0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STUSB1602QTR

STUSB1602QTR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    VFQFN24_EP

  • 描述:

    ICCTLRUSBTYPE-C24QFN

  • 数据手册
  • 价格&库存
STUSB1602QTR 数据手册
STUSB1602 Datasheet USB Type-C™ controller with TX/RX line driver and BMC Features • • • Type-C™ attach and cable orientation detection Power role support: source/sink/DRP Integrated power switch for VCONN supply: • – programmable current limit up to 600 mA – overcurrent, overvoltage, and thermal protection – undervoltage lockout Integrated VBUS voltage monitoring • Integrated VBUS and VCONN discharge path • • Integrated BMC transceiver VBUS switch gate driver • Short-to-VBUS protection on CC • Dual power supply (VSYS and/or VDD): • • Device summary Order code STUSB1602AQTR Power role SOURCE, SINK, DRP Package QFN24 EP 4x4 mm Temp. range - 40 °C up to 105 °C Marking 1602A Related products STM32F072RB and STSW-STUSB010 STM32F446ZE and STSW-STUSB012 STM32G474RE and STSW-STUSB014 – VSYS = [3.0 V; 5.5 V] – VDD = [4.1 V; 22 V] Compliant with: – USB Type-C™ rev 2.0 – USB PD rev 3.0 Certified: – Source: TID 1070031 – Sink PPS: TID 5477 Applications • • • • • • • • • Power hubs and docking stations Smartphones, tablets and gimbal stabilizers Gaming, PNDs and drones Cameras, camcorders, and MP3 players Smart plugs, wall adapters, and chargers Power sourcing devices (PoE) Power sinking hosts PPS applications Any source or sink or dual role device STM32L4R5ZI and STSW-STUSB015 Description The STUSB1602 is a generic IC, in a 20 V technology it addresses a USB Type-C™ port management both for source, sink and dual role devices, with or without USB data. It is designed for a broad range of applications and can handle the following USB Type-C functions: attach detection, plug orientation detection, host to device connection, VCONN support, and VBUS configuration. It also provides a USB PD TX/RX line driver and a BMC (bi-phase mark coding) transceiver which enable USB PD communication through an external MCU. DS11254 - Rev 5 - July 2021 For further information contact your local STMicroelectronics sales office. www.st.com STUSB1602 Functional description 1 Functional description The STUSB1602 is a high voltage standalone USB Type-C controller also acting as a USB PD TX/RX physical layer for an external MCU. It is designed to interface with the Type-C receptacle on host side. It is used to establish and manage the source-to-sink connection between two USB Type-C host and device ports. The STUSB1602 major role is to: Detect the connection between two USB Type-C ports (attach detection) 1. 2. Establish a valid source-to-sink connection 3. Determine the attached device mode: source, sink or accessory 4. Resolve cable orientation and twist connections to establish USB data routing (MUX control) 5. Configure and monitor VBUS power path 6. Manage VBUS power capability: USB default, Type-C medium or Type-C high current mode 7. Configure VCONN when required 8. Support USB PD negotiation The STUSB1602 also provides: • Dead battery mode • I²C interface and interrupt • Start-up configuration customization: static through NVM and/or dynamic through I²C • High voltage protection • Accessory mode detection Figure 1. Functional block diagram DS11254 - Rev 5 page 2/39 STUSB1602 Inputs / outputs 2 Inputs / outputs 2.1 Pinout 2.2 CC1 2 VCONN 3 VREG_1V2 VBUS_EN_SRC VBUS_EN_SNK 19 18 EP VBUS_SENSE 17 A_B_SIDE 16 SCLK 15 TX_EN 14 MISO 7 8 9 10 11 13 12 NSS 6 20 MOSI RESET 21 GND 5 22 ALERT# CC2DB 23 SDA 4 24 SCL CC2 VSYS 1 VREG_2V7 CC1DB VDD Figure 2. STUSB1602 pin connections ADDR0 Pin list Table 1. Pin functions list DS11254 - Rev 5 Pin Name Type Description Typical connection 1 CC1DB HV AIO Dead battery enable on CC1 pin CC1 pin if used or ground 2 CC1 HV AIO Type-C configuration channel 1 Type-C receptacle A5 3 VCONN PWR Power input for active plug 5 V power source 4 CC2 HV AIO Type-C configuration channel 2 Type-C receptacle B5 5 CC2DB HV AIO Dead battery enable on CC2 pin CC2 pin if used or ground 6 RESET DI Reset input (active high) 7 SCL DI I²C clock input To I²C master, ext. pull-up 8 SDA DI/OD I²C data input/output, active low open drain To I²C master, ext. pull-up 9 ALERT# OD I²C interrupt, active low open drain To I²C master, ext. pull-up 10 GND GND Ground Ground 11 MOSI DO Master out slave in: serial data from STUSB1602 to MCU, BMC decoded from connected CC line To MCU, ext. pull-up referenced to MCU Vio 12 NSS OD Chip select, open drain active low to control MCU SPI/MSP interface To MCU, ext. pull-up referenced to MCU Vio page 3/39 STUSB1602 Pin list Pin Name Type Description Typical connection 13 ADDR0 DI I²C device address setting (see Section 5 I²C interface) Static 14 MISO DI Master in slave out: serial data from MCU to STUSB1602 encoded in BMC to drive the CC line From MCU, ext. pull-up referenced to MCU Vio 15 TX_EN DI TX enable, open drain active high to drive CC line from the embedded BMC interface From MCU, needs to be maintained low by MCU or pulled down when receiving standby Serial clock to clock data transfer between MCU and the STUSB1602. Open drain output To MCU, ext. pull-up referenced to pin, needs external pull-up referenced to MCU MCU Vio Vio 16 SCLK DO 17 A_B_SIDE OD Cable orientation, active low open drain USB super speed MUX select, ext. pull-up 18 VBUS_SENSE HV AI VBUS voltage monitoring and discharge path From VBUS 19 VBUS_EN_SNK HV AIO VBUS sink power path enable, active low open drain To switch or power system, ext. pull-up 20 VBUS_EN_SRC HV AIO VBUS source power path enable, active low open drain To switch or power system, ext. pull-up 21 VREG_1V2 PWR 1.2 V internal regulator output 1 µF typ. decoupling capacitor 22 VSYS PWR Power supply from system From power system, connect to ground if not used 23 VREG_2V7 PWR 2.7 V internal regulator output 1 µF typ. decoupling capacitor 24 VDD HV PWR Main power supply from USB power line From VBUS - EP GND Exposed pad is connected to ground To ground Table 2. Pin function descriptions DS11254 - Rev 5 Type Description D Digital A Analog O Output pad I Input pad IO Bidirectional pad OD Open drain output PD Pull-down PU Pull-up HV High voltage PWR Power GND Ground page 4/39 STUSB1602 Pin description 2.3 2.3.1 Pin description CC1 / CC2 CC1 and CC2 are the configuration channel pins used for connection and attachment detection, plug orientation determination and system configuration management across USB Type-C cable. 2.3.2 CC1DB/CC2DB CC1DB and CC2DB are used for dead battery mode when the STUSB1602 is configured in sink power role or dual power role. This mode is enabled by connecting CC1DB and CC2DB respectively to CC1 and CC2. Thanks to this connection, the pull down terminations on the CC pins are present by default even if the device is not supplied (see Section 3.6 Dead battery). Note: CC1DB and CC2DB must be connected to ground when the STUSB1602 is configured in source power role or when dead battery mode is not supported. 2.3.3 VCONN This power input is connected to a power source that can be a 5 V power supply. It is used to provide power to the local plug. It is internally connected to power switches that are protected against short-circuit and overvoltage. This does not require any protection on the input side. When a valid source-to-sink connection is determined and the VCONN power switches are enabled, VCONN is provided by the source to the unused CC pin (see Section 3.4 VCONN supply). If not used, VCONN can be left floating. 2.3.4 RESET Active high reset. 2.3.5 I²C interface pins Table 3. I²C interface pins list Name 2.3.6 Description SCL I²C clock – need external pull-up SDA I²C data – need external pull-up ALERT# I²C interrupt – need external pull-up ADDR0 I²C device address bit (see Section 5 I²C interface) GND Ground. 2.3.7 MOSI Master out slave in: data from the connected CC line are decoded using the BMC and then transmitted via the STUSB1602 to the MCU. Data are valid on the falling edge of the SCLK line and must be sampled by the MCU on this edge. 2.3.8 NSS The chip select signal is driven by the STUSB1602 and is connected to the MCU. It activates the SPI/MSP interface transfer. The NSS signal drives the MCU so that: • When TX_EN is asserted (TX mode), the STUSB1602 transmits data from the MCU over the CC line. Note, the MCU must provide data to be encoded on the MISO line which must be in synchrony with the SCLK • When TX_EN is not asserted (RX mode, default), the CC line is activity detected, data are received, and the BMC is decoded by the STUSB1602. Decoded data are sent on the MOSI line in synchrony with the SCLK DS11254 - Rev 5 page 5/39 STUSB1602 Pin description 2.3.9 MISO Master in slave out: data from the MCU are encoded using the BMC and then transmitted via the STUSB1602 to the connected CC line driver. Data are sampled by the STUSB1602 on the rising edge of the SCLK line and must be stable on this edge. 2.3.10 TX_EN TX_EN is a control signal from the MCU to the STUSB1602. It enables the BMC control logic that transfers data from the MCU serial interface, encodes it in BMC format, and drives the connected CC line. Note: TX mode overrides RX mode. 2.3.11 SCLK The serial clock signal from the STUSB1602 drives the SPI/MSP interface of the MCU and the clock data on the MISO and MOSI pins. 2.3.12 A_B_SIDE This output pin provides cable orientation. It is used to establish USB SuperSpeed signal routing. The cable orientation is also provided by an internal I²C register. This signal is not required if no data support or USB 2.0 supports only. Table 4. USB data MUX select Value 2.3.13 CC pin position HiZ CC1 pin is attached to CC line 0 CC2 pin is attached to CC line VBUS_SENSE This input pin is used to sense VBUS presence, monitor VBUS voltage and discharge VBUS on USB Type-C receptacle side. 2.3.14 VBUS_EN_SNK In sink power role, this pin allows the incoming VBUS power to be enabled when the connection to a source is established and VBUS is in a valid operating range. The open drain output allows a PMOS transistor to be directly driven. The logic value of the pin is also advertised in a dedicated I²C register bit. 2.3.15 VBUS_EN_SRC In source power role, this pin allows the outgoing VBUS power to be enabled when the connection to a sink is established and VBUS is in a valid operating range. The open drain output allows a PMOS transistor to be directly driven. The logic value of the pin is also advertised in a dedicated I²C register bit. 2.3.16 VREG_1V2 This pin is used only for external decoupling of 1.2 V internal regulator. The recommended decoupling capacitor is: 1 µF typ. (0.5 µF min.; 10 µF max.). 2.3.17 VSYS This is the low power supply of the system, if there is any. It can be connected directly to a system power supply delivering 3.3 V or 5 V. It is recommended to connect this pin to ground when it is not used. 2.3.18 VREG_2V7 This pin is used for external decoupling of the 2.7 V internal regulator. The recommended decoupling capacitor is: 1 µF typ. (0.5 µF min., 10 µF max.). DS11254 - Rev 5 page 6/39 STUSB1602 Pin description 2.3.19 VDD This is the power supply from the USB power line for applications powered by VBUS. In source power role, this pin can be used to sense the voltage level of the main power supply providing the VBUS. It allows UVLO and OVLO thresholds to be considered independently on the VDD pin as additional conditions to enable the VBUS power path through the VBUS_EN_SRC pin (see Section 3.3.3 VBUS power path assertion). When the UVLO threshold detection is enabled, the VDD pin must be connected to the main power supply to establish the connection and to assert the VBUS power path. DS11254 - Rev 5 page 7/39 STUSB1602 General description 3 General description 3.1 CC interface The STUSB1602 controls the connection to the configuration channel (CC) pins, CC1 and CC2, through two main blocks: the CC line interface block and the CC control logic block. The CC line interface block is used to: • Configure termination mode on the CC pins relative to the power mode supported i.e. pull-up for source power role Monitor the CC pin voltage values relative to the attachment detection thresholds • • Configure VCONN on the unconnected CC pin when required • Protect the CC pins against overvoltage The CC control logic block is used to: • Execute the Type-C FSM relative to the Type-C power mode supported • Determine the electrical state for each CC pin relative to the detected thresholds • Evaluate the conditions relative to the CC pin states and the VBUS voltage value to transition from one state to another in the Type-C FSM • Detect and establish a valid source-to-sink connection • Determine the attached device mode: source, sink or accessory • Determine cable orientation to allow external routing of the USB data • Manage VBUS power capability: USB default, Type-C medium or Type-C high current mode • Handle hardware faults The CC control logic block implements the Type-C FSMs corresponding to the following Type-C power modes: • Source power role with accessory support • Sink power role with accessory support • Sink power role without accessory support • Dual power role with accessory support The default Type-C power mode is selected through NVM programming (see Section 6 Start-up configuration) and can be changed by software during operation through the I²C interface. 3.2 BMC interface Figure 3. BMC interface DS11254 - Rev 5 page 8/39 STUSB1602 VBUS power path control 3.2.1 BMC interface behavior When a connection is established on the STUSB1602 (any attached state), the CC line used for connection is also internally connected to BMC block which allows the communication on this line. The CC line is primary managed by CC control logic. BMC communication on the CC line must not interact with this control logic, as driving times of the line are short and are related to denounce times of the CC logic. BMC block handles BMC encoding and decoding. It also handles CC line activity detection, discharging the external MCU of such operations. The default state of the BMC block is to listen to the line (RX mode). TX mode is enabled only by assertion of the TX_EN signal via the external MCU. 3.2.2 TX mode When the TX_EN signal is asserted via MCU, BMC block goes to the TX state: • NSS signal is driven low, indicating to the SPI/MSP slave interface of the MCU that data are being transmitted on the CC line. MCU provides the data • The STUSB1602 drives the NSS signal low, informing SPI/MSP slave interface of the MCU that data are requested on the MISO line • The STUSB1602 clocks the SCLK signal • MCU presents data to be transmitted on the MISO line and data are sampled on the rising edge of SCLK (data must be stable on this edge) • Sampled data (from MISO line) are encoded by the BMC, and the resulting values drive the CC line according to USB PD standard When all data are transmitted, MCU drives the TX_EN pin low, and lists the end of transmission. The STUSB1602 ends transmission with a corresponding trailing edge termination. It then goes back into to default state and releases the CC line from the BMC driver to the pull-up/pull-down CC line interfaces. 3.2.3 RX mode RX mode is the default state of the BMC interface. In this mode, the receiver listens to the connected CC line. It does not interface with the CC line interfaces or the CC control logic. When all data are detected and received on the CC line, according to the activity described in the USB Power Delivery Standard, the BMC interface: • Drives NSS signal low Outputs the clock on the SCLK signal which is recovered from the BMC signal • • Outputs recovered data (from the BMC signal) on the MOSI line to the connected MCU. Data are valid on the SCLK falling edge and are sampled on this edge by the SPI/MSP interface of MCU When no more data are detected on the CC line, the NSS goes back to “high” which is its default state. This informs the MCU that no more activity is present on the bus. 3.3 VBUS power path control 3.3.1 VBUS monitoring The VBUS monitoring block supervises from the VBUS_SENSE pin the VBUS voltage on the USB Type-C receptacle side. It is used to check that the VBUS is within a valid voltage range: • • DS11254 - Rev 5 To establish a valid source-to-sink connection according to USB Type-C standard specifications To safely enable the VBUS power path through the VBUS_EN_SRC pin or VBUS_EN_SNK pin depending on the power role. page 9/39 STUSB1602 VBUS power path control It allows detection of unexpected VBUS voltage conditions such as undervoltage or overvoltage relative to the valid VBUS voltage range. When such conditions occur, the STUSB1602 reacts as follows: • At attachment, it prevents the source-to-sink connection and the VBUS power path assertion • After attachment, it deactivates the source-to-sink connection and disables the VBUS power path. In source power role, the device goes into error recovery state. In sink power role, the device goes into unattached state. The VBUS voltage value is adjusted automatically at attachment (vSafe5V) and via MCU at each PDO transition. Monitoring is then disabled during T_PDO_transition (i.e. the default value of 300 ms is changed through NVM programming). Additionally, if a transition occurs to a lower voltage, the discharge path is activated during this time. The valid VBUS voltage range is defined from the VBUS nominal voltage by a high threshold voltage and a low threshold voltage whose nominal values are respectively VBUS +5% and VBUS -5%. The nominal threshold limits can be shifted by a fraction of VBUS from +1% to +15% for the high threshold voltage and from -1% to -15% for the low threshold voltage. This means the threshold limits can vary from VBUS +5% to VBUS +20% for the high limit and from VBUS-5% to VBUS -20% for the low limit. The threshold limits are preset by default in NVM (see Section 8.3 Electrical and timing characteristics). The threshold limits can be changed independently through NVM programming (see Section 6 Start-up configuration) and also by software during attachment through the I²C interface. 3.3.2 VBUS discharge The monitoring block also handles the internal VBUS discharge path connected to the VBUS_SENSE pin. The discharge path is activated at detachment, or when the device goes into the error recovery state whatever the power role (see Section 3.7 Hardware fault management). The VBUS discharge path is enabled by default in NVM and can be disabled through NVM programming only (see Section 6 Start-up configuration). The discharge time duration is also preset by default in NVM (see Section 8.3 Electrical and timing characteristics). The discharge time duration can be changed through NVM programming (see Section 6 Start-up configuration) and also by software through the I²C interface. 3.3.3 VBUS power path assertion The STUSB1602 can control the assertion of the VBUS power path on the USB Type-C port, directly or indirectly, through the VBUS_EN_SRC pin and VBUS_EN_SNK pins according to the system power role. The tables below summarize the configurations and the operation conditions that determine the electrical value of the VBUS_EN_SRC and VBUS_EN_SNK pins during system operations. Table 5. Conditions for VBUS power path assertion in source power role Electrical value Pin 0 Operation conditions Type-C attached state VDD pin monitoring Attached.SRC or VDD > UVLO if VDD_UVLO enabled and/or VDD < OVLO if VDD_OVLO enabled UnorientedDebug Accessory.SRC or OrientedDebug Accessory.SRC VBUS_EN_SRC HiZ Any other state VDD < UVLO if VDD_UVLO enabled and/or VDD > OVLO if VDD_OVLO enabled VBUS_SENSE pin monitoring Comment VBUS is within valid voltage range if VBUS_VALID_RANGE enabled or VBUS > UVLO if The signal is asserted only if all the valid operation conditions are met VBUS _VALID_RANGE disabled VBUS is out of valid voltage range if VBUS_VALID_RANGE enabled or VBUS < UVLO if VBUS _VALID_RANGE disabled The signal is deasserted when at least one non valid operation condition is met As specified in the USB Type-C standard specification, the attached state “Attached.SRC” is reached only if the voltage on the VBUS receptacle side is at vSafe0V condition when a connection is detected. DS11254 - Rev 5 page 10/39 STUSB1602 VCONN supply Table 6. Conditions for VBUS power path assertion in sink power role Operation conditions Electrical Pin value Type-C attached state VDD pin VBUS_SENSE pin monitoring monitoring Comment VBUS is within valid voltage range if VBUS _VALID_RANGE Attached.SNK or 0 Debug Not applicable Accessory.SNK enabled or VBUS > UVLO if The signal is asserted only if all the valid operation conditions are met VBUS _VALID_RANGE disabled VBUS_EN_SNK VBUS is out of valid voltage range if VBUS _VALID_RANGE enabled Hiz Any other state Not applicable or VBUS < UVLO The signal is deasserted when at least one non valid operation condition is met if VBUS _VALID_RANGE disabled “Type-C attached state” refers to the Type-C FSM states as defined in the USB Type-C standard specification and as described in the I²C register CC_OPERATION_STATUS. “VDD pin monitoring” is valid only in source power role. Activation of the UVLO and OVLO threshold detections can be done through NVM programming (see Section 6 Start-up configuration) and also by software through the I²C interface. When UVLO and/or OVLO threshold detection is activated, VBUS_EN_SRC pin is asserted only if the device is attached and the valid threshold conditions on VDD are met. Once the VBUS_EN_SRC pin is asserted, the VBUS monitoring is done on VBUS_SENSE pin instead of the VDD pin. “VBUS_SENSE pin monitoring” relies, by default, on a valid VBUS voltage range. The voltage range condition can be disabled to consider UVLO threshold detection instead. The monitoring condition of the VBUS voltage can be changed through NVM programming (see Section 6 Start-up configuration) and also by software through the I²C interface. VBUS_EN_SRC pin is maintained asserted as long as the device is attached and a valid voltage condition on the VBUS is met. 3.4 VCONN supply 3.4.1 VCONN input voltage VCONN is a regulated supply used to power circuits in the plug of USB3.1 full-featured cables and other accessories. VCONN nominal operating voltage is 5.0 V +/- 5%. 3.4.2 VCONN application conditions VCONN pin of the STUSB1602 is connected to each CC pin (CC1 and CC2) across independent power switches. The STUSB1602 applies VCONN only to the CC pin not connected to the CC wire when all below conditions are met: DS11254 - Rev 5 page 11/39 STUSB1602 VCONN supply • • The device is configured in source power role VCONN power switches are enabled • • A valid connection to a sink is achieved Ra presence is detected on the unwired CC pin • A valid power source is applied to the VCONN pin with respect to a predefined UVLO threshold The STUSB1602 does not provide VCONN when it is in sink power role. 3.4.3 VCONN monitoring The VCONN monitoring block detects if VCONN power supply is available on the VCONN pin. It is used to check that VCONN voltage is above a pre-defined undervoltage lockout (UVLO) threshold to allow the enabling of the VCONN power switches. The default value of the UVLO threshold is 4.65 V typical for powered cables operating at 5 V. This value can be changed by software to 2.65 V typical to support VCONN-powered accessories that operate down to 2.7 V. 3.4.4 VCONN discharge The behavior of Type-C FSMs is extended to an internal VCONN discharge path capability on the CC pins in source power mode only. The discharge path is activated during 250 ms from sink detachment detection. This feature is disabled by default. It can be activated through NVM programming (see Section 6 Start-up configuration) and also by software through the I²C interface. 3.4.5 VCONN control and status The supplying conditions of VCONN across the STUSB1602 are managed through the I²C interface. Different I²C registers and bits are used specifically for this purpose. 3.4.6 VCONN power switches Features The STUSB1602 integrates two current limited high-side power switches with protection that tolerates high voltage up to 22 V on the CC pins. Each VCONN power switch presents the following features: • • • • • • DS11254 - Rev 5 Soft-start to limit inrush current Constant current mode overcurrent protection Adjustable current limit Thermal protection Undervoltage and overvoltage protections Reverse current and reverse voltage protections page 12/39 STUSB1602 VCONN supply Figure 4. VCONN to CC1 and CC2 power switch protections Current limit programming The current limit can be set within the range 100 mA to 600 mA by a step of 50 mA. The default current limit is programmed through NVM programming (see Section 6 Start-up configuration) and can be changed by software through the I²C interface. At power-on or after a reset, the current limit takes the default value preset in the NVM. Fault management The table below summarizes the different fault conditions that could occur during switch operation and the associated responses. An I²C alert is generated when a fault condition happens. Table 7. Fault management conditions Fault types Fault conditions Short-circuit CC output pin shorted to ground via very low resistive path causing rapid current surge Overcurrent CC output pin connected to a load Power switch limits the current and reduces the output voltage. I²C that sinks current above programmed alert is asserted immediately thanks to VCONN_SW_OCP_FAULT limit bits Overheating Junction temperature exceeding 145 °C due to any reason Power switch is disabled immediately until the temperature falls below 145 °C minus hysteresis of 15 °C. I²C alert is asserted immediately thanks to THERMAL_FAULT bit. The STUSB1602 goes into transient error recovery state Undervoltage VCONN input voltage drops below UVLO threshold minus hysteresis Power switch is disabled immediately until the input voltage rises above the UVLO threshold. I²C alert is asserted immediately thanks to VCONN_PRESENCE bit Overvoltage CC output pin voltage exceeds maximum operating limit of 6.0 V Power switch is opened immediately until the voltage falls below the voltage limit. I²C alert is asserted immediately thanks to VCONN_SW_OVP_FAULT bits CC output pin voltage exceeds Reverse current VCONN input voltage when the power switch is turned off DS11254 - Rev 5 Expected actions Power switch limits the current and reduces the output voltage. I²C alert is asserted immediately thanks to VCONN_SW_OCP_FAULT bits The reverse biased body diode of the back- to-back MOS switches is naturally disabled preventing current from flowing from CC output pin to the input page 13/39 STUSB1602 High voltage protection Fault types Fault conditions Expected actions CC output pin voltage exceeds Power switch is opened immediately until the voltage difference falls V input voltage of more than Reverse voltage CONN below the voltage limit. I²C alert is asserted immediately thanks to 0.35 V for 5 V when the power switch VCONN_SW_RVP_FAULT bits is turned on 3.5 High voltage protection The STUSB1602 can be safely used in systems or connected to systems that handle high voltage on the VBUS power path. The device integrates an internal circuitry on the CC pins that tolerates high voltages and ensures protection up to 22 V in case of unexpected short-circuits with the VBUS or in the case of a connection to a device supplying high voltage on the VBUS. 3.6 Dead battery Dead battery mode allows systems powered by a battery to be supplied by the VBUS when the battery is discharged and to start the battery charging process. This mode is also used in systems that are powered through the VBUS only. Dead battery mode is only supported in sink power role and dual power role configurations. It operates only if the CC1DB and CC2DB pins are connected respectively to the CC1 and CC2 pins. Thanks to these connections, the STUSB1602 presents a pull down termination on its CC pins and advertises itself as a sink even if the device is not supplied. When a source system connects to a USB Type-C port with the STUSB1602 configured in dead battery mode, it can detect the pull down termination, establish the source-to-sink connection, and provide the VBUS. The STUSB1602 is then supplied thanks to the VDD pin connected to the VBUS on the USB Type-C receptacle side. The STUSB1602 can finalize the source-to-sink connection and enable the power path on the VBUS thanks to the VBUS_EN_SNK pin which allows the system to be powered. 3.7 Hardware fault management The STUSB1602 handles hardware fault conditions related to the device itself and to the VBUS power path during system operation. When such conditions occur, the circuit goes into a transient error recovery state named ErrorRecovery in the Type-C FSM. In this state, the device de-asserts the VBUS power path by disabling the VBUS_EN_SRC pin and it removes the terminations from the CC pins during several tens of milliseconds. Then, it goes to the unattached source state. The STUSB1602 goes into error recovery state when at least one condition listed below is met: • If an overtemperature is detected, the “THERMAL_FAULT” flag is asserted • If an internal pull-up voltage on the CC pins is below the UVLO threshold, the “VPU_VALID” flag is asserted • If an overvoltage is detected on the CC pins, the “VPU_OVP_FAULT” flag is asserted • If the VBUS voltage is out of the valid voltage range during attachment, the “VBUS_VALID” flag is asserted • If an undervoltage is detected on the VDD pin during attachment when UVLO detection is enabled, the “VDD_UVLO_DISABLE” flag is asserted • If an overvoltage is detected on the VDD pin during attachment when OVLO detection is enabled, the “VDD_OVLO_DISABLE” flag is asserted The I²C register bits mentioned above give either the state of the hardware fault when it occurs or the setting condition to detect the hardware fault. DS11254 - Rev 5 page 14/39 STUSB1602 Accessory mode detection 3.8 Accessory mode detection The STUSB1602 supports the detection of audio accessory mode and debug accessory mode as defined in the USB Type-C standard specification with the following Type-C power modes (see Section 6 Start-up configuration): • Source power role with accessory support • Sink power role with accessory support • Sink power role without accessory support • Dual power role with accessory support 3.8.1 Audio accessory mode detection The STUSB1602 detects an audio accessory device when both CC1 and CC2 pins are pulled down to ground by an Ra resistor from the connected device. The audio accessory detection is advertised through the CC_ATTACHED_MODE bits of the I²C register CC_CONNECTION_STATUS. 3.8.2 Debug accessory mode detection The STUSB1602 detects a connection to a debug and test system (DTS) when it operates either in sink power role or in source power role. The debug accessory detection is advertised by the DEBUG1 and DEBUG2 pins as well as through the CC_ATTACHED_MODE bits of the I²C register CC_CONNECTION_STATUS. • In sink power role, a debug accessory device is detected when both the CC1 and CC2 pins are pulled up by an Rp resistor from the connected device. The voltage levels on the CC1 and CC2 pins give the orientation and current capability as described in the table below. The DEBUG1 pin is asserted to advertise the DTS detection and the A_B_SIDE pin indicates the orientation of the connection. The current capability of the DTS is given through the SINK_POWER_STATE bits of the I²C register CC_OPERATION_STATUS. Table 8. Orientation and current capability detection in sink power role # CC1 pin (CC2 pin) CC2 pin (CC1 pin) Charging A_B_SIDE pin Current capability state current CC1/CC2 SINK_POWER_STATE configuration (CC2/CC1) bit values Default HiZ (0) PowerDefault.SNK (source 1 Rp 3 A Rp 1.5 A supplies default USB current) 2 Rp 1.5 A Rp default 1.5 A HiZ (0) Power1.5.SNK (source supplies 1.5 A USB Type-C current) Power3.0.SNK (source 3 Rp 3 A Rp default 3.0 A HiZ (0) supplies 3.0 A USB Type-C current) PowerDefault.SNK (source 4 Rpdef/1.5 A/ 3 A Rpdef/1.5 A/ 3 A Default HiZ (HiZ) supplies default USB current) • DS11254 - Rev 5 In source power role, a debug accessory device is detected when both the CC1 and CC2 pins are pulled down to ground by an Rd resistor from the connected device. The orientation detection is performed in two steps as described in the table below. The DEBUG2 pin is asserted to advertise the DTS detection and the A_B_SIDE pin indicates the orientation of the connection. The orientation detection is advertised through the TYPEC_FSM_STATE bits of the I²C register CC_OPERATION_STATUS. page 15/39 STUSB1602 Accessory mode detection Table 9. Orientation detection in source power role # CC1 pin CC1 pin Detection (CC2 pin) (CC2 pin) process A_B_SIDE pin CC1/CC2 Orientation detection state (CC2/CC1) TYPEC_FSM_STATE bits value HiZ (HiZ) UnorientedDebugAcc essory.SRC HiZ (0) OrientedDebugAcces sory.SRC 1st step: debug 1 Rd Rd accessory mode detected 2nd step: orientation detected (DTS 2 Rd ≤Ra presents a resistance to GND with a value ≤ Ra on its CC2 pin) DS11254 - Rev 5 page 16/39 STUSB1602 Managing USB PD transactions 4 Managing USB PD transactions Due to specific HW/SW partitioning, the STUSB1602 requires a specific alignment between the lower protocol stack (managed by the STUSB1602) and the higher protocol stack (managed by the external MCU). Therefore, dedicated read and write I²C accesses are needed to perform the following actions: • Acknowledge a HW reset request Request a HW reset • • Perform a VCONN SWAP • • • DS11254 - Rev 5 Perform a data role SWAP Acknowledge a power role SWAP request Request a power role SWAP page 17/39 STUSB1602 I²C interface 5 I²C interface 5.1 Read and write operations The I²C interface is used to configure, control and read the operation status of the device. It is compatible with the Philips I²C BUS® (version 2.1). The I²C is a slave serial interface based on two signals: • SCL - serial clock line: input clock used to shift data SDA - serial data line: input/output bidirectional data transfers • A filter rejects the potential spikes on the bus data line to preserve data integrity. The bidirectional data line supports transfers up to 400 Kbit/s (fast mode). The data are shifted to and from the chip on the SDA line, MSB first. The first bit must be high (START) followed by the 7-bit device address and the read/write control bit. Two 7-bit device addresses are available for the STUSB1602 thanks to external programming of DevADDR0 through ADDR0 pin setting, i.e. 0x28 or 0x29. This allows two STUSB1602 devices to be connected on the same I²C bus. Table 10. Device address format Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 DevADDR6 DevADDR5 DevADDR4 DevADDR3 DevADDR2 DevADDR1 DevADDR0 R/W 0 1 0 1 0 0 ADDR0 0/1 Table 11. Register address format Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 RegADDR7 RegADDR6 RegADDR5 RegADDR4 RegADDR3 RegADDR2 RegADDR1 RegADDR0 Table 12. Register data format Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0 Figure 5. Read operation Slave Master Start Device addr 7 bits W A Reg address 8 bits Start bit = SDA falling when SCL= 1 Stop bit = SDA rising when SCL= 1 Restart bit = start after a start Acknowledg e = SDA forced low during a SCL clock DS11254 - Rev 5 A Restart Device addr 7 bits R A Reg data 8 bits A Reg data 8 bits Address n+1 A Reg data 8 bits A Stop Address n+2 page 18/39 STUSB1602 Timing specifications Figure 6. Write operation Start W A Device addr 7 bits A Reg data 8 bits Reg address 8 bits A A Reg data 8 bits A Stop Address n+2 Address n+1 Start bit = SD A fa lling when S CL = 1 Stop bit = SD A rising when SCL = 1 Restart bit = start after a start 5.2 Reg data 8 bits Timing specifications The device uses a standard slave I²C channel at speed up to 400 kHz. Table 13. I²C timing parameters - VDD = 5 V Symbol Min. Typ. Max. Unit 0 - 400 kHz Hold time (repeated) START condition 0.6 - - tlow LOW period of the SCL clock 1.3 - - thigh HIGH period of the SCL clock 0.6 - - tsu,dat Set-up time for repeated START condition 0.6 - - thd,dat Data hold time 0.04 - 0.9 tsu,dat Data setup time 100 - - Fscl thd,sta Parameter SCL clock frequency tr Rise time of both SDA and SCL signals 20 + 0.1 Cb - 300 tf Fall time of both SDA and SCL signals 20 + 0.1 Cb - 300 Set-up time for STOP condition 0.6 - - tbuf Bus free time between a STOP and START condition 1.3 - - Cb Capacitive load for each bus line - - 400 tsu,sto μs ns μs pF Figure 7. I²C timing diagram Vih SDA tf Vil t hd,st a tr t su,dat t high SCL t low DS11254 - Rev 5 t hd,dat t su,st a page 19/39 STUSB1602 Start-up configuration 6 Start-up configuration 6.1 User-defined parameters The STUSB1602 has a set of user-defined parameters that can be customized by NVM reprogramming and/or by software through the I²C interface. This feature allows the customer to change the preset configuration of the USB Type-C interface and to define a new configuration to meet specific customer requirements addressing various applications, use cases, or specific implementations. The NVM re-programming overrides the initial default setting to define a new default setting that is used at power-up or after a reset. The default value is copied at power-up, or after a reset, from the embedded NVM into dedicated I²C register bits. The NVM re-programming is possible only once with a customer password. When a default value is changed during functioning by software, the new setting remains in effect as long as the STUSB1602 runs or when it is changed again. But after power- off and power-up, or after a reset, the STUSB1602 takes back the default values defined in the NVM. 6.2 Default start-up configuration The table below lists the user-defined parameters and indicates the default start-up configuration of the STUSB1602. Three types of user-defined parameters are specified in the table with respect to the “Customization type” column: • SW: indicates parameters that can be customized only by software through the I²C interface during system operation • NVM: indicates parameters that can be customized only by NVM re-programming • NVM/SW: indicates parameters that can be customized by NVM re-programming and/or by software through the I²C interface during system operation Table 14. STUSB1602 user-defined parameters and default setting Parameter NVM/SW CC_CONNECTION_STATUS_AL_MASK 1b: interrupt masked 0Ch NVM/SW MONITORING_STATUS_AL_MASK 1b: interrupt masked 0Ch NVM/SW HW_FAULT_STATUS_AL_MASK 1b: interrupt masked 0Ch STANDBY_POWER_MODE_DISABLE 1b: disables standby power mode n.a. NVM/SW CC_POWER_MODE 011b: dual power role with accessory support 28h NVM/SW CC_CURRENT_ADVERTISED 01b: 1.5 A 18h NVM/SW CC_VCONN_DISCHARGE_EN 0b: VCONN discharge disabled on CC pin 18h NVM/SW CC_VCONN_SUPPLY_EN 1b: VCONN supply capability enabled on CC pin 18h NVM/SW CC_VCONN_SWITCH_ILIM 0000b: 350 mA 1Eh SW VCONN_MONITORING_EN 1b: enables UVLO threshold detection on VCONN pin 20h SW VCONN_UVLO_THRESHOLD 0b: high UVLO threshold of 4.65 V 20h NVM/SW SHIFT_HIGH_VBUS_LIMIT_SOURCE 0101b: in source power role, shifts nominal high voltage limit by 5% of VBUS 22h NVM/SW SHIFT_LOW_VBUS_LIMIT_SOURCE 0101b: in source power role, shifts nominal low voltage limit by -5% of VBUS 22h NVM DS11254 - Rev 5 Default value and description I²Cregister address Customization type page 20/39 STUSB1602 Default start-up configuration Customization type Default value and description I²Cregister address SW_RESET_EN 0b: device reset is performed from hardware RESET pin 23h NVM/SW VBUS_DISCHARGE_TIME_TO_0V 1010b: 840 ms discharge time 25h NVM/SW VBUS_DISCHARGE_TIME_TRANSITION 1010b: 200 ms discharge time 25h SW VBUS_DISCHARGE_DISABLE 0b: enables VBUS discharge path n. a. NVM/SW CC_POWER_MODE 011b: dual power role with accessory support 28h NVM/SW VDD_OVLO_DISABLE 0b: enables OVLO threshold detection on VDD pin 2Eh NVM/SW VBUS_VALID_RANGE_DISABLE 0b: enables valid VBUS voltagerange detection 2Eh NVM/SW VBUS_VSAFE0V_THRESHOLD 00b: VBUS vSafe0Vthreshold = 0.6 V 2Eh NVM/SW VDD_UVLO_DISABLE 1b: disables UVLO threshold detection on VDD pin 2Eh NVM DS11254 - Rev 5 Parameter page 21/39 STUSB1602 Application 7 Application The sections below are not part of the ST product specifications. They are intended to give a generic application overview to be used by the customer as a starting point for further implementation and customization. ST does not warrant compliancy with customer specifications. Full system implementation and validation are under the customer’s responsibility. 7.1 General description 7.1.1 Power supplies The STUSB1602 can be supplied in three different ways depending on the targeted application: • Through the VDD pin only for applications powered by VBUS that operate either in source power role • • 7.1.2 Through the VSYS pin only for AC powered applications with a system power supply delivering 3.3 V or 5 V Through the VDD and VSYS pins for applications powered by VBUS with a system power supply delivering 3.3 V or 5 V. When both VDD and VSYS power supplies are present, the low power supply VSYS is selected when VSYS voltage is above 3.1 V. Otherwise VDD is selected Connection to MCU or application processor The I²C interface is used to provide extensive functionality during system operation. For instance: 1. Define the port configuration during system boot (in case NVM parameters are not customized during manufacturing) 2. Change the default configuration at any time during operation 3. Adjust the port power capability in source power role according to contextual power availability and/or the power partitioning with other ports 4. Save system power by shutting down the DC-DC converter according to the attachment detection state 5. Provide a diagnostic of the Type-C connection and the VBUS power path in real time DS11254 - Rev 5 page 22/39 STUSB1602 USB Type-C typical applications 7.2 USB Type-C typical applications 7.2.1 Source type application schematic Figure 8. Typical STUSB1602 implementation in source type application STL9P3LLH6 VBUS C2 R1 10K VI O 1µF C1 10µF Application Processor MI SO 14 MOSI 11 NSS 12 SCLK 16 TX_EN 15 7 SCL SDA 8 ALERT# 9 6 RESET R11 10K SPC5 Power Architecture 32-bit MCUs MISO MOSI NSS GND 19 U1 NC 24 VBUS_EN_SRC R8 R9 R3 10K 10K 10K VI O VDD R6 R7 10K 10K 22 R5 10K VSYS R10 R4 10K 10K GND 20 R2 1K VBUS_SENSE SSI CC1GND SCLK CC1 TX_EN CC2 SCL SDA I²C CC2GND STUSB1602 AL ERT# VReg_1V2 RESET R12 100K VReg_2V7 18 To GND/VIO 17 ADDR0 13 A_B_SIDE ADDR0 VCONN GND 10 CC2 D2 GND Type C connector GND 2 4 5 GND 21 C3 1µF 23 C4 1µF 5V A_B_Side D1 GND 1 GND To Super Speed M UX CC1 ESDA25 L Management Unit STL9P3LLH6 VBUS 3V3 SMM4 F24A Power GND 3 EP 0 C5 GND 10µF GND Table 15. Default setting for a source type application I²C register address I²C register field name I²C register reset value/description Customization type 0Eh START_UP_POWER_MODE 0b: device starts in normal mode NVM/SW 18h CC_CURRENT_ADVERTISED 01b: 1.5 A NVM/SW 18h CC_VCONN_DISCHARGE_EN 0b: VCONN discharge disabled on CC pin NVM/SW 18h CC_VCONN_SUPPLY_EN 1b: VCONN supply capability enabled on CC pin NVM/SW 1Eh CC_VCONN_SWITCH_ILIM 0000b: 350 mA NVM/SW 20h VCONN_MONITORING_EN 1b: enables UVLO threshold detection on VCONN pin SW 20h VCONN_UVLO_THRESHOLD 0b: high UVLO threshold of 4.65 V SW 22h SHIFT_HIGH_VBUS_LIMIT_SOURCE 0101b: in source power role, shifts nominal high voltage limit by +5% of VBUS NVM/SW 22h SHIFT_LOW_VBUS_LIMIT_SOURCE 0101b: in source power role, shifts nominal low voltage limit by -5% of VBUS NVM/SW 25h VBUS_DISCHARGE_TIME_TO_0V 1010b: 840 ms discharge time NVM/SW 25h VBUS_DISCHARGE_TIME_TRANSITION 1010b: 200 ms discharge time NVM/SW 26h VBUS_DISCHARGE_EN 1b: enables the VBUS discharge path 28h POWER_MODE 000b: source power role with accessory support 2Eh VDD_OVLO_DISABLE 0b: enables OVLO threshold detection on VDD pin SW 2Eh VBUS_RANGE_DISABLE 0b: enables VBUS voltage range detection SW 2Eh VBUS_VSAFE0V_THRESHOLD 00b: VBUS vSafe0V threshold = 0.6 V SW DS11254 - Rev 5 NVM/SW NVM/SW (1) page 23/39 STUSB1602 USB Type-C typical applications I²C register address 2Eh I²C register field name VDD_UVLO_DISABLE I²C register reset value/description Customization type 1b: disables UVLO threshold detection on VDD pin SW 1. Italic text indicates this parameter is customized by NVM re-programming. Table 16. Conditions for VBUS power path assertion in source power role Pin Operation conditions Electrical value Type-C attached state 0 Attached.SRC or UnorientedDebug Accessory.SRC or OrientedDebug Accessory.SRC VBUS_EN_SRC HiZ Anyother state Comment VDD pin monitoring VBUS_SENSEpin monitoring VDD < OVLO if VDD pin is supplied VBUS within valid voltage range The signal is asserted only if all the valid operation conditions are met VDD > OVLO if VDD pin is supplied VBUS is out ofvalid voltage range The signal is de-asserted when at least one non valid operation condition is met. Table 17. Source power role with accessory support Connection state CC1 pin CC2 pin Type-C device state CC_OPERATION_STATUS register @11h A_B_SIDE pin VCONN supply VBUS_EN_SRC pin CC_CONNECTION_STATUS register @0Eh Nothing attached Open Open Unattached.SRC HiZ OFF HiZ 00h Rd Open HiZ OFF 0 2Dh Open Rd 0 OFF 0 2Dh Powered cable withoutsink attached Open Ra HiZ OFF HiZ 00h Ra Open HiZ OFF HiZ 00h Powered cable with sink attached or VCONNpowered accessory attached Rd Ra HiZ CC2 0 2Fh Ra Rd 0 CC1 0 2Fh Debug accessory mode attached source role Rp Rp HiZ OFF HiZ 00h Debug accessory mode attached sink role Rd Rd HiZ OFF 0 6Dh Rd ≤Ra HiZ OFF 0 6Dh ≤ Ra Rd Accessory.SRC 0 OFF 0 6Dh Ra Ra AudioAccessory HiZ OFF HiZ 81h Sink attached Debug accessory mode attached sink role Audio adapter accessory mode attached DS11254 - Rev 5 Attached.SRC Unattached.SRC Attached.SRC Unattached.SRC UnorientedDebug Accessory.SRC OrientedDebug page 24/39 STUSB1602 USB Type-C typical applications The value of the CC1 and CC2 pins is defined from a termination perspective and corresponds to the termination presented by the connected device. The CC_CONNECTION_STATUS register can report other values than the one presented in Table 17. Source power role with accessory support. In this table, it reflects the state transitions in Type-C FSM that can be ignored from the application stand point. DS11254 - Rev 5 page 25/39 STUSB1602 Electrical characteristics 8 Electrical characteristics 8.1 Absolute maximum ratings All voltages are referenced to GND. Table 18. Absolute maximum ratings Symbol Parameter VDD Supply voltage 28 VSYS Supply voltage on VSYS pin 6 VCC1, VCC2, VCC1DB, VCC2DB High voltage on CC pins 22 VVBUS_EN_SRC, VVBUS_EN_SNK, VVBUS_SENSE High voltage on VBUS pins 28 VSCL, VSDA, VALERT#, VRESET, VA_B_SIDE Operating voltage on I/O pins VMOSI, VMISO, VNSS, VTX_EN, VSCLK VCONN VCONN voltage TSTG Storagetemperature TJ Maximum junction temperature ESD 8.2 Value Unit V -0.3 to 6 6 -55 to 150 °C 145 HBM 4 CDM 1.5 kV Operating conditions Table 19. Operating conditions Symbol Parameter Value VDD Supply voltage 4.1 to 22 VSYS Supply voltage on VSYS pin 3.0 to 5.5 VCC1, VCC2, VCC1DB, VCC2DB CC pins -0.3 to 5.5 VVBUS_EN_SRC, VVBUS_EN_SNK,VVBUS_SENSE High voltage pins 0 to 22 Operating voltage on I/O pins 0 to 4.5 VCONN VCONN voltage 2.7 to 5.5 ICONN VCONN rated current (default = 0.35 A) 0.1 to 0.6 A TA Operating temperature -40 to 105 °C VSCL, VSDA, VALERT#, VRESET, VA_B_SIDE VMOSI, VMISO, VNSS, VTX_EN, VSCLK Note: DS11254 - Rev 5 Unit V The transient voltage on the CC1 and CC2 pins drops to -0.3 during BMC communication. page 26/39 STUSB1602 Electrical and timing characteristics 8.3 Electrical and timing characteristics Unless otherwise specified: VDD = 5 V, TA = +25 °C, all voltages are referenced to GND. Table 20. Electrical characteristics Symbol Parameter Conditions IDD (SRC) Current consumption Device idle as a SOURCE (not connected, no communication) IDD (SNK) Current consumption Device idle as a SINK (not connected, no communication) ISTDBY Standby current consumption Device in standby (not connected, low power) Min. Typ. VSYS @ 3.3 V 158 VDD @ 5.0 V 188 VSYS @ 3.3 V 113 VDD @ 5.0 V 140 VSYS @ 3.3 V 33 VDD @ 5.0 V 53 Max. Unit µA µA CC1 and CC2 pins IP-USB IP-1.5 CC current sources IP-3.0 CC pin voltage, VCC = -0.3 to 2.6 V, 40 °C < TA < 105 °C -20% 80 +20% -8% 180 +8% -8% 330 +8% VCCO CC open pin voltage CC unconnected, VDD = 3.0 to 5.5 V 2.75 Rd CC pull-down resistors 40 °C < TA < 105 °C -10% VCCDB-1.5 CC pin voltage in dead battery µA V 5.1 External IP = 180 μA applied into CC, 10% kΩ 1.2 VDD = 0 V, dead-battery function enabled V External IP = 330 μA applied into CC, VCCDB-3.0 condition RINCC CC input impedance Pull-up and pull-down resistors off 200 VTH0.2 Detection threshold 1 Max. Ra detection by DFP at IP = IP-USB, min. IP_USB detection by UFP on Rd, min CC voltage for connected UFP 0.15 0.20 0.25 V VTH0.4 Detection threshold 2 Max. Ra detection by DFP at IP = IP-1.5 0.35 0.40 0.45 V VTH0.66 Detection threshold 3 Min. IP_1.5 detection by UFP on Rd 0.61 0.66 0.70 V VTH0.8 Detection threshold 4 Max. Ra detection by DFP at IP = IP-3.0 0.75 0.80 0.85 V VTH1.23 Detection threshold 5 Min. IP_3.0 detection by UFP on Rd 1.16 1.23 1.31 V VTH1.6 Detection threshold 6 Max. Rd detection by DFP at IP = IP-USB and IP = IP-1.5 1.50 1.60 1.65 V VTH2.6 Detection threshold 7 Max. Rd detection by DFP at IP-3.0, max. CC voltage for connected UFP 2.45 2.60 2.75 V IVCONN = 0.2 A- 0.25 0.50 0.975 Ω Programmable current limit threshold 85 100 125 (from 100 mA to 600 mA by step of 50 mA) 300 350 400 2.0 VDD = 0 V, dead-battery function enabled kΩ VCONN protection DS11254 - Rev 5 RVCONN VCONN power path resistance IOCP Overcurrent protection mA page 27/39 STUSB1602 Electrical and timing characteristics Symbol Parameter Conditions IOCP Overcurrent protection (from 100 mA to 600 mA by step of 50 mA) VOVP Output overvoltage protection VUVP Input undervoltage protection Programmable current limit threshold Min. Typ. Max. Unit 550 600 650 mA 5.9 6.0 6.1 V Low UVLO threshold 2.6 2.7 High UVLO threshold (default) 4.6 4.8 V VBUS monitoring and driving VTHUSB VBUS presence threshold VBUS safe 0 V threshold (vSafe0V) VTH0V RDISUSB VSYS = 3.0 to 5.5 V 3.8 3.9 4.0 V VSYS = 3.0 to 5.5 V 0.5 0.6 0.7 V Programmable threshold 0.8 0.9 1 V Programmable threshold from 0.6 V to 1.8 V 1.1 1.2 1.3 V Default VTHOV = 0.6 V 1.7 1.8 1.9 V 600 700 800 Ω VBUS discharge resistor VBUS discharge time to 0V Default TDISPARAM = 840 ms, the coefficient TDISPARAM is programmable by NVM 70 84 100 VBUS discharge time to PDO Default TDISPARAM = 200 ms, the coefficient TDISPARAM is programmable by NVM 20 24 28 VMONUSBH VBUS monitoring high voltage threshold VBUS = nominal target value, default VMONUSBH = VBUS +10 %, the threshold limit is programmable by NVM from +5 % to +20 % VBUS + 10% V VMONUSBL VBUS monitoring low voltage threshold VBUS = nominal target value, default VMONUSBL = VBUS -10 %, the threshold limit is programmable by NVM from -20 % to -5 % VBUS 10% V VIH High level input voltage VIL Low level input voltage VOL Low level output voltage TDISUSB (1) ms Digital input/output (SCL, SDA, ALERT#, A_B_SIDE, MOSI, MISO, NSS, TX_EN, SCLK) 1.2 Ioh = 3 mA V 0.35 V 0.4 V 0.4 V 20 V open drain outputs (VBUS_EN_SRC, VBUS_EN_SNK) VOL Low level output voltage Ioh = 3 mA 1. TDISPARAM DS11254 - Rev 5 page 28/39 STUSB1602 Package information 9 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 9.1 QFN24 EP 4x4 mm package information Figure 9. QFN24 EP 4x4 mm package outline DS11254 - Rev 5 page 29/39 STUSB1602 QFN24 EP 4x4 mm package information Table 21. QFN24 EP 4x4 mm mechanical data Ref. Dimensions (mm) Inches Min. Typ. Max. Min. Typ. Max. A 0.80 0.90 1.00 0.031 0.035 0.039 A1 0.00 0.02 0.05 0.000 0.001 0.002 b 0.18 0.25 0.30 0.007 0.010 0.012 D 3.95 4.00 4.05 0.156 0.157 0.159 D2 2.55 2.70 2.80 0.100 0.106 0.110 E 3.95 4.00 4.05 0.156 0.157 0.159 E2 2.55 2.70 2.80 0.100 0.106 0.110 e 0.45 0.50 0.55 0.018 0.020 0.022 K 0.15 L 0.30 0.016 0.020 0.006 0.40 0.50 0.012 Figure 10. QFN24 EP 4x4 mm recommended footprint DS11254 - Rev 5 page 30/39 STUSB1602 QFN24 EP 4x4 mm packing information 9.2 QFN24 EP 4x4 mm packing information Figure 11. Reel outline Table 22. Tape dimensions 9.3 Package Pitch Carrier width Reel QFN24 EP 4x4 8 mm 12 mm 13" Thermal Information Table 23. Thermal information Symbol DS11254 - Rev 5 Parameter Value Unit RθJA Junction-to-ambient thermal resistance 37 °C/W RθJC Junction-to-case thermal resistance 5 °C/W page 31/39 STUSB1602 Terms and abbreviations 10 Terms and abbreviations Table 24. List of terms and abbreviations Term Description Audio adapter accessory mode. It is defined by the presence of Ra/Ra on the CC1/CC2 pins. Accessory modes DS11254 - Rev 5 Debug accessory mode. It is defined by the presence of Rd/Rd on CC1/CC2 pins in source power role or Rp/Rp on CC1/CC2 pins in sink power role. DFP Downstream facing port, specifically associated with the flow of data in a USB connection. Typically, the ports on a HOST or the ports on a hub to which devices are connected. In its initial state, DFP sources VBUS and VCONN, and supports data. DRP Dual-role port. A port that can operate as either a source or a sink. The port role may be changed dynamically. Sink Port asserting Rd on the CC pins and consuming power from the VBUS; most commonly a device. Source Port asserting Rp on the CC pins and providing power over the VBUS; most commonly a host or hub DFP. UFP Upstream facing port, specifically associated with the flow of data in a USB connection. The port on a device or a hub that connects to a host or the DFP of a hub. In its initial state, the UFP sinks the VBUS and supports data. page 32/39 STUSB1602 Revision history Table 25. Document revision history Date Revision 27-Jan-2017 1 Initial release. 05-Apr-2017 2 Updated Features section and ESD reference in Table 28: Absolute maximum ratings. 04-Aug-2017 3 Updated Table 1: Device summary. 19-Nov-2020 4 Updated Table 18, Table 21 and Table 24. 5 Updated Section Features, Section Applications, Section 1 Functional description, Figure 2. STUSB1602 pin connections, Section 6.2 Default start-up configuration. 19-Jul-2021 Changes Updated Table 1. Pin functions list , Table 18. Absolute maximum ratings and Table 19. Operating conditions. DS11254 - Rev 5 page 33/39 STUSB1602 Contents Contents 1 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Inputs / outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 3 2.1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3.1 CC1 / CC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3.2 CC1DB/CC2DB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3.3 VCONN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3.4 RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3.5 I²C interface pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3.6 GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3.7 MOSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3.8 NSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3.9 MISO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.10 TX_EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.11 SCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.12 A_B_SIDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.13 VBUS_SENSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.14 VBUS_EN_SNK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.15 VBUS_EN_SRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.16 VREG_1V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.17 VSYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.18 VREG_2V7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.19 VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 General description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 3.1 CC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 BMC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 DS11254 - Rev 5 3.2.1 BMC interface behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2.2 TX mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2.3 RX mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 page 34/39 STUSB1602 Contents 3.3 3.4 VBUS power path control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3.1 VBUS monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3.2 VBUS discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3.3 VBUS power path assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 VCONN supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4.1 VCONN input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4.2 VCONN application conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4.3 VCONN monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4.4 VCONN discharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4.5 VCONN control and status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4.6 VCONN power switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.5 High voltage protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.6 Dead battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7 Hardware fault management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.8 Accessory mode detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.8.1 Audio accessory mode detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.8.2 Debug accessory mode detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 Managing USB PD transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 5 I²C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 6 7 5.1 Read and write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.2 Timing specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Start-up configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 6.1 User-defined parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.2 Default start-up configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 7.1 7.2 General description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7.1.1 Power supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7.1.2 Connection to MCU or application processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 USB Type-C typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.2.1 8 Source type application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 DS11254 - Rev 5 page 35/39 STUSB1602 Contents 9 10 8.1 Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 8.2 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 8.3 Electrical and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 9.1 [Package name] package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 9.2 QFN24 EP 4x4 mm packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 9.3 Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Terms and abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 DS11254 - Rev 5 page 36/39 STUSB1602 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Pin functions list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin function descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . I²C interface pins list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . USB data MUX select. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conditions for VBUS power path assertion in source power role Conditions for VBUS power path assertion in sink power role . Fault management conditions . . . . . . . . . . . . . . . . . . . . . . . Orientation and current capability detection in sink power role . Orientation detection in source power role. . . . . . . . . . . . . . . Device address format . . . . . . . . . . . . . . . . . . . . . . . . . . . . Register address format . . . . . . . . . . . . . . . . . . . . . . . . . . . Register data format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I²C timing parameters - VDD = 5 V . . . . . . . . . . . . . . . . . . . . STUSB1602 user-defined parameters and default setting . . . . Default setting for a source type application. . . . . . . . . . . . . . Conditions for VBUS power path assertion in source power role Source power role with accessory support. . . . . . . . . . . . . . . Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . QFN24 EP 4x4 mm mechanical data . . . . . . . . . . . . . . . . . . Tape dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . DS11254 - Rev 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 4 . 5 . 6 10 11 13 15 16 18 18 18 19 20 23 24 24 26 26 27 30 31 31 32 33 page 37/39 STUSB1602 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. DS11254 - Rev 5 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . STUSB1602 pin connections . . . . . . . . . . . . . . . . . . . . . . . . BMC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCONN to CC1 and CC2 power switch protections . . . . . . . . . . Read operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I²C timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical STUSB1602 implementation in source type application . QFN24 EP 4x4 mm package outline . . . . . . . . . . . . . . . . . . . QFN24 EP 4x4 mm recommended footprint . . . . . . . . . . . . . . Reel outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 3 . 8 13 18 19 19 23 29 30 31 page 38/39 STUSB1602 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2021 STMicroelectronics – All rights reserved DS11254 - Rev 5 page 39/39
STUSB1602QTR 价格&库存

很抱歉,暂时无法提供与“STUSB1602QTR”相匹配的价格&库存,您可以联系我们找货

免费人工找货