0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
L6722

L6722

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    VFQFN36

  • 描述:

    IC REG CTRLR BUCK 36VFQFPN

  • 数据手册
  • 价格&库存
L6722 数据手册
L6722 3 Phase controller for DC/DC converters Features ■ 2A integrated gate drivers ■ 0.8V reference ■ 1% output voltage accuracy ■ Adjustable reference offset ) s ( t c u Description d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c Applications u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O VFQFPN36 ■ Precise current sharing and OCP across LS MOSFETS ■ Constant over current protection ■ Feedback disconnection ■ LSLESS allows managing pre-bias startup ■ Preliminary of protection ■ Oscillator internally fixed at 100kHz, externally adjustable ■ Power good ■ Integrated remote sense buffer ■ VFQFPN36 package with exposed pad ■ Memory supply for server and workstation MBs ■ High density DC / DC converters ■ High current pol L6722 implements a three-phase step-down controller with 120º phase-shift between each phase with integrated high-current drivers in a compact VFQFPN36 package with exposed pad. L6722 manages output voltages down to 0.8V with ±1% output voltage accuracy over line and temperature variations. Additional programmable offset can be added to the reference voltage with a single external resistor in order to perform margining tests. The controller assures fast protection against load over current and over / under voltage. In case of over-current the system works in Constant Current mode until UVP. Preliminary OVP allows full load protection in case of startup with failed HS. Feedback-disconnection protection prevents from damaging the load in case of misconnections in the remote sense. Pre-bias start-up is also managed thanks to LSLESS. Combined use of DCR and RdsON current sensing assures precision in voltage positioning (by reading droop current across inductors DCR) and safe current sharing and OCP per each phase (by reading the current across LS RdsON). Droop function can be anyway disabled to perform precise and load-insensitive regulation. Order codes May 2006 Part number Package Packing L6722 VFQFPN36 Tube L6722TR VFQFPN36 Tape & Reel Rev 1 1/34 www.st.com 34 L6722 Contents 1 2 Typical application circuit and block diagram . . . . . . . . . . . . . . . . . . . . . . 4 1.1 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pins description and connection diagrams . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 2.2 3 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 Device description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5 Driver section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.1 Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6 Current sharing loop and current reading . . . . . . . . . . . . . . . . . . . . . . . . 16 7 Output voltage positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 8 7.1 Offset and margining-mode (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 7.2 Droop function (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7.3 Maximum duty cycle limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Soft start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.1 9 2/34 Low-side-less startup for pre-bias output . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Output voltage monitor and protections . . . . . . . . . . . . . . . . . . . . . . . . . . 22 9.1 Under voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 9.2 Over voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 9.3 Preliminary over voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 9.4 Feedback disconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 9.5 PGOOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 L6722 9.6 Over-current protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 10 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 11 System control loop compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 11.1 12 Compensation network guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Layout guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 12.1 Power components and connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 12.2 13 Small signal components and connections . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3/34 L6722 1 Typical application circuit and block diagram 1 Typical application circuit and block diagram 1.1 Application circuit Figure 1. Typical application circuit VIN LIN 2 GNDIN to BOOT1 to BOOT2 CIN VCC BOOT1 to BOOT3 7 8 ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 4 1, 26 UGATE1 PGND SGND PHASE1 LGATE1 ROSC 18 OSC/INH/FLT ISEN1 BOOT2 19 L6722 UGATE2 REF_IN PHASE2 LGATE2 ISEN2 BOOT3 20 36 REF_OUT COMP PHASE3 CF RF UGATE3 35 LGATE3 FB ISEN3 RFB 34 27 28 L6722 REFERENCE SCHEMATIC 4/34 CS+ VSEN CS- HS1 L1 9 3 31 LS1 RISEN 10 11 HS2 12 5 30 Vcc_core L2 COUT LS2 LOAD RISEN 13 14 HS3 15 L3 6 29 LS3 RISEN R1 32 R1 33 R2 R2 FBR FBG PGOOD 16 PGOOD L6722 1 Typical application circuit and block diagram Figure 2. Typical application circuit - droop enabled VIN LIN 2 GNDIN 4 1, 26 to BOOT1 VCC BOOT1 UGATE1 PGND SGND PHASE1 LGATE1 ROSC 18 to BOOT2 CIN OSC/INH/FLT ISEN1 to BOOT3 7 8 HS1 L1 9 3 31 LS1 RISEN ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O LGATE2 ISEN2 BOOT3 20 36 REF_OUT COMP PHASE3 CF RF UGATE3 35 LGATE3 FB ISEN3 RFB 34 CS+ VSEN CS- HS2 12 5 30 Vcc_core L2 COUT LS2 LOAD RISEN 13 14 HS3 15 L3 6 29 LS3 RPH REF_IN PHASE2 11 RPH 19 L6722 UGATE2 10 RPH BOOT2 RISEN CPH 32 33 RD 27 28 FBR FBG PGOOD 16 PGOOD L6722 REFERENCE SCHEMATIC - droop 5/34 L6722 1 Typical application circuit and block diagram VCC VCC PGND PGND VCC LGATE3 PHASE3 UGATE3 BOOT3 LGATE2 PHASE2 UGATE2 BOOT2 LGATE1 PHASE1 Block diagram BOOT1 Figure 3. Block diagram UGATE1 1.2 VCC PGND VCC PGND HS1 PGND SGND LS1 HS2 LOGIC PWM ADAPTIVE ANTI CROSS CONDUCTION SGND LS2 HS3 LOGIC PWM ADAPTIVE ANTI CROSS CONDUCTION LS3 LOGIC PWM ADAPTIVE ANTI CROSS CONDUCTION ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O CURRENT SHARING CORRECTION PWM1 PWM2 PWM3 VCC OCP1 L6722 CONTROL LOGIC AND PROTECTIONS OCP2 OCP3 LOW SIDE MOSFET CURRENT READING AND OVER CURRENT OVP FB DISCONNECTION IDROOP VFB-DISC SSEND / PGOOD 64k IINFO x3 64k DROOP CURRENT READING REMOTE BUFFER VSEN CS+ CS- COMP FB REF_IN ERROR AMPLIFIER REF_OUT ISEN1 ISEN2 ISEN3 PGOOD IOS 64k 64k FBR FBG BANDGAP AND REFERENCE OSC/EN/FAULT 6/34 AVG COMP DIGITAL SOFT START PWM3 PH3 PWM2 PH2 PWM1 CURRENT SHARING CORRECTION PH1 OSC / INH / FLT 3 PHASE OSCILLATOR CURRENT SHARING CORRECTION L6722 2 2 Pins description and connection diagrams Pins description and connection diagrams Pins connection (top view) CSCS+ ISEN1 ISEN2 ISEN3 FBG FBR SGND N.C. Figure 4. VSEN FB COMP SGND VCC N.C. LGATE1 PGND LGATE2 36 35 34 33 1 32 31 30 29 28 27 2 26 3 25 4 24 5 23 6 22 7 21 8 20 N.C. REF_OUT REF_IN N.C. OSC / INH / FLT N.C. PGOOD N.C. PHASE3 ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( 2.1 Pin description s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 9 19 11 12 13 14 15 16 17 18 LGATE3 BOOT1 UGATE1 PHASE1 BOOT2 UGATE2 PHASE2 BOOT3 UGATE3 10 Table 1. Pins description Pin# Name Function 1 VSEN 2 FB 3 COMP 4 SGND 5 VCC Device Power Supply as well as LS driver supply. Operative voltage is 12V ±15%. Filter with at least 1µF MLCC vs. ground. 6 N.C. Not Internally Bonded. 7 LGATE1 8 PGND Remote Buffer Output. It manages OVP and UVP protections and PGOOD. See Section 9 for details. Error Amplifier Inverting Input. Connect with a resistor RFB vs. VSEN and with an RF - CF vs. COMP. Error Amplifier Output. Connect with an RF - CF vs. FB. The device cannot be disabled by pulling down this pin. All the internal references are referred to this pin. Connect to the PCB Signal Ground. Channel 1 LS Driver Output. A small series resistor helps in reducing device-dissipated power. LS Driver return path. Connect to Power ground Plane. 7/34 L6722 2 Pins description and connection diagrams Table 1. Pins description (continued) Pin# Name 9 LGATE2 Channel 2 LS Driver Output. A small series resistor helps in reducing device-dissipated power. 10 LGATE3 Channel 3 LS Driver Output. A small series resistor helps in reducing device-dissipated power. BOOT1 Channel 1 HS driver supply. Connect through a capacitor (100nF typ.) to PHASE1 and provide necessary Bootstrap diode. A small series resistor before the boot diode helps in reducing Boot capacitor overcharge. 11 Function ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 8/34 12 UGATE1 Channel 1 HS driver output. A small series resistors helps in reducing device-dissipated power. 13 PHASE1 Channel 1 HS driver return path. It must be connected to the HS1 mosfet source and provides return path for the HS driver of channel 1. 14 BOOT2 Channel 2 HS driver supply. Connect through a capacitor (100nF typ.) to PHASE2 and provide necessary Bootstrap diode. A small series resistor before the boot diode helps in reducing Boot capacitor overcharge. 15 UGATE2 Channel 2 HS driver output. A small series resistors helps in reducing device-dissipated power. 16 PHASE2 Channel 2 HS driver return path. It must be connected to the HS2 mosfet source and provides return path for the HS driver of channel 2. 17 BOOT3 Channel 3 HS driver supply. Connect through a capacitor (100nF typ.) to PHASE3 and provide necessary Bootstrap diode. A small series resistor before the boot diode helps in reducing Boot capacitor overcharge. 18 UGATE3 Channel 3 HS driver output. A small series resistors helps in reducing device-dissipated power. 19 PHASE3 Channel 3 HS driver return path. It must be connected to the HS3 mosfet source and provides return path for the HS driver of channel 3. 20 N.C. 21 PGOOD 22 N.C. Not Internally Bonded. Open Drain Output set free after SS has finished and pulled low when VSEN is lower than the relative threshold. Pull up to a voltage lower than 5V (typ), if not used it can be left floating. Not Internally Bonded. L6722 2 Pins description and connection diagrams Table 1. Pin# 23 Pins description (continued) Name Function OSC / INH / FLT Three functional pin: OSC: It allows programming the switching frequency FSW of each channel: the equivalent switching frequency at the load side results in being tripled. Frequency is programmed according to the resistor connected from the pin vs. SGND or VCC with a gain of 4kHz/µA (see relevant section for details). Leaving the pin floating programs a switching frequency of 100kHz per phase (300kHz on the load). INH: Forced low, the device stops operations with all mosfets OFF: all the protections are disabled except for Preliminary over voltage. It resets the device from any latching condition. FLT: The pin is forced high (5V) to signal an OVP FAULT: to recover from this condition, cycle VCC or the OSC pin. See Section 10 for details. ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 24 N.C. 25 REF_IN REFrence INput for the regulation. Connect directly or through a resistor to the REF_OUT pin. See Section 7.1 for details. 26 REF_OUT REFrence OUTput. Connect directly or through a resistor to the REF_IN pin. See Section 7.1 for details. 27, 28 N.C. 29 SGND 30 FBR Remote Buffer Non Inverting Input. Connect to the positive side of the load to perform remote sense. See Section 12 for proper layout of this connection. 31 FBG Remote Buffer Inverting Input. Connect to the negative side of the load to perform remote sense. See Section 12 for proper layout of this connection. 32 to 34 ISEN3 to ISEN1 LS Current Sense Pins. These pins are used for current balance phase-to-phase as well as for the system OCP. Connect through a resistor Rg to the relative PHASEx pin. See Section 6 and Section 9.6 for details. 35 CS+ Droop Current Sense non-inverting input. Connect through R-C network to the main inductors. See Section 7.1 for details. CS- Droop Current Sense inverting input. Connect through resistor RD to the main inductors common node. See Section 7.1 for details. This pin also monitor the feedback disconnection. See Section 9.4 for details. THERMAL PAD Thermal pad connects the Silicon substrate and makes good thermal contact with the PCB to dissipate the power necessary to drive the external mosfets. Connect to the PGND plane with several VIAs to improve thermal conductivity. 36 PAD Not Internally Bonded. Not Internally Bonded. All the internal references are referred to this pin. Connect to the PCB Signal Ground. 9/34 L6722 2 Pins description and connection diagrams 2.2 Thermal data Table 2. Symbol Thermal data Parameter Value Unit RthJA Thermal Resistance Junction to Ambient (Device soldered on 2s2p PC Board) 30 °C/W TMAX Maximum Junction Temperature 150 °C TSTG Storage Temperature Range -40 to 150 °C TJ Junction Temperature Range -40 to 125 °C PTOT Maximum Power Dissipation at TA = 25°C ) s ( t c u d o ) r s ( P t c e t u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O 10/34 3.5 W L6722 3 Electrical specifications 3 Electrical specifications 3.1 Absolute maximum ratings Table 3. Absolute maximum ratings Symbol VCC VBOOTx - VPHASEx Parameter Value Unit to PGND 15 V Boot Voltage 15 V 15 V -0.3 to VCC + 0.3 V -0.3 to 7 V 26 V TBD V VUGATEx - VPHASEx ) s ( t c u d o ) r s ( P t c e t 3.2 Electrical characteristics u e d l o o r s P b e O t e l ) o s ( s t b c u O d o ) r s P ( t c e t u e l d o o r s P b O e t e l o s b O LGATEx, PHASEx, to PGNDx All other Pins to PGNDx VPHASEx Table 4. Positive Peak Voltage; T
L6722 价格&库存

很抱歉,暂时无法提供与“L6722”相匹配的价格&库存,您可以联系我们找货

免费人工找货