0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32F101C6T6ATR

STM32F101C6T6ATR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP-48_7X7MM

  • 描述:

    ARM® Cortex®-M3 STM32 F1 Microcontroller IC 32-Bit 36MHz 32KB (32K x 8) FLASH 48-LQFP (7x7)

  • 数据手册
  • 价格&库存
STM32F101C6T6ATR 数据手册
STM32F101x4 STM32F101x6 Low-density access line, ARM®-based 32 bit MCU with 16 or 32 KB Flash, 5 timers, ADC and 4 communication interfaces Datasheet - production data Features • Core: ARM® 32-bit Cortex®-M3 CPU – 36 MHz maximum frequency, 1.25 DMIPS/MHz (Dhrystone 2.1) performance at 0 wait state memory access – Single-cycle multiplication and hardware division • Memories – 16 to 32 Kbytes of Flash memory – 4 to 6 Kbytes of SRAM • Clock, reset and supply management – 2.0 to 3.6 V application supply and I/Os – POR, PDR and programmable voltage detector (PVD) – 4-to-16 MHz crystal oscillator – Internal 8 MHz factory-trimmed RC – Internal 40 kHz RC – PLL for CPU clock – 32 kHz oscillator for RTC with calibration • Low power – Sleep, Stop and Standby modes – VBAT supply for RTC and backup registers LQFP64 10 x 10 mm • LQFP48 7 x 7 mm VFQFPN36 6 × 6 mm Up to 5 timers – Up to two16-bit timers, each with up to 4 IC/OC/PWM or pulse counter – 2 watchdog timers (Independent and Window) – SysTick timer: 24-bit downcounter • Up to 4 communication interfaces – 1 x I2C interface (SMBus/PMBus) – Up to 2 USARTs (ISO 7816 interface, LIN, IrDA capability, modem control) – 1 × SPI (18 Mbit/s) • CRC calculation unit, 96-bit unique ID • ECOPACK® packages Table 1. Device summary Reference Part number • Debug mode – Serial wire debug (SWD) and JTAG interfaces STM32F101x4 STM32F101C4, STM32F101R4, STM32F101T4 • DMA – 7-channel DMA controller – Peripherals supported: timers, ADC, SPIs, I2Cs and USARTs STM32F101x6 STM32F101C6, STM32F101R6, STM32F101T6 • 1 × 12-bit, 1 µs A/D converter (up to 16 channels) – Conversion range: 0 to 3.6 V – Temperature sensor • Up to 51 fast I/O ports – 26/37/51 I/Os, all mappable on 16 external interrupt vectors and almost all 5 V-tolerant September 2015 This is information on a product in full production. DocID15058 Rev 6 1/87 www.st.com Contents STM32F101x4, STM32F101x6 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 2/87 2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.2 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 ARM® Cortex® -M3 core with embedded Flash and SRAM . . . . . . . . . 15 2.3.2 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.3 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 15 2.3.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.5 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 15 2.3.6 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.7 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.8 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.9 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.10 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.11 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.12 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.13 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.14 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 18 2.3.15 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.16 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.17 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.18 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.19 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.20 Universal synchronous/asynchronous receiver transmitter (USART) . . 19 2.3.21 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.22 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.23 ADC (analog to digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.24 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.25 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 20 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Contents 4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1 6 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 32 5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 32 5.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.3.11 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 51 5.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3.15 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3.16 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3.17 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.3.18 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.2 VFQFPN36 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.3 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 DocID15058 Rev 6 3/87 4 Contents STM32F101x4, STM32F101x6 6.4 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.5.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.5.2 Evaluating the maximum junction temperature for an application . . . . . 83 7 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 List of Tables List of Tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Low-density STM32F101xx device features and peripheral counts . . . . . . . . . . . . . . . . . . 11 STM32F101xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Low-density STM32F101xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 33 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Maximum current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Maximum current consumption in Run mode, code with data processing running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Maximum current consumption in Sleep mode, code running from Flash or RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 37 Typical current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Typical current consumption in Sleep mode, code running from Flash or RAM . . . . . . . . . 41 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 SCL frequency (fPCLK1= MHz, VDD_I2C = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 DocID15058 Rev 6 5/87 6 List of Tables Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. 6/87 STM32F101x4, STM32F101x6 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 DocID15058 Rev 6 STM32F101x4, STM32F101x6 List of Figures List of Figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. STM32F101xx Low-density access line block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 STM32F101xx Low-density access line LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . 21 STM32F101xx Low-density access line LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . 21 STM32F101xx Low-density access line UFQPFN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . 22 STM32F101xx Low-density access line VFQPFN36 pinout . . . . . . . . . . . . . . . . . . . . . . . . 22 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals enabled. . . . . . . . . . . . . . . . . . 36 Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . . 36 Typical current consumption on VBAT with RTC on versus temperature at different VBAT values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Typical current consumption in Stop mode with regulator in Run mode versus temperature at VDD = 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Typical current consumption in Stop mode with regulator in Low-power mode versus temperature at VDD = 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Typical current consumption in Standby mode versus temperature at VDD = 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Standard I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Standard I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5 V tolerant I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5 V tolerant I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 I2C bus AC waveforms and measurement circuit(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Power supply and reference decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 VFQFPN36 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . 75 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 DocID15058 Rev 6 7/87 8 List of Figures Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. 8/87 STM32F101x4, STM32F101x6 LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 78 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 LQFP64 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 DocID15058 Rev 6 STM32F101x4, STM32F101x6 1 Introduction Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32F101x4 and STM32F101x6 low-density access line microcontrollers. For more details on the whole STMicroelectronics STM32F101xx family, please refer to Section 2.2: Full compatibility throughout the family. The Low-density STM32F101xx datasheet should be read in conjunction with the low-, medium- and high-density STM32F10xxx reference manual. For information on programming, erasing and protection of the internal Flash memory please refer to the STM32F10xxx Flash programming manual. The reference and Flash programming manuals are both available from the STMicroelectronics website www.st.com. For information on the Cortex®-M3 core please refer to the Cortex®-M3 Technical Reference Manual, available from the www.arm.com website. DocID15058 Rev 6 9/87 86 Description 2 STM32F101x4, STM32F101x6 Description The STM32F101x4 and STM32F101x6 Low-density access line family incorporates the high-performance ARM Cortex®-M3 32-bit RISC core operating at a 36 MHz frequency, high-speed embedded memories (Flash memory of 16 to 32 Kbytes and SRAM of 4 to 6 Kbytes), and an extensive range of enhanced peripherals and I/Os connected to two APB buses. All devices offer standard communication interfaces (one I2C, one SPI, and two USARTs), one 12-bit ADC and up to two general-purpose 16-bit timers. The STM32F101xx Low-density access line family operates in the –40 to +85 °C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications. The STM32F101xx Low-density access line family includes devices in three different packages ranging from 36 pins to 64 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family. These features make the STM32F101xx Low-density access line microcontroller family suitable for a wide range of applications such as application control and user interface, medical and handheld equipment, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, Video intercoms, and HVACs. 10/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Device overview Figure 1 shows the general block diagram of the device family. Table 2. Low-density STM32F101xx device features and peripheral counts STM32F101Tx STM32F101Cx STM32F101Rx Flash - Kbytes 16 32 16 32 16 32 SRAM - Kbytes 4 6 4 6 4 6 General-purpose 2 2 2 2 2 2 SPI 1 1 1 1 1 1 I2C 1 1 1 1 1 1 USART 2 2 2 2 2 2 Timers Peripheral Communication 2.1 Description 12-bit synchronized ADC number of channels GPIOs 1 10 channels 1 10 channels 1 16 channels 26 37 51 CPU frequency 36 MHz Operating voltage Operating temperatures Packages 2.0 to 3.6 V Ambient temperature: –40 to +85 °C (see Table 8) Junction temperature: –40 to +105 °C (see Table 8) VFQFPN36 DocID15058 Rev 6 LQFP48 LQFP64 11/87 86 Description STM32F101x4, STM32F101x6 Figure 1. STM32F101xx Low-density access line block diagram TPIU SW/JTAG Trace/trig SWD Trace controller pbus Ibus Cortex M3 CPU Fmax : 3 6M Hz NVIC Dbus NVIC Syst em AHB: Fmax =36 MHz 7 channels SUPPLY SUPERVISION NRST VDDA VSSA POR / PDR Rst PVD Int @VDD PLL & CLOCK MANAGT XTAL OSC 4-16 MHz IWDG Stand by in terface @VDDA GPIOB PC[15:0] GPIOC PD[3:0] GPIOD MOSI,MISO, SCK,NSS as AF VBAT @VBAT RTC AWU AHB2 APB 1 Back up reg OSC32_IN OSC32_OUT TAMPER-RTC Backu p i nterf ace SPI APB 1 : Fmax =24 / 36 MHz PB[ 15:0] OSC_IN OSC_OUT RC 8 MHz RC 42 kHz APB2 : Fmax = 36 MHz GPIOA VDD = 2 to 3.6 V VSS @VDD 64 bit PCLK1 PCLK 2 HCLK FCLK EXTI WAKEUP PA[ 15:0] RX,TX, CTS, RTS, Smartcard as AF Flash 32 KB XTAL 32 kHz AHB2 APB2 80AF VOLT. REG. 3.3V TO 1.8V SRAM 6 KB GP DMA @VDDA POWER Flash obl Inte rfac e NJTRST JTDI JTCK/SWCLK JTMS/SWDIO JTDO as AF BusM atrix TRACECLK TRACED[0:3] as AS TIM2 TIM3 USART2 I2C 4 Chann els 4 Chann els RX,TX, CTS, RTS, CK, SmartCard as AF SCL,SDA,SMBA as AF WWDG USART1 @VDDA 16AF 12bit ADC IF Temp sen so r ai15173c 1. AF = alternate function on I/O port pin. 2. TA = –40 °C to +85 °C (junction temperature up to 105 °C). 12/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Description Figure 2. Clock tree 8 MHz HSI RC HSI /2 36 MHz max PLLSRC /8 SW PLLMUL HSI ..., x16 x2, x3, x4 PLL SYSCLK PLLCLK AHB Prescaler 36 MHz /1, 2..512 max Clock Enable (3 bits) APB1 Prescaler /1, 2, 4, 8, 16 HCLK to AHB bus, core, memory and DMA to Cortex System timer FCLK Cortex free running clock 36 MHz max PCLK1 to APB1 peripherals Peripheral Clock HSE Enable (13 bits) to TIM2, TIM3 TIM2, TIM3 If (APB1 prescaler =1) x1 TIMXCLK else x2 Peripheral Clock CSS Enable (3 bits) APB2 Prescaler /1, 2, 4, 8, 16 PLLXTPRE OSC_OUT OSC_IN 4-16 MHz 36 MHz max HSE OSC /2 ADC Prescaler /2, 4, 6, 8 /128 OSC32_IN OSC32_OUT Peripheral Clock Enable (11 bits) PCLK2 to APB2 peripherals LSE OSC 32.768 kHz to ADC ADCCLK to RTC LSE RTCCLK RTCSEL[1:0] LSI RC 40 kHz to Independent Watchdog (IWDG) LSI IWDGCLK Main Clock Output /2 MCO PLLCLK HSI Legend: HSE = high-speed external clock signal HSI = high-speed internal clock signal LSI = low-speed internal clock signal LSE = low-speed external clock signal HSE SYSCLK MCO ai15174 1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 36 MHz. 2. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz or 28 MHz. DocID15058 Rev 6 13/87 86 Description 2.2 STM32F101x4, STM32F101x6 Full compatibility throughout the family The STM32F101xx is a complete family whose members are fully pin-to-pin, software and feature compatible. In the reference manual, the STM32F101x4 and STM32F101x6 are referred to as low-density devices, the STM32F101x8 and STM32F101xB are referred to as medium-density devices, and the STM32F101xC, STM32F101xD and STM32F101xE are referred to as high-density devices. Low- and high-density devices are an extension of the STM32F101x8/B devices, they are specified in the STM32F101x4/6 and STM32F101xC/D/E datasheets, respectively. Lowdensity devices feature lower Flash memory and RAM capacities and a timer less. Highdensity devices have higher Flash memory and RAM capacities, and additional peripherals like FSMC and DAC, while remaining fully compatible with the other members of the STM32F101xx family. The STM32F101x4, STM32F101x6, STM32F101xC, STM32F101xD and STM32F101xE are a drop-in replacement for the STM32F101x8/B medium-density devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle. Moreover, the STM32F101xx performance line family is fully compatible with all existing STM32F101xx access line and STM32F102xx USB access line devices. Table 3. STM32F101xx family Memory size Low-density devices Pinout 16 KB Flash 32 KB Flash(1) Medium-density devices 64 KB Flash 128 KB Flash 4 KB RAM 6 KB RAM 10 KB RAM 16 KB RAM 144 - - 100 - - 64 48 36 2 × USARTs 2 × 16-bit timers 1 × SPI, 1 × I2C 1 × ADC 3 × USARTs 3 × 16-bit timers 2 × SPIs, 2 × I2Cs, 1 × ADC - High-density devices 256 KB Flash 384 KB Flash 512 KB Flash 32 KB RAM 48 KB RAM 48 KB RAM 5 × USARTs 4 × 16-bit timers, 2 × basic timers 3 × SPIs, 2 × I2Cs, 1 × ADC, 2 × DACs, FSMC (100 and 144 pins) - - - - - - 1. For orderable part numbers that do not show the A internal code after the temperature range code (6), the reference datasheet for electrical characteristics is that of the STM32F101x8/B medium-density devices. 14/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Description 2.3 Overview 2.3.1 ARM® Cortex® -M3 core with embedded Flash and SRAM The ARM® Cortex®-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. The ARM® Cortex®-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The STM32F101xx Low-density access line family having an embedded ARM core, is therefore compatible with all ARM tools and software. 2.3.2 Embedded Flash memory 16 or 32 Kbytes of embedded Flash is available for storing programs and data. 2.3.3 CRC (cyclic redundancy check) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 2.3.4 Embedded SRAM Up to 6 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states. 2.3.5 Nested vectored interrupt controller (NVIC) The STM32F101xx Low-density access line embeds a nested vectored interrupt controller able to handle up to 43 maskable interrupt channels (not including the 16 interrupt lines of Cortex®-M3) and 16 priority levels. • Closely coupled NVIC gives low latency interrupt processing • Interrupt entry vector table address passed directly to the core • Closely coupled NVIC core interface • Allows early processing of interrupts • Processing of late arriving higher priority interrupts • Support for tail-chaining • Processor state automatically saved • Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimal interrupt latency. DocID15058 Rev 6 15/87 86 Description 2.3.6 STM32F101x4, STM32F101x6 External interrupt/event controller (EXTI) The external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 80 GPIOs can be connected to the 16 external interrupt lines. 2.3.7 Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator). Several prescalers allow the configuration of the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 36 MHz. See Figure 2 for details on the clock tree. 2.3.8 Boot modes At startup, boot pins are used to select one of three boot options: • Boot from User Flash • Boot from System Memory • Boot from embedded SRAM The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1. For further details please refer to AN2606. 2.3.9 Power supply schemes • VDD = 2.0 to 3.6 V: External power supply for I/Os and the internal regulator. Provided externally through VDD pins. • VSSA, VDDA = 2.0 to 3.6 V: External analog power supplies for ADC, Reset blocks, RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC is used). VDDA and VSSA must be connected to VDD and VSS, respectively. • VBAT = 1.8 to 3.6 V: Power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. For more details on how to connect power pins, refer to Figure 10: Power supply scheme. 2.3.10 Power supply supervisor The device has an integrated power on reset (POR)/power down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR, without the need for an external reset circuit. The device features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is 16/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Description higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to Table 10: Embedded reset and power control block characteristics for the values of VPOR/PDR and VPVD. 2.3.11 Voltage regulator The regulator has three operation modes: main (MR), low power (LPR) and power down. • MR is used in the nominal regulation mode (Run) • LPR is used in the Stop mode • Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost) This regulator is always enabled after reset. It is disabled in Standby mode, providing high impedance output. 2.3.12 Low-power modes The STM32F101xx Low-density access line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. • Stop mode Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output or the RTC alarm. • Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry. The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode. 2.3.13 DMA The flexible 7-channel general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer. DocID15058 Rev 6 17/87 86 Description STM32F101x4, STM32F101x6 Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: SPI, I2C, USART, general purpose timers TIMx and ADC. 2.3.14 RTC (real-time clock) and backup registers The RTC and the backup registers are supplied through a switch that takes power either on VDD supply when present or through the VBAT pin. The backup registers are ten 16-bit registers used to store 20 bytes of user application data when VDD power is not present. The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low power RC oscillator or the high-speed external clock divided by 128. The internal low power RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural crystal deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz. 2.3.15 Independent watchdog The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. 2.3.16 Window watchdog The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. 2.3.17 SysTick timer This timer is dedicated for OS, but could also be used as a standard down counter. It features: 2.3.18 • A 24-bit down counter • Autoreload capability • Maskable system interrupt generation when the counter reaches 0. • Programmable clock source General-purpose timers (TIMx) There areup to two synchronizable general-purpose timers embedded in the STM32F101xx Low-density access line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture, 18/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Description output compare, PWM or one pulse mode output. This gives up to 12 input captures / output compares / PWMs on the largest packages. The general-purpose timers can work together via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation. These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. 2.3.19 I²C bus The I²C bus interface can operate in multimaster and slave modes. It can support standard and fast modes. It supports dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode. A hardware CRC generation/verification is embedded. The interface can be served by DMA and it supports SM Bus 2.0/PM Bus. 2.3.20 Universal synchronous/asynchronous receiver transmitter (USART) The available USART interfaces communicate at up to 2.25 Mbit/s. They provide hardware management of the CTS and RTS signals, support IrDA SIR ENDEC, are ISO 7816 compliant and have LIN Master/Slave capability. The USART interfaces can be served by the DMA controller. 2.3.21 Serial peripheral interface (SPI) The SPI interface is able to communicate up to 18 Mbit/s in slave and master modes in fullduplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. The SPI interface can be served by the DMA controller. 2.3.22 GPIOs (general-purpose inputs/outputs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high currentcapable. The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. 2.3.23 ADC (analog to digital converter) The 12-bit analog to digital converter has up to 16 external channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC can be served by the DMA controller. DocID15058 Rev 6 19/87 86 Description STM32F101x4, STM32F101x6 An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. 2.3.24 Temperature sensor The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2 V < VDDA < 3.6 V. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. 2.3.25 Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 20/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Pinouts and pin description 9''B 966B 3% 3% %227 3% 3% 3% 3% 3% 3' 3& 3& 3& 3$ 3$ Figure 3. STM32F101xx Low-density access line LQFP64 pinout                                 /4)3                                 9''B 966B 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3% 3% 3% 3% 3$ 966B 9''B 3$ 3$ 3$ 3$ 3& 3& 3% 3% 3% 3% 3% 966B 9''B 9%$7 3&$17,B7$03 3&26&B,1 3&26&B287 3'26&B,1 3'26&B287 1567 3& 3& 3& 3& 966$ 9''$ 3$:.83 3$ 3$ DLE VDD_3 VSS_3 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 Figure 4. STM32F101xx Low-density access line LQFP48 pinout VBAT PC13-TAMPER-RTC PC14-OSC32_IN PC15-OSC32_OUT PD0-OSC_IN PD1-OSC_OUT NRST VSSA VDDA PA0-WKUP PA1 PA2 48 47 46 45 44 43 42 41 40 39 38 37 36 1 2 35 3 34 33 4 32 5 31 6 LQFP48 30 7 29 8 28 9 27 10 26 11 25 12 13 14 15 16 17 18 19 20 21 22 23 24 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 PB11 VSS_1 VDD_1 3 Pinouts and pin description DocID15058 Rev 6 VDD_2 VSS_2 PA13 PA12 PA11 PA10 PA9 PA8 PB15 PB14 PB13 PB12 ai14378d 21/87 86 Pinouts and pin description STM32F101x4, STM32F101x6 6$$? 633? 0" 0" "//4 0" 0" 0" 0" 0" 0! 0! Figure 5. STM32F101xx Low-density access line UFQPFN48 pinout                 6"!4 0# 4!-0%2 24# 0# /3#?). 0# /3#?/54 0$ /3#?). 0$ /3#?/54 .234 633! 6$$! 0! 7+50 0! 0!         1&0.  6$$? 633? 0! 0! 0! 0! 0! 0! 0" 0" 0" 0"          0! 0! 0! 0! 0! 0" 0" 0" 0" 0" 633? 6$$?               -36 PB7 PB6 PB5 PB4 PB3 PA15 PA14 36 BOOT0 VSS_3 Figure 6. STM32F101xx Low-density access line VFQPFN36 pinout 35 34 33 32 31 30 29 28 VDD_3 1 27 VDD_2 OSC_IN/PD0 2 26 VSS_2 OSC_OUT/PD1 3 25 PA13 NRST 4 24 PA12 23 PA11 VSSA 5 VDDA 6 22 PA10 PA0-WKUP 7 21 PA9 PA1 8 20 PA8 PA2 9 10 11 12 13 14 15 PA3 PA4 PA5 PA6 PA7 PB0 QFN36 19 18 VDD_1 VSS_1 17 PB2 PB1 16 ai14654 22/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Pinouts and pin description Table 4. Low-density STM32F101xx pin definitions Alternate functions(3)(4) LQFP48 LQFP64 VFQFPN36 Type(1) I / O level(2) Pins Main function(3) (after reset) 1 1 - VBAT S - VBAT - - 2 2 - PC13-TAMPERRTC(5) I/O - PC13(6) TAMPER-RTC - 3 3 - PC14-OSC32_IN(5) I/O - PC14(6) OSC32_IN - I/O - PC15 (6) OSC32_OUT - Pin name Remap 4 4 - 5 5 2 OSC_IN I - OSC_IN - - 6 6 3 OSC_OUT O - OSC_OUT - - 7 7 4 NRST I/O - NRST - - - 8 - PC0 I/O - PC0 ADC_IN10 - - 9 - PC1 I/O - PC1 ADC_IN11 - - 10 - PC2 I/O - PC2 ADC_IN12 - - 11 - PC3 I/O - PC3 ADC_IN13 - 8 12 5 VSSA S - VSSA - - 9 13 6 VDDA S - VDDA - - 10 14 7 PA0-WKUP I/O - PA0 WKUP/USART2_CTS/ ADC_IN0/ TIM2_CH1_ETR(7) - 11 15 8 PA1 I/O - PA1 USART2_RTS/ ADC_IN1/TIM2_CH2(7) - 12 16 9 PA2 I/O - PA2 USART2_TX/ ADC_IN2/TIM2_CH3(7) - 13 17 10 PA3 I/O - PA3 USART2_RX/ ADC_IN3/TIM2_CH4(7) - - 18 - VSS_4 S - VSS_4 - - - 19 - VDD_4 S - VDD_4 - - 14 20 11 PA4 I/O - PA4 SPI_NSS(7)/ADC_IN4 USART2_CK - 15 21 12 PA5 I/O - PA5 SPI_SCK(7)/ADC_IN5 - 16 22 13 PC15-OSC32_OUT (5) Default PA6 I/O - PA6 DocID15058 Rev 6 SPI_MISO(7)/ADC_IN6/ TIM3_CH1(7) - 23/87 86 Pinouts and pin description STM32F101x4, STM32F101x6 Table 4. Low-density STM32F101xx pin definitions (continued) Alternate functions(3)(4) LQFP48 LQFP64 VFQFPN36 Type(1) I / O level(2) Pins Main function(3) (after reset) 17 23 14 PA7 I/O - PA7 SPI_MOSI(7)/ADC_IN7/ TIM3_CH2(7) - - 24 - PC4 I/O - PC4 ADC_IN14 - - 25 - PC5 I/O - PC5 ADC_IN15 Pin name Default Remap (7) - 18 26 15 PB0 I/O - PB0 ADC_IN8/TIM3_CH3 19 27 16 PB1 I/O - PB1 ADC_IN9/TIM3_CH4(7) - 20 28 17 PB2 I/O FT PB2/BOOT1 - - 21 29 - PB10 I/O FT PB10 - TIM2_CH3 22 30 - PB11 I/O FT PB11 - TIM2_CH4 23 31 18 VSS_1 S - VSS_1 - - 24 32 19 VDD_1 S - VDD_1 - - 25 33 - PB12 I/O FT PB12 - - 26 34 - PB13 I/O FT PB13 - - 27 35 - PB14 I/O FT PB14 - - 28 36 - PB15 I/O FT PB15 - - - 37 - PC6 I/O FT PC6 - TIM3_CH1 - 38 - PC7 I/O FT PC7 - TIM3_CH2 - 39 - PC8 I/O FT PC8 - TIM3_CH3 - 40 - PC9 I/O FT PC9 - TIM3_CH4 29 41 20 PA8 I/O FT PA8 USART1_CK/MCO - (7) - 30 42 21 PA9 I/O FT PA9 USART1_TX 31 43 22 PA10 I/O FT PA10 USART1_RX(7) - 32 44 23 PA11 I/O FT PA11 USART1_CTS - 33 45 24 PA12 I/O FT PA12 USART1_RTS - 34 46 25 PA13 I/O FT JTMSSWDIO - PA13 35 47 26 VSS_2 S - VSS_2 - - 36 48 27 VDD_2 S - VDD_2 - - 24/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Pinouts and pin description Table 4. Low-density STM32F101xx pin definitions (continued) Alternate functions(3)(4) LQFP48 LQFP64 VFQFPN36 Type(1) I / O level(2) Pins Main function(3) (after reset) 37 49 28 PA14 I/O FT JTCK/SWCL K - PA14 38 50 29 PA15 I/O FT JTDI - TIM2_CH1_ETR/ PA15 / SPI_NSS - 51 - PC10 I/O FT PC10 - - - 52 - PC11 I/O FT PC11 - - - 53 - PC12 I/O FT PC12 - - 5 5 2 PD0 I/O FT OSC_IN(8) - - - - Pin name Default Remap 6 6 3 PD1 I/O FT OSC_OUT(8) - 54 - PD2 I/O FT PD2 TIM3_ETR - 39 55 30 PB3 I/O FT JTDO - TIM2_CH2 / PB3 TRACESWO SPI_SCK 40 56 31 PB4 I/O FT NJTRST - TIM3_CH1 / PB4 SPI_MISO 41 57 32 PB5 I/O - PB5 I2C_SMBA TIM3_CH2 / SPI_MOSI 42 58 33 PB6 I/O FT PB6 I2C_SCL(7) USART1_TX (7) USART1_RX 43 59 34 PB7 I/O FT PB7 I2C_SDA 44 60 35 BOOT0 I - BOOT0 - - 45 61 - PB8 I/O FT PB8 - I2C_SCL 46 62 - PB9 I/O FT PB9 - I2C_SDA 47 63 36 VSS_3 S - VSS_3 - - 48 64 1 VDD_3 S - VDD_3 - - 1. I = input, O = output, S = supply. 2. FT= 5 V tolerant. 3. Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripherals that is included. For example, if a device has only one SPI, two USARTs and two timers, they will be called SPI, USART1 & USART2 and TIM2 & TIM 3, respectively. Refer to Table 2 on page 11. 4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register). 5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED). DocID15058 Rev 6 25/87 86 Pinouts and pin description STM32F101x4, STM32F101x6 6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com. 7. This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com. 8. The pins number 2 and 3 in the VFQFPN36 package, and 5 and 6 in the LQFP48 and LQFP64 packages are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual. 26/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 4 Memory mapping Memory mapping The memory map is shown in Figure 7. Figure 7. Memory map APB memory space 0xFFFF FFFF 0xE010 0000 0xFFFF FFFF 0x6000 0000 0x4002 3400 7 0xE010 0000 0xE000 0000 0x4002 3000 0x4002 2400 Cortex-M3 internal peripherals 6 reserved 0x4002 1000 RCC 0x4002 0400 reserved 0x4001 3400 0x4001 3000 0x4001 2C00 0x4001 2800 0x4001 2400 4 0x1FFF FFFF 0x4001 1800 reserved 0x1FFF F80F 0x8000 0000 Option Bytes 0x1FFF F800 3 System memory 0x4000 0000 Port B 0x4001 0800 Port A 0x4001 0400 EXTI 0x4001 0000 AFIO 0x4000 6400 0x4000 6000 0x4000 5800 0x2000 0000 SRAM 0 Flash memory 0x0000 0000 reserved PWR BKP reserved reserved reserved reserved I2C 0x4000 5400 0x4000 4800 reserved 0x4000 4400 USART2 0x4000 3400 0x0801 FFFF ADC reserved Port C 0x4000 6800 1 reserved 0x4001 0C00 0x4000 6C00 Peripherals SPI reserved Port D 0x4000 7000 reserved USART1 reserved 0x4001 1000 0x4000 7400 2 DMA reserved 0x4001 1400 0x1FFF F000 0x6000 0000 CRC reserved Flash interface 0x4001 3800 0xA000 0000 reserved 0x4002 1400 0x4001 3C00 5 reserved 0x4002 2000 0x4002 0000 0xC000 0000 reserved reserved 0x4000 3000 IWDG 0x4000 2C00 WWDG 0x4000 2800 RTC 0x0800 0000 0x4000 0800 reserved Aliased to Flash or system memory depending on 0x0000 0000 BOOT pins 0x4000 0400 TIM3 0x4000 0000 TIM2 Reserved ai15175b DocID15058 Rev 6 27/87 86 Electrical characteristics STM32F101x4, STM32F101x6 5 Electrical characteristics 5.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 5.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3σ). 5.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the 2 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2σ). 5.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 5.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 8. 5.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 9. 28/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Electrical characteristics Figure 8. Pin loading conditions Figure 9. Pin input voltage STM32F10xxx pin STM32F10xxx pin C = 50 pF VIN ai14124b ai14123b 5.1.6 Power supply scheme Figure 10. Power supply scheme VBAT Backup circuitry (OSC32K,RTC, Wakeup logic Backup registers) OUT GP I/Os IN Level shifter Po wer swi tch 1.8-3.6V IO Logic Kernel logic (CPU, Digital & Memories) VDD VDD 1/2/3/4/5 5 × 100 nF + 1 × 4.7 µF VDD 1/2/3/4/5 VDDA VREF 10 nF + 1 µF Regulator VSS VREF+ ADC 10 nF + 1 µF VREF- Analog: RCs, PLL, ... VSSA ai15496 Caution: In Figure 10, the 4.7 µF capacitor must be connected to VDD3. DocID15058 Rev 6 29/87 86 Electrical characteristics 5.1.7 STM32F101x4, STM32F101x6 Current consumption measurement Figure 11. Current consumption measurement scheme IDD_VBAT VBAT IDD VDD VDDA ai14126 5.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 5: Voltage characteristics, Table 6: Current characteristics, and Table 7: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 5. Voltage characteristics Symbol VDD −VSS VIN (2) |ΔVDDx| |VSSX − VSS| VESD(HBM) Ratings Min Max –0.3 4.0 Input voltage on five volt tolerant pin VSS −0.3 VDD +4.0 Input voltage on any other pin VSS − 0.3 4.0 Variations between different VDD power pins - 50 Variations between all the different ground pins - 50 External main supply voltage (including VDDA and VDD)(1) Electrostatic discharge voltage (human body model) see Section 5.3.11: Absolute maximum ratings (electrical sensitivity) Unit V mV - 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 6: Current characteristics for the maximum allowed injected current values. 30/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Electrical characteristics Table 6. Current characteristics Symbol Ratings Max. Total current into VDD/VDDA power lines (source)(1) IVDD 150 (1) IVSS IIO Total current out of VSS ground lines (sink) 150 Output current sunk by any I/O and control pin 25 Output current source by any I/Os and control pin −25 (3) IINJ(PIN)(2) ΣIINJ(PIN) Unit Injected current on five volt tolerant pins mA -5/+0 (4) ±5 Injected current on any other pin Total injected current (sum of all I/O and control pins) (5) ± 25 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. Negative injection disturbs the analog performance of the device. See note in Section 5.3.17: 12-bit ADC characteristics. 3. Positive injection is not possible on these I/Os. A negative injection is induced by VINVDD while a negative injection is induced by VIN 8 MHz. Table 13. Maximum current consumption in Run mode, code with data processing running from RAM Max(1) Symbol Parameter Conditions External clock (2), all peripherals enabled IDD Supply current in Run mode External clock(2) all peripherals disabled fHCLK Unit TA = 85 °C 36 MHz 20 24 MHz 14 16 MHz 10 8 MHz 6 36 MHz 15 24 MHz 10 16 MHz 7 8 MHz 5 mA 1. Based on characterization, tested in production at VDD max, fHCLK max. 2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. DocID15058 Rev 6 35/87 86 Electrical characteristics STM32F101x4, STM32F101x6 Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals enabled 25 Consumption (mA) 20 15 36 MHz 16 MHz 8 MHz 10 5 0 – 45°C 25 °C 70 °C 85 °C Temperature (°C) Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals disabled 16 14 Consumption (mA) 12 10 36 MHz 16 MHz 8 8 MHz 6 4 2 0 – 45°C 25 °C 70 °C Temperature (°C) 36/87 DocID15058 Rev 6 85 °C STM32F101x4, STM32F101x6 Electrical characteristics Table 14. Maximum current consumption in Sleep mode, code running from Flash or RAM Max(1) Symbol Parameter Conditions fHCLK External clock(2) all peripherals enabled IDD Supply current in Sleep mode External clock(2), all peripherals disabled Unit TA = 85 °C 36 MHz 14 24 MHz 10 16 MHz 7 8 MHz 4 36 MHz 5 24 MHz 4.5 16 MHz 4 8 MHz 3 mA 1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled. 2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. Table 15. Typical and maximum current consumptions in Stop and Standby modes Typ(1) Symbol Parameter Supply current in Stop mode IDD Supply current in Standby mode Conditions Max TA = VDD/VBAT VDD/ VBAT VDD/VBAT = 2.0 V = 2.4 V = 3.3 V 85 °C(2) Regulator in Run mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) - 21.3 21.7 160 Regulator in Low Power mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) - 11.3 11.7 145 Low-speed internal RC oscillator and independent watchdog ON - 2.6 3.4 - Low-speed internal RC oscillator ON, independent watchdog OFF - 2.4 3.2 - Low-speed internal RC oscillator and independent watchdog OFF, low-speed oscillator and RTC OFF - 1.7 2 3.2 0.9 1.1 1.4 1.9 Backup Low-speed oscillator and RTC ON IDD_VBAT domain supply current Unit µA 1. Typical values are measured at TA = 25 °C. 2. Based on characterization, not rested in production. DocID15058 Rev 6 37/87 86 Electrical characteristics STM32F101x4, STM32F101x6 Figure 14. Typical current consumption on VBAT with RTC on versus temperature at different VBAT values Consumption ( µA ) 2.5 2 2V 1.5 2.4 V 1 3V 0.5 3.6 V 0 –40 °C 25 °C 70 °C 85 °C 105 °C Temperature (°C) ai17351 Figure 15. Typical current consumption in Stop mode with regulator in Run mode versus temperature at VDD = 3.3 V and 3.6 V 45 40 Consumption (µA) 35 30 25 3.3 V 20 3.6 V 15 10 5 0 –45 °C 25 °C Temperature (°C) 38/87 DocID15058 Rev 6 85 °C STM32F101x4, STM32F101x6 Electrical characteristics Figure 16. Typical current consumption in Stop mode with regulator in Low-power mode versus temperature at VDD = 3.3 V and 3.6 V 30 20 3.3 V 15 3.6 V 10 5 0 –45 °C 25 °C 85 °C Temperature (°C) Figure 17. Typical current consumption in Standby mode versus temperature at VDD = 3.3 V and 3.6 V 3.5 3 2.5 Consumption (µA) Consumption (µA) 25 2 3.3 V 3.6 V 1.5 1 0.5 0 –45 °C 25 °C 85 °C Temperature (°C) DocID15058 Rev 6 39/87 86 Electrical characteristics STM32F101x4, STM32F101x6 Typical current consumption The MCU is placed under the following conditions: • All I/O pins are in input mode with a static value at VDD or VSS (no load) • All peripherals are disabled except if it is explicitly mentioned • The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 36 MHz) • Prefetch is on (reminder: this bit must be set before clock setting and bus prescaling) • When the peripherals are enabled fPCLK1 = fHCLK/4, fPCLK2 = fHCLK/2, fADCCLK = fPCLK2/4 The parameters given in Table 16 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 8. Table 16. Typical current consumption in Run mode, code with data processing running from Flash Symbol Parameter Conditions External clock(3) IDD Supply current in Run mode Running on high speed internal RC (HSI), AHB prescaler used to reduce the frequency Typ(1) Typ(1) All peripherals enabled(2) All peripherals disabled 36 MHz 17.2 13.8 24 MHz 11.2 8.9 16 MHz 8.1 6.6 8 MHz 5 4.2 4 MHz 3 2.6 2 MHz 2 1.8 1 MHz 1.5 1.4 500 kHz 1.2 1.2 125 kHz 1.05 1 36 MHz 16.5 13.1 24 MHz 10.5 8.2 16 MHz 7.4 5.9 8 MHz 4.3 3.6 4 MHz 2.4 2 2 MHz 1.5 1.3 1 MHz 1 0.9 500 kHz 0.7 0.65 125 kHz 0.5 0.45 fHCLK 1. Typical values are measures at TA = 25 °C, VDD = 3.3 V. 2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). 3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. 40/87 DocID15058 Rev 6 Unit mA STM32F101x4, STM32F101x6 Electrical characteristics Table 17. Typical current consumption in Sleep mode, code running from Flash or RAM Symbol Parameter Conditions (3) External clock Supply current in Sleep mode IDD Running on High Speed Internal RC (HSI), AHB prescaler used to reduce the frequency Typ(1) Typ(1) All peripherals enabled(2) All peripherals disabled 36 MHz 6.7 3.1 24 MHz 4.8 2.3 16 MHz 3.4 1.8 8 MHz 2 1.2 4 MHz 1.5 1.1 2 MHz 1.25 1 1 MHz 1.1 0.98 500 kHz 1.05 0.96 125 kHz 1 0.95 36 MHz 6.1 2.5 24 MHz 4.2 1.7 16 MHz 2.8 1.2 8 MHz 1.4 0.55 4 MHz 0.9 0.5 2 MHz 0.7 0.45 1 MHz 0.55 0.42 500 kHz 0.48 0.4 125 kHz 0.4 0.38 fHCLK Unit mA 1. Typical values are measures at TA = 25 °C, VDD = 3.3 V. 2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). 3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in Table 18. The MCU is placed under the following conditions: • all I/O pins are in input mode with a static value at VDD or VSS (no load) • all peripherals are disabled unless otherwise mentioned • the given value is calculated by measuring the current consumption • – with all peripherals clocked off – with only one peripheral clocked on ambient operating temperature and VDD supply voltage conditions summarized in Table 5. DocID15058 Rev 6 41/87 86 Electrical characteristics STM32F101x4, STM32F101x6 Table 18. Peripheral current consumption Peripheral Typical consumption at 25 °C DMA1 AHB (up to 36 MHz) 15.97 CRC 1.67 BusMatrix APB1 (up to 18 MHz) APB2 (up to 36 MHz) Unit (1) 8.33 APB1-Bridge 7.22 TIM2 33.33 TIM3 33.61 USART2 12.78 I2C1 10.83 WWDG 3.33 PWR 1.94 BKP 2.78 IWDG 1.39 APB2-Bridge 3.33 GPIO A 7.50 GPIO B 6.81 GPIO C 7.22 GPIO D 6.94 SPI1 4.86 USART1 12.78 ADC1(2) 15.54 μA/MHz 1. The BusMatrix is automatically active when at least one master is ON. (CPU, DMA1). 2. Specific conditions for measuring ADC current consumption: fHCLK = 28 MHz, fAPB1 = fHCLK, fAPB2 = fHCLK, fADCCLK = fAPB2 / 2. When ADON bit in the ADC_CR2 register is set to 1, a current consumption of analog part equal to 0.7 mA must be added. 5.3.6 External clock source characteristics High-speed external user clock generated from an external source The characteristics given in Table 19 result from tests performed using an high-speed external clock source, and under the ambient temperature and supply voltage conditions summarized in Table 8. 42/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Electrical characteristics Table 19. High-speed external user clock characteristics Symbol Parameter Conditions fHSE_ext User external clock source frequency(1) VHSEH OSC_IN input pin high level voltage VHSEL OSC_IN input pin low level voltage tw(HSE) tw(HSE) OSC_IN high or low time(1) tr(HSE) tf(HSE) Cin(HSE) Typ Max Unit 1 8 25 MHz 0.7VDD - VDD VSS - 0.3VDD 5 - - - V ns (1) OSC_IN rise or fall time - - 20 - - 5 - pF - 45 - 55 % VSS ≤ VIN ≤ VDD - - ±1 µA OSC_IN input capacitance(1) DuCy(HSE) Duty cycle IL Min OSC_IN Input leakage current 1. Guaranteed by design, not tested in production. Low-speed external user clock generated from an external source The characteristics given in Table 20 result from tests performed using an low-speed external clock source, and under the ambient temperature and supply voltage conditions summarized in Table 8. Table 20. Low-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit - 32.768 1000 kHz 0.7VDD - VDD VSS - 0.3VDD fLSE_ext User external clock source frequency(1) VLSEH OSC32_IN input pin high level voltage VLSEL OSC32_IN input pin low level voltage tw(LSE) tw(LSE) OSC32_IN high or low time(1) 450 - - tr(LSE) tf(LSE) OSC32_IN rise or fall time(1) - - 50 - - 5 - pF - 30 - 70 % VSS ≤ VIN ≤ VDD - - ±1 µA Cin(LSE) V - ns OSC32_IN input capacitance(1) DuCy(LSE) Duty cycle IL OSC32_IN Input leakage current 1. Guaranteed by design, not tested in production. DocID15058 Rev 6 43/87 86 Electrical characteristics STM32F101x4, STM32F101x6 Figure 18. High-speed external clock source AC timing diagram VHSEH 90% VHSEL 10% tr(HSE) tf(HSE) tW(HSE) tW(HSE) t THSE External clock source fHSE_ext OSC _IN IL STM32F10xxx ai14127b Figure 19. Low-speed external clock source AC timing diagram VLSEH 90% VLSEL 10% tr(LSE) tf(LSE) tW(LSE) OSC32_IN IL tW(LSE) t TLSE External clock source fLSE_ext STM32F10xxx ai14140c High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 21. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). 44/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Electrical characteristics Table 21. HSE 4-16 MHz oscillator characteristics(1)(2) Symbol Conditions Min Typ Max Unit Oscillator frequency - 4 8 16 MHz RF Feedback resistor - - 200 - kΩ C Recommended load capacitance versus equivalent serial RS = 30 Ω resistance of the crystal (RS)(3) - 30 - pF i2 HSE driving current VDD = 3.3 V, VIN = VSS with 30 pF load - - 1 mA Oscillator transconductance Startup 25 - - mA/V Startup time VDD is stabilized - 2 - ms fOSC_IN gm tSU(HSE) (4) Parameter 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Based on characterization, not tested in production. 3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions. 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 20). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 20. Typical application with an 8 MHz crystal Resonator with integrated capacitors CL1 fHSE OSC_IN 8 MH z resonator CL2 REXT(1) RF OSC_OU T Bias controlled gain STM32F10xxx ai14128b 1. REXT value depends on the crystal characteristics. Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 22. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization DocID15058 Rev 6 45/87 86 Electrical characteristics STM32F101x4, STM32F101x6 time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 22. LSE oscillator characteristics (fLSE = 32.768 kHz)(1) (2) Symbol Parameter Conditions - Min Typ Max Unit - - - 5 - MΩ RF Feedback resistor C Recommended load capacitance versus equivalent serial resistance of the crystal (RS) RS = 30 KΩ - - - 15 pF I2 LSE driving current VDD = 3.3 V VIN = VSS - - - 1.4 µA gm Oscillator transconductance - - 5 - - µA/V TA = 50 °C - 1.5 - TA = 25 °C - 2.5 - TA = 10 °C - 4 - TA = 0 °C - 6 - TA = -10 °C - 10 - TA = -20 °C - 17 - TA = -30 °C - 32 - TA = -40 °C - 60 - tSU(LSE)(3) VDD is stabilized Startup time s 1. Based on characterization, not tested in production. 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer Note: For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator. CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF. Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance CL ≤ 7 pF. Never use a resonator with a load capacitance of 12.5 pF. Example: if resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF is chosen, then CL1 = CL2 = 8 pF. 46/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Electrical characteristics Figure 21. Typical application with a 32.768 kHz crystal Resonator with integrated capacitors CL1 fLSE OSC32_IN 32.768 KH z resonator Bias controlled gain RF STM32F10xxx OSC32_OU T CL2 ai14129b 5.3.7 Internal clock source characteristics The parameters given in Table 23 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 8. High-speed internal (HSI) RC oscillator Table 23. HSI oscillator characteristics(1) Symbol Parameter Conditions Min Typ Max Unit fHSI Frequency - - 8 - MHz DuCy(HSI) Duty cycle - 45 - 55 % - - 1(3) % TA = –40 to 105 °C –2 - 2.5 % TA = –10 to 85 °C –1.5 - 2.2 % TA = 0 to 70 °C –1.3 - 2 % TA = 25 °C –1.1 - 1.8 % User-trimmed with the RCC_CR register(2) ACCHSI Accuracy of the HSI Factoryoscillator calibrated (4) (5) tsu(HSI)(4) HSI oscillator startup time - 1 - 2 µs IDD(HSI)(4) HSI oscillator power consumption - - 80 100 µA 1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from the ST website www.st.com. 3. Guaranteed by design, not tested in production. 4. Based on characterization, not tested in production. 5. The actual frequency of HSI oscillator may be impacted by a reflow, but does not drift out of the specified range. DocID15058 Rev 6 47/87 86 Electrical characteristics STM32F101x4, STM32F101x6 Low-speed internal (LSI) RC oscillator Table 24. LSI oscillator characteristics (1) Symbol fLSI(2) tsu(LSI) Parameter Frequency Min Typ Max Unit 30 40 60 kHz (3) LSI oscillator startup time - - 85 µs (3) LSI oscillator power consumption - 0.65 1.2 µA IDD(LSI) 1. VDD = 3 V, TA = –40 to 85 °C unless otherwise specified. 2. Based on characterization, not tested in production. 3. Guaranteed by design, not tested in production. Wakeup time from low-power mode The wakeup times given in Table 25 are measured on a wakeup phase with an 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode: • Stop or Standby mode: the clock source is the RC oscillator • Sleep mode: the clock source is the clock that was set before entering Sleep mode. All timings are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 8. Table 25. Low-power mode wakeup timings Symbol tWUSLEEP(1) tWUSTOP(1) tWUSTDBY(1) Parameter Typ Unit Wakeup from Sleep mode 1.8 µs Wakeup from Stop mode (regulator in run mode) 3.6 Wakeup from Stop mode (regulator in low-power mode) 5.4 Wakeup from Standby mode 50 µs µs 1. The wakeup times are measured from the wakeup event to the point at which the user application code reads the first instruction. 5.3.8 PLL characteristics The parameters given in Table 26 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 8. Table 26. PLL characteristics Value Symbol fPLL_IN fPLL_OUT 48/87 Parameter Unit Min(1) Typ Max(1) PLL input clock(2) 1 8.0 25 MHz PLL input clock duty cycle 40 - 60 % PLL multiplier output clock 16 - 36 MHz DocID15058 Rev 6 STM32F101x4, STM32F101x6 Electrical characteristics Table 26. PLL characteristics (continued) Value Symbol Parameter Min(1) Typ Max(1) Unit tLOCK PLL lock time - - 200 µs Jitter Cycle-to-cycle jitter - - 300 ps 1. Based on device characterization, not tested in production. 2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by fPLL_OUT. 5.3.9 Memory characteristics Flash memory The characteristics are given at TA = –40 to 85 °C unless otherwise specified. Table 27. Flash memory characteristics Symbol Parameter Conditions Min(1) Typ Max(1) Unit tprog 16-bit programming time TA = –40 to +85 °C 40 52.5 70 µs tERASE Page (1 KB) erase time TA = –40 to +85 °C 20 - 40 ms Mass erase time TA = –40 to +85 °C 20 - 40 ms Read mode fHCLK = 36 MHz with 1 wait state, VDD = 3.3 V - - 20 mA Write / Erase modes fHCLK = 36 MHz, VDD = 3.3 V - - 5 mA Power-down mode / Halt, VDD = 3.0 to 3.6 V - - 50 µA 2 - 3.6 V tME IDD Vprog Supply current Programming voltage - 1. Guaranteed by design, not tested in production. 5.3.10 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (Electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: • Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. DocID15058 Rev 6 49/87 86 Electrical characteristics STM32F101x4, STM32F101x6 The test results are given in Table 28. They are based on the EMS levels and classes defined in application note AN1709. Table 28. EMS characteristics Symbol Parameter Conditions Level/Class VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VDD = 3.3 V, TA = +25 °C, fHCLK= 36 MHz conforms to IEC 61000-4-2 2B VEFTB VDD = 3.3 V, TA = +25 °C, Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins fHCLK = 36 MHz to induce a functional disturbance conforms to IEC 61000-4-4 4A Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and pre qualification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: • Corrupted program counter • Unexpected reset • Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device is monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC61967-2 standard which specifies the test board and the pin loading. Table 29. EMI characteristics Symbol Parameter SEMI Peak level Conditions Monitored frequency band 7 VDD = 3.3 V, TA = 25 °C, 30 MHz to 130 MHz compliant with 130 MHz to 1GHz IEC 61967-2 8 DocID15058 Rev 6 Unit 8/36 MHz 0.1 MHz to 30 MHz EMI Level 50/87 Max vs. [fHSE/fHCLK] dBµV 13 3.5 - STM32F101x4, STM32F101x6 5.3.11 Electrical characteristics Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Table 30. ESD absolute maximum ratings Symbol VESD(HBM) Ratings Electrostatic discharge voltage (human body model) Conditions Class TA = +25 °C conforming to JESD22-A114 2 TA = +25 °C Electrostatic discharge conforming to VESD(CDM) voltage (charge device model) ANSI/ESD STM5.3.1 Maximum Unit value(1) 2000 V II 500 1. Based on characterization results, not tested in production. Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: • A supply overvoltage is applied to each power supply pin • A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78 IC latch-up standard. Table 31. Electrical sensitivities Symbol LU 5.3.12 Parameter Static latch-up class Conditions TA = +85 °C conforming to JESD78A Class II level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibilty to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. DocID15058 Rev 6 51/87 86 Electrical characteristics STM32F101x4, STM32F101x6 The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation). The test results are given in Table 32 Table 32. I/O current injection susceptibility Functional susceptibility Symbol IINJ 52/87 Description Negative injection Positive injection Injected current on OSC_IN32, OSC_OUT32, PA4, PA5, PC13 -0 +0 Injected current on all FT pins -5 +0 Injected current on any other pin -5 +5 DocID15058 Rev 6 Unit mA STM32F101x4, STM32F101x6 5.3.13 Electrical characteristics I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 33 are derived from tests performed under the conditions summarized in Table 8. All I/Os are CMOS and TTL compliant. Table 33. I/O static characteristics Symbol VIL Parameter Standard IO input low level voltage IO FT(2) input low level voltage Standard IO input high level voltage VIH Vhys Ilkg IO FT(2) input high level voltage Conditions Min Typ Max -0.3 - 0.28*(VDD-2 V)+0.8 V(1) -0.3 - 0.32*(VDD-2 V)+0.75 V(1) 0.41*(VDD-2 V)+1.3 V(1) - VDD+0.3 0.42*(VDD-2 V)+1 V(1) - 200 - - VDD > 2 V VDD ≤ 2 V V 5.5 5.2 Standard IO Schmitt trigger voltage hysteresis(3) - IO FT Schmitt trigger voltage hysteresis(3) - 5% VDD(4) - - VSS ≤ VIN ≤ VDD Standard I/Os - - ±1 VIN = 5 V I/O FT - - 3 30 40 50 Input leakage current (5) Unit mV µA RPU Weak pull-up equivalent resistor(6) VIN = VSS RPD Weak pull-down equivalent resistor(6) VIN = VDD 30 40 50 CIO I/O pin capacitance - - 5 - kΩ pF 1. Data based on design simulation. 2. FT = Five-volt tolerant. In order to sustain a voltage higher than VDD+0.3 the internal pull-up/pull-down resistors must be disabled. 3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production. 4. With a minimum of 100 mV. 5. Leakage could be higher than max. if negative current is injected on adjacent pins. 6. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order). DocID15058 Rev 6 53/87 86 Electrical characteristics STM32F101x4, STM32F101x6 All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 22 and Figure 23 for standard I/Os, and in Figure 24 and Figure 25 for 5 V tolerant I/Os. Figure 22. Standard I/O input characteristics - CMOS port !REANOT DETERMINED 6)(6),6 6 $$ NT6 )( IREME RDREQU  6  6 )( $$ ULATIONS IM S GN SI ONDE  "ASED    6  6  $$ IMULATIONS  ), S GN  SI DE  "ASEDON 6 MENT6 ), $$ DARDREQUIRE A STAND #-/3 TION PRODUC 7)(MIN 7),MAX N 4ESTEDI    #-/3STAN   DUCTION 4ESTEDINPRO     6$$6  AIC Figure 23. Standard I/O input characteristics - TTL port 6)(6),6 7)(MIN !REANOT DETERMINED 44,REQUIREMENTS 6)( 6    NS IGNSIMULATIO  6 ),6 $$  7),MAX  6  6 )( $$ SIMULATIONS GN SI DE N  "ASEDO ES "ASEDOND  44,REQUIREMENTS 6),6    6$$6 AIB 54/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Electrical characteristics Figure 24. 5 V tolerant I/O input characteristics - CMOS port !REANOT DETERMINED 6)(6),6 6 $$ MENTS6 )( REQUIRE NDARD -/3STA # N TIO PRODUC N 4ESTEDI             6 )(6 $$ SIMULATIONS IGN ES D ON D  "ASE    6 ),6 $$ ATIONS ESIGNSIMUL "ASEDOND 6 $$ ENT6 ),  DARDREQUIRM #-/3STAN DUCTION 4ESTEDINPRO     6$$6  6$$ AIC Figure 25. 5 V tolerant I/O input characteristics - TTL port 6)(6),6 !REANOT DETERMINED 44,REQUIREMENT6 )(6   6 $$  IONS 6 )( SI GNSIMULAT DE N O  "ASED     6 ), 6 $$ IMULATIONS DESIGNS "ASEDON 7)(MIN 7),MAX   44,REQUIREMENTS6 ),6    6$$6 AIB DocID15058 Rev 6 55/87 86 Electrical characteristics STM32F101x4, STM32F101x6 Output driving current The GPIOs (general-purpose inputs/outputs) can sink or source up to ±8 mA, and sink or source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can sink or source up to +/-3mA. When using the GPIOs PC13 to PC15 in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF. In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2: • The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 6). • The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table 6). Output voltage levels Unless otherwise specified, the parameters given in Table 34 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 8. All I/Os are CMOS and TTL compliant. Table 34. Output voltage characteristics Symbol Parameter VOL(1) Output Low level voltage for an I/O pin when 8 pins are sunk at the same time VOH(3) Output High level voltage for an I/O pin when 8 pins are sourced at the same time VOL(1) Output low level voltage for an I/O pin when 8 pins are sunk at the same time VOH(3) Output high level voltage for an I/O pin when 8 pins are sourced at the same time VOL(1) Output low level voltage for an I/O pin when 8 pins are sunk at the same time VOH (3) Output high level voltage for an I/O pin when 8 pins are sourced at the same time VOL(1) Output low level voltage for an I/O pin when 8 pins are sunk at the same time VOH(3) Output high level voltage for an I/O pin when 8 pins are sourced at the same time Conditions Min Max CMOS port(2),, IIO = +8 mA, 2.7 V < VDD < 3.6 V - 0.4 VDD–0.4 - - 0.4 2.4 - - 1.3 VDD–1.3 - - 0.4 VDD–0.4 - TTL port(2) IIO = +8 mA 2.7 V < VDD < 3.6 V IIO = +20 mA(4) 2.7 V < VDD < 3.6 V IIO = +6 mA(4) 2 V < VDD < 2.7 V Unit V V V V 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 6 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 6 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. 4. Based on characterization data, not tested in production. 56/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Electrical characteristics Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 26 and Table 35, respectively. Unless otherwise specified, the parameters given in Table 35 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 8. Table 35. I/O AC characteristics(1) MODEx [1:0] bit value(1) Symbol Parameter fmax(IO)out Maximum frequency(2) 10 tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time fmax(IO)out Maximum frequency(2) 01 tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time Fmax(IO)out Maximum 11 tf(IO)out tr(IO)out Frequency(2) Output high to low level fall time Conditions CL = 50 pF, VDD = 2 V to 3.6 V tEXTIpw 2 MHz CL = 50 pF, VDD = 2 V to 3.6 V ns (3) 125 CL= 50 pF, VDD = 2 V to 3.6 V 10 MHz 25(3) CL= 50 pF, VDD = 2 V to 3.6 V ns 25(3) CL= 30 pF, VDD = 2.7 V to 3.6 V 50 MHz CL = 50 pF, VDD = 2.7 V to 3.6 V 30 MHz CL = 50 pF, VDD = 2 V to 2.7 V 20 MHz CL = 30 pF, VDD = 2.7 V to 3.6 V 5(3) CL = 50 pF, VDD = 2.7 V to 3.6 V 8(3) CL = 50 pF, VDD = 2 V to 2.7 V 12(3) CL = 30 pF, VDD = 2.7 V to 3.6 V 5(3) Output low to high level rise CL = 50 pF, VDD = 2.7 V to 3.6 V time Pulse width of external signals detected by the EXTI controller Unit 125(3) CL = 50 pF, VDD = 2 V to 2.7 V - Max - ns 8(3) 12(3) 10 ns 1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register. 2. The maximum frequency is defined in Figure 26. 3. Guaranteed by design, not tested in production. DocID15058 Rev 6 57/87 86 Electrical characteristics STM32F101x4, STM32F101x6 Figure 26. I/O AC characteristics definition       %84%2.!, /54054 /.P& TR)/ OUT TF)/ OUT 4 -AXIMUMFREQUENCYISACHIEVEDIFT R TF a 4ANDIFTHEDUTYCYCLEIS  WHENLOADEDBYP& AI 5.3.14 NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 33). Unless otherwise specified, the parameters given in Table 36 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 8. Table 36. NRST pin characteristics Symbol VIL(NRST)(1) VIH(NRST) (1) Vhys(NRST) Conditions Min Typ Max NRST Input low level voltage - –0.5 - 0.8 NRST Input high level voltage - 2 - VDD+0.5 NRST Schmitt trigger voltage hysteresis - - 200 - mV VIN = VSS 30 40 50 kΩ NRST Input filtered pulse - - - 100 ns NRST Input not filtered pulse - 300 - - ns Weak pull-up equivalent resistor(2) RPU VF(NRST)(1) VNF(NRST) Parameter (1) Unit V 1. Guaranteed by design, not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). 58/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Electrical characteristics Figure 27. Recommended NRST pin protection VDD External reset circuit(1) NRST(2) RPU Internal Reset Filter 0.1 µF STM32F10xxx ai14132d 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 36. Otherwise the reset will not be taken into account by the device. DocID15058 Rev 6 59/87 86 Electrical characteristics 5.3.15 STM32F101x4, STM32F101x6 TIM timer characteristics The parameters given in Table 37 are guaranteed by design. Refer to Section 5.3.12: I/O current injection characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 37. TIMx(1) characteristics Symbol tres(TIM) fEXT ResTIM tCOUNTER Parameter Conditions Min Max Unit - 1 - tTIMxCLK fTIMxCLK = 36 MHz 27.8 - ns 0 fTIMxCLK/2 MHz fTIMxCLK = 36 MHz 0 18 MHz Timer resolution - - 16 bit 16-bit counter clock period when internal clock is selected - 1 65536 tTIMxCLK 1820 µs Timer resolution time Timer external clock frequency on CH1 to CH4 tMAX_COUNT Maximum possible count fTIMxCLK = 36 MHz 0.0278 - - 65536 × 65536 tTIMxCLK fTIMxCLK = 36 MHz - 119.2 s 1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers. 5.3.16 Communications interfaces I2C interface characteristics The STM32F101xx Low-density access line I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 38. Refer also to Section 5.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (SDA and SCL). 60/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Electrical characteristics Table 38. I2C characteristics Standard mode I2C(1) Fast mode I2C(1)(2) Symbol Parameter Unit Min Max Min Max tw(SCLL) SCL clock low time 4.7 - 1.3 - tw(SCLH) SCL clock high time 4.0 - 0.6 - tsu(SDA) SDA setup time 250 - 100 - (3) µs 900(4) th(SDA) SDA data hold time 0 - tr(SDA) tr(SCL) SDA and SCL rise time - 1000 20+0.1Cb 300 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 th(STA) Start condition hold time 4.0 - 0.6 - tsu(STA) Repeated Start condition setup time 4.7 - 0.6 - tsu(STO) Stop condition setup time 4.0 - 0.6 - µs tw(STO:STA) Stop to Start condition time (bus free) 4.7 - 1.3 - µs Cb Capacitive load for each bus line - 400 - 400 pF 0 ns µs 1. Guaranteed by design, not tested in production. 2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve fast mode I2C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock. 3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL. 4. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal. DocID15058 Rev 6 61/87 86 Electrical characteristics STM32F101x4, STM32F101x6 Figure 28. I2C bus AC waveforms and measurement circuit(1) 6$$?)# 6$$?)# 5S 5S )£#BUS 34-&X 5V 3$! 5V 3#, 3TARTREPEATED 3TART 3TART TSU34! 3$! TF3$! TR3$! TH34! TSU3$! TW3#,, TH3$! TSU34/34! 3TOP 3#, TW3#,( TR3#, TSU34/ TF3#, AIE 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. 2. Rs = Series protection resistors, Rp = Pull-up resistors, VDD_I2C = I2C bus supply. Table 39. SCL frequency (fPCLK1= MHz, VDD_I2C = 3.3 V)(1)(2) I2C_CCR value fSCL (kHz) RP = 4.7 kΩ 400 0x801E 300 0x8028 200 0x803C 100 0x00B4 50 0x0168 20 0x0384 2 1. RP = External pull-up resistance, fSCL = I C speed, 2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application. 62/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Electrical characteristics SPI interface characteristics Unless otherwise specified, the parameters given in Table 40 are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 8. Refer to Section 5.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 40. SPI characteristics Symbol fSCK 1/tc(SCK) Parameter Conditions SPI clock frequency Min Max Master mode 0 18 Slave mode 0 18 SPI clock rise and fall time Capacitive load: C = 30 pF tsu(NSS)(1) NSS setup time Slave mode 4 tPCLK - th(NSS)(1) NSS hold time Slave mode 73 - SCK high and low time Master mode, fPCLK = 36 MHz, presc = 4 50 60 tsu(MI) (1) Data input setup time Master mode SPI 1 - tsu(SI)(1) Data input setup time Slave mode 1 - th(MI) (1) Data input hold time Master mode 1 - th(SI)(1) Data input hold time Slave mode 3 - 0 55 0 4 tPCLK tr(SCK) tf(SCK) (1) tw(SCKH) tw(SCKL)(1) ta(SO)(1)(2) SPI - Slave mode, fPCLK = 36 MHz, Data output access time presc = 4 Slave mode, fPCLK = 24 MHz tdis(SO)(1)(3) Data output disable time Slave mode Slave mode (after enable edge) - 25 tv(MO)(1) Data output valid time Master mode (after enable edge) - 3 Slave mode (after enable edge) 25 - Master mode (after enable edge) 4 - th(MO)(1) Data output hold time ns 10 Data output valid time th(SO)(1) MHz 8 (1) tv(SO) Unit 1. Based on characterization, not tested in production. 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z DocID15058 Rev 6 63/87 86 Electrical characteristics STM32F101x4, STM32F101x6 Figure 29. SPI timing diagram - slave mode and CPHA = 0 NSS input tc(SCK) th(NSS) SCK Input tSU(NSS) CPHA= 0 CPOL=0 tw(SCKH) tw(SCKL) CPHA= 0 CPOL=1 tv(SO) ta(SO) MISO OUT P UT tr(SCK) tf(SCK) th(SO) MS B O UT BI T6 OUT tdis(SO) LSB OUT tsu(SI) MOSI I NPUT B I T1 IN M SB IN LSB IN th(SI) ai14134c Figure 30. SPI timing diagram - slave mode and CPHA = 1(1) NSS input SCK Input tSU(NSS) CPHA=1 CPOL=0 CPHA=1 CPOL=1 tc(SCK) tw(SCKH) tw(SCKL) tv(SO) ta(SO) MISO OUT P UT MS B O UT tsu(SI) MOSI I NPUT th(NSS) th(SO) BI T6 OUT tr(SCK) tf(SCK) tdis(SO) LSB OUT th(SI) B I T1 IN M SB IN LSB IN ai14135 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. 64/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Electrical characteristics Figure 31. SPI timing diagram - master mode(1) High NSS input SCK Input SCK Input tc(SCK) CPHA= 0 CPOL=0 CPHA= 0 CPOL=1 CPHA=1 CPOL=0 CPHA=1 CPOL=1 tsu(MI) MISO INP UT tw(SCKH) tw(SCKL) MS BIN tr(SCK) tf(SCK) BI T6 IN LSB IN th(MI) MOSI OUTUT M SB OUT tv(MO) B I T1 OUT LSB OUT th(MO) ai14136 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. DocID15058 Rev 6 65/87 86 Electrical characteristics 5.3.17 STM32F101x4, STM32F101x6 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 41 are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table 8. Note: It is recommended to perform a calibration after each power-up. Table 41. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA Power supply - 2.4 - 3.6 V fADC ADC clock frequency - 0.6 - 14 MHz fS(1) Sampling rate - 0.043 - 1 MHz fADC = 14 MHz - - 823 kHz - - - 17 1/fADC - 0 (VSSA or VREFtied to ground) - VREF+ V See Equation 1 and Table 42 for details - - 50 κΩ fTRIG(1) VAIN External trigger frequency Conversion voltage range(2) RAIN(1) External input impedance RADC(1) Sampling switch resistance - - - 1 κΩ CADC(1) Internal sample and hold capacitor - - - 8 pF tCAL(1) Calibration time fADC = 14 MHz 5.9 µs - 83 1/fADC tlat(1) Injection trigger conversion latency fADC = 14 MHz - tlatr(1) Regular trigger conversion latency fADC = 14 MHz tS(1) Sampling time fADC = 14 MHz tSTAB(1) tCONV(1) Stabilization time Total conversion time (including sampling time) - - - 0.214 µs - - 3(3) 1/fADC - - 0.143 µs - - 2 0.107 - 17.1 µs 1.5 - 239.5 1/fADC 14 1 2. VREF+ is internally connected to VDDA and VREF- is be internally connected to VSSA. 3. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 41. DocID15058 Rev 6 1/fADC - 18 14 to 252 (tS for sampling +12.5 for successive approximation) 1. Guaranteed by design, not tested in production. 66/87 1/fADC - fADC = 14 MHz (3) µs 1/fADC STM32F101x4, STM32F101x6 Electrical characteristics Equation 1: RAIN max formula: TS - – R ADC R AIN < --------------------------------------------------------------N+2 f ADC × C ADC × ln ( 2 ) The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Table 42. RAIN max for fADC = 14 MHz(1) Ts (cycles) tS (µs) RAIN max (kΩ) 1.5 0.11 0.4 7.5 0.54 5.9 13.5 0.96 11.4 28.5 2.04 25.2 41.5 2.96 37.2 55.5 3.96 50 71.5 5.11 NA 239.5 17.1 NA 1. Guaranteed by design, not tested in production. Table 43. ADC accuracy - limited test conditions(1) (2) Symbol Parameter ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error Test conditions Typ Max(3) fPCLK2 = 28 MHz, fADC = 14 MHz, RAIN < 10 kΩ, VDDA = 3 V to 3.6 V TA = 25 °C Measurements made after ADC calibration ±1.3 ±2 ±1 ±1.5 ±0.5 ±1.5 ±0.7 ±1 ±0.8 ±1.5 Unit LSB 1. ADC DC accuracy values are measured after internal calibration. 2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.12 does not affect the ADC accuracy. 3. Based on characterization, not tested in production. DocID15058 Rev 6 67/87 86 Electrical characteristics STM32F101x4, STM32F101x6 Table 44. ADC accuracy(1) (2) (3) Symbol Parameter Test conditions ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error fPCLK2 = 28 MHz, fADC = 14 MHz, RAIN < 10 kΩ, VDDA = 2.4 V to 3.6 V Measurements made after ADC calibration Typ Max(4) ±2 ±5 ±1.5 ±2.5 ±1.5 ±3 ±1 ±2 ±1.5 ±3 Unit LSB 1. ADC DC accuracy values are measured after internal calibration. 2. Better performance could be achieved in restricted VDD, frequency and temperature ranges. 3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (nonrobust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.12 does not affect the ADC accuracy. 4. Based on characterization, not tested in production. Figure 32. ADC accuracy characteristics [1LSBIDEAL = VDDA 4096 EG 4095 4094 (1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line 4093 (2) ET (3) 7 (1) 6 5 4 EO EL 3 ED 2 1 LSBIDEAL 1 0 1 VSSA 68/87 ET=Total u nadjusted er ror: maximum deviation between the actual and the ideal transfer curves. EO=Offset e rror: deviation between the first actual transition and the first ideal one. EG=Gain er ror: deviation between the last ideal transition and the last actual one. ED=Differential linearity error: maximum deviation between actual steps and the ideal one. EL=Integral linearity error: maximum deviation between any actual transition and the end point correlation line. 2 3 4 5 6 7 4093 4094 4095 4096 VDDA DocID15058 Rev 6 ai15497 STM32F101x4, STM32F101x6 Electrical characteristics Figure 33. Typical connection diagram using the ADC STM32F10xxx VDD RAIN(1) Sample and hold ADC converter VT 0.6 V RADC(1) AINx VT 0.6 V VAIN Cparasitic 12-bit converter CADC(1) IL±1 µA ai14139d 1. Refer to Table 41 for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 34. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip. Figure 34. Power supply and reference decoupling STM32F10xx4/6 VDDA 1 µF // 10 nF VSSA ai15498 DocID15058 Rev 6 69/87 86 Electrical characteristics 5.3.18 STM32F101x4, STM32F101x6 Temperature sensor characteristics Table 45. TS characteristics Symbol Parameter TL(1) Avg_Slope Min Typ Max Unit - ±1 ±2 °C Average slope 4.0 4.3 4.6 mV/°C Voltage at 25°C 1.34 1.43 1.52 V Startup time 4 - 10 µs ADC sampling time when reading the temperature - - 17.1 µs VSENSE linearity with temperature (1) V25(1) tSTART(2) TS_temp(3)(2) 1. Guaranteed by characterization, not tested in production. 2. Guaranteed by design, not tested in production. 3. Shortest sampling time can be determined in the application by multiple iterations. 70/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Package characteristics 6 Package characteristics 6.1 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 6.2 VFQFPN36 package information Figure 35. VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad flat package outline 6HDWLQJSODQH & GGG & $ $ $ $ ( E     H ' ' .  3LQ,' 5     ( / / :2?-%?6 1. Drawing is not to scale. DocID15058 Rev 6 71/87 86 Package characteristics STM32F101x4, STM32F101x6 Table 46. VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.800 0.900 1.000 0.0315 0.0354 0.0394 A1 - 0.020 0.050 - 0.0008 0.0020 A2 - 0.650 1.000 - 0.0256 0.0394 A3 - 0.200 - - 0.0079 - b 0.180 0.230 0.300 0.0071 0.0091 0.0118 D 5.875 6.000 6.125 0.2313 0.2362 0.2411 D2 1.750 3.700 4.250 0.0689 0.1457 0.1673 E 5.875 6.000 6.125 0.2313 0.2362 0.2411 E2 1.750 3.700 4.250 0.0689 0.1457 0.1673 e 0.450 0.500 0.550 0.0177 0.0197 0.0217 L 0.350 0.550 0.750 0.0138 0.0217 0.0295 K 0.250 - - 0.0098 - - ddd - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 72/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Package characteristics Figure 36. VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad flat package recommended footprint                    :2?&0?6 1. Dimensions are expressed in millimeters. DocID15058 Rev 6 73/87 86 Package characteristics STM32F101x4, STM32F101x6 Device Marking for VFQFPN36 The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 37. VFQFPN36 marking example (package top view) 3URGXFWLGHQWLILFDWLRQ  670) 7$ 'DWHFRGH < :: 5HYLVLRQFRGH 3LQLGHQWLILHU $ 06Y9 1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. 74/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 LQFP64 package information Figure 38. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline PP *$8*(3/$1( F $ $ 6($7,1*3/$1( & $ $ FFF & ' ' ' . / /      3,1 ,'(17,),&$7,21 ( ( E ( 6.3 Package characteristics    H :B0(B9 1. Drawing is not to scale. Table 47. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D - 12.000 - - 0.4724 - D1 - 10.000 - - 0.3937 - D3 - 7.500 - - 0.2953 - E - 12.000 - - 0.4724 - E1 - 10.000 - - 0.3937 - DocID15058 Rev 6 75/87 86 Package characteristics STM32F101x4, STM32F101x6 Table 47. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - K 0° 3.5° 7° 0° 3.5° 7° L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 39. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package recommended footprint                 AIC 1. Dimensions are expressed in millimeters. 76/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Package characteristics Device Marking for LQFP64 The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 40. LQFP64 marking example (package top view) 5HYLVLRQFRGH 3URGXFWLGHQWLILFDWLRQ  $ 670) 57$ < :: 3LQLGHQWLILHU 'DWHFRGH 06Y9 1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID15058 Rev 6 77/87 86 Package characteristics 6.4 STM32F101x4, STM32F101x6 LQFP48 package information Figure 41. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline C ! ! ! 3%!4).' 0,!.% # MM '!5'%0,!.% CCC # + ! $ $ , , $      0). )$%.4)&)#!4)/. %    E 1. Drawing is not to scale. 78/87 % % B DocID15058 Rev 6 "?-%?6 STM32F101x4, STM32F101x6 Package characteristics Table 48. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.500 - - 0.2165 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID15058 Rev 6 79/87 86 Package characteristics STM32F101x4, STM32F101x6 Figure 42. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint                    AID 1. Dimensions are expressed in millimeters. 80/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Package characteristics Device Marking for LQFP48 The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 43. LQFP48 marking example (package top view) 3URGXFW,GHQWLILFDWLRQ  670) &7$ 'DWHFRGH < :: $GGLWLRQDO,QIRUPDWLRQ 5 3LQLGHQWLILHU 06Y9 1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID15058 Rev 6 81/87 86 Package characteristics 6.5 STM32F101x4, STM32F101x6 Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 8: General operating conditions on page 31. The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x ΘJA) Where: • TA max is the maximum ambient temperature in ° C, • ΘJA is the package junction-to-ambient thermal resistance, in ° C/W, • PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), • PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 49. Package thermal characteristics Symbol ΘJA 6.5.1 Parameter Value Thermal resistance junction-ambient LQFP 64 - 10 x 10 mm / 0.5 mm pitch 45 Thermal resistance junction-ambient LQFP 48 - 7 x 7 mm / 0.5 mm pitch 55 Thermal resistance junction-ambient UFQFPN 48 - 6 x 6 mm / 0.5 mm pitch 32 Thermal resistance junction-ambient VFQFPN 36 - 6 x 6 mm / 0.5 mm pitch 18 Unit °C/W Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org. 82/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 Evaluating the maximum junction temperature for an application When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in Table 50: Ordering information scheme. Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature. Here, only temperature range 6 is available (–40 to 85 °C). The following example shows how to calculate the temperature range needed for a given application, making it possible to check whether the required temperature range is compatible with the STM32F101xx junction temperature range. Example: high-performance application Assuming the following application conditions: Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2), IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output mode at low level with IOL = 20 mA, VOL= 1.3 V PINTmax = 50 mA × 3.5 V= 175 mW PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW This gives: PINTmax = 175 mW and PIOmax = 272 mW PDmax = 175 + 272 = 447 mW Thus: PDmax = 447 mW Using the values obtained in Table 49 TJmax is calculated as follows: – For LQFP64, 45 °C/W TJmax = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.1 °C = 102.1 °C This is within the junction temperature range of the STM32F101xx (–40 < TJ < 105 °C). Figure 44. LQFP64 PD max vs. TA 700 600 PD (mW) 6.5.2 Package characteristics 500 400 Suffix 6 300 200 100 0 65 75 85 95 105 115 TA (°C) DocID15058 Rev 6 83/87 86 Ordering information scheme 7 STM32F101x4, STM32F101x6 Ordering information scheme Table 50. Ordering information scheme Example: STM32 F 101 C 4 T 6 A xxx Device family STM32 = ARM-based 32-bit microcontroller Product type F = general-purpose Device subfamily 101 = access line Pin count T = 36 pins C = 48 pins R = 64 pins Flash memory size 4 = 16 Kbytes of Flash memory 6 = 32 Kbytes of Flash memory Package T = LQFP U = VFQFPN Temperature range 6 = Industrial temperature range, –40 to 85 °C. Internal code “A” or blank(1) Options xxx = programmed parts TR = tape and real 1. For STM32F101x6 devices with a blank internal code, please refer to the STM32F103x6/8/B datasheet available from the ST website: www.st.com. For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact the nearest ST sales office. 84/87 DocID15058 Rev 6 STM32F101x4, STM32F101x6 8 Revision history Revision history Table 51. Document revision history Date Revision 23-Sep-2008 1 Initial release. 2 I/O information clarified on page 1. Figure 7: Memory map modified. In Table 4: Low-density STM32F101xx pin definitions: PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default column to Remap column. VREF- is not available in the offered packages: Figure 1: STM32F101xx Low-density access line block diagram, Figure 10: Power supply scheme and Figure 34: Power supply and reference decoupling updated, Figure 30: Power supply and reference decoupling (VREF+ not connected to VDDA) removed. Note modified in Table 12: Maximum current consumption in Run mode, code with data processing running from Flash and Table 14: Maximum current consumption in Sleep mode, code running from Flash or RAM. Figure 15, Figure 16 and Figure 17 show typical curves. ACCHSI max values modified in Table 23: HSI oscillator characteristics. Small text changes. 3 Note 5 updated and Note 4 added in Table 4: Low-density STM32F101xx pin definitions. VRERINT and TCoeff added to Table 11: Embedded internal reference voltage. Typical IDD_VBATvalue added in Table 15: Typical and maximum current consumptions in Stop and Standby modes. Figure 14: Typical current consumption on VBAT with RTC on versus temperature at different VBAT values added. fHSE_ext min modified in Table 19: High-speed external user clock characteristics. CL1 and CL2 replaced by C in Table 21: HSE 4-16 MHz oscillator characteristics and Table 22: LSE oscillator characteristics (fLSE = 32.768 kHz), notes modified and moved below the tables. Note 1 modified below Figure 20: Typical application with an 8 MHz crystal. Table 23: HSI oscillator characteristics modified. Conditions removed from Table 25: Low-power mode wakeup timings. Figure 27: Recommended NRST pin protection modified. IEC 1000 standard updated to IEC 61000 and SAE J1752/3 updated to IEC 61967-2 in Section 5.3.10: EMC characteristics on page 49. Jitter added to Table 26: PLL characteristics. CADC and RAIN parameters modified in Table 41: ADC characteristics. RAIN max values modified in Table 42: RAIN max for fADC = 14 MHz. Small text changes. 4 Added VFQFPN48 package. Updated note 2 below Table 38: I2C characteristics Updated Figure 28: I2C bus AC waveforms and measurement circuit(1) Updated Figure 27: Recommended NRST pin protection Updated Section 5.3.12: I/O current injection characteristics 07-Apr-2009 24-Sep-2009 20-May-2010 Changes DocID15058 Rev 6 85/87 86 Revision history STM32F101x4, STM32F101x6 Table 51. Document revision history (continued) Date 19-Apr-2011 25-Sep-2015 86/87 Revision Changes 5 Updated footnotes below Table 5: Voltage characteristics on page 30 and Table 6: Current characteristics on page 31 Updated tw min in Table 19: High-speed external user clock characteristics on page 43 Updated startup time in Table 22: LSE oscillator characteristics (fLSE = 32.768 kHz) on page 46 Added Section 5.3.12: I/O current injection characteristics Updated Section 5.3.13: I/O port characteristics 6 Updated: – All GPIOs are high current...’ in Section 2.3.22: GPIOs (generalpurpose inputs/outputs) – first sentence in Output driving current – Table 2: Low-density STM32F101xx device features and peripheral counts, Table 4: Low-density STM32F101xx pin definitions, – Table 6: Current characteristics – Table 8: General operating conditions – Table 18: Peripheral current consumption – notes in Table 38: I2C characteristics – note 2. in Table 44: ADC accuracy – title of Table 39: SCL frequency (fPCLK1= MHz, VDD_I2C = 3.3 V) – reference for ‘VESD(CDM)’ in Table 30: ESD absolute maximum ratings – Table 50: Ordering information scheme, – Table 49: Package thermal characteristics, – Figure 28: I2C bus AC waveforms and measurement circuit(1) Added – note 5. in Table 23: HSI oscillator characteristics – Figure 37: VFQFPN36 marking example (package top view) – Figure 40: LQFP64 marking example (package top view) – Figure 43: LQFP48 marking example (package top view) Corrected – Corrected ‘tf(IO)out’ in Figure 26: I/O AC characteristics definition – Sigma letter in Section 5.1.1: Minimum and maximum values Removed – UFDFPN48 package – First sentence in Section 5.3.16: Communications interfaces DocID15058 Rev 6 STM32F101x4, STM32F101x6 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved DocID15058 Rev 6 87/87 87
STM32F101C6T6ATR 价格&库存

很抱歉,暂时无法提供与“STM32F101C6T6ATR”相匹配的价格&库存,您可以联系我们找货

免费人工找货