M24C04-W M24C04-R M24C04-F
Datasheet
4-Kbit serial I²C bus EEPROMs
Features
•
SO8N (MN)
TSSOP8 (DW)
150 mil width
169 mil width
•
•
UFDFPN8 (MC)
UFDFPN5 (MH)
DFN8 - 2 x 3 mm
DFN5 - 1.7 x 1.4 mm
•
Product status link
•
M24C04-W
M24C04-R
M24C04-F
•
•
•
•
•
Compatible with following I2C bus modes:
–
400 kHz
–
100 kHz
Memory array:
–
4 Kbit (512 byte) of EEPROM
–
Page size: 16 byte
Single supply voltage:
–
M24C04-W: 2.5 V to 5.5 V
–
M24C04-R: 1.8 V to 5.5 V
–
M24C04-F:
1.7 V to 5.5 V
1.6 V to 5.5 V (under temperature constraint)
Write:
–
Byte write within 5 ms
–
Page write within 5 ms
Operating temperature range:
–
from -40 °C up to +85 °C
Random and sequential read modes
Write protect of the whole memory array
Enhanced ESD/latch-Up protection
More than 4 million write cycles
More than 200-years data retention
Packages
Packages RoHS-compliant and Halogen-free
•
SO8N (ECOPACK2)
•
TSSOP8 (ECOPACK2)
•
UFDFPN8 (ECOPACK2)
•
UFDFPN5 (ECOPACK2)
DS9387 - Rev 6 - June 2022
For further information contact your local STMicroelectronics sales office.
www.st.com
M24C04-W M24C04-R M24C04-F
Description
1
Description
The M24C04 is a 4-Kbit I2C-compatible EEPROM (electrically erasable programmable memory) organized as 512
× 8 bits.
The M24C04-W can be accessed with a supply voltage from 2.5 V to 5.5 V, the M24C04-R can be accessed with
a supply voltage from 1.8 V to 5.5 V, and the M24C04-F can be accessed either with a supply voltage from 1.7
V to 5.5 V (over the full temperature range) or with an extended supply voltage from 1.6 V to 5.5 V under some
restricted conditions. All these devices operate with a clock frequency of 400 kHz, over an ambient temperature
range of -40 °C / +85 °C.
Figure 1. Logic diagram
VCC
2
E2-E1
SDA
M24xxx
SCL
WC
VSS
Table 1. Signal names
Signal name
Function
Direction
E2, E1(1)
Chip enable
Input
SDA
Serial data
I/O
SCL
Serial clock
Input
WC
Write control
Input
VCC
Supply voltage
-
VSS
Ground
-
1. Signal not connected in the DFN5 package.
Figure 2. 8-pin package connections, top view
NC
E1
E2
V SS
1.
2.
DS9387 - Rev 6
1
2
3
4
8
7
6
5
V CC
WC
SCL
SDA
NC: not connected.
See Section 9 Package information for package dimensions, and how to identify pin 1
page 2/40
M24C04-W M24C04-R M24C04-F
Description
Figure 3. UFDFPN5 (DFN5) package connections
1.
DS9387 - Rev 6
VCC
1
VSS
2
SDA
3
ABCD
XYZW
5
WC
5
1
2
VSS
2
2
4
SCL
4
3
Top view
Bottom view
(marking side)
(pads side)
Inputs E2 and E1 are not connected. Refer to Section 4.5 Device addressing for further explanations.
page 3/40
M24C04-W M24C04-R M24C04-F
Signal description
2
Signal description
2.1
Serial clock (SCL)
The signal applied on the SCL input is used to strobe the data available on SDA(in) and to output the data on
SDA(out).
2.2
Serial data (SDA)
SDA is an input/output used to transfer data in or data out of the device. SDA(out) is an open drain output
that may be wired-AND with other open drain or open collector signals on the bus. A pull-up resistor must be
connected from serial data (SDA) to VCC (Figure 11 indicates how to calculate the value of the pull-up resistor).
2.3
Chip enable (E1, E2)
These input signals are used to set the value that is to be looked for on the two bits (b3, b2) of the 7-bit device
select code. These inputs must be tied to VCC or VSS to establish the device select code as shown in Table 6.
When not connected (left floating), these inputs are read as low (0, 0).
For the UFDFPN5 package, the (E1,E2) inputs are not connected.
2.4
Write control (WC)
This input signal is useful for protecting the entire contents of the memory from inadvertent write operations. Write
operations are disabled to the entire memory array when write control (WC) is driven high. Write operations are
enabled when write control (WC) is either driven low or left floating.
When write control (WC) is driven high, device select and address bytes are acknowledged, data bytes are not
acknowledged.
2.5
VSS (ground)
VSS is the reference for all signals, including the VCC supply voltage.
2.6
Supply voltage (VCC)
2.6.1
Operating supply voltage (VCC)
Prior to selecting the memory and issuing instructions to it, a valid and stable VCC voltage within the specified
[VCC(min), VCC(max)] range must be applied (see Operating conditions in Section 8 DC and AC parameters). In
order to secure a stable DC supply voltage, it is recommended to decouple the VCC line with a suitable capacitor
(usually of the order of 10 nF to 100 nF) close to the VCC/VSS package pins.
This voltage must remain stable and valid until the end of the transmission of the instruction and, for a write
instruction, until the completion of the internal write cycle (tW).
DS9387 - Rev 6
page 4/40
M24C04-W M24C04-R M24C04-F
Supply voltage (VCC)
2.6.2
Power-up conditions
The VCC voltage has to rise continuously from 0 V up to the minimum VCC operating voltage (see Operating
conditions in Section 8 DC and AC parameters).
2.6.3
Device reset
In order to prevent inadvertent write operations during power-up, a power-on-reset (POR) circuit is included.
At power-up, the device does not respond to any instruction until VCC has reached the internal reset
threshold voltage. This threshold is lower than the minimum VCC operating voltage (see Operating conditions
in Section 8 DC and AC parameters). When VCC passes over the POR threshold, the device is reset and enters
the standby power mode; however, the device must not be accessed until VCC reaches a valid and stable DC
voltage within the specified [VCC(min), VCC(max)] range (see Operating conditions in Section 8 DC and AC
parameters).
In a similar way, during power-down (continuous decrease in VCC), the device must not be accessed when VCC
drops below VCC(min). When VCC drops below the power-on-reset threshold voltage, the device stops responding
to any instruction sent to it.
2.6.4
Power-down conditions
During power-down (continuous decrease in VCC), the device must be in the standby power mode (mode reached
after decoding a stop condition, assuming that there is no internal write cycle in progress).
DS9387 - Rev 6
page 5/40
M24C04-W M24C04-R M24C04-F
Block diagram
3
Block diagram
The block diagram of the device is described below.
Figure 4. Block diagram
SENSE AMPLIFIERS
DATA REGISTER
PAGE LATCHES
X DECODER
ARRAY
SDA
I/O
CONTROL
LOGIC
WC
E1, E2
Y DECODER
SCL
START &
STOP
DETECT
HV GENERATOR
+
SEQUENCER
ADDRESS
REGISTER
DS9387 - Rev 6
page 6/40
M24C04-W M24C04-R M24C04-F
Device operation
4
Device operation
The device supports the I2C protocol. This is summarized in Figure 5. Any device that sends data on to the bus
is defined to be a transmitter, and any device that reads the data to be a receiver. The device that controls the
data transfer is known as the bus master, and the other as the slave device. A data transfer can only be initiated
by the bus master, which also provides the serial clock for synchronization. The device is always a slave in all
communications.
Figure 5. I2C bus protocol
SCL
SDA
SDA
Input
START
Condition
SCL
1
SDA
MSB
2
SDA
Change
STOP
Condition
3
7
8
9
ACK
START
Condition
SCL
1
SDA
MSB
2
3
7
8
9
ACK
STOP
Condition
DS9387 - Rev 6
page 7/40
M24C04-W M24C04-R M24C04-F
Start condition
4.1
Start condition
Start is identified by a falling edge of serial data (SDA) while serial clock (SCL) is stable in the high state. A start
condition must precede any data transfer instruction. The device continuously monitors (except during a write
cycle) serial data (SDA) and serial clock (SCL) for a start condition.
4.2
Stop condition
Stop is identified by a rising edge of serial data (SDA) while serial clock (SCL) is stable in the high state. A stop
condition terminates communication between the device and the bus master. A read instruction that is followed by
NoAck can be followed by a stop condition to force the device into the standby mode.
A stop condition at the end of a write instruction triggers the internal write cycle.
4.3
Data input
During data input, the device samples serial data (SDA) on the rising edge of serial clock (SCL). For correct
device operation, serial data (SDA) must be stable during the rising edge of serial clock (SCL), and the serial data
(SDA) signal must change only when serial clock (SCL) is driven low.
4.4
Acknowledge bit (ACK)
The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter, whether it be bus master
or slave device, releases serial data (SDA) after sending eight bits of data. During the 9th clock pulse period, the
receiver pulls serial data (SDA) low to acknowledge the receipt of the eight data bits.
DS9387 - Rev 6
page 8/40
M24C04-W M24C04-R M24C04-F
Device addressing
4.5
Device addressing
To start communication between the bus master and the slave device, the bus master must initiate a Start
condition. Following this, the bus master sends the device select code, shown in Table 2 (most significant bit first).
Note:
When using the DFN5 package:
•
•
The E1 and E2 pins are not accessible.
To properly communicate with the device, the E1 and E2 bits must always be set to logic 0 for any
operation. See Table 2.
•
No other I2C device using address 1010 xxxx (x = don't care) can be connected to the same bus.
Table 2. Device select code
Package
Device type identifier(1)
Chip Enable address
RW
b7
b6
b5
b4
b3
b2
b1
b0
TSSOP8,SO8N, UFDFPN8
1
0
1
0
E2
E1
A8
RW
DFN5
1
0
1
0
0
0
A8
RW
1. The MSB, b7, is sent first.
The 8th bit is the Read/Write bit (RW). This bit is set to 1 for read and 0 for write operations.
If a match occurs on the device select code, the corresponding device gives an acknowledgement on serial data
(SDA) during the 9th bit time. If the device does not match the device select code, it deselects itself from the bus,
and goes into standby mode.
DS9387 - Rev 6
page 9/40
M24C04-W M24C04-R M24C04-F
Instructions
5
Instructions
5.1
Write operations
Following a start condition the bus master sends a device select code with the R/W bit (RW) reset to 0. The
device acknowledges this, as shown in Figure 6, and waits for the address byte. The device responds to each
address byte with an acknowledge bit, and then waits for the data byte.
Table 3. Address byte
A7
A6
A5
A4
A3
A2
A1
A0
When the bus master generates a stop condition immediately after a data byte Ack bit (in the “10th bit” time slot),
either at the end of a byte write or a page write, the internal write cycle tW is triggered. A stop condition at any
other time slot does not trigger the internal write cycle.
After the stop condition and the successful completion of an internal write cycle (tW), the device internal address
counter is automatically incremented to point to the next byte after the last modified byte.
During the internal write cycle, serial data (SDA) is disabled internally, and the device does not respond to any
requests.
If the write control input (WC) is driven high, the write instruction is not executed and the accompanying data
bytes are not acknowledged, as shown in Figure 7.
DS9387 - Rev 6
page 10/40
M24C04-W M24C04-R M24C04-F
Write operations
5.1.1
Byte write
After the device select code and the address byte, the bus master sends one data byte. If the addressed location
is write-protected, by write control (WC) being driven high, the device replies with NoAck, and the location is not
modified. If, instead, the addressed location is not write-protected, the device replies with Ack. The bus master
terminates the transfer by generating a stop condition, as shown in Figure 6.
Figure 6. Write mode sequences with WC = 0 (data write enabled)
WC
ACK
ACK
Data in
Stop
Byte address
Dev Select
Start
Byte Write
ACK
R/W
WC
ACK
Dev Select
Start
Page Write
ACK
Byte address
ACK
Data in 1
ACK
Data in 2
Data in 3
R/W
WC (cont'd)
ACK
Data in N
Stop
Page Write(cont'd)
ACK
DS9387 - Rev 6
page 11/40
M24C04-W M24C04-R M24C04-F
Write operations
5.1.2
Page write
The page write mode allows up to 16 byte to be written in a single write cycle, provided that they are all located
in the same page in the memory: that is, the most significant memory address bits, A8/A4, are the same. If more
bytes are sent than fit up to the end of the page, a “roll-over” occurs, i.e. the bytes exceeding the page end are
written on the same page, from location 0.
The bus master sends from 1 to 16 byte of data, each of which is acknowledged by the device if write control
(WC) is low. If write control (WC) is high, the contents of the addressed memory location are not modified, and
each data byte is followed by a NoAck, as shown in Figure 7. After each transferred byte, the internal page
address counter is incremented.
The transfer is terminated by the bus master generating a stop condition.
Figure 7. Write mode sequences with WC = 1 (data write inhibited)
WC
ACK
Byte address
NO ACK
Data in
Stop
Dev select
Start
Byte Write
ACK
R/W
WC
ACK
Dev select
Start
Page Write
ACK
Byte address
NO ACK
Data in 1
NO ACK
Data in 2
Data in 3
R/W
WC (cont'd)
NO ACK
Data in N
Stop
Page Write(cont'd)
NO ACK
AI02803d_dita
DS9387 - Rev 6
page 12/40
M24C04-W M24C04-R M24C04-F
Write operations
5.1.3
Minimizing write delays by polling on ACK
The maximum write time (tw) is shown in AC characteristics tables in Section 8 DC and AC parameters, but the
typical time is shorter. To make use of this, a polling sequence can be used by the bus master.
The sequence, as shown in Figure 8, is:
•
•
•
Initial condition: a write cycle is in progress.
Step 1: the bus master issues a Start condition followed by a device select code (the first byte of the new
instruction).
Step 2: if the device is busy with the internal write cycle, no Ack is returned and the bus master goes back
to step 1. If the device has terminated the internal write cycle, it responds with an Ack, indicating that the
device is ready to receive the second part of the instruction (the first byte of this instruction having been sent
during Step 1).
Figure 8. Write cycle polling flowchart using ACK
Write cycle
in progress
Start condition
Device select
with RW = 0
NO
ACK
returned
YES
First byte of instruction
with RW = 0 already
decoded by the device
NO
Next
operation is
addressing the
memory
YES
Send address
and receive ACK
Re-start
Stop
1.
DS9387 - Rev 6
NO
StartCondition
YES
Data for the
write operation
Device select
with RW = 1
Continue the
write operation
Continue the
random read operation
The seven most significant bits of the device select code of a random read (bottom right box in the Figure 8)
must be identical to the seven most significant bits of the device select code of the write (polling instruction
in the Figure 8).
page 13/40
M24C04-W M24C04-R M24C04-F
Read operations
5.2
Read operations
Read operations are performed independently of the state of the write control (WC) signal.
After the successful completion of a read operation, the device internal address counter is incremented by one, to
point to the next byte address.
For the read instructions, after each byte read (data out), the device waits for an acknowledgement (data in)
during the 9th bit time. If the bus master does not acknowledge during this 9th time, the device terminates the data
transfer and switches to its standby mode after a stop condition.
Figure 9. Read mode sequences
ACK
Data out
Stop
Start
Dev select
R/W
ACK
Start
Dev select *
Byte address
R/W
ACK
Sequential Current Read
Dev select *
NO ACK
Data out
R/W
ACK
ACK
Data out 1
NO ACK
Data out N
Stop
Start
Dev select
R/W
ACK
Start
Dev select *
ACK
Byte address
R/W
ACK
ACK
Dev select *
Start
Sequential Random Read
ACK
Start
Random Address Read
ACK
Stop
Current Address Read
NO ACK
ACK
Data out 1
R/W
NO ACK
Stop
Data out N
Note:
DS9387 - Rev 6
The seven most significant bits of the first device select code of a random read must be identical to the seven
most significant bits of the device select code of the write.
page 14/40
M24C04-W M24C04-R M24C04-F
Read operations
5.2.1
Random address read
A dummy write is first performed to load the address into this address counter (as shown in Figure 9) but without
sending a stop condition. Then, the bus master sends another start condition, and repeats the device select code,
with the RW bit set to 1. The device acknowledges this, and outputs the contents of the addressed byte. The bus
master must not acknowledge the byte, and terminates the transfer with a stop condition.
5.2.2
Current address read
For the current address read operation, following a start condition, the bus master only sends a device select
code with the R/W bit set to 1. The device acknowledges this, and outputs the byte addressed by the internal
address counter. The counter is then incremented. The bus master terminates the transfer with a stop condition,
as shown in Figure 9, without acknowledging the byte.
5.2.3
Sequential read
This operation can be used after a current address read or a random address read. The bus master does
acknowledge the data byte output, and sends additional clock pulses so that the device continues to output the
next byte in sequence. To terminate the stream of bytes, the bus master must not acknowledge the last byte, and
must generate a Stop condition, as shown in Figure 9.
The output data comes from consecutive addresses, with the internal address counter automatically incremented
after each byte output. After the last memory address, the address counter “rolls-over”, and the device continues
to output data from memory address 00h.
Note:
DS9387 - Rev 6
For device delivered in DFN5 package, after the last memory address (1FFh), the address counter doesn't
roll-over to the memory address 00h. The next addresses and data bytes outputted are therefore undefined and
not guarantee.
The address counter contains meaningful address value only after a random address read (with address value
between 0 and 1FE) has been performed.
page 15/40
M24C04-W M24C04-R M24C04-F
Initial delivery state
6
Initial delivery state
The device is delivered with all the memory array bits set to 1 (each byte contains FFh).
DS9387 - Rev 6
page 16/40
M24C04-W M24C04-R M24C04-F
Maximum rating
7
Maximum rating
Stressing the device outside the ratings listed in Table 4 may cause permanent damage to the device. These
are stress ratings only, and operation of the device at these, or any other conditions outside those indicated in
the operating sections of this specification, is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.
Table 4. Absolute maximum ratings
Symbol
Min.
Max.
Unit
Ambient operating temperature
-40
130
°C
TSTG
Storage temperature
–65
150
°C
TLEAD
Lead temperature during soldering
-
Parameter
IOL
DC output current (SDA = 0)
VIO
see note (1)
°C
–
5
mA
Input or output range
–0.50
6.5
V
VCC
Supply voltage
-0.50
6.5
V
VESD
Electrostatic pulse (human body model)(2)
–
3000
V
1. Compliant with JEDEC Std J-STD-020 (for small body, Sn-Pb or Pb-free assembly), the ST ECOPACK 7191395
specification, and the European directive on Restrictions of Hazardous Substances (RoHS directive 2011/65/EU of July
2011).
2. Positive and negative pulses applied on different combinations of pin connections, according to ANSI/ESDA/JEDEC JS-001
(C1=100 pF, R1=1500 Ω).
DS9387 - Rev 6
page 17/40
M24C04-W M24C04-R M24C04-F
DC and AC parameters
8
DC and AC parameters
This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the
device.
Table 5. Operating conditions (voltage range W)
Symbol
Min.
Max.
Unit
Supply voltage
2.5
5.5
V
TA
Ambient operating temperature
–40
85
°C
fC
Operating clock frequency
-
400
kHz
Min.
Max.
Unit
Supply voltage
1.8
5.5
V
TA
Ambient operating temperature
–40
85
°C
fC
Operating clock frequency
-
400
kHz
VCC
Parameter
Table 6. Operating conditions (voltage range R)
Symbol
VCC
Parameter
Table 7. Operating conditions (voltage range F)
Symbol
VCC
TA
fC
Parameter
Min.
Max.
Unit
V
Supply voltage
1.60
1.65
1.70
5.5
Ambient operating temperature: READ
-40
-40
-40
85
Ambient operating temperature: WRITE
0
-20
-40
85
Operating clock frequency
-
-
-
400
°C
kHz
Table 8. AC measurement conditions
Symbol
Min.
Max.
Unit
Load capacitance
0
100
pF
-
SCL input rise/fall time, SDA input fall time
-
50
ns
-
Input levels
0.2 VCC to 0.8 VCC
V
-
Input and output timing reference levels
0.3 VCC to 0.7 VCC
V
Cbus
Parameter
Figure 10. AC measurement I/O waveform
Input voltage levels
0.8VCC
0.2VCC
DS9387 - Rev 6
Input and output
Timing reference levels
0.7VCC
0.3V CC
page 18/40
M24C04-W M24C04-R M24C04-F
DC and AC parameters
Table 9. Input parameters
Parameter(1)
Symbol
Test condition
Min.
Max.
Unit
CIN
Input capacitance (SDA)
-
-
8
pF
CIN
Input capacitance (other pins)
-
-
6
pF
VIN < 0.3 VCC
15
70
kΩ
VIN > 0.7 VCC
500
-
kΩ
ZL
Input impedance (WC)
ZH
1. Evaluated by characterization – Not tested in production.
Table 10. Cycling performance
Symbol
Ncycle
Parameter
Write cycle endurance(1)
Test condition
Max.
TA ≤ 25 °C, VCC(min) < VCC < VCC(max)
4,000,000
TA = 85 °C, VCC(min) < VCC < VCC(max)
1,200,000
Unit
Write cycle
1. A write cycle is executed when either a page write or a byte write instruction is decoded.
Table 11. Memory cell data retention
Parameter
Data
retention(1)
Test condition
TA = 55 °C
Min.
Unit
200
Year
1. The data retention behaviour is checked in production, while the 200-year limit is defined from characterization and
qualification results.
DS9387 - Rev 6
page 19/40
M24C04-W M24C04-R M24C04-F
DC and AC parameters
Table 12. DC characteristics (M24C04-W)
Symbol
ILI
Parameter
Input leakage current
(E2, E1, SCL, SDA)
Test conditions (in addition to those in Table 5 and Table 8)
Min.
Max.
Unit
VIN = VSS or VCC, device in standby mode
-
±2
µA
ILO
Output leakage current
SDA in Hi-Z, external voltage applied on SDA: VSS or VCC
-
±2
µA
ICC
Supply current (Read)
fC = 400 kHz, 2.5 V ≤ VCC ≤ 5.5 V
-
1
mA
ICC0(1)
Supply current (Write)
-
0.5
mA
-
2
μA
-
3
μA
-
–0.45
0.3 VCC
V
-
0.7 VCC
VCC+1
V
-
0.4
V
During tW,
2.5 V ≤ VCC ≤ 5.5 V
Device not selected(2),
ICC1
Standby supply current
VIN = VSS or VCC, VCC = 2.5 V
Device not selected(2),
VIN = VSS or VCC, VCC = 5.5 V
VIL
VIH
VOL
Input low voltage
(SCL, SDA, WC)
Input high voltage
(SCL, SDA, WC)
Output low voltage
IOL = 2.1 mA, VCC = 2.5 V or
IOL = 3 mA, VCC = 5.5 V
1. Evaluated by characterization - Not tested in production.
2. The device is not selected after power-up, after a read instruction (after the stop condition), or after the completion of the
internal write cycle tW (tW is triggered by the correct decoding of a write instruction).
DS9387 - Rev 6
page 20/40
M24C04-W M24C04-R M24C04-F
DC and AC parameters
Table 13. DC characteristics (M24C04-R)
Symbol
ILI
Parameter
Input leakage current
(E2, E1, SCL, SDA)
Test conditions(1) (in addition to those in Table 6 and
Table 8)
VIN = VSS or VCC, device in standby mode
ILO
Output leakage current SDA in Hi-Z, external voltage applied on SDA: VSS or VCC
ICC
Supply current (Read)
ICC0(2)
Supply current (Write)
ICC1
Standby supply current
VIL
1.8 V ≤ VCC ≤ 2.5 V
Device not selected,(3)
VIN = VSS or VCC, VCC = 1.8 V
Unit
-
±2
µA
-
±2
µA
-
0.8
mA
-
0.5
mA
-
1
µA
2.5 V ≤ VCC
-0.45
0.3 VCC
(SCL, SDA, WC)
VCC < 2.5 V
-0.45
0.25 VCC
VCC < 2.5 V
0.75 VCC
6.5
VCC < 2.5 V
0.75 VCC VCC + 0.6
(SCL, SDA)
Input high voltage
(WC)
VOL
During tW
Max.
Input low voltage
Input high voltage
VIH
VCC = 1.8 V, fc= 400 kHz
Min.
Output low voltage
IOL = 0.7 mA, VCC = 1.8 V
-
V
V
0.2
V
V
1. If the application uses the voltage range R device with 2.5 V ≤ Vcc ≤ 5.5 V and -40 °C < TA < +85 °C, refer to Table 12
instead of this table.
2. Evaluated by characterization - Not tested in production.
3. The device is not selected after power-up, after a read instruction (after the stop condition), or after the completion of the
internal write cycle tW (tW is triggered by the correct decoding of a write instruction).
DS9387 - Rev 6
page 21/40
M24C04-W M24C04-R M24C04-F
DC and AC parameters
Table 14. DC characteristics (M24C04-F)
Symbol
ILI
Parameter
Test conditions(1) (in addition to those in Table 7 and
Table 8)
Input leakage current
VIN = VSS or VCC
(E2, E1, SCL, SDA)
device in Standby mode
Min.
Max.
Unit
-
±2
µA
ILO
Output leakage current SDA in Hi-Z, external voltage applied on SDA: VSS or VCC
-
±2
µA
ICC
Supply current (Read)
VCC = 1.6 V or 1.7 V, fc= 400 kHz
-
0.8
mA
ICC0(2)
Supply current (Write)
-
0.5
mA
ICC1
Standby supply current
-
1
µA
VIL
Device not selected(3),
VIN = VSS or VCC, VCC ≤ 1.8 V
2.5 V ≤ VCC
-0.45
0.3 VCC
(SCL, SDA, WC)
VCC < 2.5 V
-0.45
0.25 VCC
VCC < 2.5 V
0.75 VCC
6.5
VCC < 2.5 V
0.75 VCC VCC + 0.6
(SCL, SDA)
Input high voltage
(WC)
VOL
VCC ≤ 1.8 V
Input low voltage
Input high voltage
VIH
During tW
Output low voltage
IOL = 0.7 mA, VCC = 1.8 V
-
V
V
0.2
V
V
1. If the application uses the voltage range F device with 2.5 V ≤ VCC ≤ 5.5 V , refer to Table 12 instead of this table.
2. Evaluated by characterization - Not tested in production.
3. The device is not selected after power-up, after a read instruction (after the stop condition), or after the completion of the
internal write cycle tW (tW is triggered by the correct decoding of a write instruction).
DS9387 - Rev 6
page 22/40
M24C04-W M24C04-R M24C04-F
DC and AC parameters
Table 15. 400 kHz AC characteristics (I2C Fast-mode)
Symbol
Alt.
Min.
Max.
Unit
fC
fSCL
Clock frequency
-
400
kHz
tCHCL
tHIGH
Clock pulse width high
600
-
ns
tCLCH
tLOW
Clock pulse width low
1300
-
ns
tF
SDA (out) fall time
20(2)
300
ns
tXH1XH2
tR
Input signal rise time
(3)
(3)
ns
tXL1XL2
tF
Input signal fall time
(3)
(3)
ns
tDXCH
tSU:DAT
Data in set up time
100
-
ns
tCLDX
tHD:DAT
Data in hold time
0
-
ns
tCLQX(4)
tDH
Data out hold time
100
-
ns
tCLQV(5)
tAA
Clock low to next data valid (access time)
-
900
ns
tCHDL
tSU:STA
Start condition setup time
600
-
ns
tDLCL
tHD:STA
Start condition hold time
600
-
ns
tCHDH
tSU:STO
Stop condition set up time
600
-
ns
tDHDL
tBUF
Time between Stop condition and next Start condition
1300
-
ns
tW
tWR
Write time
-
5
ms
Pulse width ignored (input filter on SCL and SDA) - single glitch
-
100
ns
tQL1QL2
(1)
tNS
(1)
-
Parameter
1. Evaluated by characterization - Not tested in production.
2. With CL = 10 pF.
3. There is no min. or max. values for the input signal rise and fall times. It is however recommended by the I²C specification
that the input signal rise and fall times be more than 20 ns and less than 300 ns when fC < 400 kHz.
4. The min value for tCLQX (data out hold time) of the M24xxx devices offers a safe timing to bridge the undefined region of the
falling edge SCL.
5. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3 VCC or 0.7 VCC, assuming
that Rbus × Cbus time constant is within the values specified in Figure 11.
DS9387 - Rev 6
page 23/40
M24C04-W M24C04-R M24C04-F
DC and AC parameters
Table 16. 100 kHz AC characteristics (I2C standard-mode)
Symbol
Alt.
fC
fSCL
tCHCL
Parameter
Min.
Max.
Unit
Clock frequency
-
100
kHz
tHIGH
Clock pulse width high
4
-
μs
tCLCH
tLOW
Clock pulse width low
4.7
-
μs
tXH1XH2
tR
Input signal rise time
-
1
μs
tXL1XL2
tF
Input signal fall time
-
300
ns
tQL1QL2(1)
tF
SDA (out) fall time
-
300
ns
tDXCH
tSU:DAT
Data in setup time
250
-
ns
tCLDX
tHD:DAT
Data in hold time
0
-
ns
tCLQX(2)
tDH
Data out hold time
200
-
ns
tCLQV(3)
tAA
Clock low to next data valid (access time)
-
3450
ns
tCHDL(4)
tSU:STA
Start condition setup time
4.7
-
μs
tDLCL
tHD:STA
Start condition hold time
4
-
μs
tCHDH
tSU:STO
Stop condition setup time
4
-
μs
tDHDL
tBUF
Time between Stop condition and next Start condition
4.7
-
μs
tW
tWR
Write time
-
5
ms
tNS(1)
-
Pulse width ignored (input filter on SCL and SDA), single glitch
-
100
ns
1. Evaluated by characterization - Not tested in production.
2. To avoid spurious start ands top conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of
SDA.
3. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3 VCC or 0.7 VCC, assuming
that the Rbus × Cbus time constant is within the values specified in Figure 11.
4. For a reStart condition, or following a write cycle.
DS9387 - Rev 6
page 24/40
M24C04-W M24C04-R M24C04-F
DC and AC parameters
Figure 11. Maximum Rbus value versus bus parasitic capacitance (Cbus) for an I2C bus at maximum
frequency fC = 400 kHz
Bus line pull-up resistor
(kΩ)
100
Rb
us
xC
bu
10
4k
VCC
The Rbus x Cbus time constant
must be below the 400 ns
time constant line represented
on the left.
s
=4
Here Rbus x Cbus = 120 ns
00
Rbus
I²C bus
master
ns
SCL
M24xxx
SDA
Cbus
1
10
30
100
1000
Bus line capacitor (pF)
Figure 12. AC waveforms
Start
condition
Start
Stop
condition condition
tXL1XL2
tXH1XH2
tCHCL
tCLCH
SCL
tDLCL
tXL1XL2
SDA In
tCHDL
tXH1XH2
SDA
Input
tCLDX
SDA tDXCH
Change
tCHDH
tDHDL
WC
tDHWH
tWLDL
Stop
condition
Start
condition
SCL
SDA In
tW
tCHDH
tCHDL
Write cycle
tCHCL
SCL
tCLQV
SDA Out
DS9387 - Rev 6
tCLQX
Data valid
tQL1QL2
Data valid
page 25/40
M24C04-W M24C04-R M24C04-F
Package information
9
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com.
ECOPACK is an ST trademark.
9.1
UFDFPN5 (DFN5) package information
UFDFPN5 is a 5-lead, 1.7 × 1.4 mm, 0.55 mm thickness, ultra thin fine pitch dual flat package.
Figure 13. UFDFPN5 - Outline
Package UFDFN5 (package code A0UK)
D
k
L
Pin 1
Pin 1
b
X
E
E1
Y
D1
Top view
(marking side)
e
L1
Bottom view
(pads side)
A
A1
Side view
1.
2.
3.
4.
DS9387 - Rev 6
A0UK_UFDFN5_ME_V3
Maximum package warpage is 0.05 mm.
Exposed copper is not systematic and can appear partially or totally according to the cross section.
Drawing is not to scale.
On the bottom side, pin 1 is identified by the specific pad shape and, on the top side, pin 1 is defined from
the orientation of the marking. When reading the marking, pin 1 is below the upper left package corner.
page 26/40
M24C04-W M24C04-R M24C04-F
UFDFPN5 (DFN5) package information
Table 17. UFDFPN5 - Mechanical data
Symbol
millimeters
inches
Min
Typ
Max
Min
Typ
Max
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
0.000
-
0.050
0.0000
-
0.0020
b(1)
0.175
0.200
0.225
0.0069
0.0079
0.0089
D
1.600
1.700
1.800
0.0630
0.0669
0.0709
D1
1.400
1.500
1.600
0.0551
0.0591
0.0630
E
1.300
1.400
1.500
0.0512
0.0551
0.0591
E1
0.175
0.200
0.225
0.0069
0.0079
0.0089
X
-
0.200
-
-
0.0079
-
Y
-
0.200
-
-
0.0079
-
e
-
0.400
-
-
0.0157
-
L
0.500
0.550
0.600
0.0197
0.0217
0.0236
L1
-
0.100
-
-
0.0039
-
k
-
0.400
-
-
0.0157
-
1. Dimension b applies to plated terminal and is measured between 0.15 and 0.30mm from the terminal tip.
9.1.1
UFDFPN5 recommended footprint
Figure 14. UFDFPN5 - Recommended footprint
Pin 1
0.400
0.600
0.200
0.200
0.200
0.200
0.400
1.600
1.
DS9387 - Rev 6
Dimensions are expressed in millimeters.
page 27/40
M24C04-W M24C04-R M24C04-F
UFDFPN8 (DFN8) package information
9.2
UFDFPN8 (DFN8) package information
This UFDFPN is a 8-lead, 2 x 3 mm, 0.5 mm pitch ultra thin profile fine pitch dual flat package.
Figure 15. UFDFPN8 - Outline
D
N
A B
Package UFDFN8 (package code ZW)
A
ccc C
Pin #1
ID marking
E
A1
C
eee C
Seating plane
A3
Side view
2x
aaa C
1
aaa C
2x
2
Top view
D2
e
1
2
L3
Datum A
b
L1
L L3
Pin #1
ID marking
E2
K
e/2
L1
e
Terminal tip
L
Detail “A”
Even terminal
ND-1 x e
See Detail “A”
Bottom view
1.
2.
3.
4.
DS9387 - Rev 6
Maximum package warpage is 0.05 mm.
Exposed copper is not systematic and can appear partially or totally according to the cross section.
Drawing is not to scale.
The central pad (the area E2 by D2 in the above illustration) must be either connected to VSS or left floating
(not connected) in the end application.
page 28/40
M24C04-W M24C04-R M24C04-F
UFDFPN8 (DFN8) package information
Table 18. UFDFPN8 - Mechanical data
Symbol
inches(1)
millimeters
Min
Typ
Max
Min
Typ
Max
A
0.450
0.550
0.600
0.0177
0.0217
0.0236
A1
0.000
0.020
0.050
0.0000
0.0008
0.0020
b(2)
0.200
0.250
0.300
0.0079
0.0098
0.0118
D
1.900
2.000
2.100
0.0748
0.0787
0.0827
D2
1.200
-
1.600
0.0472
-
0.0630
E
2.900
3.000
3.100
0.1142
0.1181
0.1220
E2
1.200
-
1.600
0.0472
-
0.0630
e
-
0.500
-
-
0.0197
-
K
0.300
-
-
0.0118
-
-
L
0.300
-
0.500
0.0118
-
0.0197
L1
-
-
0.150
-
-
0.0059
L3
0.300
-
-
0.0118
-
-
aaa
-
-
0.150
-
-
0.0059
bbb
-
-
0.100
-
-
0.0039
ccc
-
-
0.100
-
-
0.0039
ddd
-
-
0.050
-
-
0.0020
eee(3)
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to four decimal digits.
2. Dimension b applies to plated terminal and is measured between 0.15 and 0.30 mm from the terminal tip.
3. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from measuring.
9.2.1
UFDFPN8 recommended footprint
Figure 16. UFDFPN8 - Recommended footprint
1.600
0.500
0.300
0.600
1.600
1.400
1.
DS9387 - Rev 6
Dimensions are expressed in millimeters.
page 29/40
M24C04-W M24C04-R M24C04-F
TSSOP8 package information
9.3
TSSOP8 package information
This TSSOP is an 8-lead, 3 x 6.4 mm, 0.65 mm pitch, thin shrink small outline package.
Figure 17. TSSOP8 – Outline
D
8
Package TSSOP8 (package code 6P)
5
k
E1 E
A1
1
L
L1
4
A2
A
c
1.
6P_TSSOP8_ME_V3
e
b
Drawing is not to scale.
Table 19. TSSOP8 – Mechanical data
Symbol
inches (1)
millimeters
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
1.200
-
-
0.0472
A1
0.050
-
0.150
0.0020
-
0.0059
A2
0.800
1.000
1.050
0.0315
0.0394
0.0413
b
0.190
-
0.300
0.0075
-
0.0118
c
0.090
-
0.200
0.0035
-
0.0079
D(2)
2.900
3.000
3.100
0.1142
0.1181
0.1220
e
-
0.650
-
-
0.0256
-
E
6.200
6.400
6.600
0.2441
0.2520
0.2598
E1(3)
4.300
4.400
0.0177
0.1693
0.1732
0.1772
L
0.450
0.600
0.750
0.0181
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
-
8°
0°
-
8°
aaa
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to four decimal digits.
2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed
0.15 mm per side
3. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per
side.
Note:
DS9387 - Rev 6
The package top may be smaller than the package bottom. Dimensions D and E1 are determinated at the
outermost extremes of the plastic body exclusive of mold flash, tie bar burrs, gate burrs and interleads flash,
but including any mismatch between the top and bottom of plastic body. Measurement side for mold flash,
protusions or gate burrs is bottom side.
page 30/40
M24C04-W M24C04-R M24C04-F
TSSOP8 package information
9.3.1
TSSOP8 recommended footprint
Figure 18. TSSOP8 – Recommended footprint
1.55
0.65
0.40
2.35
5.80
7.35
1.
DS9387 - Rev 6
6P_TSSOP8_FP_V2
Dimensions are expressed in millimeters.
page 31/40
M24C04-W M24C04-R M24C04-F
SO8N package information
9.4
SO8N package information
This SO8N is an 8-lead, 4.9 x 6 mm, plastic small outline, 150 mils body width, package.
Figure 19. SO8N – Outline
Package SO8N (package code O7)
A2
h x 45˚
A
c
b
ccc
e
D
0.25 mm
GAUGE PLANE
SEATING
PLANE
C
k
8
E1
E
1
L
A1
L1
1.
Drawing is not to scale.
Table 20. SO8N – Mechanical data
Symbol
inches (1)
millimeters
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
1.750
-
-
0.0689
A1
0.100
-
0.250
0.0039
-
0.0098
A2
1.250
-
-
0.0492
-
-
b
0.280
-
0.480
0.0110
-
0.0189
c
0.100
-
0.230
0.0030
-
0.0091
D(2)
4.800
4.900
5.000
0.1890
0.1929
0.1969
E
5.800
6.000
6.200
0.2283
0.2362
0.2441
E1(3)
3.800
3.900
4.000
0.1496
0.1535
0.1575
e
-
1.270
-
-
0.0500
-
h
0.250
-
0.500
0.0098
-
0.0197
k
0°
-
8°
0°
-
8°
L
0.400
-
1.270
0.0157
-
0.0500
L1
-
1.040
-
-
0.0409
-
ccc
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to four decimal digits.
2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed
0.15 mm per side
3. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per
side.
Note:
DS9387 - Rev 6
The package top may be smaller than the package bottom. Dimensions D and E1 are determinated at the
outermost extremes of the plastic body exclusive of mold flash, tie bar burrs, gate burrs and interleads flash,
but including any mismatch between the top and bottom of plastic body. Measurement side for mold flash,
protusions or gate burrs is bottom side.
page 32/40
M24C04-W M24C04-R M24C04-F
SO8N package information
9.4.1
SO8N recommended footprint
Figure 20. SO8N - Recommended footprint
3.9
6.7
0.6 (x8)
1.27
1.
DS9387 - Rev 6
Dimensions are expressed in millimeters.
page 33/40
M24C04-W M24C04-R M24C04-F
Ordering information
10
Ordering information
Table 21. Ordering information scheme
Example:
M24
C04
-W
MC
6
T
P
Device type
M24 = I2C serial access EEPROM
Device function
C04 =4 Kbit (512 x 8 bit)
Operating voltage
W = VCC = 2.5 V to 5.5 V
R = VCC = 1.8 V to 5.5 V
F = VCC = 1.6 or 1.7 V to 5.5 V
Package(1)
MN = SO8N (150 mil width)
DW = TSSOP8 (169 mil width)
MC = UFDFPN8 (DFN8)
MH = UFDFPN5 (DFN5)
Device grade
6 = Industrial: device tested with standard test flow over -40 to 85 °C
Option
T = Tape and reel packing
blank = tube packing
Plating technology
P or G = RoHS compliant and halogen-free (ECOPACK2)
1. All packages are ECOPACK2 (RoHS-compliant and free of brominated, chlorinated and antimony-oxide flame retardants).
Note:
For a list of available options (memory, package, and so on) or for further information on any aspect of this
device, contact your nearest ST sales office.
Note:
Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and
therefore not approved for use in production. ST is not responsible for any consequences resulting from such
use. In no event will ST be liable for the customer using any of these engineering samples in production. ST
Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.
DS9387 - Rev 6
page 34/40
M24C04-W M24C04-R M24C04-F
Revision history
Table 22. Document revision history
Date
Revision
Changes
New single product M24C04 datasheet resulting from splitting the previous datasheet
M24C08-x M24C04-x M24C02-x M24C01-x (revision 18) into separate datasheets.
17-Dec-2012
1
Updated ESD value in Table 14.
Updated standby supply current values (ICCI) in Table 32, Table 33 and Table 35.
24-Jan-2013
2
Updated M24C04-F single supply voltage value in Features and Supply current (Read)
value in Table 32.
Updated:
12-Sep-2013
3
•
M24C04-F single supply voltage value in Features
•
Note (2) under Table 14: Absolute maximum ratings
•
Section 5.1.2: Page Write
Added “ICC0 Supply current (Write)” in Table 32: DC characteristics (M24128-BWvoltage
range W, device grade 6), Table 33: DC characteristics (voltage range M24128M24128BR, M24128-DR device grade 6) and Table 35: DC characteristics (M24C32M24C02-F,
device grade 6 and grade 5).
Added: Table 17: Operating conditions (voltage range F, for devices identified by process
letter T), Table 18: Operating conditions (voltage range F, for all other devices), Table 29:
Cycling performance and Table 30: Memory cell data retention.
Renamed Figure 52 and Table 59.
Added: UFDFPN5 in cover page and in Section 9: Package information, note 1 on Table
1: Signal names, Figure 3: UFDFPN5 (DFN5) package connections, Engineering samples
reference.
04-May-2017
02-Oct-2017
4
5
Updated:
•
Section 2.3: Chip Enable (E1, E2), Section 2.6.2: Power-up conditions, Section 4.5:
Device addressing, Section 5.2.3: Sequential Read.
•
Table 2: Device select code, Table 23: Ordering information scheme.
Added reference to DFN8 and DFN5 in: Figure 3: UFDFPN5 (DFN5) package connections,
Section 9.1: UFDFPN5 (DFN5) package information, Section 9.2: UFDFPN8 (DFN8)
package information.
Updated Table 4: Absolute maximum ratings, Figure 9: Read mode sequences, Table 23:
Ordering information scheme.
Updated:
16-Jun-2022
6
•
Section Features, Section 1 Description, Section 2.2 Serial data (SDA),
Section 2.3 Chip enable (E1, E2), Section 3 Block diagram, Section 4.5 Device
addressing, Section 5.1.3 Minimizing write delays by polling on ACK,
Section 5.2 Read operations, Section 9.1 UFDFPN5 (DFN5) package information,
Section 9.4 SO8N package information, Section 9.3 TSSOP8 package information,
Section 9.2 UFDFPN8 (DFN8) package information, Section 10 Ordering
information
•
Table 4. Absolute maximum ratings, title of Table 7. Operating conditions (voltage
range F), note in Table 9. Input parameters and in Table 10. Cycling performance
and in Table 11. Memory cell data retention , Table 12. DC characteristics
(M24C04-W), Table 13. DC characteristics (M24C04-R), Table 14. DC characteristics
(M24C04-F), Table 15. 400 kHz AC characteristics (I2C Fast-mode), Table 16. 100
kHz AC characteristics (I2C standard-mode)
Removed PDIP8 package
DS9387 - Rev 6
page 35/40
M24C04-W M24C04-R M24C04-F
Contents
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2.1
Serial clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2
Serial data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3
Chip enable (E1, E2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4
Write control (WC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5
VSS (ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.6
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.6.1
Operating supply voltage (VCC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.6.2
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.6.3
Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.6.4
Power-down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
4
Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5
4.1
Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2
Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3
Data input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.4
Acknowledge bit (ACK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.5
Device addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
5.1
5.2
Write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.1.1
Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.1.2
Page write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.1.3
Minimizing write delays by polling on ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2.1
Random address read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2.2
Current address read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2.3
Sequential read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6
Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
7
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
8
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
9
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
9.1
UFDFPN5 (DFN5) package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.1.1
DS9387 - Rev 6
UFDFPN5 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
page 36/40
M24C04-W M24C04-R M24C04-F
Contents
9.2
UFDFPN8 (DFN8) package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9.2.1
9.3
TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.3.1
9.4
TSSOP8 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
SO8N package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.4.1
10
UFDFPN8 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
SO8N recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
DS9387 - Rev 6
page 37/40
M24C04-W M24C04-R M24C04-F
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Signal names . . . . . . . . . . . . . . . . . .
Device select code . . . . . . . . . . . . . . .
Address byte . . . . . . . . . . . . . . . . . . .
Absolute maximum ratings . . . . . . . . .
Operating conditions (voltage range W)
Operating conditions (voltage range R) .
Operating conditions (voltage range F) .
AC measurement conditions . . . . . . . .
Input parameters . . . . . . . . . . . . . . . .
Cycling performance . . . . . . . . . . . . .
Memory cell data retention . . . . . . . . .
DC characteristics (M24C04-W). . . . . .
DC characteristics (M24C04-R) . . . . . .
DC characteristics (M24C04-F) . . . . . .
Table 15.
400 kHz AC characteristics (I2C Fast-mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
100 kHz AC characteristics (I2C standard-mode)
UFDFPN5 - Mechanical data . . . . . . . . . . . . . .
UFDFPN8 - Mechanical data . . . . . . . . . . . . . .
TSSOP8 – Mechanical data . . . . . . . . . . . . . .
SO8N – Mechanical data . . . . . . . . . . . . . . . .
Ordering information scheme. . . . . . . . . . . . . .
Document revision history . . . . . . . . . . . . . . . .
DS9387 - Rev 6
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 2
. 9
10
17
18
18
18
18
19
19
19
20
21
22
24
27
29
30
32
34
35
page 38/40
M24C04-W M24C04-R M24C04-F
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Logic diagram. . . . . . . . . . . . . . . . . . .
8-pin package connections, top view . . .
UFDFPN5 (DFN5) package connections
Block diagram . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Write mode sequences with WC = 0 (data write enabled) .
Write mode sequences with WC = 1 (data write inhibited).
Write cycle polling flowchart using ACK . . . . . . . . . . . . .
Read mode sequences . . . . . . . . . . . . . . . . . . . . . . . .
AC measurement I/O waveform . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 7
11
12
13
14
18
Figure 11.
Maximum Rbus value versus bus parasitic capacitance (Cbus) for an I2C bus at maximum frequency fC = 400 kHz
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
UFDFPN5 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
UFDFPN5 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
UFDFPN8 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
UFDFPN8 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
TSSOP8 – Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
TSSOP8 – Recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
SO8N – Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
SO8N - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
DS9387 - Rev 6
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
2
3
6
page 39/40
M24C04-W M24C04-R M24C04-F
IMPORTANT NOTICE – READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2022 STMicroelectronics – All rights reserved
DS9387 - Rev 6
page 40/40