0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM704

STM704

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    STM704 - 5V Supervisor with Battery Switchover - STMicroelectronics

  • 数据手册
  • 价格&库存
STM704 数据手册
STM690A, STM692A, STM703 STM704, STM802, STM805, STM817/8/9 5V Supervisor with Battery Switchover FEATURES SUMMARY ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 5V OPERATING VOLTAGE NVRAM SUPERVISOR FOR EXTERNAL LPSRAM CHIP-ENABLE GATING (STM818 only) FOR EXTERNAL LPSRAM (7ns max PROP DELAY) RST AND RST OUTPUTS 200ms (TYP) trec WATCHDOG TIMER - 1.6sec (TYP) AUTOMATIC BATTERY SWITCHOVER LOW BATTERY SUPPLY CURRENT - 0.4µA (TYP) POWER-FAIL COMPARATOR (PFI/PFO) LOW SUPPLY CURRENT - 40µA (TYP) GUARANTEED RST (RST) ASSERTION DOWN TO VCC = 1.0V OPERATING TEMPERATURE: –40°C to 85°C (Industrial Grade) RoHS COMPLIANCE Lead-free components are compliant with the RoHS Directive. Figure 1. Packages 8 1 SO8 (M) TSSOP8 3x3 (DS)* Table 1. Device Options Watchdog Input STM690A STM692A STM703 STM704 STM802L/M STM805L STM817L/M STM818L/M STM819L/M ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ActiveLow RST(1) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ActiveHigh RST(1) Manual Reset Input Battery Switchover ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Power-fail Comparator ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ChipEnable Gating Battery Freshness Seal Note: 1. All RST and RST outputs are push-pull. * Contact local ST sales office for availability. Rev 7.0 January 2006 1/37 STM690A/692A/703/704/802/805/817/818/819 TABLE OF CONTENTS FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 1. Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 1. Device Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 2. Logic Diagram (STM690A/692A/802/805/817) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 3. Logic Diagram (STM703/704/819). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 4. Logic Diagram (STM818). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Table 2. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 5. STM690A/692A/802/805/817 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 6. STM703/704/819 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 7. STM818 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 3. Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 8. Block Diagram (STM690A/692A/802/805/817) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 9. Block Diagram (STM703/704/819) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 10.Block Diagram (STM818) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 11.Hardware Hookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Reset Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Push-button Reset Input (STM703/704/819) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Watchdog Input (NOT available on STM703/704/819) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Back-up Battery Switchover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 4. I/O Status in Battery Back-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Chip-Enable Gating (STM818 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Chip Enable Input (STM818 only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Chip Enable Output (STM818 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 12.Chip-Enable Gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 13.Chip Enable Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Power-fail Input/Output (NOT available on STM818) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 14.Power-fail Comparator Waveform (STM817/818/819) . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 15.Power-fail Comparator Waveform (STM690A/692A/703/704/802/805) . . . . . . . . . . . . . 13 Using a SuperCap™ as a Backup Power Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Negative-Going VCC Transients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Battery Freshness Seal (STM817/818/819) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 16.Using a SuperCap™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 17.Freshness Seal Enable Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 TYPICAL OPERATING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 18.VCC-to-VOUT On-Resistance vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 19.VBAT-to-VOUT On-Resistance vs. Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2/37 STM690A/692A/703/704/802/805/817/818/819 Figure 20.Supply Current vs. Temperature (no load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 21.Battery Current vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 22.VPFI Threshold vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 23.Reset Comparator Propagation Delay vs. Temperature (Other than STM817/818/819) 17 Figure 24.Reset Comparator Propagation Delay vs. Temperature (VBAT=3.0V; STM817/818/819)18 Figure 25.Power-up trec vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 26.Normalized Reset Threshold vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 27.Watchdog Time-out Period vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 28.E to ECON On-Resistance vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 29.PFI to PFO Propagation Delay vs. Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 30.Output Voltage vs. Load Current (VCC = 5V; VBAT = 2.8V; TA = 25°C). . . . . . . . . . . . . . 21 Figure 31.Output Voltage vs. Load Current (VCC = 0V; VBAT = 2.8V; TA = 25°C). . . . . . . . . . . . . . 21 Figure 32.RST Output Voltage vs. Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 33.RST Output Voltage vs. Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 34.RST Response Time (Assertion). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 35.RST Response Time (Assertion). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 36.Power-fail Comparator Response Time (Assertion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 37.Power-fail Comparator Response Time (De-Assertion) . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 38.Maximum Transient Duration vs. Reset Threshold Overdrive. . . . . . . . . . . . . . . . . . . . . 25 Figure 39.E to ECON Propagation Delay vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 5. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 6. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . Figure 40.E to ECON Propagation Delay Test Circuit. . . . . . . . . . . . . . . . . . . . . . . . . Figure 41.AC Testing Input/Output Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 42.MR Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 43.Watchdog Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 7. DC and AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... ...... ...... ...... ...... ...... . . . . 27 . . . . 28 . . . . 28 . . . . 28 . . . . 28 . . . . 29 PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 44.SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mech. Drawing. . . . 32 Table 8. SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mechanical Data . . 32 Figure 45.TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Outline . . . . . . . . . . . 33 Table 9. TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Mechanical Data . . . . 33 PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 10. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 11. Marking Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 12. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3/37 STM690A/692A/703/704/802/805/817/818/819 SUMMARY DESCRIPTION The STM690A/692A/703/704/802/805/817/818/ 819 Supervisors are self-contained devices which provide microprocessor supervisory functions with the ability to non-volatize and write-protect external LPSRAM. A precision voltage reference and comparator monitors the VCC input for an out-oftolerance condition. When an invalid VCC condition occurs, the reset output (RST) is forced low (or high in the case of RST). These devices also offer a watchdog timer (except for STM703/704/ 819) as well as a power-fail comparator (except for STM818) to provide the system with an early warning of impending power failure. These devices are available in a standard 8-pin SOIC package or a space-saving 8-pin TSSOP package. Figure 2. Logic Diagram (STM690A/692A/802/ 805/817) VCC VBAT Figure 4. Logic Diagram (STM818) VCC VBAT VOUT VOUT WDI PFI STM690A/ 692A/802/ 805/817 RST(RST)(1) PFO WDI STM818 E ECON RST VSS VSS Note: 1. For STM805, reset output is active-high. AI07894 AI07896 Table 2. Signal Names MR WDI Push-button Reset Input Watchdog Input Active-Low Reset Output Active-High Reset Output Chip Enable Input Conditioned Chip Enable Output Supply Voltage Output Supply Voltage Back-up Supply Voltage Power-fail Input Power-fail Output Ground Figure 3. Logic Diagram (STM703/704/819) VCC VBAT RST RST VOUT MR PFI STM703/ 704/819 RST PFO E(1) ECON(1) VOUT VCC VSS VBAT AI07895 PFI PFO VSS Note: 1. STM818 4/37 STM690A/692A/703/704/802/805/817/818/819 Figure 5. STM690A/692A/802/805/817 Connections SO8/TSSOP8 VOUT VCC VSS PFI 1 2 3 4 8 7 6 5 VBAT RST(RST)(1) WDI PFO AI07889 Figure 6. STM703/704/819 Connections SO8/TSSOP8 VOUT VCC VSS PFI 1 2 3 4 8 7 6 5 VBAT RST MR PFO AI07890 Note: 1. For STM805, reset output is active-high. Figure 7. STM818 Connections SO8/TSSOP8 VOUT VCC VSS E 1 2 3 4 8 7 6 5 VBAT RST WDI ECON AI07892 5/37 STM690A/692A/703/704/802/805/817/818/819 Pin Descriptions MR . A logic low on /MR asserts the reset output. Reset remains asserted as long as MR is low and for trec after MR returns high. This active-low input has an internal pull-up. It can be driven from a TTL or CMOS logic line, or shorted to ground with a switch. Leave open if unused. WDI. If WDI remains high or low for 1.6sec, the internal watchdog timer runs out and reset is triggered. The internal watchdog timer clears while reset is asserted or when WDI sees a rising or falling edge. The watchdog function can be disabled by allowing the WDI pin to float. RST. Pulses low for trec when triggered, and stays low whenever VCC is below the reset threshold or when MR is a logic low. It remains low for trec after either VCC rises above the reset threshold, the watchdog triggers a reset, or MR goes from low to high. RST. Pulses high for trec when triggered, and stays high whenever VCC is above the reset threshold or when MR is a logic high. It remains high for trec after either VCC falls below the reset threshold, the watchdog triggers a reset, or MR goes from high to low. Table 3. Pin Description Pin STM818 – 6 7 – 1 2 8 4 5 – – 3 STM690A STM692A STM802 STM817 – 6 7 – 1 2 8 – – 4 5 3 STM703 STM704 STM819 6 – 7 – 1 2 8 – – 4 5 3 STM805 – 6 – 7 1 2 8 – – 4 5 3 MR WDI RST RST VOUT VCC VBAT E ECON PFI PFO VSS Push-button Reset Input Watchdog Input Active-Low Reset Output Active-High Reset Output Supply Output for External LPSRAM Supply Voltage Backup-Battery Input Chip Enable Input Conditioned Chip Enable Output PFI Power-fail Input PFO Power-fail Output Ground Name Function VOUT. When VCC is above the switchover voltage (VSO), VOUT is connected to VCC through a Pchannel MOSFET switch. When VCC falls below VSO, VBAT connects to VOUT. Connect to VCC if no battery is used. VBAT. When VCC falls below VSO, VOUT switches from VCC to VBAT. When VCC rises above VSO + hysteresis, VOUT reconnects to VCC. VBAT may exceed VCC. Connect to VCC if no battery is used. E. The input to the chip-enable gating circuit. Connect to ground if unused. ECON. ECON goes low only when E is low and reset is not asserted. If ECON is low when reset is asserted, ECON will remain low for 15µs or until E goes high, whichever occurs first. In the disabled mode, ECON is pulled up to VOUT. PFI. When PFI is less than VPFI or when VCC falls below 2.4V (or VSO), PFO goes low; otherwise, PFO remains high. Connect to ground if unused. PFO. When PFI is less than VPFI, or VCC falls below 2.4V (or VSO), PFO goes low; otherwise, PFO remains high. Leave open if unused. 6/37 STM690A/692A/703/704/802/805/817/818/819 Figure 8. Block Diagram (STM690A/692A/802/805/817) VCC VBAT VOUT VSO COMPARE VRST COMPARE WDI WATCHDOG TIMER trec Generator RST(RST)(1) PFI VPFI COMPARE PFO AI07897 Note: 1. For STM805, reset output is active-high. Figure 9. Block Diagram (STM703/704/819) VCC VBAT VOUT VSO COMPARE VRST COMPARE MR trec Generator RST PFI VPFI COMPARE PFO AI07898 7/37 STM690A/692A/703/704/802/805/817/818/819 Figure 10. Block Diagram (STM818) VCC VBAT VOUT VSO COMPARE VRST COMPARE WDI WATCHDOG TIMER trec Generator RST ECON OUTPUT CONTROL E ECON AI07899a Figure 11. Hardware Hookup Regulator Unregulated Voltage VIN VCC VCC VOUT VCC VCC STM690A/692A/ 703/704/802/805/ 817/818/819 0.1µF WDI(1) From Microprocessor E(2) R1 PFI(3) R2 Push-Button MR(4) VBAT RST To Microprocessor Reset PFO(3) To Microprocessor NMI ECON(2) LPSRAM E E 0.1µF AI07893 Note: 1. 2. 3. 4. For STM690A/692A/802/805/817/818. For STM818 only. Not available on STM818. For STM703/704/819. 8/37 STM690A/692A/703/704/802/805/817/818/819 OPERATION Reset Output The STM690A/692A/703/704/802/805/817/818/ 819 Supervisor asserts a reset signal to the MCU whenever VCC goes below the reset threshold (VRST), a watchdog time-out occurs, or when the Push-button Reset Input (MR) is taken low. RST is guaranteed to be a logic low (logic high for STM805) for 0V < VCC < VRST if VBAT is greater than 1V. Without a back-up battery, RST is guaranteed valid down to VCC =1V. During power-up, once VCC exceeds the reset threshold an internal timer keeps RST low for the reset time-out period, trec. After this interval RST returns high. If VCC drops below the reset threshold, RST goes low. Each time RST is asserted, it stays low for at least the reset time-out period (trec). Any time VCC goes below the reset threshold the internal timer clears. The reset timer starts when VCC returns above the reset threshold. Push-button Reset Input (STM703/704/819) A logic low on MR asserts reset. Reset remains asserted while MR is low, and for trec (see Figure 42., page 28) after it returns high. The MR input has an internal 40kΩ pull-up resistor, allowing it to be left open if not used. This input can be driven with TTL/CMOS-logic levels or with open-drain/ collector outputs. Connect a normally open momentary switch from MR to GND to create a manual reset function; external debounce circuitry is not required. If MR is driven from long cables or the device is used in a noisy environment, connect a 0.1µF capacitor from MR to GND to provide additional noise immunity. MR may float, or be tied to VCC when not used. Watchdog Input (NOT available on STM703/ 704/819) The watchdog timer can be used to detect an outof-control MCU. If the MCU does not toggle the Watchdog Input (WDI) within tWD (1.6sec typ), the reset is asserted. The internal watchdog timer is cleared by either: 1. a reset pulse, or 2. by toggling WDI (high-to-low or low-to-high), which can detect pulses as short as 50ns. If WDI is tied high or low, a reset pulse is triggered every 1.8sec (tWD + trec). The timer remains cleared and does not count for as long as reset is asserted. As soon as reset is released, the timer starts counting (see Figure 43., page 28). Note: The watchdog function may be disabled by floating WDI or tri-stating the driver connected to WDI. When tri-stated or disconnected, the maximum allowable leakage current is 10uA and the maximum allowable load capacitance is 200pF. Note: Input frequency greater than 20ns (50MHz) will be filtered. 9/37 STM690A/692A/703/704/802/805/817/818/819 Back-up Battery Switchover In the event of a power failure, it may be necessary to preserve the contents of external SRAM through VOUT. With a backup battery installed with voltage VBAT, the devices automatically switch the SRAM to the back-up supply when VCC falls. Note: If back-up battery is not used, connect both VBAT and VOUT to VCC. This family of Supervisors does not always connect VBAT to VOUT when VBAT is greater than VCC. VBAT connects to VOUT (through a 100Ω switch) when VCC is below VRST and VBAT. This is done to allow the back-up battery (e.g., a 3.6V lithium cell) to have a higher voltage than VCC. Assuming VBAT > 2.0V, switchover at VSO ensures that battery back-up mode is entered before VOUT gets too close to the 2.0V minimum required to reliably retain data in most external SRAMs. When VCC recovers, hysteresis is used to avoid oscillation around the VSO point. VOUT is connected to VCC through a 3Ω PMOS power switch. Note: The back-up battery may be removed while VCC is valid, assuming VBAT is adequately decoupled (0.1µF typ), without danger of triggering a reset. Table 4. I/O Status in Battery Back-up Pin VOUT VCC PFI PFO E ECON WDI WDO MR RST RST VBAT Status Connected to VBAT through internal switch Disconnected from VOUT Disabled Logic low High impedance Logic high Watchdog timer is disabled Logic low Disabled Logic low Logic high Connected to VOUT Chip-Enable Gating (STM818 only) Internal gating of the chip enable (E) signal prevents erroneous data from corrupting the external CMOS RAM in the event of an undervoltage condition. The STM818 uses a series transmission gate from E to ECON (see Figure 12., page 11). During normal operation (reset not asserted), the E transmission gate is enabled and passes all E transitions. When reset is asserted, this path becomes disabled, preventing erroneous data from corrupting the CMOS RAM. The short E propagation delay from E to ECON enables the STM818 to be used with most µPs. If E is low when reset asserts, ECON remains low for typically 15µs to permit the current WRITE cycle to complete. Connect E to VSS if unused. Chip Enable Input (STM818 only) The chip-enable transmission gate is disabled and E is high impedance (disabled mode) while reset is asserted. During a power-down sequence when VCC passes the reset threshold, the chip-enable transmission gate disables and E immediately becomes high impedance if the voltage at E is high. If E is low when reset asserts, the chip-enable transmission gate will disable 15µs after reset asserts (see Figure 13., page 11). This permits the current WRITE cycle to complete during powerdown. Any time a reset is generated, the chip-enable transmission gate remains disabled and E remains high impedance (regardless of E activity) for the reset time-out period. When the chip enable transmission gate is enabled, the impedance of E appears as a 40Ω resistor in series with the load at ECON. The propagation delay through the chip-enable transmission gate depends on VCC, the source impedance of the drive connected to E, and the loading on ECON. The chip enable propagation delay is production tested from the 50% point on E to the 50% point on ECON using a 50Ω driver and a 50pF load capacitance (see Figure 40., page 28). For minimum propagation delay, minimize the capacitive load at ECON and use a low-output impedance driver. Chip Enable Output (STM818 only) When the chip-enable transmission gate is enabled, the impedance of ECON is equivalent to a 40Ω resistor in series with the source driving E. In the disabled mode, the transmission gate is off and an active pull-up connects ECON to VOUT (see Figure 12., page 11). This pull-up turns off when the transmission gate is enabled. 10/37 STM690A/692A/703/704/802/805/817/818/819 Figure 12. Chip-Enable Gating VCC VRST COMPARE trec Generator RST VOUT ECON OUTPUT CONTROL E AI08802 ECON Figure 13. Chip Enable Waveform VCC VRST VBAT ECON RST trec 15µs trec E AI08803b 11/37 STM690A/692A/703/704/802/805/817/818/819 Power-fail Input/Output (NOT available on STM818) The Power-fail Input (PFI) is compared to an interDuring battery back-up, the power-fail comparator nal reference voltage (independent from the VRST turns off and PFO goes (or remains) low (see Figcomparator). If PFI is less than the power-fail ure 14 and Figure 15., page 13). This occurs after threshold (VPFI), the Power-Fail Output (PFO) will VCC drops below 2.4V (or VSO). When power rego low. This function is intended for use as an unturns, PFO is forced high (STM817/819 only), irrespective of VPFI for the WRITE protect time (trec). dervoltage detector to signal a failing power supAt the end of this time, the power-fail comparator ply. Typically PFI is connected through an external is enabled and PFO follows PFI. If the comparator voltage divider (see Figure 11., page 8) to either is unused, PFI should be connected to VSS and the unregulated DC input (if it is available) or the PFO left unconnected. PFO may be connected to regulated output of the VCC regulator. The voltage divider can be set up such that the voltage at PFI MR on the STM703/704/818 so that a low voltage on PFI will generate a reset output. falls below VPFI several milliseconds before the regulated VCC input to the STM690A/692A/703/ Applications Information 704/802/805/817/818/819 Supervisor or the miThese Supervisor circuits are not short-circuit procroprocessor drops below the minimum operating tected. Shorting VOUT to ground - excluding powvoltage. er-up transients such as charging a decoupling capacitor - destroys the device. Decouple both VCC and VBAT pins to ground by placing 0.1µF capacitors as close to the device as possible. Figure 14. Power-fail Comparator Waveform (STM817/818/819) VCC VRST VSO (or 2.4V) trec PFO (STM817/819) PFO follows PFI PFO follows PFI RST to ECON Delay (STM818) RST ECON (STM818) AI08804a 12/37 STM690A/692A/703/704/802/805/817/818/819 Figure 15. Power-fail Comparator Waveform (STM690A/692A/703/704/802/805) VCC VRST 2.4V (or VSO) trec PFO PFO follows PFI PFO follows PFI RST AI08832a 13/37 STM690A/692A/703/704/802/805/817/818/819 Using a SuperCap™ as a Backup Power Source SuperCaps™ are capacitors with extremely high capacitance values (e.g., order of 0.47F) for their size. Figure 16 shows how to use a SuperCap as a back-up power source. The SuperCap may be connected through a diode to the 5V input. Since VBAT can exceed VCC while VCC is above the reset threshold, there are no special precautions when using these supervisors with a SuperCap. Negative-Going VCC Transients The STM690A/692A/703/704/802/805/817/818/ 819 Supervisor are relatively immune to negativetransients (glitches). Figure going VCC 38., page 25 shows typical transient duration versus reset comparator overdrive (for which the STM690A/692A/703/704/802/805/817/818/819 will NOT generate a reset pulse). The graph was generated using a negative pulse applied to VCC, starting at VRST + 0.3V and ending below the reset threshold by the magnitude indicated (comparator overdrive). The graph indicates the maximum pulse width a negative VCC transient can have without causing a reset pulse. As the magnitude of the transient increases (further below the threshold), the maximum allowable pulse width decreases. Any combination of duration and overdrive which lies under the curve will NOT generate a reset signal. Typically, a VCC transient that goes 100mV below the reset threshold and lasts 40µs or less will not cause a reset pulse. A 0.1µF bypass capacitor mounted as close as possible to the VCC pin provides additional transient immunity. Battery Freshness Seal (STM817/818/819) The battery freshness seal disconnects the backup battery from internal circuitry and VOUT until it is needed. This allows an OEM to ensure that the back-up battery connected to VBAT will be fresh when the final product is put to use. To enable the freshness seal: 1. Connect a battery to VBAT; 2. Ground PFO; 3. Bring VCC above the reset threshold and hold it there until reset is deasserted following the reset timeout period; and 4. Bring VCC down again (Figure 17). Use the same procedure for the STM818, but ground ECON instead of PFO. Once the battery freshness seal is enabled (disconnecting the back-up battery from internal circuitry and anything connected to VOUT), it remains enabled until VCC is brought above VRST. Figure 16. Using a SuperCap™ 5V VCC VOUT To external SRAM STMXXX VBAT GND RST To µP AI08805 Figure 17. Freshness Seal Enable Waveform VRST VCC trec RST ECON out state latched at 1/2 trec, Freshness Seal enabled PFO out state latched at 1/2 trec, Freshness Seal Enabled AI08806 ECON (Externally held at 0V) (STM818) (Externally held at 0V) PFO (STM817/819) 14/37 STM690A/692A/703/704/802/805/817/818/819 TYPICAL OPERATING CHARACTERISTICS Note: Typical values are at TA = 25°C Figure 18. VCC-to-VOUT On-Resistance vs. Temperature 5.0 VCC-to-VOUT On-Resistance (Ω) 4.0 VCC = 3.0V VCC = 4.5V VCC = 5.5V 3.0 2.0 1.0 0.0 –40 –20 0 20 40 60 80 100 120 AI10498 Temperature (°C) Figure 19. VBAT-to-VOUT On-Resistance vs. Temperature 160 VBAT - to - VOUT On-Resistance (Ω) 140 120 100 80 60 40 20 0 –40 –20 0 20 40 60 80 100 120 AI09140b VBAT = 2.0V VBAT = 3.0V VBAT = 3.3V VBAT = 3.6V Temperature (°C) 15/37 STM690A/692A/703/704/802/805/817/818/819 Figure 20. Supply Current vs. Temperature (no load) 30 25 Supply Current (µA) 20 15 VCC = 2.7V VCC = 3.0V VCC = 3.6V VCC = 4.5V VCC = 5.5V 10 5 0 –40 –20 0 20 40 60 80 100 120 AI09141b Temperature (°C) Figure 21. Battery Current vs. Temperature 1000 Battery Supply Current (nA) 100 VBAT = 2.0V VBAT = 3.0V VBAT = 3.6V 10 1 0.1 –40 –20 0 20 40 60 80 100 120 AI10499 Temperature (°C) 16/37 STM690A/692A/703/704/802/805/817/818/819 Figure 22. VPFI Threshold vs. Temperature 1.270 1.265 1.260 VCC = 3.0V VCC = 4.5V VCC = 4.75V VCC = 5.5V VPFI Threshold (V) 1.255 1.250 1.245 1.240 1.235 1.230 1.225 –40 –20 0 20 40 60 80 100 120 AI09142c Temperature (°C) Figure 23. Reset Comparator Propagation Delay vs. Temperature (Other than STM817/818/819) 30 28 26 Propagation Delay (µs) 24 22 20 18 16 14 12 10 –40 –20 0 20 40 60 80 100 120 AI09143b Temperature (°C) 17/37 STM690A/692A/703/704/802/805/817/818/819 Figure 24. Reset Comparator Propagation Delay vs. Temperature (VBAT=3.0V; STM817/818/819) 350 1v/ms 300 10V/ms Propagation Delay (µs) 250 200 150 100 50 0 –40 –20 0 20 40 60 80 100 120 AI11100 Temperature (°C) Figure 25. Power-up trec vs. Temperature 240 235 230 trec (ms) VCC = 3.0V 225 VCC = 4.5V VCC = 5.5V 220 215 210 –40 –20 0 20 40 60 80 100 120 AI09144b Temperature (°C) 18/37 STM690A/692A/703/704/802/805/817/818/819 Figure 26. Normalized Reset Threshold vs. Temperature 1.004 Normalized Reset Threshold 1.002 1.000 0.998 0.996 –40 –20 0 20 40 60 80 100 120 AI09145b Temperature (°C) Figure 27. Watchdog Time-out Period vs. Temperature 1.90 Watchdog Time-out Period (sec) 1.85 1.80 1.75 VCC = 3.0V VCC = 4.5V VCC = 5.5V 1.70 1.65 1.60 –40 –20 0 20 40 60 80 100 120 AI09146b Temperature (°C) 19/37 STM690A/692A/703/704/802/805/817/818/819 Figure 28. E to ECON On-Resistance vs. Temperature 60 50 E to ECON On-Resistance (Ω) 40 30 20 VCC = 3.0V VCC = 4.5V VCC = 5.5V 10 0 –40 –20 0 20 40 60 80 100 120 AI09147b Temperature (°C) Figure 29. PFI to PFO Propagation Delay vs. Temperature 4.0 PFI to PFO Propagation Delay (µs) VCC = 3.0V VCC = 3.6V 3.0 VCC = 4.5V VCC = 5.5V 2.0 1.0 0.0 –40 –20 0 20 40 60 80 100 120 AI09148b Temperature (°C) 20/37 STM690A/692A/703/704/802/805/817/818/819 Figure 30. Output Voltage vs. Load Current (VCC = 5V; VBAT = 2.8V; TA = 25°C) 5.00 4.98 VOUT (V) 4.96 4.94 0 10 20 30 40 50 AI10496 IOUT (mA) Figure 31. Output Voltage vs. Load Current (VCC = 0V; VBAT = 2.8V; TA = 25°C) 2.80 2.78 2.76 VOUT (V) 2.74 2.72 2.70 2.68 2.66 0.0 0.2 0.4 0.6 0.8 1.0 AI10497 IOUT (mA) 21/37 STM690A/692A/703/704/802/805/817/818/819 Figure 32. RST Output Voltage vs. Supply Voltage 5 VRST VCC 5 4 4 VRST (V) 2 2 1 1 0 0 500ms/div AI09149b Figure 33. RST Output Voltage vs. Supply Voltage 5 VRST VCC 5 4 4 VRST (V) 2 2 1 1 0 0 500ms/div AI09150b 22/37 VCC (V) 3 3 VCC (V) 3 3 STM690A/692A/703/704/802/805/817/818/819 Figure 34. RST Response Time (Assertion) 5V VCC 1V/div 4V 5V 4V RST 1V/div 0V 5µs/div AI09151b 23/37 STM690A/692A/703/704/802/805/817/818/819 Figure 35. RST Response Time (Assertion) 5V VCC 4V 1V/div 4V RST 1V/div 0V 5µs/div AI09152b Figure 36. Power-fail Comparator Response Time (Assertion) 5V PFO 1V/div 0V 1.3V PFI 500mV/div 0V 500ns/div AI09153b 24/37 STM690A/692A/703/704/802/805/817/818/819 Figure 37. Power-fail Comparator Response Time (De-Assertion) 5V PFO 1V/div 0V 1.3V PFI 500mV/div 0V 500ns/div AI09154b Figure 38. Maximum Transient Duration vs. Reset Threshold Overdrive 6000 5000 Transient Duration (µs) 4000 Reset occurs above the curve. 3000 2000 1000 0 0.001 0.01 0.1 1 10 AI09156b Reset Comparator Overdrive, VRST – VCC (V) 25/37 STM690A/692A/703/704/802/805/817/818/819 Figure 39. E to ECON Propagation Delay vs. Temperature 4.0 E to ECON Propagation Delay (ns) 3.0 2.0 1.0 VCC = 3.0V VCC = 4.5V VCC = 5.5V 0.0 –40 –20 0 20 40 60 80 100 120 AI09157b Temperature (°C) 26/37 STM690A/692A/703/704/802/805/817/818/819 MAXIMUM RATING Stressing the device above the rating listed in the Absolute Maximum Ratings” table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not imTable 5. Absolute Maximum Ratings Symbol TSTG TSLD(1) VIO VCC/VBAT IO PD Parameter Storage Temperature (VCC Off) Lead Solder Temperature for 10 seconds Input or Output Voltage Supply Voltage Output Current Power Dissipation Value –55 to 150 260 –0.3 to VCC +0.3 –0.3 to 6.0 20 320 Unit °C °C V V mA mW plied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Note: 1. Reflow at peak temperature of 255°C to 260°C for < 30 seconds (total thermal budget not to exceed 180°C for between 90 to 150 seconds). DC AND AC PARAMETERS This section summarizes the operating measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics Tables that follow, are derived from tests performed under the Measurement Conditions summarized in Table 6, Operating and AC Measurement Conditions. Designers should check that the operating conditions in their circuit match the operating conditions when relying on the quoted parameters. Table 6. Operating and AC Measurement Conditions Parameter VCC/VBAT Supply Voltage Ambient Operating Temperature (TA) Input Rise and Fall Times Input Pulse Voltages Input and Output Timing Ref. Voltages STM690A/692A/703/704/802/ 805/817/818/819 1.0 to 5.5 –40 to 85 ≤5 0.2 to 0.8VCC 0.3 to 0.7VCC Unit V °C ns V V 27/37 STM690A/692A/703/704/802/805/817/818/819 Figure 40. E to ECON Propagation Delay Test Circuit VCC VCC VBAT 3.6V STMXXX 25Ω Equivalent Source Impedance E 50Ω 50Ω Cable 50Ω GND ECON 50pF CL(1) AI08854 Note: 1. CL includes load capacitance and scope probe capacitance. Figure 41. AC Testing Input/Output Waveforms 0.8VCC 0.7VCC 0.3VCC AI02568 0.2VCC Figure 42. MR Timing Waveform MR tMLRL RST (1) tMLMH trec AI07837a Note: 1. RST for STM805. Figure 43. Watchdog Timing VCC RST trec WDI tWD AI07891 28/37 STM690A/692A/703/704/802/805/817/818/819 Table 7. DC and AC Characteristics Sym VCC, VBAT(2) Alternative Description Operating Voltage VCC Supply Current ICC VCC Supply Current in Battery Back-up Mode VBAT Supply Current in Battery Back-up Mode Test Condition(1) TA = –40 to +85°C Excluding IOUT (VCC < 5.5V) Excluding IOUT (VBAT = 2.3V, VCC = 2.0V, MR = VCC) Excluding IOUT (VBAT = 3.6V) IOUT1 = 5mA(5) VOUT1 VOUT Voltage (Active) IOUT1 = 75mA IOUT1 = 250µA, VCC > 2.5V(5) IOUT2 = 250µA, VBAT = 2.3V IOUT2 = 1mA, VBAT = 2.3V VCC – 0.03 VCC – 0.3 VCC – 0.0015 VBAT – 0.1 Min 1.2(3) 25 25 0.4 VCC – 0.015 VCC – 0.15 VCC – 0.0006 VBAT – 0.034 VBAT – 0.14 3 100 4.5V < VCC < 5.5V 0V = VIN = VCC WDI = VCC, time average WDI = GND, time average 4.5V < VCC < 5.5V VRST (max) < VCC < 5.5V 4.5V < VCC < 5.5V VRST (max) < VCC < 5.5V VCC = VRST (max), ISINK = 3.2mA VCC = VRST (max), IOUT = 1.6mA, E = 0V ISINK = 50µA, VCC = 1.0V, VBAT = VCC, TA = 0°C to 85°C Output Low Voltage (RST) ISINK = 100µA, VCC = 1.2V, VBAT = VCC 0.3 V –20 2.0 0.7VCC 0.8 0.3VCC 0.3 0.2VCC 0.3 75 –25 125 2 120 –15 300 +25 160 4 Typ Max 5.5 60 35 1.0 Unit V µA µA µA V V V V V Ω Ω µA nA µA µA V V V V V V V IBAT(4) VOUT2 VOUT Voltage (Battery Back-up) VCC to VOUT On-resistance VBAT to VOUT On-resistance Input Leakage Current (MR) ILI Input Leakage Current (PFI) Input Leakage Current (WDI)(6) VIH VIH VIL VIL Input High Voltage (MR) Input High Voltage (WDI) Input Low Voltage (MR) Input Low Voltage (WDI) Output Low Voltage (PFO, RST, RST) VOL Output Low Voltage (ECON) VOL 29/37 STM690A/692A/703/704/802/805/817/818/819 Alternative Test Condition(1) ISOURCE = 1mA, VCC = VRST (max) VCC = VRST (max), IOUT = 1.6mA, E = VCC ISOURCE = 75µA, VCC = VRST (max) ISOURCE = 4µA, VCC = 1.1V, VBAT = VCC, TA = 0°C to 85°C Output High Voltage ISOURCE = 4µA, VCC = 1.2V, VBAT = VCC VOH Battery Back-up (RST, RST) VOHB VOH Battery Back-up (ECON) Power-fail Comparator (NOT available on STM818) VPFI PFI Falling (VCC = 5V) All other versions STM802 1.20 1.225 1.25 1.250 2 VCC = 5V, VPFO = 0V 0.1 0.75 2.0 1.30 1.275 V V µs mA ISOURCE = 100µA, VCC = 0, VBAT = 2.8V ISOURCE = 75µA, VCC = 0, VBAT = 2.8V 0.8VBAT 0.8VBAT 0.9 V V V Sym Description Output High Voltage (RST, RST) Min 2.4 0.8VCC 0.8VCC Typ Max Unit V V V VOH Output High Voltage (ECON) Output High Voltage (PFO) 0.8 V VOH PFI Input Threshold tPFD ISC Battery Switchover PFI to PFO Propagation Delay PFO Output Short to GND Current VRST > VBAT Battery Back-up Switchover Voltage (7,8) (VCC < VBAT & VCC < VRST) Power-down VRST < VBAT VRST > VBAT Power-up VRST < VBAT Hysteresis Reset Thresholds VRST Reset Threshold(9) Reset Threshold Hysteresis VCC to RST Delay (from VRST, VCC falling at 10V/ms) trec RST Pulse Width STM817/818/819 140 STM690A/703, STM8XXL STM692A/704, STM8XXM 4.50 4.25 VBAT VRST VBAT VRST 40 V V V V mV VSO 4.65 4.40 25 100 200 4.75 4.50 V V mV µs 280 ms 30/37 STM690A/692A/703/704/802/805/817/818/819 Alternative Test Condition(1) Sym Description Min Typ Max Unit Push-button Reset Input (STM703/704/819) tMLMH tMR STM703/704 MR Pulse Width STM819 STM703/704 MR to RST Output Delay STM819 MR Glitch Immunity MR Pull-up Resistor STM819 MR = 0V, VCC = 5V 45 120 100 63 85 ns ns kΩ 1 250 µs ns 150 ns tMLRL tMRD Watchdog Timer (NOT available on STM703/704/819) tWD Watchdog Timeout Period WDI Pulse Width Chip-Enable Gating (STM818 only) E-to-ECON Resistance E-to-ECON Propagation Delay Reset-to-ECON High Delay ECON Short Circuit Current VCC = VRST (max) 4.5V < VCC < 5.5V (Power-down) VCC = 5V, Disable Mode, E = Logic high, ECON = 0V 0.1 40 2 15 0.75 2.0 150 7 Ω ns µs mA VRST (max) < VCC < 5.5V VRST (max) < VCC < 5.5V 1.12 50 1.60 2.24 s ns Note: 1. Valid for Ambient Operating Temperature: TA = –40 to 85°C; VCC = 4.75V to 5.5V for “L” versions; VCC = 4.5V to 5.5V for “M” versions; and VBAT = 2.8V (except where noted). 2. VCC supply current, logic input leakage, Watchdog functionality, Push-button Reset functionality, PFI functionality, state of RST and RST tested at VBAT = 3.6V, and VCC = 5.5V. The state of RST or RST and PFO is tested at VCC = VCC (min). Either VCC or VBAT can go to 0V if the other is greater than 2.0V. 3. VCC (min) = 1.0V for TA = 0°C to +85°C. 4. Tested at VBAT = 3.6V, VCC = 3.5V and 0V. 5. Guaranteed by design. 6. WDI input is designed to be driven by a three-state output device. To float WDI, the “high impedance mode” of the output device must have a maximum leakage current of 10µA and a maximum output capacitance of 200pF. The output device must also be able to source and sink at least 200µA when active. 7. When VBAT > VCC > VRST, VOUT remains connected to VCC until VCC drops below VRST. 8. When VRST > VCC > VBAT, VOUT remains connected to VCC until VCC drops below the battery voltage (VBAT) – 75mV. 9. For VCC falling. 31/37 STM690A/692A/703/704/802/805/817/818/819 PACKAGE MECHANICAL Figure 44. SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mech. Drawing h x 45˚ A2 B e D A C ddd 8 E 1 H A1 α L SO-A Note: Drawing is not to scale. Table 8. SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mechanical Data mm Symb Typ A A1 B C D ddd E e H h L α N – – – – – – – 1.27 – – – – Min 1.35 0.10 0.33 0.19 4.80 – 3.80 – 5.80 0.25 0.40 0° 8 Max 1.75 0.25 0.51 0.25 5.00 0.10 4.00 – 6.20 0.50 0.90 8° Typ – – – – – – – 0.050 – – – – Min 0.053 0.004 0.013 0.007 0.189 – 0.150 – 0.228 0.010 0.016 0° 8 Max 0.069 0.010 0.020 0.010 0.197 0.004 0.157 – 0.244 0.020 0.035 8° inches 32/37 STM690A/692A/703/704/802/805/817/818/819 Figure 45. TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Outline D 8 5 E1 E c 1 4 α A1 A CP b e A2 L L1 TSSOP8BM Note: Drawing is not to scale. Table 9. TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Mechanical Data mm Symb Typ A A1 A2 b c CP D e E E1 L L1 α N – – 0.85 – – – 3.00 0.65 4.90 3.00 0.55 0.95 – Min – 0.05 0.75 0.25 0.13 – 2.90 – 4.65 2.90 0.40 – 0° 8 Max 1.10 0.15 0.95 0.40 0.23 0.10 3.10 – 5.15 3.10 0.70 – 6° Typ – – 0.034 – – – 0.118 0.026 0.193 0.118 0.022 0.037 – Min – 0.002 0.030 0.010 0.005 – 0.114 – 0.183 0.114 0.016 – 0° 8 Max 0.043 0.006 0.037 0.016 0.009 0.004 0.122 – 0.203 0.122 0.030 – 6° inches 33/37 STM690A/692A/703/704/802/805/817/818/819 PART NUMBERING Table 10. Ordering Information Scheme Example: STM690A M 6 E Device Type STM690A/692A/703/704/802/805/817/818/819 Reset Threshold Voltage STM690A/703: blank = VRST = 4.50V to 4.75V STM8xxL: L = VRST = 4.50V to 4.75V STM692A/704: blank = VRST = 4.25V to 4.50V STM8xxM: M = VRST = 4.25V to 4.50V Package M = SO8 DS(1) = TSSOP8 Temperature Range 6 = –40 to 85°C Shipping Method E = ECOPACK Package, Tubes F = ECOPACK Package, Tape & Reel Note: 1. Contact local ST sales office for availability. For other options, or for more information on any aspect of this device, please contact the ST Sales Office nearest you. 34/37 STM690A/692A/703/704/802/805/817/818/819 Table 11. Marking Description Part Number STM690A STM692A STM703 STM704 STM802L STM802M STM805L STM817L Reset Threshold 4.65V 4.40V 4.65V 4.40V 4.65V 4.40V 4.65V 4.65V TSSOP8 SO8 STM817M 4.40V TSSOP8 SO8 STM818L 4.65V TSSOP8 SO8 STM818M 4.40V TSSOP8 SO8 STM819L 4.65V TSSOP8 SO8 STM819M 4.40V TSSOP8 819M 819L 818M 818L 817M Package SO8 SO8 SO8 SO8 SO8 SO8 SO8 SO8 817L Topside Marking 690A 692A 703 704 802L 802M 805L 35/37 STM690A/692A/703/704/802/805/817/818/819 REVISION HISTORY Table 12. Document Revision History Date October 2003 31-Oct-03 22-Dec-03 16-Jan-04 08-Apr-04 25-May-04 05-Jul-04 29-Sep-04 01-Mar-05 20-Jan-05 Version 1.0 1.1 2.0 2.1 2.2 3.0 4.0 5.0 6.0 7.0 First Issue Update DC Characteristics (Table 7) Reformatted; updated characteristics (Figure 1, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17; Table 3, 4, 7, 9, 11) Add Typical Characteristics (Figure 19, 20, 22, 23, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39) Update characteristics (Figure 13, 23, 29, 33, 34, 35, 38; Table 1,7) Remove references to ‘Open Drain’ (Figure 2, 5, 8; Table 2); update characteristics (Table 3, 7) Update package availability, pin description; promote document (Figure 1, 14, 15; Table 3. 7, 10) Clarify root part numbers, pin descriptions (Figure 11, 13, 40; Table 7, 10) Update characteristics (Figure 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39) Correct marking, update Lead-free text (Table 10, 11) Revision Details 36/37 STM690A/692A/703/704/802/805/817/818/819 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 37/37
STM704 价格&库存

很抱歉,暂时无法提供与“STM704”相匹配的价格&库存,您可以联系我们找货

免费人工找货