYS) Input threshold hysteresis - 0.25 0.5 - V ILOAD = 2.5 A, resistive load 100 250 400 ns ILOAD = 2.5 A, resistive load 300 550 800 ns ILOAD = 2.5 A, resistive load 40 - 250 ns ILOAD = 2.5 A, resistive load 40 - 250 ns ILOAD = 2.5 A, resistive load - 2 - µs µA Switching characteristics tD(on)EN tD(off)EN tRISE tFALL tDCLK 8/34 Enable to out turn ON delay time(2) Enable to out turn OFF delay Output rise time(2) Output fall time(2) Clock to output delay time(3) time(2) DocID018710 Rev 4 L6208Q Electrical characteristics Table 4. Electrical characteristics (continued) Symbol Parameter Min. Typ. Max. Unit - - - 1 µs Minimum clock time(4) - - - 1 µs Clock frequency - - - 100 kHz - - - 1 µs - - - 1 µs - - - 1 µs - - - 1 µs 0.5 1 - µs - 0.6 1 MHz 0.5 1 - µs tCLK(min)L Minimum clock time (4) tCLK(min) H fCLK tS(MIN) Test condition (5) Minimum setup time (5) tH(MIN) Minimum hold time tR(MIN) Minimum reset time(5) (5) tRCLK(MIN ) Minimum reset to clock delay time tDT Deadtime protection °C(7) fCP Charge pump frequency Tj = -25 °C to 125 tDT Deadtime protection - fCP Charge pump frequency -25 °C < Tj < 125 °C - 0.6 1 MHz Source current at pins RCA and RCB VRCA = VRCB = 2.5 V 3.5 5.5 - mA Voffset Offset voltage on sense comparator VREFA, VREFB = 0.5 V - ±5 - mV tPROP Turn OFF propagation delay(6) - - 500 - ns tBLANK Internal blanking time on SENSE pins - - 1 - µs tON(MIN) Minimum ON time - - 1.5 2 µs ROFF = 20 k; COFF = 1 nF - 13 - µs ROFF = 100 k; COFF = 1 nF - 61 - µs - - 10 µA PWM comparator and monostable IRCA, IRCB tOFF PWM recirculation time IBIAS Input bias current at pins VREFA and VREFB Overcurrent detection Isover ROPDR tOCD(ON) tOCD(OFF) Input supply overcurrent detection threshold -25 °C < Tj < 125 °C 4 5.6 7.1 A Open drain ON resistance I = 4 mA - 40 60  OCD turn-on delay time (7) I = 4 mA; CEN < 100 pF - 200 - ns OCD turn-off delay time (7) I = 4 mA; CEN < 100 pF - 100 - ns 1. Tested at 25 °C in a restricted range and guaranteed by characterization. 2. See Figure 3. 3. See Figure 4. 4. See Figure 5. 5. See Figure 6. 6. Measured applying a voltage of 1 V to pin SENSE and a voltage drop from 2 V to 0 V to pin VREF. 7. See Figure 7. DocID018710 Rev 4 9/34 34 Electrical characteristics L6208Q Figure 3. Switching characteristic definition EN Vth(ON) Vth(OFF) t IOUT 90% 10% t D01IN1316 tFALL tD(OFF)EN tRISE tD(ON)EN AM02557v1 Figure 4. Clock to output delay time CLOCK Vth(ON) t IOUT t D01IN1317 tDCLK Figure 5. Minimum timing definition; clock input CLOCK Vth(OFF) Vth(ON) tCLK(MIN)L 10/34 DocID018710 Rev 4 Vth(OFF) tCLK(MIN)H D01IN1318 L6208Q Electrical characteristics Figure 6. Minimum timing definition; logic inputs CLOCK Vth(ON) LOGIC INPUTS tS(MIN) RESET Vth(OFF) tH(MIN) Vth(ON) tR(MIN) tRCLK(MIN) D01IN1319 Figure 7. Overcurrent detection timing definition IOUT ISOVER ON BRIDGE OFF VEN 90% 10% tOCD(ON) tOCD(OFF) AM02558v1 DocID018710 Rev 4 11/34 34 Circuit description L6208Q 5 Circuit description 5.1 Power stages and charge pump The L6208Q device integrates two independent power MOSFET full bridges, each power MOSFET has an RDS(ON) = 0.3  (typical value at 25 °C) with intrinsic fast freewheeling diode. Cross conduction protection is implemented by using a deadtime (tDT = 1 µs typical value) set by internal timing circuit between the turn-off and turn-on of two power MOSFETs in one leg of a bridge. Pins VSA and VSB must be connected together to the supply voltage (VS). Using an N-channel power MOSFET for the upper transistors in the bridge requires a gate drive voltage above the power supply voltage. The bootstrapped supply (VBOOT) is obtained through an internal oscillator and a few external components to realize a charge pump circuit, as shown in Figure 8. The oscillator output (pin VCP) is a square wave at 600 kHz (typically) with 10 V amplitude. Recommended values/part numbers for the charge pump circuit are shown in Table 5. Table 5. Charge pump external component values Component Value CBOOT 220 nF CP 10 nF RP 100  D1 1N4148 D2 1N4148 Figure 8. Charge pump circuit VS D1 CBOOT D2 RP CP VCP VBOOT VSA VSB AM02559v1 12/34 DocID018710 Rev 4 L6208Q 5.2 Circuit description Logic inputs Pins CONTROL, HALF/FULL, CLOCK, RESET and CW/CCW are TTL/CMOS and µC compatible logic inputs. The internal structure is shown in Figure 9. Typical values for turnon and turn-off thresholds are respectively Vth(ON) = 1.8 V and Vth(OFF) = 1.3 V. Pin EN (Enable) has identical input structure with the exception that the drain of the overcurrent and thermal protection MOSFET is also connected to this pin. Due to this connection, some care must be taken in driving this pin. The EN input may be driven in one of two configurations, as shown in Figure 10 or 11. If driven by an open drain (collector) structure, a pull-up resistor REN and a capacitor CEN are connected, as shown in Figure 10. If the driver is a standard push-pull structure, the resistor REN and the capacitor CEN are connected, as shown in Figure 11. The resistor REN should be chosen in the range from 2.2 k to 180 k. Recommended values for REN and CEN are respectively 100 k and 5.6 nF. More information on selecting the values is found in Section 5.9. Figure 9. Logic inputs internal structure 9 (6' 3527(&7,21 $0Y Figure 10. EN pins open collector driving 9 9 5 (1 23(1 &2//(&7 25 287387 (1 $RU(1 % & (1 $0Y Figure 11. EN pins push-pull driving 9 386+38// 287387 5(1 (1$RU(1% &(1 $0Y DocID018710 Rev 4 13/34 34 Circuit description 5.3 L6208Q PWM current control The L6208Q device includes a constant OFF time PWM current controller for each of the two bridges. The current control circuit senses the bridge current by sensing the voltage drop across an external sense resistor connected between the source of the two lower power MOSFET transistors and ground, as shown in Figure 12. As the current in the load builds up, the voltage across the sense resistor increases proportionally. When the voltage drop across the sense resistor becomes greater than the voltage at the reference input (VREFA or VREFB), the sense comparator triggers the monostable switching the low-side MOSFET off. The low-side MOSFET remains off for the time set by the monostable and the motor current recirculates in the upper path. When the monostable times out, the bridge again turns on. As the internal deadtime, used to prevent cross conduction in the bridge, delays the turn-on of the power MOSFET, the effective OFF time is the sum of the monostable time plus the deadtime. Figure 12. PWM current controller simplified schematic 96$ RU% %/$1.,1*7,0( 021267$%/( 72*$7(/2*,& —V )5207+( /2:6,'( *$7('5,9(56 + P$  6 4  021267$%/( 6(7 + %/$1.(5 ,287 5 287$ RU% '5,9(56  '($'7,0(  '5,9(56  '($'7,0(  9 3+$6( 67(33(502725 287$ RU% 9 6(16( &203$5$725 /  &203$5$725 287387 5&$ RU% &2)) /  6(16($ RU% 95()$ RU% 52)) 56(16( ',1 Figure 13 shows the typical operating waveforms of the output current, the voltage drop across the sensing resistor, the RC pin voltage and the status of the bridge. More details regarding the Synchronous Rectification and the output stage configuration are included in Section 5.4. Immediately after the low-side Power MOSFET turns on, a high peak current flows through the sensing resistor due to the reverse recovery of the freewheeling diodes. The L6208Q device provides a 1 s blanking time tBLANK that inhibits the comparator output so that this current spike cannot prematurely re-trigger the monostable. 14/34 DocID018710 Rev 4 L6208Q Circuit description Figure 13. Output current regulation waveforms ,287 95() 56(16( W2)) W21 W2))  —VW%/$1.  —VW%/$1. 96(16( 95() 6ORZGHFD\  6 ORZGHFD\ D\ D\ F )DVWGH F )DVWGH W5&5,6( 95& W5&5,6( 9 9 W5&)$// W5&)$// —VW'7  —VW'7 21 2)) 6:@ , 287           , 287 >$@ 7HVWFRQGLWLRQV VXSSO\ YROWDJH 9 I 6: N+] VORZGHFD\ I 6: N+] VORZGHFD\ $0 DocID018710 Rev 4 27/34 34 Thermal management 8 L6208Q Thermal management In most applications the power dissipation in the IC is the main factor that sets the maximum current that can be delivered by the device in a safe operating condition. Therefore, it must be considered very carefully. Besides the available space on the PCB, the right package should be chosen considering the power dissipation. Heat sinking can be achieved using copper on the PCB with proper area and thickness. Table 7. Thermal data Symbol RthJA Parameter Thermal resistance junction-ambient Package Typ. Unit VFQFPN48(1) 17 °C/W 1. VFQFPN48 mounted on the EVAL6208Q rev 1 board (see EVAL6208Q databrief): four-layer FR4 PCB with a dissipating copper surface of about 45 cm2 on each layer and 25 via holes below the IC. 28/34 DocID018710 Rev 4 L6208Q Electrical characteristic curves 9 Electrical characteristic curves Figure 30. Typical quiescent current vs. supply voltage Figure 31. Typical high-side RDS(on) vs. supply voltage 5'6 21 > @ ,T>P $@  IVZ N+]  7M ƒ&  7M ƒ&   7M ƒ&  7M ƒ&                 9 6>9@          96>9@ $0Y $0Y Figure 32. Normalized typical quiescent current vs. switching frequency ,T ,TDWN+]  Figure 33. Normalized RDS(on) vs.junction temperature (typical value) 5 '6 21  5' 6 21 D W  ƒ&                              7M>ƒ&@ I6: >N+]@ $0Y $0Y Figure 34. Typical low-side RDS(on) vs. supply voltage Figure 35. Typical drain-source diode forward ON characteristic 5 '6 21 > @ ,6' >$@     7M ƒ& 7M ƒ&              96 >9@            96'>P9@ $0Y DocID018710 Rev 4 $0Y 29/34 34 Package information 10 L6208Q Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 10.1 VFQFPN48 (7 x 7 x 1.0 mm) package information Figure 36. VFQFPN48 (7 x 7 x 1.0 mm) package outline 30/34 DocID018710 Rev 4 L6208Q Package information Table 8. VFQFPN48 (7 x 7 x 1.0 mm) package mechanical data Dimensions (mm) Symbol Min. Typ. Max. A 0.80 0.90 1.00 A1 - 0.02 0.05 A2 - 0.65 1.00 A3 - 0.25 - b 0.18 0.23 0.30 D 6.85 7.00 7.15 D2 4.95 5.10 5.25 E 6.85 7.00 7.15 E2 4.95 5.10 5.25 e 0.45 0.50 0.55 L 0.30 0.40 0.50 ddd - 0.08 - DocID018710 Rev 4 31/34 34 Order codes 11 L6208Q Order codes Table 9. Ordering information Order codes L6208Q L6208QTR 32/34 Package VFQFPN48 7 x 7 x 1.0 mm DocID018710 Rev 4 Packaging Tray Tape and reel L6208Q 12 Revision history Revision history Table 10. Document revision history Date Revision Changes 29-Jul-2011 1 First release 28-Nov-2011 2 Document moved from preliminary to final datasheet 12-Jun-2013 3 Unified package name to “VFQFPN48” in the whole document. Figure 1 moved to page 3, added Section 1: Block diagram. Corrected headings in Table 1 and Table 2 (replaced “Parameter” by “Test condition”). Corrected unit in Table 6 (row C1). Added titles to Equation 1 to Equation 4 and cross-references in Section 5.3: PWM current control. Added Table 7: Thermal data in Section 8: Thermal management. Updated Section 10: Package information (modified titles, reversed order of Figure 36 and Table 8). Unified “CEN”, “tDT”, “tON”,“tOFF”, “COFF”, “ROFF”, “Vth(ON)”, “Vth(OFF)”(subscript, lower/upper case) in the whole document. Minor corrections throughout document. 13-Mar-2017 4 Updated Figure 1 on page 4 (replaced by new figure). Minor modifications throughout document. DocID018710 Rev 4 33/34 34 L6208Q IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2017 STMicroelectronics – All rights reserved 34/34 DocID018710 Rev 4
L6208Q 价格&库存

很抱歉,暂时无法提供与“L6208Q”相匹配的价格&库存,您可以联系我们找货

免费人工找货
L6208Q
    •  国内价格 香港价格
    • 260+26.21613260+3.17725
    • 520+26.09362520+3.16240
    • 780+26.09305780+3.16233
    • 1040+26.092471040+3.16226
    • 1300+26.091891300+3.16219

    库存:0

    L6208Q
      •  国内价格 香港价格
      • 1+26.216131+3.17725
      • 5+26.093625+3.16240
      • 20+26.0930520+3.16233
      • 50+26.0924750+3.16226
      • 125+26.09189125+3.16219

      库存:0