0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM124WN

LM124WN

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    LM124WN - Low Power Quad Operational Amplifiers - STMicroelectronics

  • 数据手册
  • 价格&库存
LM124WN 数据手册
LM124W-LM224W-LM324W Low Power Quad Operational Amplifiers ■ ■ ■ ■ ■ ■ ■ ■ Wide gain bandwidth: 1.3MHz Input common-mode voltage range includes ground Large voltage gain: 100dB Very low supply current/ampli: 375µA Low input bias current: 20nA Low input offset voltage: 3mV max. Low input offset current: 2nA Wide power supply range: Single supply: +3V to +30V Dual supplies: ±1.5V to ±15V N DIP14 (Plastic Package) Description These circuits consist of four independent, high gain, internally frequency compensated operational amplifiers. They operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. All the pins are protected against electrostatic discharges up to 2000V (as a consequence, the input voltages must not exceed the magnitude of VCC+ or VCC-.) D SO-14 (Plastic Micropackage) P TSSOP-14 (Thin Shrink Small Outline Package) Order Codes Part Number LM124WN LM124WD/WDT LM224WN LM224WD/WDT LM224WPT LM324WN LM324WD/WDT LM324WPT Temperature Range -55°C, +125°C Package DIP SO DIP SO TSSOP (Thin Shrink Outline Package) DIP SO TSSOP (Thin Shrink Outline Package) Packaging Tube Tube or Tape & Reel Tube Tube or Tape & Reel Tape & Reel Tube Tube or Tape & Reel Tape & Reel Rev 2 1/16 www.st.com 16 -40°C, +105°C 0°C, +70°C June 2005 Absolute Maximum Ratings LM124W-LM224W-LM324W 1 Absolute Maximum Ratings Table 1. Symbol VCC Vi Vid Ptot Supply voltage Input Voltage Differential Input Voltage (1) Power Dissipation N Suffix D Suffix Output Short-circuit Duration (2) Iin Toper Tstg Input Current (3) Operating Free-air Temperature Range Storage Temperature Range Thermal Resistance Junction to Ambient SO14 TSSOP14 DIP14 HBM: Human Body Model(4) ESD MM: Machine Model(5) CDM: Charged Device Model 1. Either or both input voltages must not exceed the magnitude of VCC or + 15Key parameters and their absolute maximum ratings Parameter LM124W LM224W ±16 or 32 -0.3 to Vcc + 0.3 -0.3 to Vcc + 0.3 500 500 400 Infinite 50 -55 to +125 -40 to +105 -65 to +150 103 100 66 700 100 1.5 VCC-. LM324W Unit V V V 500 400 mW mA 0 to +70 °C °C Rthja °C/W V V kV 2. Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current is approximately 40mA independent of the magnitude of VCC. Destructive dissipation can result from simultaneous short-circuit on all amplifiers. 3. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. this transistor action can cause the output voltages of the op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration than an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V. 4. Human body model, 100pF discharged through a 1.5kΩ resistor into pin of device. 5. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor < 5Ω), into pin to pin of device. 2/16 LM124W-LM224W-LM324W Pin & Schematic Diagram 2 Pin & Schematic Diagram Figure 1. Pin connections (top view) Output 1 1 Inverting Input 1 2 Non-inverting Input 1 3 VCC + 4 Non-inverting Input 2 Inverting Input 2 5 6 + + + + 14 Output 4 13 Inverting Input 4 12 Non-inverting Input 4 11 VCC 10 Non-inverting Input 3 9 8 Inverting Input 3 Output 3 Output 2 7 Figure 2. Schematic diagram (1/4 LM124W) 3/16 Electrical Characteristics LM124W-LM224W-LM324W 3 Electrical Characteristics Table 2. Symbol Vio VCC+ = +5V, VCC-= Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified) Parameter Input Offset Voltage - note (1) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Input Offset Current Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Input Bias Current - note (2) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Large Signal Voltage Gain VCC+ = +15V, RL = 2kΩ, Vo = 1.4V to 11.4V Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Supply Voltage Rejection Ratio (Rs ≤ 10kΩ) VCC+ = 5V to 30V Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Supply Current, all Amp, no load Tamb = +25°C V CC = +5V VCC = +30V Tmin ≤ Tamb ≤ Tmax VCC = +5V VCC = +30V Input Common Mode Voltage Range Min. Typ. 2 Max. 3 5 20 40 100 200 Unit mV Iio 2 nA Iib 20 nA Avd 50 25 100 V/mV SVR 65 65 110 dB ICC 0.7 1.5 0.8 1.5 1.2 3 1.2 3 mA Vicm VCC = +30V - note (3) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Common Mode Rejection Ratio (Rs ≤ 10kΩ) Tamb = +25°C Tmin ≤ Tamb ≤ T max Output Current Source (Vid = +1V) VCC = +15V, Vo = +2V Output Sink Current (V id = -1V) VCC = +15V, Vo = +2V VCC = +15V, Vo = +0.2V 0 0 VCC 1.5 VCC 2 80 V CMR 70 60 20 10 12 dB Isource 40 20 50 70 mA Isink mA µA 4/16 LM124W-LM224W-LM324W Table 2. Symbol High Level Output Voltage VCC = +30V Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Tamb = +25°C Tmin ≤ Tamb ≤ Tmax VCC = +5V, R L = 2k Ω Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Electrical Characteristics VCC+ = +5V, VCC-= Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified) Parameter Min. Typ. Max. Unit RL = 2kΩ R L = 10kΩ VOH 26 26 27 27 3.5 3 27 28 V VOL Low Level Output Voltage (RL = 10kΩ) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Slew Rate VCC = 15V, V i = 0.5 to 3V, R L = 2kΩ, CL = 100pF, unity Gain Gain Bandwidth Product VCC = 30V, f =100kHz,V in = 10mV, RL = 2k Ω, CL = 100pF Total Harmonic Distortion: f = 1kHz, Av = 20dB, RL = 2kΩ, Vo = 2Vpp, CL = 100pF, VCC = 30V Equivalent Input Noise Voltage f = 1kHz, Rs = 100Ω, V CC = 30V Input Offset Voltage Drift Input Offset Current Drift Channel Separation - note (4) 1kHz ≤ f ≤ 20kHZ 5 20 20 mV V/µs MHz % nV ----------Hz SR GBP THD en DV io DIIio Vo1 /Vo2 0.4 1.3 0.015 40 7 10 120 30 200 µV/ °C pA/ °C dB 1. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines. 2. Vo = 1.4V, Rs = 0Ω, 5V < VCC + < 30V, 0 < Vic < VCC+ - 1.5V 3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is VCC+ - 1.5V, but either or both inputs can go to +32V without damage. 4. Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequences. Table 3. Vcc+ = +15V, Vcc- = 0V, Tamb = 25°C (unless otherwise specified) Symbol Vio Avd Icc Vicm VOH VOL Ios GBP SR RL = 2kΩ (VCC RL = 10kΩ Vo = +2V, VCC = +15V RL = 2kΩ, CL = 100pF RL = 2kΩ, CL = 100pF +=15V) Conditions RL = 2 k Ω No load, per amplifier Value 0 100 350 -15 to +13.5 +13.5 5 +40 1.3 0.4 Unit mV V/mV µA V V mV mA MHz V/µs 5/16 Electrical Characteristics Figure 3. Input bias current vs. ambient temperature INPUT BIAS CURRENT versus AMBIENT TEMPERATURE IB (nA) LM124W-LM224W-LM324W Figure 4. Current limiting 24 21 18 15 12 9 6 3 0 -55-35-15 5 25 45 65 85 105 125 AMBIENT TEMPERATURE (°C) Figure 5. Input voltage range Figure 6. Supply current SUPPLY CURRENT 4 VCC SUPPLY CURRENT (mA) 3 mA ID - 2 + 1 Tamb = 0°C to +125°C Tamb = -55°C 0 10 20 30 POSITIVE SUPPLY VOLTAGE (V) Figure 7. Gain bandwidth product Figure 8. Common mode rejection ratio 6/16 LM124W-LM224W-LM324W Figure 9. Electrical curves Electrical Characteristics 7/16 Electrical Characteristics Figure 10. Input current LM124W-LM224W-LM324W Figure 11. Large signal voltage gain Figure 12. Power supply & common mode rejection ratio Figure 13. Voltage gain 8/16 LM124W-LM224W-LM324W Typical Single - Supply Applications 4 Typical Single - Supply Applications Figure 15. High input Z adjustable gaind DC instrumentation amplifier R1 100kW Figure 14. AC coupled inverting amplifier Rf 100k W R1 10k W 1/4 LM124W CI A V= R1 (as shown AV = -10) e1 Rf 1/4 LM124W R3 100kW R4 100kW Co 0 eo RL 10kW 1/4 LM124W e2 2VPP R2 2kW Gain adjust 1/4 LM124W eO eI ~ R2 100kW V CC RB 6.2kW R3 100kW R5 100kW R6 100kW R7 100kW if R1 = R5 and R3 = R4 = R6 = R7 C1 10mF 1 e0 = 1 + ----------- (e2 -e1) R 2 2R As shown e0 = 1 01 (e2 - e1). Figure 16. AC coupled non inverting amplifier Figure 17. DC summing amplifier e1 100k W R1 100kW C1 0.1mF R2 1MW A V= 1 + R2 R1 (as shown A = 11) V Co 100kW 0 eo RL 10kW 2VPP 1/4 LM124W eO CI 1/4 LM124W e2 e3 100k W 100k W 100k W RB 6.2kW eI ~ R3 1MW R4 100k W V CC C2 10mF R5 100kW e4 100k W e0 = e1 +e2 -e3 -e4 Where (e1 +e2) ≥ (e3 +e4) to keep e0 ≥ 0V Figure 18. Non-inverting DC gain A V = 1 + R2 R1 (As shown A V = 101) Figure 19. Low drift peak detector IB 1/4 LM124W 10k W 1/4 LM124W eO +5V eI ZI 1/4 LM124W IB 1mF C * 2IB 2N 929 2IB R 1MW eo Zo 0.001mF IB 3R 3MW IB 1/4 LM124W R1 10k W R2 1M W e O (V) Input current compensation 0 e I (mV) * Polycarbonate or polyethylene 9/16 Typical Single - Supply Applications Figure 20. Activer bandpass filter LM124W-LM224W-LM324W Figure 21. High input Z, DC differential amplifier R R 1 4 For ------- = -----R R 2 3 (CMRR depends on this resistor ratio match) R1 100kW C1 330pF 1/4 LM124W e1 R4 10MW C2 330pF R5 470kW 1/4 LM124W R2 100kW R1 100kW 1/4 LM124W R4 100kW R3 100kW 1/4 LM124W R3 10kW 1/4 LM124W R6 470kW eO R7 100kW V CC R8 100kW C3 10mF +V1 +V2 Vo Fo = 1kHz Q = 50 Av = 100 (40dB) e0 ⎛ 1 + R 4⎞ ------⎝ R 3⎠ (e2 - e1) As shown e0 = (e2 - e1) Figure 22. Using symmetrical amplifiers to reduce input current (general concept) I eI IB I IB 1/4 LM124W eo 2N 929 0.001mF IB IB 3MW IB 1/4 LM124W Aux. amplifier for input current compensation 1.5MW 10/16 LM124W-LM224W-LM324W Macromodels 5 Note: Macromodels Note: Please consider following remarks before using this macromodel: All models are a trade-off between accuracy and complexity (i.e. simulation time). Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values. A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the product. Data issued from macromodels used outside of its specified conditions (Vcc, Temperature, etc.) or even worse: outside of the device operating conditions (Vcc, Vicm, etc.) are not reliable in any way. ** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT LM124 1 3 2 4 5 (analog) ******************************************************* .MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.600000E+01 RIN 15 16 2.600000E+01 RIS 11 15 2.003862E+02 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0 VOFN 13 14 DC 0 IPOL 13 5 1.000000E-05 CPS 11 15 3.783376E-09 DINN 17 13 MDTH 400E-12 VIN 17 5 0.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 2.000000E+00 FCP 4 5 VOFP 3.400000E+01 FCN 5 4 VOFN 3.400000E+01 FIBP 2 5 VOFN 2.000000E-03 FIBN 5 1 VOFP 2.000000E-03 * AMPLIFYING STAGE FIP 5 19 VOFP 3.600000E+02 11/16 Macromodels FIN 5 19 VOFN 3.600000E+02 RG1 19 5 3.652997E+06 RG2 19 4 3.652997E+06 CC 19 5 6.000000E-09 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 7.500000E+03 VIPM 28 4 1.500000E+02 HONM 21 27 VOUT 7.500000E+03 VINM 5 27 1.500000E+02 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 3 20 COUT 3 5 1.000000E-12 DOP 19 25 MDTH 400E-12 VOP 4 25 2.242230E+00 DON 24 19 MDTH 400E-12 VON 24 5 7.922301E-01 .ENDS LM124W-LM224W-LM324W 12/16 LM124W-LM224W-LM324W Package Mechanical Data 6 Package Mechanical Data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 6.1 DIP14 Package Plastic DIP-14 MECHANICAL DATA mm. DIM. MIN. a1 B b b1 D E e e3 F I L Z 1.27 3.3 2.54 0.050 8.5 2.54 15.24 7.1 5.1 0.130 0.100 0.51 1.39 0.5 0.25 20 0.335 0.100 0.600 0.280 0.201 1.65 TYP MAX. MIN. 0.020 0.055 0.020 0.010 0.787 0.065 TYP. MAX. inch P001A 13/16 Package Mechanical Data LM124W-LM224W-LM324W 6.2 SO-14 Package SO-14 MECHANICAL DATA DIM. A a1 a2 b b1 C c1 D E e e3 F G L M S 3.8 4.6 0.5 8.55 5.8 1.27 7.62 4.0 5.3 1.27 0.68 8 ˚ (max.) 0.149 0.181 0.019 8.75 6.2 0.35 0.19 0.5 45˚ (typ.) 0.336 0.228 0.050 0.300 0.157 0.208 0.050 0.026 0.344 0.244 0.1 mm. MIN. TYP MAX. 1.75 0.2 1.65 0.46 0.25 0.013 0.007 0.019 0.003 MIN. inch TYP. MAX. 0.068 0.007 0.064 0.018 0.010 PO13G 14/16 LM124W-LM224W-LM324W Package Mechanical Data 6.3 TSSOP14 Package TSSOP14 MECHANICAL DATA mm. DIM. MIN. A A1 A2 b c D E E1 e K L 0˚ 0.45 0.60 0.05 0.8 0.19 0.09 4.9 6.2 4.3 5 6.4 4.4 0.65 BSC 8˚ 0.75 0˚ 0.018 0.024 1 TYP MAX. 1.2 0.15 1.05 0.30 0.20 5.1 6.6 4.48 0.002 0.031 0.007 0.004 0.193 0.244 0.169 0.197 0.252 0.173 0.0256 BSC 8˚ 0.030 0.004 0.039 MIN. TYP. MAX. 0.047 0.006 0.041 0.012 0.0089 0.201 0.260 0.176 inch A A2 A1 b e K c L E D E1 PIN 1 IDENTIFICATION 1 0080337D 15/16 Revision History LM124W-LM224W-LM324W 7 Revision History Date Sept. 2003 June 2005 Revision 1 3 First Release ESD protection inserted in Table 1 on page 2 Changes Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 16/16
LM124WN 价格&库存

很抱歉,暂时无法提供与“LM124WN”相匹配的价格&库存,您可以联系我们找货

免费人工找货