0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TDA75610S-48X

TDA75610S-48X

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    Flexiwatt27

  • 描述:

    IC AMP AUD QUAD BTL FLEXIWATT27

  • 数据手册
  • 价格&库存
TDA75610S-48X 数据手册
TDA75610SLV 4 x 45 W power amplifier with full I2C diagnostics, high efficiency and low voltage operation Datasheet - production data  Improved SVR suppression during battery transients  Capable to operate down to 6 V (e.g. “Start-stop”) '!0'03 '!0'03 Flexiwatt27 (Horiz.) Flexiwatt27 (SMD) '!0'03 '!0'03 Flexiwatt27 (Vert.) PowerSO36 Features Description The TDA75610SLV is a new quad bridge car radio amplifier, designed in BCD technology, in order to include a wide range of innovative features in a very compact and flexible device. The TDA75610SLV is equipped with the most complete diagnostics array that communicates the status of each speaker through the I2C bus.  Multipower BCD technology  MOSFET output power stage  DMOS power output  High efficiency (class SB)  High output power capability 4x25 W/4 Ω @ 14.4 V, 1 kHz, 10% THD, 4 x 45 W max power  2 Ω driving capability (64 W max power)  Full I2C bus driving: – Standby – Independent front/rear soft play/mute – Selectable gain 26 dB /16 dB (for low noise line output function) – High efficiency enable/disable – I2C bus digital diagnostics (including DC and AC load detection)  Flexible fault detection through integrated diagnostic  DC offset detection  Four independent short circuit protection  Clipping detector pin with selectable threshold (2 %/10 %) The dissipated output power under average listening condition is significantly reduced when compared to the conventional class AB solutions, thanks to the patented 'class SB' efficiency concept. TDA75610SLV has been designed to be very robust against several kinds of misconnections. It is moreover compliant to the most recent OEM specifications for low voltage operation (so called 'start-stop' battery profile during engine stop), helping car manufacturers to reduce the overall emissions and thus contributing to environment protection. The ST BCD in combination with 'class SB' efficiency and 'intelligent power' has been sold in million of units to most known car manufacturers, the TDA75610SLV is the latest and most compact member of this power amplifiers family. Table 1. Device summary Order code Package Packing TDA75610S-8ZX Tube Tape and reel TDA75610S-8ZT Flexiwatt27 (SMD)  Standby/mute pin TDA75610S-48X Flexiwatt27 (vert.) Tube  Linear thermal shutdown with multiple thermal warning TDA75610S-QLX Flexiwatt27 (hor.) Tube  ESD protection TDA75610S-ZSX  Very robust against misconnections TDA75610S-ZST December 2014 This is information on a product in full production. Tube PowerSO36 DocID025599 Rev 6 Tape and reel 1/42 www.st.com Contents TDA75610SLV Contents 1 Block diagram and application circuits . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 5 3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 3.4 Typical electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Diagnostics functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1 Turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2 Permanent diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3 Output DC offset detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.4 AC diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Multiple faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.1 6 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.1 7 8 9 2/42 Faults availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Fast muting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Battery transitions management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.1 Low voltage operation (“start stop”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.2 Advanced battery management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Application suggestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 8.1 Inputs impedance matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 8.2 High efficiency introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 9.1 I2C programming/reading sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 9.2 Address selection and I2C disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 DocID025599 Rev 6 TDA75610SLV 9.3 Contents I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 9.3.1 Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 9.3.2 Start and stop conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 9.3.3 Byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 9.3.4 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 10 Software specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 11 Examples of bytes sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 12 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 13 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 DocID025599 Rev 6 3/42 3 List of tables TDA75610SLV List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. 4/42 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin list description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Double fault table for turn on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 IB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 IB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 DB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 DB3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 DB4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 DocID025599 Rev 6 TDA75610SLV List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Application circuit for Flexiwatt packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Application circuit for PowerSO package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin connection diagram of the Flexiwatt27 (top of view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin connection diagram of the PowerSO36 slug up (top of view). . . . . . . . . . . . . . . . . . . . . 8 Quiescent current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Output power vs. supply voltage (4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Output power vs. supply voltage (2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Distortion vs. output power (4 Ω, STD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Distortion vs. output power (4 Ω, HI-EFF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Distortion vs. output power (2 Ω, STD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Distortion vs. output power (2 Ω, HI-EFF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Distortion vs. output power Vs = 6 V (4 Ω, STD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Distortion vs. frequency (4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Distortion vs. frequency (2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Crosstalk vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Supply voltage rejection vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Power dissipation vs. average output power (audio program simulation, 4 Ω). . . . . . . . . . 17 Power dissipation vs. average output power (audio program simulation, 2 Ω). . . . . . . . . . 17 Total power dissipation and efficiency vs. output power (4 Ω, HI-EFF, Sine). . . . . . . . . . . 17 Total power dissipation and efficiency vs. output power (4 Ω, STD, Sine) . . . . . . . . . . . . . 17 ITU R-ARM frequency response, weighting filter for transient pop. . . . . . . . . . . . . . . . . . . 17 Turn-on diagnostic: working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 SVR and output behavior (Case 1: without turn-on diagnostic) . . . . . . . . . . . . . . . . . . . . . 18 SVR and output pin behavior (Case 2: with turn-on diagnostic) . . . . . . . . . . . . . . . . . . . . . 19 Short circuit detection thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Load detection thresholds - high gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Load detection threshold - low gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Restart timing without diagnostic enable (permanent) - Each 1 mS time, a sampling of the fault is done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Restart timing with diagnostic enable (permanent). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Current detection high: load impedance |Z| vs. output peak voltage . . . . . . . . . . . . . . . . . 22 Current detection low: load impedance |Z| vs. output peak voltage . . . . . . . . . . . . . . . . . . 22 Thermal foldback diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Worst case battery cranking curve sample 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Worst case battery cranking curve sample 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Upwards fast battery transitions diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Inputs impedance matching circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 High efficiency - basic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Data validity on the I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Timing diagram on the I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Acknowledge on the I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Flexiwatt27 (horizontal) mechanical data and package dimensions. . . . . . . . . . . . . . . . . . 37 Flexiwatt27 (vertical) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . 38 Flexiwatt27 (SMD) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . 39 PowerSO36 (slug up) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . 40 DocID025599 Rev 6 5/42 5 Block diagram and application circuits 1 TDA75610SLV Block diagram and application circuits Figure 1. Block diagram #,+ $!4! 6## 6## 34 "9-54% 4HERMAL 0ROTECTION $UMP )#"53 -UTE -UTE ). #$?/54 #LIP $ETECTOR 2EFERENCE & /54 D" /54 3HORT#IRCUIT 0ROTECTION $IAGNOSTIC ). 2 /54 D" ). /54 3HORT#IRCUIT 0ROTECTION $IAGNOSTIC & /54 D" ). 3HORT#IRCUIT 0ROTECTION $IAGNOSTIC 2 /54 /54 D" 3HORT#IRCUIT 0ROTECTION $IAGNOSTIC !#?'.$ 362 !$SEL 3'.$ 4! " /54 !$3%, )#$)3 07 ?'.$ '!0'03 Figure 2. Application circuit for Flexiwatt packages 6S  # # —& —& 666CC 6CC K7 34 "9 6CC     /54  $!4!   #,+   )#"53 /54  ). ).  ). #—& #—& —   4$!3,6   /54  ). ).  ). #—& #—&     /54   3'.$   !#'.$ # —& !$3%,)#$)3     362  4!" 2K7 # —& 6 #$  2EFERTOCHAPTERFORCONNECTIONSUGGESTIONS  —&ISTHEMINIMUMRECOMMENDEDVALUE —&SUGGESTEDASWELL 6/42 DocID025599 Rev 6 '!0'03 TDA75610SLV Block diagram and application circuits Figure 3. Application circuit for PowerSO package 6S  # —& 6 6 6CC 666CC # —& 6CC 6CC 6CC K7 34 "9  6CC      /54  $!4!   #,+   )#"53 /54  ). ). #—&  #—& #  —&   7'$6/9=6;  /54  ). ).  ). #—&   #—& —   /54   3'.$    !#'.$ # —& !$3%,)#$)3   362  4!" 2K7 # —& 6 #$  2EFERTOCHAPTERFORCONNECTIONSUGGESTIONS  —&ISTHEMINIMUMRECOMMENDEDVALUE —&SUGGESTEDASWELL DocID025599 Rev 6 '!0'03 7/42 41 Pin description 2 TDA75610SLV Pin description For channel name reference: CH1 = LF, CH2 = LR, CH3 = RF and CH4 = RR. Figure 4. Pin connection diagram of the Flexiwatt27 (top of view)  !$3%,)#$)3  !$3%,)#$)3  $!4!  $!4!  07'.$  07'.$  /54  /54  #+  #+  /54  /54  6##  6##  /54  /54  07'.$  07'.$  /54  /54  !#'.$  !#'.$  ).  ).  ).  ).  3'.$  3?'.$  ).  ).  ).  ).  362  362  /54  /54  07'.$   /54  /54  6##  6##  /54  /54  #$ /54  #$ /54  /54  /54  07'.$  07'.$  34"9  34"9  4!"  4!" &LEXIWATTVERTICAL '!0'03 &LEXIWATTHORIZONTAL3-$ 07'.$ '!0'03 Figure 5. Pin connection diagram of the PowerSO36 slug up (top of view) /54   4!" 6##   /54 07'.$   #+ /54   07'.$ !#'.$   .# ).   6## ).   $!4! 3'.$   /54 .#   !$3%, ).   /54 .#   34"9 ).   6## 362   07'.$ .#   .# /54   .# 07'.$   #$ 6##   /54 /54   .# '!0'03 8/42 DocID025599 Rev 6 TDA75610SLV Pin description Table 2. Pin list description Pin # Pin # (PowerSo36) (Flexiwatt27) Pin name Function 1 1 TAB - 2 22 OUT4+ 3 23 CK 4 25 PWGND4 5 - NC 6 - VCC4 Supply voltage pin4 7 26 DATA I2C bus data pin/gain selector 8 24 OUT4- Channel 4, - output 9 27 ADSEL Address selector pin/ I2C bus disable (legacy select) 10 4 OUT2- Channel 2, - output 11 2 STBY Standby pin 12 21 VCC2 Supply voltage pin2 13 3 PWGND2 14 - NC Not connected 15 - NC Not connected 16 5 CD Clip detector output pin 17 6 OUT2+ 18 - NC 19 8 OUT1- Channel 1, - output 20 7 VCC1 Supply voltage pin1 21 9 PWGND1 22 10 OUT1+ 23 - NC 24 11 SVR SVR pin 25 12 IN1 Input pin, channel 1 26 - NC Not connected 27 13 IN2 Input pin, channel 2 28 - NC Not connected 29 14 SGND 30 15 IN4 Input pin, channel 4 31 16 IN3 Input pin, channel 3 32 17 AC GND 33 18 OUT3+ 34 19 PWGND3 35 - VCC3 Supply voltage pin3 36 20 OUT3- Channel 3, - output Channel 4, + output I2C bus clock/HE selector Channel 4 output power ground Not connected Channel 2 output power ground Channel 2, + output Not connected Channel 1 output power ground Channel 1, + output Not connected Signal ground pin AC ground Channel 3, + output Channel 3 output power ground DocID025599 Rev 6 9/42 41 Electrical specifications TDA75610SLV 3 Electrical specifications 3.1 Absolute maximum ratings Table 3. Absolute maximum ratings Symbol Parameter (1) Value Unit 18 V Vop Operating supply voltage VS DC supply voltage 28 V Peak supply voltage (for tmax = 50 ms) 50 V -0.3 to 0.3 V -0.3 to 6 V Vpeak GNDmax VCK, VDATA Ground pins voltage CK and DATA pin voltage Vcd Clip detector voltage -0.3 to Vop V Vstby STBY pin voltage -0.3 to Vop V IO Ptot Tstg, Tj Tamb Output peak current (not repetitive tmax = 100ms) 8 Output peak current (repetitive f > 10 kHz) 6 Power dissipation Tcase = 70°C 85 W -55 to 150 °C -40 to 105 °C Storage and junction temperature(2) Operative temperature range A 1. For RL = 2 Ω the output current limit might be reached for VOP > 16 V; thus triggering self-protection. 2. A suitable dissipation system should be used to keep Tj inside the specified limits. 3.2 Thermal data Table 4. Thermal data Symbol Rth j-case 10/42 Parameter Thermal resistance junction-to-case DocID025599 Rev 6 PowerSO Flexiwatt Max. 1 1 Unit °C/W TDA75610SLV 3.3 Electrical specifications Electrical characteristics Refer to the test circuit, VS = 14.4 V; RL = 4 Ω; f = 1 kHz; GV = 26 dB; Tamb = 25 °C; unless otherwise specified. Tested at Tamb = 25 °C and Thot = 105 °C; functionality guaranteed for Tj = -40 °C to 150 °C. Table 5. Electrical characteristics Symbol Parameter Test condition Min. Typ. Max. RL = 4 Ω 6 - 18 RL = 2 Ω 6 - 16 (1) Unit General characteristics VS Supply voltage range Id Total quiescent drain current - - 155 250 mA Input impedance - 45 60 70 kΩ IB1(D7) = 1 Signal attenuation -6 dB 7 - 8 IB1(D7) = 0 (default);(2) Signal attenuation -6 dB 5 - 5.8 RIN VAM Min. supply mute threshold V V VOS Offset voltage Mute & play -80 0 80 mV Vdth Dump threshold - 18.5 - 20.5 V ISB Standby current Vstandby = 0 - 1 5 µA SVR Supply voltage rejection f = 100 Hz to 10 kHz; Vr = 1 Vpk; Rg = 600 Ω 60 70 - dB TON Turn on timing (Mute play transition) D2/D1 (IB1) 0 to 1 - 25 50 ms TOFF Turn off timing (Play mute transition) D2/D1 (IB1) 1 to 0 - 25 50 ms THWARN1 Average junction temperature for TH warning 1 DB1 (D7) = 1 - 160 - THWARN2 Average junction temperature for TH warning 2 DB4 (D7) = 1 - 145 - THWARN3 Average junction temperature for TH warning 3 DB4 (D6) = 1 - 125 - Max. power(3) Vs = 15.2 V, RL = 4 Ω - 45 - W 23 - 27 22 - W W RL = 2 Ω; THD 10 % RL = 2 Ω; THD 1 % RL = 2 Ω; Max. power(3) Vs = 14.4 V - 44 34 68 - W W W Max power@ Vs = 6 V, RL = 4 Ω - 5 - W °C Audio performances THD = 10 %, RL = 4 Ω THD = 1 %, RL = 4 Ω PO Output power DocID025599 Rev 6 11/42 41 Electrical specifications TDA75610SLV Table 5. Electrical characteristics (continued) Symbol THD Parameter Total harmonic distortion Test condition Min. Typ. Max. Unit PO = 1 W to 10 W; STD mode HE MODE; PO = 1.5 W HE MODE; PO = 8 W - 0.015 0.05 0.1 0.1 0.1 0.5 % % % PO = 1-10 W, f = 10 kHz - 0.15 0.5 % GV = 16 dB; STD Mode VO = 0.1 to 5 VRMS - 0.02 0.05 % CT Cross talk f = 1 kHz to 10 kHz, Rg = 600 Ω 50 65 - dB GV1 Voltage gain 1 - 25 26 27 dB Voltage gain match 1 - -1 - 1 dB Voltage gain 2 - 15 16 17 dB ΔGV2 Voltage gain match 2 - -1 - 1 dB EIN1 Output noise voltage 1 Rg = 600 Ω 20 Hz to 22 kHz - 45 60 µV EIN2 Output noise voltage 2 Rg = 600 Ω; GV = 16d B 20 Hz to 22 kHz - 20 30 µV BW Power bandwidth - 100 - - kHz Input CMRR VCM = 1 Vpk-pk; Rg = 0 Ω - 70 - dB Standby to Mute and Mute to Standby transition Tamb = 25 °C, ITU-R 2K, Csvr = 10 µF Vs = 14.4 V -7.5 - +7.5 mV Mute to Play transition Tamb = 25 °C, ITU-R 2K, Vs = 14.4 V (4) -7.5 - +7.5 mV Play to Mute transition Tamb = 25 °C, ITU-R 2K, Vs = 14.4 V (5) -7.5 - +7.5 mV ΔGV1 GV2 CMRR ΔVOITU ITU Pop filter output voltage Clip detector CDLK Clip det. high leakage current CD off / VCD = 6 V - 0 5 µA CDSAT Clip det sat. voltage CD on; ICD = 1 mA - - 300 mV CDTHD Clip det THD level D0 (IB1) = 1 5 10 15 % D0 (IB1) = 0 1 2 3 % Control pin characteristics VSBY Standby/mute pin for standby - 0 - 1.2 V VMU Standby/mute pin for mute - 2.9 - 3.5 V VOP Standby/mute pin for operating - 4.5 - 18 V IMU Standby/mute pin current Vst-by/mute = 4.5 V - 1 5 µA Vst-by/mute < 1.2 V - 0 5 µA 12/42 DocID025599 Rev 6 TDA75610SLV Electrical specifications Table 5. Electrical characteristics (continued) Symbol Parameter Test condition Min. Typ. Max. Unit ASB Standby attenuation - 90 110 - dB AM Mute attenuation - 80 100 - dB Turn on diagnostics 1 (Power amplifier mode) Pgnd Short to GND det. (below this limit, the Output is considered in short circuit to GND) - - 1.2 V Pvs Short to Vs det. (above this limit, the output is considered in short circuit to Vs) Vs -1.2 - - V Pnop Normal operation thresholds. (Within these limits, the output is considered without faults). 1.8 - Vs -1.8 V - - 0.5 Ω Power amplifier in standby Lsc Shorted load det. Lop Open load det. 85 - - Ω Lnop Normal load det. 1.5 - 45 Ω - - 1.2 V Vs -1.2 - - V Turn on diagnostics 2 (Line driver mode) Pgnd Pvs Short to GND det. (below this limit, the output is considered in Power amplifier in standby short circuit to GND) Short to Vs det. (above this limit, the output is considered in short circuit to Vs) Normal operation thresholds. (Within these limits, the output is considered without faults). - 1.8 - Vs -1.8 V Lsc Shorted load det. - - - 1.5 Ω Lop Open load det. - 330 - - Ω Lnop Normal load det. - 7 - 180 Ω - - 1.2 V Vs -1.2 - - V 1.8 - Vs -1.8 V Power amplifier mode - - 0.5 Ω Line driver mode - - 1.5 Ω Pnop Permanent diagnostics 2 (Power amplifier mode or line driver mode) Pgnd Pvs Pnop LSC Short to GND det. (below this limit, the Output is considered in short circuit to GND) Short to Vs det. (above this Power amplifier in mute or play, limit, the output is considered in one or more short circuits short circuit to Vs) protection activated Normal operation thresholds. (Within these limits, the output is considered without faults). Shorted load det. DocID025599 Rev 6 13/42 41 Electrical specifications TDA75610SLV Table 5. Electrical characteristics (continued) Symbol Parameter VO Offset detection INLH Normal load current detection IOLH Open load current detection INLL Normal load current detection IOLL Open load current detection Test condition Power amplifier in play, AC input signals = 0 VO < (VS-5)pk, IB2 (D7) = 0 VO < (VS-5)pk, IB2 (D7) = 1 Min. Typ. Max. Unit ±1.5 ±2 ±2.5 V 500 - - mA - - 250 mA 250 - - mA - - 125 mA I2C bus interface SCL Clock frequency - - - 400 kHz VIL Input low voltage - - - 1.5 V VIH Input high voltage - 2.3 - - V 1. When VS > 16 V the output current limit is reached (triggering embedded internal protections). 2. In legacy mode only low threshold option is available. 3. Saturated square wave output. 4. Voltage ramp on STBY pin: from 3.3 V to 4.2 V in t ≥ 40 ms. In case of I2C mode command IB1(D1) = 1 (Mute → Unmute rear channels) and/or IB1(D2) = 1 (Mute → Unmute front channels) must be transmitted before to start the voltage ramp on STBY pin. 5. Voltage ramp on STBY pin: from 4.05 V to 3.55 V in t ≥ 40 ms. In case of I2C mode command IB1(D1) = 0 Unmute → Mute rear channels) and/or IB1(D2) = 0 (Unmute → Mute front channels) must be NOT transmitted before to start the voltage ramp on STBY pin. 14/42 DocID025599 Rev 6 TDA75610SLV 3.4 Electrical specifications Typical electrical characteristics curves Figure 6. Quiescent current vs. supply voltage Figure 7. Output power vs. supply voltage (4 Ω) ,T P $     3R :   9LQ  12 /2$'6   5/ 7 I N+]  3RPD[         7+'  7+'          9V 9             9V 9       *$3*36 *$3*36 Figure 8. Output power vs. supply voltage (2 Ω) Figure 9. Distortion vs. output power (4 Ω, STD) 3R :   7+ '     67$1 ' $5 ' 0 2 ' (  9V 9  5 / 7    3R P D[ 5/ 7 I N +]   7+'   I N + ]    7+'  I N + ]                  9V 9   Figure 10. Distortion vs. output  power (4 Ω, HI‐EFF)   3 R :  *$3*36 Figure 11. Distortion vs. output power (2 Ω, STD) 7+'  7+ '       02' ( +, ()) 9V 9 5/ 7    *$3*36 67$1 ' $5 ' 0 2 ' (  9V 9  5 / 7    I  N+ ] I  N+]    I  N+ ] I  N+]          3R : *$3*36 DocID025599 Rev 6   3R :  *$3*36 15/42 41 Electrical specifications TDA75610SLV Figure 12. Distortion vs. output power  (2 Ω, HI‐EFF) Figure 13. Distortion vs. output power Vs = 6 V (4 Ω, STD) 7+'    +, ( )) 0 2' (  9 V  9  5 / 7  7+ '      6 7$ 1 ' $ 5 ' 0 2' ( 9 V 9 5 / 7    I  N + ] I  N + ]   I N + ] I  N+ ]             3 R :   3R :  *$3*36 Figure 14. Distortion vs. frequency (4 Ω)  Figure 15. Distortion vs. frequency (2 Ω) 7+'  7+'   67$1'$5'02'( 9V 9 5/ 7   3R :   *$3*36 67$1'$5'02'( 9V 9 5/ 7   3R :           I +]  *$3*36 Figure 16. Crosstalk vs. frequency  67$1'$5'02'( 5/ 7   3R : 5J 7   I +]   *$3*36 Figure 17. Supply voltage rejection vs. frequency &52667$/. G%     695 G% 67' 02'( 5J 7 9ULSSOH 9UPV                      I +] *$3*36 16/42 DocID025599 Rev 6   I +]   *$3*36 TDA75610SLV Electrical specifications Figure 18. Power dissipation vs. average output Figure 19. Power dissipation vs. average output power (audio program simulation, 4 Ω) power (audio program simulation, 2 Ω) 3WRW :  9V 9 5/ 7 *$866,$112,6(   3WRW :  9V 9 5/  7 *$866,$112,6(   67'02'( 67'02'(     &/,3 67$57  +,())02'(            3R :          '!0'03 Figure 20. Total power dissipation and efficiency vs. output power (4 Ω, HI-EFF, Sine) H  3WRW :  &/,3 67$57   3R : +,())02'(     '!0'03 Figure 21. Total power dissipation and efficiency vs. output power (4 Ω, STD, Sine) 0TOT7 H                      9V 9 5/ 7 I N+] +(PRGH   H 3WRW            3R :   H 6S 6 2, 7 FK(Z   0TOT              '!0'03         0O7       '!0'03 Figure 22. ITU R-ARM frequency response, weighting filter for transient pop  /UTPUTATTENUATIOND"             (Z   '!0'03 DocID025599 Rev 6 17/42 41 Diagnostics functional description TDA75610SLV 4 Diagnostics functional description 4.1 Turn-on diagnostic It is recommended to activate this function at the turn-on (standby out) through an I2C bus request. Detectable output faults are:  SHORT TO GND  SHORT TO VS  SHORT ACROSS THE SPEAKER  OPEN SPEAKER To verify if any of the above misconnections are in place, a subsonic (inaudible) current pulse (Figure 23) is internally generated, sent through the speaker(s) and sunk back.The Turn On diagnostic status is internally stored until a successive diagnostic pulse is requested (after a I2C reading). If the "standby out" and "diag. enable" commands are both given through a single programming step, the pulse takes place first (during the pulse the power stage stays 'off', showing high impedance at the outputs). Afterwards, when the amplifier is biased, the PERMANENT diagnostic takes place. The previous turn-on state is kept until a short appears at the outputs. Figure 23. Turn-on diagnostic: working principle 9Va9 ,VRXUFH , P$ ,VRXUFH ,VLQN ,VLQN aPV W PV 0HDVXUHWLPH '!0'03 Figure 24 and 25 show SVR and OUTPUT waveforms at the turn-on (standby out) with and without turn-on diagnostic. Figure 24. SVR and output behavior (Case 1: without turn-on diagnostic) 6SVR /UT 0ERMANENTDIAGNOSTIC ACQUISITIONTIMEMS4YP T "IASPOWER AMPT URN ON $IAGNOSTIC %NABLE 0ERMANENT )#"$!4! 18/42 &!5,4 EVENT 0ERMANENT$IAGNOSTICSDATAOUPUT PERMITTEDTIME DocID025599 Rev 6 2EAD$ATA '!0'03 TDA75610SLV Diagnostics functional description Figure 25. SVR and output pin behavior (Case 2: with turn-on diagnostic) 6SVR /UT 4U RN OND IAGNOSTIC ACQU ISI TIONTIM EMS 4YP 0ERMANENTDIAGN OST IC ACQUI SIT IONTIMEMS 4YP T 4URN ON $IAGN OST ICS DATAOUT PU T PER MITT EDTI ME $IAGNOST IC%NABLE 4UR N ON "IASPOWERAMP TURN ON PERMITTE DT IME $IAGN OST IC% NABLE 0ERMAN ENT 2EAD$ATA &!5,4 EVENT 0ERMANENT$IAGNO ST ICS DAT AOUT PUT PERMITTE DTIME )#"$!4! '!0'03 The information related to the outputs status is read and memorized at the end of the current pulse plateau. The acquisition time is 100 ms (typ.). No audible noise is generated in the process. As for SHORT TO GND / Vs the fault-detection thresholds remain unchanged from 26 dB to 16 dB gain setting. They are as follows: Figure 26. Short circuit detection thresholds 3#TO'.$ 6 X 6 .ORMAL/PERATION 6 X 63 6 3#TO6S 63 6 63 '!0'03 Concerning SHORT ACROSS THE SPEAKER / OPEN SPEAKER, the threshold varies from 26 dB to 16 dB gain setting, since different loads are expected (either normal speaker's impedance or high impedance). The values in case of 26 dB gain are as follows: Figure 27. Load detection thresholds - high gain setting 3#ACROSS,OAD 6 X 7 .ORMAL/PERATION 7 X /PEN,OAD 7 7 )NFINITE '!0'03 If the Line-Driver mode (Gv= 16 dB and Line Driver Mode diagnostic = 1) is selected, the same thresholds will change as follows: Figure 28. Load detection threshold - low gain setting 3#ACROSS,OAD 7 7 X .ORMAL/PERATION 7 7 X /PEN,OAD 7 INFINITE '!0'03 DocID025599 Rev 6 19/42 41 Diagnostics functional description 4.2 TDA75610SLV Permanent diagnostics Detectable conventional faults are:  Short to GND  Short to Vs  Short across the speaker The following additional feature is provided:  Output offset detection The TDA75610SLV has 2 operating status: 1. RESTART mode. The diagnostic is not enabled. Each audio channel operates independently of each other. If any of the a.m. faults occurs, only the channel(s) interested is shut down. A check of the output status is made every 1 ms (Figure 29). Restart takes place when the overload is removed. 2. DIAGNOSTIC mode. It is enabled via I2C bus and it self activates if an output overload (such as to cause the intervention of the short-circuit protection) occurs to the speakers outputs. Once activated, the diagnostics procedure develops as follows (Figure 30): – To avoid momentary re-circulation spikes from giving erroneous diagnostics, a check of the output status is made after 1ms: if normal situation (no overloads) is detected, the diagnostic is not performed and the channel returns active. – Instead, if an overload is detected during the check after 1 ms, then a diagnostic cycle having a duration of about 100 ms is started. – After a diagnostic cycle, the audio channel interested by the fault is switched to RESTART mode. The relevant data are stored inside the device and can be read by the microprocessor. When one cycle has terminated, the next one is activated by an I2C reading. This is to ensure continuous diagnostics throughout the carradio operating time. – To check the status of the device a sampling system is needed. The timing is chosen at microprocessor level (over half a second is recommended). Figure 29. Restart timing without diagnostic enable (permanent) - Each 1 mS time, a sampling of the fault is done /UT M3  M3 M3 M3 M3 T /VERCUR RENTAND SHOR T CIRCUIT PROTECT IONI NTERVENT ION IESHOR TCIRCUI TT O'.$ 3HOR TCI RCUI TREMOVED '!0'03 Figure 30. Restart timing with diagnostic enable (permanent)  M3 M3 M3 M3 T /VERCURRENT ANDSHORT CIRCUITPROTECTI ON IN TERVENTI ON IES HORTC IRCUI TTO'.$ 20/42 3HO RTCIRCUIT REMOVED '!0'03 DocID025599 Rev 6 TDA75610SLV 4.3 Diagnostics functional description Output DC offset detection Any DC output offset exceeding ±2 V are signalled out. This inconvenient might occur as a consequence of initially defective or aged and worn-out input capacitors feeding a DC component to the inputs, so putting the speakers at risk of overheating. This diagnostic has to be performed with low-level output AC signal (or Vin = 0). The test is run with selectable time duration by microprocessor (from a "start" to a "stop" command):  START = Last reading operation or setting IB1 - D5 - (OFFSET enable) to 1  STOP = Actual reading operation Excess offset is signalled out if it is persistent of all the assigned testing time. This feature is disabled if any overloads leading to activation of the short-circuit protection occurs in the process. 4.4 AC diagnostic It is targeted at detecting accidental disconnection of tweeters in 2-way speaker and, more in general, presence of capacitive (AC) coupled loads. This diagnostic is based on the notion that the overall speaker's impedance (woofer + parallel tweeter) will tend to increase towards high frequencies if the tweeter gets disconnected, because the remaining speaker (woofer) would be out of its operating range (high impedance). The diagnostic decision is made according to peak output current thresholds, and it is enabled by setting (IB2-D2) = 1. Two different detection levels are available:  High current threshold IB2 (D7) = 0 Iout > 500 mApk = normal status Iout < 250 mApk = open tweeter  Low current threshold IB2 (D7) = 1 Iout > 250 mApk = normal status Iout < 125 mApk = open tweeter To correctly implement this feature, it is necessary to briefly provide a signal tone (with the amplifier in "play") whose frequency and magnitude are such as to determine an output current higher than 500 mApk with IB2(D7) = 0 (higher than 250 mApk with IB2(D7) = 1) in normal conditions and lower than 250 mApk with IB2(D7) = 0 (lower than 125 mApk with IB2(D7)=1) should the parallel tweeter be missing. The test has to last for a minimum number of 3 sine cycles starting from the activation of the AC diagnostic function IB2) up to the I2C reading of the results (measuring period). To confirm presence of tweeter, it is necessary to find at least 3 current pulses over the above threadless over all the measuring period, else an "open tweeter" message will be issued. The frequency / magnitude setting of the test tone depends on the impedance characteristics of each specific speaker being used, with or without the tweeter connected (to be calculated case by case). High-frequency tones (> 10 kHz) or even ultrasonic signals are recommended for their negligible acoustic impact and also to maximize the impedance module's ratio between with tweeter-on and tweeter-off. Figure 31 and 32 show the load impedance as a function of the peak output voltage and the relevant diagnostic fields. DocID025599 Rev 6 21/42 41 Diagnostics functional description TDA75610SLV It is recommended to keep output voltage always below 8 V (high threshold case) or 4 V (low threshold case) to prevent the circuit being saturated (causing wrong detection cases). This feature is disabled if any overloads leading to activation of the short-circuit protection occurs in the process. Figure 31. Current detection high: load impedance |Z| vs. output peak voltage /RDG_]_ 2KP  ,RXW SHDN P$ /RZFXUUHQWGHWHFWLRQDUHD 2SHQORDG ' RIWKH'%[E\UHV   ,RXW SHDN !P$  ,% '   +LJKFXUUHQWGHWHFWLRQDUHD 1RUPDOORDG ' RIWKH'%[E\WHV             9RXW 3HDN *$3*36 Figure 32. Current detection low: load impedance |Z| vs. output peak voltage ,OAD\Z\/HM  )OUTPEAK M!   ,OWCURRENTDETECTIONAREA /PENLOAD $OFTHE$"XBYRES )OUTPEAK M!  )"$  (IGHCURRENTDETECTIONAREA .ORMALLOAD $OFTHE$"XBYTES          6OUT0EAK 22/42 DocID025599 Rev 6    '!0'03 TDA75610SLV 5 Multiple faults Multiple faults When more misconnections are simultaneously in place at the audio outputs, it is guaranteed that at least one of them is initially read out. The others are notified after successive cycles of I2C reading and faults removal, provided that the diagnostic is enabled. This is true for both kinds of diagnostic (Turn on and Permanent). The table below shows all the couples of double-fault possible. It should be taken into account that a short circuit with the 4 ohm speaker unconnected is considered as double fault. Table 6. Double fault table for turn on diagnostic S. GND S. Vs S. Across L. Open L. S. GND S. GND S. Vs + S. GND S. GND S. GND S. Vs / S. Vs S. Vs S. Vs S. Across L. / / S. Across L. N.A. Open L. / / / Open L. (*) In Permanent Diagnostic the table is the same, with only a difference concerning Open Load(*), which is not among the recognizable faults. Should an Open Load be present during the device's normal working, it would be detected at a subsequent Turn on Diagnostic cycle (i.e. at the successive Car Radio Turn on). 5.1 Faults availability All the results coming from I2C bus, by read operations, are the consequence of measurements inside a defined period of time. If the fault is stable throughout the whole period, it will be sent out. To guarantee always resident functions, every kind of diagnostic cycles (Turn on, Permanent, Offset) will be reactivate after any I2C reading operation. So, when the micro reads the I2C, a new cycle will be able to start, but the read data will come from the previous diag. cycle (i.e. The device is in Turn On state, with a short to Gnd, then the short is removed and micro reads I2C. The short to Gnd is still present in bytes, because it is the result of the previous cycle. If another I2C reading operation occurs, the bytes do not show the short). In general to observe a change in Diagnostic bytes, two I2C reading operations are necessary. DocID025599 Rev 6 23/42 41 Thermal protection 6 TDA75610SLV Thermal protection Thermal protection is implemented through thermal foldback (Figure 33). Thermal foldback begins limiting the audio input to the amplifier stage as the junction temperatures rise above the normal operating range. This effectively limits the output power capability of the device thus reducing the temperature to acceptable levels without totally interrupting the operation of the device. The output power will decrease to the point at which thermal equilibrium is reached. Thermal equilibrium will be reached when the reduction in output power reduces the dissipated power such that the die temperature falls below the thermal foldback threshold. Should the device cool, the audio level will increase until a new thermal equilibrium is reached or the amplifier reaches full power. Thermal foldback will reduce the audio output level in a linear manner. Three thermal warnings are available through the I2C bus data. After thermal shut down threshold is reached, the CD could toggle (as shown in Figure 33) or stay low, depending on signal level. Figure 33. Thermal foldback diagram 6OUT 6OUT 4(7!2. 4(7! 2. 4(7!2. /. /. /.  4YP  4YP  4YP 4(3( 34!24 43$ #$OUT 3$ 4(3( %.$ WITHSAMEINPUT SIGNAL 4J # 4J # 4J # 6.1 '!0'03 Fast muting The muting time can be shortened to less than 1.5 ms by setting (IB2) D5 = 1. This option can be useful in transient battery situations (i.e. during car engine cranking) to quickly turnoff the amplifier to avoid any audible effects caused by noise/transients being injected by preamp stages. The bit must be set back to “0” shortly after the mute transition. 24/42 DocID025599 Rev 6 TDA75610SLV Battery transitions management 7 Battery transitions management 7.1 Low voltage operation (“start stop”) The most recent OEM specifications require automatic stop of car engine at traffic light, in order to reduce emissions of polluting substances. The TDA75610SLV, thanks to its innovating design, allows to go on playing sound when battery falls down to 6/7V during such conditions, without producing pop noise. The maximum system power will be reduced accordingly. Supported battery cranking curves are shown below, indicating the shape and duration of allowed battery transitions. Figure 34. Worst case battery cranking curve sample 1 9EDWW 9 9 9 9 9 W W W W W W W W V *$3*36 V1 = 12 V; V2 = 6 V; V3 = 7 V; V4 = 8 V t1 = 2 ms; t2 = 50 ms; t3 = 5 ms; t4 = 300 ms; t5 =10 ms; t6 = 1 s; t7 = 2 ms Figure 35. Worst case battery cranking curve sample 2 9EDWW 9 9 9 9 W W W W W W V *$3*36 V1 = 12 V; V2 = 6 V; V3 = 7 V t1 = 2 ms; t2 = 5 ms; t3 = 15 ms; t5 = 1 s; t6 = 50 ms DocID025599 Rev 6 25/42 41 Battery transitions management 7.2 TDA75610SLV Advanced battery management In addition to compatibility with low Vbatt, the TDA75610SLV is able to sustain upwards fast battery transitions (like the one showed in Figure 36) without causing unwanted audible effect, thanks to the innovative circuit topology. Figure 36. Upwards fast battery transitions diagram '!0'03 26/42 DocID025599 Rev 6 TDA75610SLV Application suggestion 8 Application suggestion 8.1 Inputs impedance matching Figure 37. Inputs impedance matching circuit )N 6). 0LAY 6!# '.$ ' !#'.$ 0K7 K7 362CHARGE CIRCUIT 362 '!0'03 The above is a simplified input stage where it is visible that the AC-GND impedance (60 kΩ) is the same as the input one. During battery variations the SVR voltage is moved and VIN and VAC-GND tracks it through the two R-C networks. Any differences of this two time constants can produce a differential input voltage, which can produce a noise. Consequently, any additional passive components at the inputs (other than the input capacitors) such as series resistance or R dividers must be compensated for at AC-GND level by connecting the same equivalent resistance in series to CAC-GND. A good 1:1 matching (ZAC-GND = ZIN) is therefore recommended to minimize pop. This rule applies to both "4-CH operation" and "2-CH operation", as any unused input has be ACgrounded (through the same CIN value). DocID025599 Rev 6 27/42 41 Application suggestion 8.2 TDA75610SLV High efficiency introduction Thanks to its operating principle, the TDA75610SLV obtains a substantial reduction of power dissipation from traditional class-AB amplifiers without being affected by the massive radiation effects and complex circuitry normally associated with class-D solutions. The high efficiency operating principle is based on the use of bridge structures which are connected by means of a power switch. In particular, as shown in Figure 1, Ch1 is linked to Ch2, while Ch3 to Ch4. The switch, controlled by a logic circuit which senses the input signals, is closed at low volumes (output power steadily lower than 2.5 W) and the system acts like a "single bridge" with double load. In this case, the total power dissipation is a quarter of a double bridge. Due to its structure, the highest efficiency level can be reached when symmetrical loads are applied on channels sharing the same switch. Figure 38. High efficiency - basic structure &0 2- n )?& )?2 2EAR &RONT 6IN& 6IN2 20 &n )?20 2 CHANNEL & CHANNEL (IGH IMPEDANCE #/.42/, ,/')# "UFFER '!0'03 When the power demand increases to more than 2.5 W, the system behavior is switched back to a standard double bridge in order to guarantee the maximum output power, while in the 6 V start-stop devices the High Efficiency mode is automatically disabled at low VCC (7.3 V ±0.3 V). No need to re-program it when VCC goes back to normal levels. In the range 2-4 W (@ VCC = 14.4 V, RL = 4Ω), with the High Efficiency mode, the dissipated power gets up to 50 % less than the value obtained with the standard mode. 28/42 DocID025599 Rev 6 I2C bus TDA75610SLV 9 I2C bus 9.1 I2C programming/reading sequences 9.2  A correct turn on/off sequence with respect to the diagnostic timings and producing no audible noises could be as follows (after battery connection):  TURN-ON: PIN2 > 4.5 V --- 10 ms --- (STAND-BY OUT + DIAG ENABLE) --- 1 s (min) --- MUTING OUT  TURN-OFF: MUTING IN - wait for 50 ms - HW ST-BY IN (ST-BY pin . 1.2 V)  Car Radio Installation: PIN2 > 4.5 V --- 10 ms DIAG ENABLE (write) --- 200 ms --- I2C read (repeat until All faults disappear).  OFFSET TEST: Device in Play (no signal) -- OFFSET ENABLE - 30 ms - I2C reading (repeat I2C reading until high-offset message disappears). Address selection and I2C disable When the ADSEL/I2CDIS pin is left open the I2C bus is disabled and the device can be controlled by the STBY/MUTE pin. In this status (no - I2C bus) the CK pin enables the HIGH-EFFICIENCY MODE (0 = STD MODE; 1 = HE MODE) and the DATA pin sets the gain (0 = 26 dB; 1 = 16 dB). When the ADSEL/I2CDIS pin is connected to GND the I2C bus is active with address . To select the other I2C address a resistor must be connected to ADSEL/I2CDIS pin as following:  0 < R < 1 kΩ: I2C bus active with address  11 kΩ < R < 21 kΩ: I2C bus active with address  40 kΩ < R < 70 kΩ: I2C bus active with address  R > 120 kΩ: Legacy mode (x: read/write bit sector) 9.3 I2C bus interface Data transmission from microprocessor to the TDA75610SLV and viceversa takes place through the 2 wires I2C bus interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected). 9.3.1 Data validity As shown by Figure 39, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW. DocID025599 Rev 6 29/42 41 I2C bus 9.3.2 TDA75610SLV Start and stop conditions As shown by Figure 40 a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH. 9.3.3 Byte format Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first. 9.3.4 Acknowledge The transmitter* puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see Figure 41). The receiver** has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock pulse. * Transmitter – master µP) when it writes an address to the TDA75610SLV – slave (TDA75610SLV) when the µP reads a data byte from TDA75610SLV ** Receiver – slave (TDA75610SLV) when the µP writes an address to the TDA75610SLV – master (µP) when it reads a data byte from TDA75610SLV Figure 39. Data validity on the I2C bus 3$! 3#, $!4!,).% 34!",% $!4! 6!,)$ #(!.'% $!4! !,,/7%$ '!0'03 Figure 40. Timing diagram on the I2C bus 3#, )#"53 3$! 34!24 34/0 '!0'03 Figure 41. Acknowledge on the I2C bus 3#,       3$! -3" !#+./7,%$'-%.4 &2/-2%#%)6%2 34!24 30/42 DocID025599 Rev 6 '!0'03 TDA75610SLV 10 Software specifications Software specifications All the functions of the TDA75610SLV are activated by I2C interface. The bit 0 of the "ADDRESS BYTE" defines if the next bytes are write instruction (from µP to TDA75610SLV) or read instruction (from TDA75610SLV to µP). Chip address D7 1 D0 1 0 1 1 (*) (*) X D8 Hex X = 0 Write to device X = 1 Read from device If R/W = 0, the µP sends 2 "Instruction Bytes": IB1 and IB2. (*) address selector bit, please refer to address selection description on Chapter 9.2. Table 7. IB1 Bit Instruction decoding bit D7 Supply transition mute threshold high (D7 = 1) Supply transition mute threshold low (D7 = 0) D6 Diagnostic enable (D6 = 1) Diagnostic defeat (D6 = 0) D5 Offset Detection enable (D5 = 1) Offset Detection defeat (D5 = 0) D4 Front Channel (CH1, CH3) Gain = 26 dB (D4 = 0) Gain = 16 dB (D4 = 1) D3 Rear Channel (CH2, CH4) Gain = 26 dB (D3 = 0) Gain = 16 dB (D3 = 1) D2 Mute front channels (D2 = 0) Unmute front channels (D2 = 1) D1 Mute rear channels (D1 = 0) Unmute rear channels (D1 = 1) D0 CD 2% (D0 = 0) CD 10% (D0 = 1) DocID025599 Rev 6 31/42 41 Software specifications TDA75610SLV Table 8. IB2 Bit Instruction decoding bit D7 Current detection threshold High th (D7 = 0) Low th (D7 =1) D6 0 D5 Normal muting time (D5 = 0) Fast muting time (D5 = 1) D4 Stand-by on - Amplifier not working - (D4 = 0) Stand-by off - Amplifier working - (D4 = 1) D3 Power amplifier mode diagnostic (D3 = 0) Line driver mode diagnostic (D3 = 1) D2 Current Detection Diagnostic Enabled (D2 =1) Current Detection Diagnostic Defeat (D2 =0) D1 Right Channel Power amplifier working in standard mode (D1 = 0) Power amplifier working in high efficiency mode (D1 = 1) D0 Left Channel Power amplifier working in standard mode (D0 = 0) Power amplifier working in high efficiency mode (D0 = 1) If R/W = 1, the TDA75610SLV sends 4 "Diagnostics Bytes" to µP: DB1, DB2, DB3 and DB4. Table 9. DB1 Bit Instruction decoding bit D7 Thermal warning 1 active (D7 = 1), Tj = 160 °C (Typ) - D6 Diag. cycle not activated or not terminated (D6 = 0) Diag. cycle terminated (D6 = 1) - D5 Channel LF (CH1) Current detection IB2 (D7) = 0 Output peak current < 250 mA - Open load (D5 = 1) Output peak current > 500 mA - Normal load (D5 = 0) Channel LF (CH1) Current detection IB2 (D7) = 1 Output peak current < 125 mA - Open load (D5 = 1) Output peak current > 250 mA - Normal load (D5 = 0) D4 Channel LF (CH1) Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1) - D3 Channel LF (CH1) Normal load (D3 = 0) Short load (D3 = 1) - D2 Channel LF (CH1) Turn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Offset diag.: No output offset (D2 = 0) Output offset detection (D2 = 1) - 32/42 DocID025599 Rev 6 TDA75610SLV Software specifications Table 9. DB1 (continued) Bit Instruction decoding bit D1 Channel LF (CH1) No short to Vcc (D1 = 0) Short to Vcc (D1 = 1) - D0 Channel LF (CH1) No short to GND (D1 = 0) Short to GND (D1 = 1) - Table 10. DB2 Bit Instruction decoding bit D7 Offset detection not activated (D7 = 0) Offset detection activated (D7 = 1) - D6 X - D5 Channel LR (CH2) Current detection IB2 (D7) = 0 Output peak current < 250 mA - Open load (D5 = 1) Output peak current > 500 mA - Normal load (D5 = 0) Channel LR (CH2) Current detection IB2 (D7) = 1 Output peak current < 125 mA - Open load (D5 = 1) Output peak current > 250 mA - Normal load (D5 = 0) D4 Channel LR (CH2) Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1) - D3 Channel LR (CH2) Normal load (D3 = 0) Short load (D3 = 1) - D2 Channel LR (CH2) Turn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Permanent diag.: No output offset (D2 = 0) Output offset detection (D2 = 1) - D1 Channel LR (CH2) No short to Vcc (D1 = 0) Short to Vcc (D1 = 1) - D0 Channel LR (CH2) No short to GND (D1 = 0) Short to GND (D1 = 1) - DocID025599 Rev 6 33/42 41 Software specifications TDA75610SLV Table 11. DB3 Bit Instruction decoding bit D7 Standby status (= IB2 - D4) - D6 Diagnostic status (= IB1 - D6) - D5 Channel RF (CH3) Current detection IB2 (D7) = 0 Output peak current < 250 mA - Open load (D5 = 1) Output peak current > 500 mA - Normal load (D5 = 0) Channel RF (CH3) Current detection IB2 (D7) = 1 Output peak current < 125 mA - Open load (D5 = 1) Output peak current > 250 mA - Normal load (D5 = 0) D4 Channel RF (CH3) Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1) - D3 Channel RF (CH3) Normal load (D3 = 0) Short load (D3 = 1) - D2 Channel RF (CH3) Turn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Permanent diag.: No output offset (D2 = 0) Output offset detection (D2 = 1) - D1 Channel RF (CH3) No short to Vcc (D1 = 0) Short to Vcc (D1 = 1) - D0 Channel RF (CH3) No short to GND (D1 = 0) Short to GND (D1 = 1) - 34/42 DocID025599 Rev 6 TDA75610SLV Software specifications Table 12. DB4 Bit Instruction decoding bit D7 Thermal warning 2 active (D7 = 1), Tj = 145 °C (Typ) - D6 Thermal warning 3 active (D6 = 1) Tj = 125 °C (Typ) - D5 Channel RR (CH4) Current detection IB2 (D7) = 0 Output peak current < 250 mA - Open load (D5 = 1) Output peak current > 500 mA - Normal load (D5 = 0) Channel RR (CH4) Current detection IB2 (D7) = 1 Output peak current < 125 mA - Open load (D5 = 1) Output peak current > 250 mA - Normal load (D5 = 0) D4 Channel RR (CH4) Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1) - D3 Channel R (CH4) R Normal load (D3 = 0) Short load (D3 = 1) - D2 Channel RR (CH4) Turn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Permanent diag.: No output offset (D2 = 0) Output offset detection (D2 = 1) - D1 Channel RR (CH4) No short to Vcc (D1 = 0) Short to Vcc (D1 = 1) - D0 Channel RR (CH4) No short to GND (D1 = 0) Short to GND (D1 = 1) - DocID025599 Rev 6 35/42 41 Examples of bytes sequence 11 TDA75610SLV Examples of bytes sequence 1 - Turn-On diagnostic - Write operation Start Address byte with D0 = 0 ACK IB1 with D6 = 1 ACK IB2 ACK STOP 2 - Turn-On diagnostic - Read operation Start Address byte with D0 = 1 ACK DB1 ACK DB2 ACK DB3 ACK DB4 ACK STOP The delay from 1 to 2 can be selected by software, starting from 1ms 3a - Turn-On of the power amplifier with 26dB gain, mute on, diagnostic defeat, CD = 2% . Start Address byte with D0 = 0 ACK IB1 ACK X0000000 IB2 ACK STOP XXX1XX11 3b - Turn-Off of the power amplifier Start Address byte with D0 = 0 ACK IB1 ACK X0XXXXXX IB2 ACK STOP XXX0XXXX 4 - Offset detection procedure enable Start Address byte with D0 = 0 ACK IB1 XX1XX11X ACK IB2 ACK STOP XXX1XXXX 5 - Offset detection procedure stop and reading operation (the results are valid only for the offset detection bits (D2 of the bytes DB1, DB2, DB3, DB4) . Start Address byte with D0 = 1 ACK DB1 ACK DB2 ACK DB3 ACK DB4 ACK STOP 36/42  The purpose of this test is to check if a D.C. offset (2V typ.) is present on the outputs, produced by input capacitor with anomalous leakage current or humidity between pins.  The delay from 4 to 5 can be selected by software, starting from 1ms DocID025599 Rev 6 TDA75610SLV Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Figure 42. Flexiwatt27 (horizontal) mechanical data and package dimensions ',0 $ % & ' ( )  * * +  + + + /  / /  / / / / 0 0 0 1 3 5 5 5 5 5 9 9 9 9 PP 7
TDA75610S-48X 价格&库存

很抱歉,暂时无法提供与“TDA75610S-48X”相匹配的价格&库存,您可以联系我们找货

免费人工找货