0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM8SPLNB1P6

STM8SPLNB1P6

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    TSSOP20

  • 描述:

    IC MCU SLAVE DISEQC 20TSSOP

  • 数据手册
  • 价格&库存
STM8SPLNB1P6 数据手册
STM8SPLNB1 DiSEqC™ slave microcontroller for SaTCR based LNBs and switchers Datasheet - production data Features  Clock, reset and supply management – Reduced power consumption, – Safe power on/off management by low voltage detector (LVD), – 2.95 to 5.5 V operating voltage, – Internal 16MHz oscillator. TSSOP20 4.40 mm body  Communication interface – Two DiSEqCTM communication interfaces, – Four I2C communication interfaces I/O ports.  4 output pins for control of a legacy matrix. SO20W 300 mils UFQFPN20 3 x 3 mm It is a complete hardware and firmware solution for system designers who require an implementation overview of the LNB device control according to DiSEqC standard (Digital Satellite Equipment Control). Description The STM8SPLNB1 is an 8-bit microcontroller dedicated to DiSEqC slave operation in SaTCR based LNBs (Low Noise Block) and switchers. Figure 1. Functional block diagram $28 -(Z2#/3# ,6$!6$ 6 33 0/7%2 3500,9 2%3%4 #/.42/, 6 #!0  ")4#/2% !,5 0!2!-%4%2 %%02/- )NTERNAL #,/#+ !$$2%33!.$$!4!"53 6 $$  6K(Z $ETECTOR $I3%Q#)NTERFACE $28 $48 )# 3$! 3#, )# 3$! 3#, )# ,%'!#9-!42)8 #/.42/, 3$!-!4 3#,-!4 )# ,%'!#9-!42)8 #/.42/, 3$!-!4 3#,-!4 )#-/$% !) December 2014 This is information on a product in full production. DocID018831 Rev 5 1/44 www.st.com Contents STM8SPLNB1 Contents 1 Device description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.1 2 3 STM8SPLNB1 operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Supported DiSEqC commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 DiSEqC commands details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2/44 Command signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Command 0x0F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 Command 0x0D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.4 Command 0x38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.5 Command 0x5A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.6 Command 0x5B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Configuration parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1 5 2.2.1 Configuration parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 4 Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.3 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.4 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3.2 VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.3.3 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.3.4 Reset pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3.5 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 DocID018831 Rev 5 STM8SPLNB1 5.3 Contents 5.2.1 TSSOP package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.2.2 SO20W package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2.3 UFQFPN package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.3.1 6 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1 STM8SPLNB1 DiSEqC™ SLAVE microcontroller option list . . . . . . . . . . 37 Appendix A DiSEqC™ protocol basics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 A.1 A.2 7 Physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 A.1.1 DC voltage on coaxial cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 A.1.2 22 kHz signal on coaxial cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 A.1.3 Data transfer on coaxial cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Protocol layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 DocID018831 Rev 5 3/44 3 List of tables STM8SPLNB1 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. 4/44 STM8SPLNB1 pins description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 SaTCRs implementation - ST7LNB1 compatible mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 SaTCRs implementation - incremental order mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 STM8SPLNB1 DiSEqC™ supported commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Command 0x0F format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Command 0x0D format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Reply to command 0x0D format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Command 0x38 format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Command 0x5A format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Subcommands 0x5A format - ODU_SaTCR_Op . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Feeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Command 0x5B format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Subcommands 0x5B format - ODU_SaTCR_Inst. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 STM8SPLNB1 EEPROM parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Truth table for support of 8 RF inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Application types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 DiSEqC Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Local oscillator frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Total current consumption at VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 RESET pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 20-pin, 4.40 mm body, 0.65 mm pitch mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 20-pin, plastic small outline (300 mils) mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . 32 20-lead, ultra thin, fine pitch quad flat no-lead package (3 x 3) package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 DiSEqC™ frame byte definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 DocID018831 Rev 5 STM8SPLNB1 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 STM8SPLNB1 typical configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 TSSOP20/SO20W pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 UFQFPN20 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Signaling of the DiSEqC-ST command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 SaTCR control configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 SaTCR control and legacy configuration (standard RF band) . . . . . . . . . . . . . . . . . . . . . . 18 SaTCR control and legacy configuration (wide RF band). . . . . . . . . . . . . . . . . . . . . . . . . . 19 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 External capacitor CEXT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Recommended reset pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 20-pin, 4.40 mm body, 0.65 mm pitch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 TSSOP20 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 20-pin, plastic small outline (300 mils) package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 20-lead, ultra thin, fine pitch quad flat no-lead package outline (3 x 3). . . . . . . . . . . . . . . . 33 Recommended footprint for on-board emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Recommended footprint without on-board emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Timing diagram for Tone Burst control signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 DiSEqC™ bit modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Timing diagram for typical DiSEqC™ (1.0 version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 DiSEqC™ message format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Microcontroller answer format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 DocID018831 Rev 5 5/44 5 Device description STM8SPLNB1 1 Device description 1.1 Implementation STM8SPLNB1 device is receiving DiSEqC signal on the coaxial cable, decoding and processing the DiSEqC commands. As a result, legacy matrix or I2C lines are controlled. The STM8SPLNB1 device can also send DiSEqC answer back to master through coaxial cable. STM8SPLNB1 is designed for usage with LNB devices with I2C bus control and/or direct pins control (see Figure 2: STM8SPLNB1 typical configuration). SaTCR1 device is typically used in LNB application (see www.st.com for more SaTCR1 information). Behavior of STM8SPLNB1 devices can be modified through a set of configuration parameters which are stored in device data EEPROM memory. Configuration is done also through specific DiSEqC commands. After final configuring the device can be locked to given configuration (vendor configuration). Figure 2: STM8SPLNB1 typical configuration shows the recommended configuration for the hardware connections for LNB control with STM8SPLNB1 devices. Kȍ KȍKȍ Kȍ 6 6$$ 633 , ȍ N& N& Kȍ ȝ) $28 3#, 3$! 3#, 3$! 6#!0 -/$% $48 Kȍ ȝ) 3#, 3$! 3#, 3$! 2%3%4 $28 ȍ 3!4#2 6 3!4#2 Figure 2. STM8SPLNB1 typical configuration ,EGACYMATRIXCONTROL ORNEXT)#CHANNELS 34-3,." , N& N& Kȍ K !)B 1. Power supply must have level 5V +/- 10% for correct operation. 6/44 DocID018831 Rev 5 STM8SPLNB1 Pins description Figure 3. TSSOP20/SO20W pinout $48 $28 $28 2%3%4 -/$% .# 633 6#!0 6$$ .#                     3#, 3$! .# 3#,-!4 3$!-!4 3#,-!4 3$!-!4 .# 3#, 3$! !) 3$! 3#, $48 $28 $28 Figure 4. UFQFPN20 pinout       .#   3#,-!4 .#   3$!-!4 633 6#!0   3#,-!4  3$!-!4 2%3%4  -/$%   .#  3#, .#   3$!  6$$ 1.1.1 Device description !) Table 1. STM8SPLNB1 pins description pin no. pin no. TSSOP20 UFQFPN20 /SO20W pin name description note 9 6 VDD +5 V power supply +/- 10 % tolerance 7 4 VSS ground _ 4 1 8 5 VCAP filtering capacitor 1 wF capacitor to ground 3 20 DRX1 DiSEqC receive data input 2 HF signal after low pass filtering 2 19 DRX2 DiSEqC receive data input 2 HF signal after low pass filtering secondary channel (less priority - see later description) RESET device reset DocID018831 Rev 5 0.1 wF capacitor to ground (active low) 7/44 43 Device description STM8SPLNB1 Table 1. STM8SPLNB1 pins description (continued) pin no. pin no. TSSOP20 UFQFPN20 /SO20W description note 1 18 DTX DiSEqC transmit data output 22 kHz modulation signal - need coupling to HF signal 20 17 SCL1 I2C clock output I2C master channel 1 clock output 19 16 SDA1 I2C data input/output I2C master channel 1 data input/output 12 9 SCL2 I2C clock output I2C master channel 2 clock output 11 8 SDA2 I2C data input/output I2C master channel 2 data input/output 17 14 SCL3 I2C clock output I2C master channel 3 clock output 16 13 SDA3 I2C data input/output I2C master channel 3 data input/output 15 12 SCL4 I2C clock output I2C master channel 4 clock output 14 11 SDA4 I2C data input/output I2C master channel 4 data input/output 5 8/44 pin name 2 MODE I2C addressing mode select DocID018831 Rev 5 Selection of I2C addressing mode see note (2) under Table 2: SaTCRs implementation - ST7LNB1 compatible mode (pin has internal pull-up) STM8SPLNB1 2 STM8SPLNB1 operation STM8SPLNB1 operation STM8SPLNB1 has 8 output pins which can work as 4 I2C master channels. Each I2C channel can address 2 LNB devices (2 different I2C addresses: 0xC8 and 0xCA) - see Table 2: SaTCRs implementation - ST7LNB1 compatible mode and Table 3: SaTCRs implementation - incremental order mode for assignment of given SaTCR to given I2C bus and address. Assignment depends from I2C addressing mode EEPROM parameter - see Table 14: STM8SPLNB1 EEPROM parameters. As a convention, SaTCR1 must be associated to the BPF having the lowest center frequency of the application, SaTCR2 to the BPF having the next higher center frequency and so on. Table 2. SaTCRs implementation - ST7LNB1 compatible mode SatCR number SaTCR(1) SaTCR address 0 SaTCR1 0xC8 1 SaTCR2 0xCA 2 SaTCR3 0xC8 3 SaTCR4 0xCA 4 SaTCR5 0xC8 5 SaTCR6 0xCA 6 SaTCR7 0xC8 7 SaTCR8/ legacy SaTCR (for wide RF band applications) 0xCA I2C number I2C1 I2C2 I2C3 I2C4 1. Selection of ST7LNB1 compatible mode: pin MODE (see Table 1: STM8SPLNB1 pins description) must be grounded and I2C addressing mode EEPROM parameter (see Table 14: STM8SPLNB1 EEPROM parameters) must be set to 0. Otherwise (e.g. pin MODE is left open or I2C addressing mode EEPROM parameter is set to 1) is used incremental order mode. Table 3. SaTCRs implementation - incremental order mode SatCR number SaTCR(1) SaTCR address I2C number 0 SaTCR1 0xC8 I2C1 1 SaTCR2 0xCA I2C2 2 SaTCR3 0xC8 I2C3 3 SaTCR4 0xCA I2C4 4 SaTCR5 0xCA I2C1 5 SaTCR6 0xC8 I2C2 6 SaTCR7 0xCA I2C3 7 SaTCR8/ legacy SaTCR (for wide RF band applications) 0xC8 I2C4 DocID018831 Rev 5 9/44 43 STM8SPLNB1 operation STM8SPLNB1 1. Selection of incremental order mode: pin MODE (see Table 1: STM8SPLNB1 pins description) is left open or I2C addressing mode EEPROM parameter (see Table 14: STM8SPLNB1 EEPROM parameters) is set to 1. Another option is to decrease number of I2C channels and use the remaining pins for legacy matrix LNB control - e.g. to have 2 I2C channels (4 pins) and 4 legacy matrix output pins see Table 16: Application types. Operation mode and device behavior depends from final hardware configuration. This behavior is selected through configuration parameters - see Table 14: STM8SPLNB1 EEPROM parameters. Note: Advantage of using incremental order mode is in applications with up to 4 SaTCRs - which is common in practice. Then each SaTCR owns one I2C bus. I2C communication with another SaTCRs is running on different I2C bus - so it does not disturb HF signal on given SaTCR (SaTCR is sensitive to I2C bus signal transients). Advantage of using ST7LNB1 compatible mode is in applications where is used SaTCRs control together with legacy matrix outputs (MAT1-MAT4) - see Section 1.1.1: Pins description. In this case there remains free only 2 I2C buses for SaTCRs control (MAT1MAT4 pins occupy I2C3 and I2C4 bus). In ST7LNB1 compatible mode 2 I2C buses can address up to 4 SaTCRs - 2 SaTCRs per I2C bus. Disadvantage is the I2C bus disturbance to SaTCR which is not addressed - shared I2C bus (HF filters on I2C buses is recommended). 2.1 Supported DiSEqC commands In the following Table 4: STM8SPLNB1 DiSEqC™ supported commands are listed DiSEqC commands supported by STM8SPLNB1. For more details about commands, refer to the DiSEqC™ slave microcontroller specifications at www.eutelsat.com. Table 4. STM8SPLNB1 DiSEqC™ supported commands 10/44 command number command name 0x00 RESET 0x0D config read Read configuration parameters from EEPROM 0x0F config write Write configuration parameters to EEPROM 0x38 write to port DiSEqC 1.0: Write to port group command - Legacy commands 0x5A operation command DiSEqC-ST normal operation commands: ODU_Changechannel or ODU_SatCROFF 0x5B installation command DiSEqC-ST installation commands: ODU_Config, ODU_EEPvar.LOFREQ or ODU_SatCRxON function Reset DiSEqC™ microcontroller DocID018831 Rev 5 STM8SPLNB1 STM8SPLNB1 operation 2.2 DiSEqC commands details 2.2.1 Command signaling To be detected, the DiSEqC-ST commands must be sent after a voltage change from 13 to 18 V. A delay time between 4 ms and 24 ms must be respected before sending the DiSEqCST commands (see Figure 5: Signaling of the DiSEqC-ST command). Figure 5. Signaling of the DiSEqC-ST command 6 $I3%Q# 34&RAME ^MS MSTMS 6 !) 2.2.2 Command 0x0F STM8SPLNB1 devices are shipped to customers with a default parameter values. These parameters can be updated using a dedicated 0x0F DiSEqC command. This command has the following format where “[data]” is the parameter value to be programmed at the “[index]” location as described in Table 14: STM8SPLNB1 EEPROM parameters. Table 5. Command 0x0F format frame DiSEqC™ address command data1 data2 0xE0/0xE2 [device address] 0x0F [index] [data] Note: The special command E0 xx 0F FF FF protects the EEPROM data from any subsequent write access (where xx is the corresponding DiSEqC slave address). 2.2.3 Command 0x0D This command is dedicated for reading configuration parameters. This command has the following format where the “[index]” is location to be read as shown in Table 14: STM8SPLNB1 EEPROM parameters. Table 6. Command 0x0D format frame DiSEqC™ address command data1 0xE2 [device address] 0x0D [index] The format of the reply frame from slave has format according Table 7: Reply to command 0x0D format where “[data]” is the byte read from EEPROM. Table 7. Reply to command 0x0D format frame data1 0xE4 [data] DocID018831 Rev 5 11/44 43 STM8SPLNB1 operation 2.2.4 STM8SPLNB1 Command 0x38 This command is used to write to port group command - legacy support. For application supporting the legacy (except for application number 1), the backwards signaling (13/18 V, 22 kHz tone) is recognized until a valid DiSEqC 1.0 command is detected. The following Table 8: Command 0x38 format presents the truth table for the legacy commands. . 2.2.5 Table 8. Command 0x38 format command equivalent backward signalling selected feed band polarity satellite E0 xx 38 F0 13V / 0kHz 0 Low Vertical A E0 xx 38 F1 13V / 22kHz 1 High Vertical A E0 xx 38 F2 18V / 0kHz 2 Low Horizontal A E0 xx 38 F3 18V / 22kHz 3 High Horizontal A Command 0x5A This command is used during LNB (or switched) normal operation (default operation after configuration). Command 0x5A is DiSEqC command (see Table 9: Command 0x5A format) with two data bytes. In dependence from those data bytes are performed two subcommands which descriptions are in Table 10: Subcommands 0x5A format - ODU_SaTCR_Op. Table 9. Command 0x5A format frame DiSEqC™ address command data1 data2 0xE0/0xE2 [device address] 0x5A [data1](1) [data2](1) 1. See Table 10: Subcommands 0x5A format - ODU_SaTCR_Op for details. . Table 10. Subcommands 0x5A format - ODU_SaTCR_Op data1 data2 subcommand description [7:5] [4:2] [1:0] [7:0] ODU_ChangeChannel SaTCR(1) Feed(2) Tun[9:8](3) Tun[7:0](3) ODU_PowerOff SaTCR(1) 0 0x00 This command is used for the channel selection. This command is used to put a SaTCR in low power mode. 1. SaTCR number - see Table 2: SaTCRs implementation - ST7LNB1 compatible mode. 2. Feed parameter - see Table 11: Feeds and Table 15: Truth table for support of 8 RF inputs. 3. Tuning word - see notes in Table 14: STM8SPLNB1 EEPROM parameters for description. 12/44 DocID018831 Rev 5 STM8SPLNB1 STM8SPLNB1 operation Table 11. Feeds(1) . RF input Feed Band Polarization Satellite 0 Low Vertical A 1 High Vertical A 2 Low Horizontal A 3 High Horizontal A 4 Low Vertical B 5 High Vertical B 6 Low Horizontal B 7 High Horizontal B 1. Applications supporting legacy are limited to one satellite only (satellite A - see Table 8: Command 0x38 format). 2.2.6 Command 0x5B This command is used only during LNB (or switched) installation/configuration. Command 0x5B is DiSEqC command (see Table 12: Command 0x5B format) with two data bytes. In dependence from those data bytes are performed three subcommands which descriptions are in Table 13: Subcommands 0x5B format - ODU_SaTCR_Inst. Table 12. Command 0x5B format frame DiSEqC™ address command data1 data2 0xE0/0xE2 [device address] 0x5B [data1](1) [data2](1) 1. See Table 13.: Subcommands 0x5B format - ODU_SaTCR_Inst for details. DocID018831 Rev 5 13/44 43 STM8SPLNB1 operation . STM8SPLNB1 Table 13. Subcommands 0x5B format - ODU_SaTCR_Inst data1 data2 Subcommand description [7:5] ODU_Config ODU_Lofreq ODU_SaTCRxSignalOn SaTCR(1) SaTCR(1) xxh [4:2] [1:0] 0 1 0 2 [7:0] AppliNum(2) This command is sent by the STB in order to set the STM8SPLNB1 application number. If the data2 value corresponds to the STM8SPLNB1 AppliNum, then the STM8SPLNB1 commands SaTCR indicated in data1 to send a tone having frequency: F = BPF(4), else: F = (BPF + 20 MHz). This command is sent by the STB in order to set the L.O. frequencies present in the LNB. If the data2 value corresponds to the STM8SPLNB1 LOfreqNum, (3) LOfreqNum then the STM8SPLNB1 commands SaTCR indicated in data1 to send a tone having frequency: F = BPF(4), else: F = (BPF + 20 MHz). 0 xxh When receiving this command the STM8SPLNB1 commands all connected SaTCRs to send a tone in order to indicate their respective BPF(4) center frequencies. 1. SaTCR number - see Table 2: SaTCRs implementation - ST7LNB1 compatible mode 2. See Table 17: DiSEqC Applications for details. 3. See Table 18: Local oscillator frequencies for details. 4. BPF is bandpass center frequency for a given SaTCR - see Table 14: STM8SPLNB1 EEPROM parameters for details. 14/44 DocID018831 Rev 5 STM8SPLNB1 3 Configuration parameters Configuration parameters STM8SPLNB1 devices are compliant with the Eutelsat DiSEqC slave microcontroller specifications version 1.0, but they are not scanning the control pins to determine the slave configuration. Instead this are the slave configuration parameters stored in EEPROM memory and must be programmed for each specific application through programming parameters in STM8SPLNB1 data EEPROM memory. The EEPROM parameters described are the default configurations in our firmware. Custom configurations can be programmed at factory on request according customer requirements (FastROM process available). Customer can reprogram all EEPROM parameters through DiSEqC command - see Section 2.2.2: Command 0x0F. 3.1 Configuration parameters The slave configuration parameters for STM8SPLNB1 are listed in Table 14: STM8SPLNB1 EEPROM parameters: Table 14. STM8SPLNB1 EEPROM parameters description default value index parameter 00 Slave Address 01 SaTCR1 BPF (lsb) 0x5D 02 SaTCR1 BPF (msb) 0x02 03 SaTCR2 BPF (lsb) 0xC6 04 SaTCR2BPF (msb) 0x02 05 SaTCR3 BPF (lsb) 0x48 06 SaTCR3 BPF (msb) 07 SaTCR4 BPF (lsb) 0xFC 08 SaTCR4 BPF (msb) 0x03 09 SaTCR5 BPF (lsb) 0xFF 0A SaTCR5BPF (msb) 0xFF 0B SaTCR6 BPF (lsb) 0xFF 0C SaTCR6 BPF (msb) 0xFF 0D SaTCR7 BPF(lsb) / legacy SaTCR Low band (msb) 0xFF 0E SaTCR7 BPF(msb) / legacy SaTCR Low band (lsb) DiSEqC slave address(1) (2) 0x11 0x03 0xFF (3) 0F SaTCR8 BPF(lsb) / legacy SaTCR High band (msb) 0xFF 10 SaTCR8 BPF(msb) / legacy SaTCR High band (lsb) 0xFF 11 Applitype Application type number (refer to Table 16.) DocID018831 Rev 5 0x00 15/44 43 Configuration parameters STM8SPLNB1 Table 14. STM8SPLNB1 EEPROM parameters (continued) index parameter description default value 12 AppliNum Application number (refer to Table 17: DiSEqC Applications) 0x04 13 High L.O freq Number Refer to Table 18: Local oscillator frequencies 0x04 14 Low L.O freq Number Refer to Table 18: Local oscillator frequencies 0x02 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 0xAC SaTCR1 matrix truth table 0x35 0x59 SaTCR2 matrix truth table 0x6A 0x56 SaTCR3 matrix truth table 0x9A 0x95 SaTCR4 matrix truth table 0xFF SaTCR5 matrix truth table 0xFF 0xFF SaTCR6 matrix truth table 0xFF 0xFF SaTCR7 matrix truth table 0xFF 0xFF SaTCR8 matrix truth table / legacy matrix 25 0xFF SaTCRs GAIN(5) 26 27 SaTCRs 1 to 4 Gain 0xFF SaTCRs 5 to 8 Gain 0xFF (6) SaTCRs number 2 0x04 2 28 I C addressing mode 29 Software Version Number version number identification Reserved (8) 2A 2B (7) defines SaTCRs assignment to I C bus 0x00 0x15 0x00 0x00 1. Address 0x00 is also recognized as valid address. 2. SaTCRx BPF = BPFx center frequency [MHz]/2. 16/44 0xA6 (4) DocID018831 Rev 5 STM8SPLNB1 Configuration parameters 3. When an application supports the wide RF band only one local oscillator with a frequency FLO is present in the LNB. In this case the selection of the high or the low band for the legacy output is performed by a dedicated SaTCR. Two parameters are needed for the band selection: - The tuning word for the low band selection = [(FLO (MHz) - FLow (MHz))/4] - 350: where FLow corresponds to the Low LO frequency. - The tuning word for the high band selection = [(FLO (MHz) - FHigh (MHz))/4] - 350: where FHigh corresponds to the High band LO frequency. Example: in a wide band application with FLO= 13250 MHz, for emulating a low band local oscillator at 9750 MHz, index 0x0D and index 0x0E must be loaded with the decimal value dec [0D:0E] = round ((13250-9750)/4) - 350 = 525. 4. Matrix truth table for SaTCRx or legacy: 1) If 4 RF inputs are implemented then the matrix truth table has coding on 2 bytes: “aaaabbbbccccdddd” where: aaaa = selection of Feed1 on SaTCRx, aaaa = [MAT4, MAT3, MAT2, MAT1] bbbb = selection of Feed0 on SaTCRx, bbbb = [MAT4, MAT3, MAT2, MAT1] cccc = selection of Feed3 on SaTCRx, cccc = [MAT4, MAT3, MAT2, MAT1] dddd = selection of Feed2 on SaTCRx,dddd = [MAT4, MAT3, MAT2, MAT1] 2) If 8 RF inputs are implemented then the truth table given in Table 15: Truth table for support of 8 RF inputs is used. 5. To enable the support of 8 RF inputs: the value ‘0x0000’ has to be programmed in index 15h and 16h. SaTCRs gain value: it has the following format on two bytes: “AaBbCcDd EeFfGgHh” where Aa= gain for SaTCR1, Bb = gain for SaTCR2, Cc= gain for SaTCR3, Dd=gain for SaTCR4, Ee= gain for SaTCR5, Ff= gain for SaTCR6, Gg= gain for SaTCR7, Hh=gain for SaTCR8 or legacy SaTCR. Upper case letters and upper case letters indicate LNA and IF gain, respectively. 6. SaTCRs number does not include the legacy SaTCR for the wide RF band applications. 7. Defines assignment of SaTCR to I2C bus. 1 = incremental order mode, 0 = ST7LNB1 compatible mode or incremental order mode in dependency from MODE pin (see Table 1: STM8SPLNB1 pins description) state. See notes under Table 2: SaTCRs implementation - ST7LNB1 compatible mode and Table 3: SaTCRs implementation - incremental order mode for details in assignment. 8. Reserved bytes: do not write to this location. Table 15. Truth table for support of 8 RF inputs Feed MAT1 MAT2 MAT3 MAT4 0 0 0 0 0 1 1 0 0 0 2 0 1 0 0 3 1 1 0 0 4 0 0 1 0 5 1 0 1 0 6 0 1 1 0 7 1 1 1 0 Table 16. Application types number 0 application type SaTCR control(1) (see Figure 6: SaTCR control configuration) description – Control through I2C of up to 8 SaTCRs DocID018831 Rev 5 17/44 43 Configuration parameters STM8SPLNB1 Table 16. Application types (continued) number application type description 1 SaTCR and legacy (standard RF band) – Control through I2C up to 4 SaTCRs (see Figure 7: SaTCR control and legacy configuration (standard RF – Control of a legacy matrix using up to 4 pins band)) 2 SaTCR and legacy (wide RF band) (see Figure 8: SaTCR control and legacy configuration (wide RF band)) – Control though I2C of up to 6 SaTCRs + legacy – Control of a dedicated SaTCR for the legacy support 1. This application could support up to 8 RF feeds. (applications 1 and 2 are limited to 4 RF feeds). Figure 6. SaTCR control configuration 3A4#2 )# 3A4#2 )# $28$I3%Q# 34 -ATRIX $28$I3%Q# 34 )# 34-30,." 3A4#2 !) Figure 7. SaTCR control and legacy configuration (standard RF band) 3A4#2 )# $28$I3%Q# 34 -ATRIX 3A4#2 )# -!4;TO= $28$I3%Q# 34 34-30,." !) 18/44 DocID018831 Rev 5 STM8SPLNB1 Configuration parameters Figure 8. SaTCR control and legacy configuration (wide RF band) 3A4#2 )# $28$I3%Q# 34 )# -ATRIX 3A4#2 $28$I3%Q# 34 )# 34-30,." ,EGACY 3A4#2 !) Table 17. DiSEqC Applications Application number Application description 0x01 Single SatCR and legacy (standard RF band) 0x02 Twin SatCR (standard RF band) 0x03 Twin SatCR and legacy (standard RF band) 0x04 Quad SatCR (standard RF band) 0x05 Double Twin SatCR (standard RF band) 0x06 Twin SatCR (wide RF band) 0x07 Twin SatCR and legacy (wide RF band) 0x08 Quad SatCR (wide RF band) 0x09 8 SatCR (standard RF band) 0x0A 6 SatCR (standard RF band) 0x0B Quad SatCR and legacy (standard RF band) 0x0C - 0xFF reserved DocID018831 Rev 5 19/44 43 Configuration parameters STM8SPLNB1 Table 18. Local oscillator frequencies Wide RF band Standard RF band LofreqNum (hex) 20/44 Local oscillator frequency 0x00 none 0x01 not known 0x02 9.750 GHz 0x03 10.000 GHz 0x04 10.600 GHz 0x05 10.750 GHz 0x06 11.000 GHz 0x07 11.250 GHz 0x08 11.475 GHz 0x09 20.250 GHz 0x0A 5.150 GHz 0x0B 1.585 GHz 0x0C 13.850 GHz 0x0D not allocated 0x0E not allocated 0x0F not allocated 0x10 not allocated 0x11 10.000 GHz 0x12 10.200 GHz 0x13 13.250 GHz 0x14 13.450 GHz 0x15 - 0x1F not allocated DocID018831 Rev 5 STM8SPLNB1 Electrical characteristics 4 Electrical characteristics 4.1 Parameter conditions Unless otherwise specified, all voltages are referred to VSS. 4.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ± 3 ū). 4.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 5 V. They are given only as design guidelines and are not tested. 4.1.3 Loading capacitor The loading conditions used for pin parameter measurement are shown in the following figure. Figure 9. Pin loading conditions 34- PIN P& 4.1.4 Pin input voltage The input voltage measurement on a pin of the device is described in the following figure. Figure 10. Pin input voltage 34-PIN 6). DocID018831 Rev 5 21/44 43 Electrical characteristics 4.2 STM8SPLNB1 Absolute maximum ratings Stresses above those listed as ‘absolute maximum ratings’ may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 19. Voltage characteristics Symbol VDDx - VSS VIN VESD Ratings Min Max -0.3 6.5 Input voltage on any pin VSS - 0.3 VDD + 0.3 Electrostatic discharge voltage See : Absolute maximum ratings (electrical sensitivity) Supply voltage Unit V Table 20. Current characteristics Symbol Max.(1) Ratings IVDD Total current into VDD power lines (source)(2) 100 IVSS Total current out of VSS ground lines (sink)(2) 80 Output current sunk by any I/O and control pin 20 IIO IINJ(PIN)(3)(4) ūIINJ(PIN) (3) Output current source by any I/Os and control pin - 20 Injected current on NRST pin ±4 Injected current on any other pin(5) Total injected current (sum of all I/O and control Unit mA ±4 pins)(5) ± 20 1. Data based on characterization results, not tested in production. 2. All power (VDD) and ground (VSS) pins must always be connected to the external supply. 3. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN
STM8SPLNB1P6 价格&库存

很抱歉,暂时无法提供与“STM8SPLNB1P6”相匹配的价格&库存,您可以联系我们找货

免费人工找货
STM8SPLNB1P6
    •  国内价格
    • 10+19.05500

    库存:0