0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TSB712IST

TSB712IST

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    TSSOP8

  • 描述:

    IC OPAMP GP 2 CIRCUIT 8MINISO

  • 数据手册
  • 价格&库存
TSB712IST 数据手册
TSB711, TSB711A, TSB712 TSB712A, TSB714, TSB714A Datasheet Precision rail-to-rail input / output 36 V, 6 MHz op-amps TSB714 and TSB714A TSSOP14 SO14 TSB712 and TSB712A MiniSO8 SO8 TSB711 and TSB711A Features • • • • • • • • • • Rail-to-rail input and output Low offset voltage: 300 µV maximum Wide supply voltage range: 2.7 V to 36 V Gain bandwidth product: 6 MHz Slew rate : 3 V/µs Low noise : 12 nV/√Hz Integrated EMI filter 2 kV HBM ESD tolerance Extended temperature range : -40 °C to +125 °C Automotive-grade available Applications SOT23-5 • • • • • • • High-side and low-side current sensing Hall effect sensors Data acquisition and instrumentation Test and measurement equipments Motor control Industrial process control Strain gauge Maturity status link TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Related products TSB571, TSB572 Single, Dual op-amps for the low-power consumption version (380 µA with 2.5 MHz GBP) Description The TSB711, TSB711A, TSB712, TSB712A,TSB714 and TSB714A 6 MHz bandwidth amplifiers feature rail-to-rail input and output, which is guaranteed to operate from +2.7 V to +36 V single supply as well as from ±1.35 V to ±18 V dual supplies. These amplifiers have the advantage of offering a large span of supply voltage and an excellent input offset voltage of 300 µV maximum at 25 °C. The combination of wide bandwidth, slew rate, low noise, rail-to-rail capability and precision makes the TSB711, TSB711A, TSB712, TSB712A,TSB714 and TSB714A useful in a wide variety of applications such as: filters, power supply and motor control, actuator driving, hall effect sensors and resistive transducers. DS12487 - Rev 6 - October 2020 For further information contact your local STMicroelectronics sales office. www.st.com TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Pin description 1 Pin description Figure 1. TSB711 pin connections (top view) VCC+ OUT VCC- IN- IN+ SOT23-5 Table 1. TSB711 pin description (SOT23-5) Pin n° Pin name Description 1 OUT Output channel 2 VCC- Negative supply voltage 3 IN1+ Non-inverting input channel 4 IN- Inverting input channel 5 VCC+ Positive supply voltage Figure 2. TSB712 pin connections (top view) OUT1 VCC+ IN1- OUT2 IN1+ IN2- VCC- IN2+ MiniSO8/SO8 Table 2. TSB712 pin description (miniSO8/SO8) DS12487 - Rev 6 Pin n° Pin name 1 OUT1 2 IN1- Inverting input channel 1 3 IN1+ Non-inverting input channel 1 4 VCC- Negative supply voltage 5 IN2+ Non-inverting input channel 2 6 IN2- Inverting input channel 2 7 OUT2 Output channel 2 8 VCC+ Positive supply voltage Description Output channel 1 page 2/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Pin description Figure 3. TSB714 pin connections (top view) Table 3. TSB714 pin description DS12487 - Rev 6 Pin n° Pin name Description 1 OUT1 Output channel 1 2 IN1- Inverting input channel 1 3 IN1+ Non-inverting input channel 1 4 VCC+ Positive supply voltage 5 IN2+ Non-inverting input channel 2 6 IN2- Inverting input channel 2 7 OUT2 Output channel 2 8 OUT3 Output channel 3 9 IN3- Inverting input channel 3 10 IN3+ Non-inverting input channel 3 11 VCC- Negative supply voltage 12 IN4+ Non-inverting input channel 4 13 IN4- Inverting input channel 4 14 OUT4 Output channel 4 page 3/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Absolute maximum ratings and operating conditions 2 Absolute maximum ratings and operating conditions Table 4. Absolute maximum ratings Symbol Parameter VCC Supply voltage Vid Input voltage differential (2) Vin Input voltage Iin Input current Value Unit +40 or ±20 V ±2 V (VCC-) - 0.2 to (VCC+) + 0.2 V ±10 mA -65 to +150 °C (1) (3) Storage temperature Rth-ja Tj ESD Thermal resistance junction-to-ambient (4) (5) °C / W MiniSO-8 190 Maximum junction temperature 150 °C HBM: human body model (6) 2 kV CDM: charged device model (7) 1 kV 100 mA Latch-up immunity 1. All voltage values, except the differential voltage are with respect to the network ground terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. The maximum input voltage differential value may be extended to the condition that the input current is limited to ±10 mA. See Section 5.2 Input pin voltage range. 3. Input current must be limited by a resistor in series with the inputs when the input voltage is beyond the rails (see Section 5.2 Input pin voltage range). 4. Short-circuits can cause excessive heating and destructive dissipation. 5. Rth are typical values. 6. Human body according to JEDEC standard JESD22-A114F. 7. According to ANSI/ESD STM5.3.1. Table 5. Operating conditions Symbol DS12487 - Rev 6 Parameter VCC Supply voltage Vicm Common mode input voltage range Toper Operating free air temperature range Value 2.7 V to 36 V (VCC-) to (VCC+) + 0.1 V -40 °C to +125 °C page 4/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Electrical characteristics 3 Electrical characteristics Table 6. Electrical characteristics at VCC = 36 V, VICM = VOUT = VCC / 2, Tamb = 25 °C and RL connected to VCC / 2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance TSB711A, TSB712A, T = 25 °C, ±300 VCC- ≤ VICM ≤ VCC+ - 1.5 V TSB711A, TSB712A, T = 25 °C, ±650 VCC- ≤ VICM ≤ VCC+ TSB711A, TSB712A, -40 °C < T < 125 °C, ±580 VCC- ≤ VICM ≤ VCC+ - 1.5 V TSB711A, TSB712A, -40 °C < T < 125 °C, Vio Input offset voltage ±930 VCC- ≤ VICM ≤ VCC+ µV TSB711, TSB712, T = 25 °C, ±800 VCC- ≤ VICM ≤ VCC+ -1.5 V TSB711, TSB712, T = 25 °C, ±1200 VCC- ≤ VICM ≤ VCC+ TSB711, TSB712, -40 °C < T < 125 °C, ±1100 VCC- ≤ VICM ≤ VCC+ - 1.5 V TSB711, TSB712, -40 °C < T < 125 °C, ±1400 VCC- ≤ VICM ≤ VCC+ ΔVio / ΔT Input offset voltage drift ΔVio IIB IIO -40°C < T < 125 °C (1) Long-term input offset voltage drift T = 25 °C Input bias current (3) Input offset current (4) 2.8 (2) 0.57 µV / √mo VICM = VCC+, T = 25 °C 0 300 VICM = VCC+, -40 °C < T < 125 °C 0 900 VICM = VCC-, T = 25 °C -100 0 VICM = VCC-,-40 °C < T < 125 °C -200 0 VICM = VCC+ 10 VICM = VCC- 10 µV / °C nA RL ≥ 10 kΩ, (VCC-) + 0.5 V ≤ VOUT ≤ (VCC+) - 0.5 V, AVD Open loop gain 110 125 T = 25 °C RL ≥ 10 kΩ, (VCC-) + 0.5 V ≤ VOUT ≤ (VCC+) - 0.5 V, -40 °C < T < 125 °C (VCC-) ≤ VICM ≤ ( VCC+) - 1.5 V, CMR Common-mode rejection ratio 20 log (∆VINCM / ∆VIO) T = 25 °C (VCC-) ≤ VICM ≤ (VCC+) - 1.5 V, -40 °C < T < 125 °C 105 dB 115 110 TSB711A,TSB712A (VCC-) ≤ VICM ≤ (VCC+), 100 DS12487 - Rev 6 130 120 page 5/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Electrical characteristics Symbol Parameter Conditions Min. Typ. Max. Unit T = 25 °C TSB711A,TSB712A (VCC-) ≤ VICM ≤ (VCC+), CMR Common-mode rejection ratio 20 log (∆VINCM / ∆VIO) -40 °C < T < 125 °C TSB711, TSB712 (VCC-) ≤ VICM ≤ (VCC+), T = 25 °C TSB711 , TSB712 (VCC-) ≤ VICM ≤ (VCC+), -40 °C < T < 125 °C SVR VOH VOL Power supply rejection ratio 5 V < (VCC+) - (VCC-) < 36 V, VICM = VCC / 2 20 log (∆VCC / ∆VIO) -40 °C < T < 125 °C High level output voltage (drop voltage from VCC+) Low level output voltage ISINK IOUT ISOURCE ICC Supply current by op-amp 95 90 120 dB 85 100 125 No load, -40 °C < T < 125 °C 120 ISOURCE = 2 mA, -40 °C < T < 125 °C 200 ISOURCE = 15 mA, -40 °C < T < 125 °C 1000 No load , -40 °C < T < 125 °C 120 ISINK = 2 mA, -40 °C < T < 125 °C 200 ISINK = 15 mA , -40 °C < T < 125 °C 1000 VOUT = VCC, T = 25 °C 25 VOUT = VCC, -40 °C < T < 125 °C 20 VOUT = 0 V, T = 25 °C 25 VOUT = 0 V, -40 °C < T < 125 °C 20 No load, T = 25 °C mV 50 mA 50 1.8 No load, -40 °C < T < 125 °C 3 mA AC performance GBP SR Gain bandwidth product Slew rate RL = 10 kΩ, CL = 100 pF 9 V step, RL = 10 kΩ, CL = 100 pF, AV = 1 V/V, 10% to 90% VIN = 1 Vrms , RL = 10 kΩ, AV = +1, THD+N Total harmonic distorsion + noise f = 1 kHz, BW = 22 kHz VIN = 1 Vrms , RL = 1 kΩ, AV = +1, f = 1 kHz, BW = 22 kHz VOUT = 5 Vpp, f = 1 kHz, AV = +11, CR Crosstalk RL = 10 kΩ VOUT = 5Vpp, f = 10 kHz, AV = +11, RL = 10 kΩ Φm CLOAD en en p-p DS12487 - Rev 6 Phase margin At unity gain, 25 °C, 10 kΩ, 100 pF Input noise voltage 6 MHz 2.2 3 V / µs 0,0003 % 0,00034 125 dB 100 45 100(5) Capacitive load drive Input voltage noise density 4.5 f = 10 Hz 20 f = 100 Hz 13 f = 10 kHz 12 0.1 Hz ≤ f ≤ 10 Hz 0.5 ᵒ pF nV / √Hz µVPP page 6/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Electrical characteristics Symbol in Parameter Input current noise density Conditions f = 1 kHz Min. Typ. Max. 0.15 (6) Unit pA / √Hz 1. See Section 5.4 Input offset voltage drift over the temperature in application information. 2. Typical value is based on the VIO drift observed after 1000 h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. See Section 5.5 Long term input offset voltage drift. 3. Current is positive when it is sinked into the op-amp. 4. Iio is defined as |Iibp – Iibn| 5. For higher capacitive values see Figure 26. Phase margin vs. output current at VCC = 36 V, Figure 27. Phase margin vs. capacitive load and Figure 28. Overshoot vs. capacitive load at VCC = 36 V 6. Theoretical value of the input current noise density based on the measurement of the input transistor base current: in = 2. q.ib DS12487 - Rev 6 page 7/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Electrical characteristics Table 7. Electrical characteristics at VCC = 5 V, VICM = VOUT = VCC / 2, Tamb = 25 °C and RL connected to VCC / 2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance TSB711A, TSB712A, T = 25 °C, ± 350 VCC- ≤ VICM ≤ VCC+ - 1.5 V TSB711A,TSB712A, T = 25 °C, ± 650 VCC- ≤ VICM ≤ VCC+ TSB711A,TSB712A, -40 °C < T < 125 °C, ± 750 VCC- ≤ VICM ≤ VCC+ - 1.5 V TSB711A, TSB712A, -40 °C < T < 125 °C, Vio Input offset voltage ± 1050 VCC- ≤ VICM ≤ VCC+ µV TSB711, TSB712, T = 25 °C, ± 800 VCC- ≤ VICM ≤ VCC+ - 1.5 V TSB711, TSB712, T = 25 °C, ± 1200 VCC- ≤ VICM ≤ VCC+ TSB711, TSB712, -40 °C < T < 125 °C, ± 1100 VCC- ≤ VICM ≤ VCC+ - 1.5 V TSB711, TSB712, -40 °C < T < 125 °C, ± 1400 VCC- ≤ VICM ≤ VCC+ ΔVio / ΔT Input offset voltage drift IIB IIO Input bias current (2) Input offset current (3) -40°C < T < 125 °C (1) 4 VICM = VCC+, T = 25 °C 0 300 VICM = VCC+, -40 °C < T < 125 °C 0 900 VICM = VCC-, T = 25 °C -100 0 VICM = VCC-, -40 °C < T < 125 °C -200 0 VICM = VCC+ 10 VICM = VCC- 10 µV / °C nA RL ≥ 10 kΩ, AVD Open loop gain (VCC-) + 0.5 V ≤ VOUT ≤ (VCC+) - 0.5 V, T = 25 °C (VCC-) ≤ VICM ≤ ( VCC+) - 1.5 V, T = 25 °C (VCC-) ≤ VICM ≤ (VCC+) - 1.5 V, Common-mode rejection ratio 20 log ( ∆VINCM / ∆VIO ) -40 °C < T < 125 °C TSB711A, TSB712A (VCC-) ≤ VICM ≤ (VCC+), T = 25 °C TSB711A, TSB712A (VCC-) ≤ VICM ≤ (VCC+), -40 °C < T < 125 °C TSB711, TSB712 (VCC-) ≤ VICM ≤ (VCC+), DS12487 - Rev 6 120 dB RL ≥ 10 kΩ, (VCC-) + 0.5 V ≤ VOUT ≤ (VCC+) - 0.5 V, -40 °C < T < 125 °C CMR 105 100 95 125 90 80 105 dB 75 75 105 page 8/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Electrical characteristics Symbol CMR VOH VOL Parameter Common-mode rejection ratio 20 log ( ∆VINCM / ∆VIO ) High level output voltage (drop voltage from VCC+) Low level output voltage ISINK IOUT ISOURCE ICC Supply current by op-amp Conditions Min. Typ. Max. Unit T = 25 °C TSB711, TSB712 (VCC-) ≤ VICM ≤ (VCC+), -40 °C < T < 125 °C dB 70 No load, -40 °C < T < 125 °C 90 ISOURCE = 2 mA, -40 °C < T < 125 °C 200 No load, -40 °C < T < 125 °C 90 ISINK = 2 mA, -40 °C < T < 125 °C 200 VOUT = VCC, T = 25 °C 20 VOUT = VCC, -40 °C < T < 125 °C 15 VOUT = 0 V, T = 25 °C 20 VOUT = 0 V, -40 °C < T < 125 °C 15 No load, T = 25 °C mV 50 mA 50 1.4 No load, -40 °C < T < 125 °C 2.3 mA AC performance GBP SR Gain bandwidth product Slew rate RL = 10 kΩ, CL = 100 pF 3 V step, RL = 10 kΩ, CL = 100 pF, AV = 1 V/V, 10% to 90% VIN = 1 Vrms , RL = 10 kΩ, AV = +1, THD+N Total harmonic distorsion + noise f = 1 kHz, BW = 22 kHz VIN = 1 Vrms , RL = 1 kΩ, AV = +1, f = 1 kHz, BW = 22 kHz Φm CLOAD en en p-p in Phase margin At unity gain, 25 °C, 10 kΩ, 100 pF 6 MHz 2 2.7 V / µs 0,00032 % 0,0004 34 100(4) Capacitive load drive Input voltage noise density 4.5 f = 10 Hz 20 ᵒ pF f = 100 Hz 13 f = 10 kHz 12 nV / √Hz Input noise voltage 0.1 Hz ≤ f ≤ 10 Hz 0.8 µVPP Input current noise density f = 1 kHz 0.15 (5) pA / √Hz 1. See Section 5.4 Input offset voltage drift over the temperature in application information. 2. Current is positive when it is sinked into the op-amp. 3. Iio is defined as |Iibp – Iibn|. 4. For higher capacitive values see Figure 25. Phase margin vs. output current at VCC = 5 V, Figure 27. Phase margin vs. capacitive load 5. Theoretical value of the input current noise density based on the measurement of the input transistor base current: in = 2. q.ib DS12487 - Rev 6 page 9/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Typical performance characteristics 4 Typical performance characteristics RL connected to VCC / 2 (unless otherwise specified). Figure 4. Supply current vs. supply voltage Figure 5. Input offset voltage distribution at VCC = 5 V TSB711A, TSB712A Figure 6. Input offset voltage distribution at VCC = 36 V TSB711A, TSB712A Figure 7. Input offset voltage vs. temperature at VCC = 5 V DS12487 - Rev 6 page 10/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Typical performance characteristics Figure 8. Input offset voltage vs. temperature at VCC = 36 V Figure 9. Input offset voltage thermal coefficient distribution at VCC = 5 V Figure 10. Channel separation vs. frequency at VCC = 36 V Figure 11. Input offset voltage vs. supply voltage Figure 12. Input offset voltage vs. common mode voltage at VCC = 5 V TSB711A, TSB712A Figure 13. Input offset voltage vs. common mode voltage at VCC = 36 V TSB711A, TSB712A DS12487 - Rev 6 page 11/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Typical performance characteristics Figure 14. Input bias current vs. temperature at VICM = VCC / 2 Figure 15. Output current vs. output voltage at VCC = 5 V Figure 16. Input bias current vs. common mode voltage at Figure 17. Input bias current vs. common mode voltage at VCC = 5 V VCC = 36 V Figure 18. Output current vs. output voltage at VCC = 36 V DS12487 - Rev 6 Figure 19. Output voltage (VOH) vs. supply voltage page 12/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Typical performance characteristics Figure 20. Output voltage (VOL) vs. supply voltage Figure 21. Positive slew rate at VCC = 36 V Figure 22. Negative slew rate at VCC = 36 V Figure 23. Bode diagram at VCC = 5 V Figure 24. Bode diagram at VCC = 36 V Figure 25. Phase margin vs. output current at VCC = 5 V DS12487 - Rev 6 page 13/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Typical performance characteristics Figure 26. Phase margin vs. output current at VCC = 36 V Figure 27. Phase margin vs. capacitive load Figure 28. Overshoot vs. capacitive load at VCC = 36 V Figure 29. Small step response vs. time at VCC = 5 V Figure 30. Desaturation time at low rail at VCC = 5 V Figure 31. Desaturation time at high rail at VCC = 5 V DS12487 - Rev 6 page 14/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Typical performance characteristics Figure 32. Small step response vs. time at VCC = 36 V Figure 33. Amplifier behavior close to the low rail at VCC = 36 V Figure 34. Amplifier behavior close to the high rail at VCC = 36 V Figure 35. Noise vs. frequency at VCC = 5 V Figure 36. Noise vs. frequency at VCC = 36 V Figure 37. Noise vs. time at VCC = 36 V DS12487 - Rev 6 page 15/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Typical performance characteristics Figure 38. THD+N vs. frequency Figure 39. THD+N vs. output voltage Figure 40. PSRR vs. frequency at VCC = 10 V Figure 41. CMRR vs. frequency at VCC = 10 V DS12487 - Rev 6 page 16/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Application information 5 Application information 5.1 Operating voltages The TSB711, TSB711A, TSB712, TSB712A devices can operate from 2.7 to 36 V. The parameters are fully specified at 5 V and 36 V power supplies. However, the parameters are very stable over the full VCC range and several characterization curves show the TSB711, TSB711A, TSB712, TSB712A device characteristics over the full operating range. Additionally, the main specifications are guaranteed in extended temperature range from -40 to 125 °C. 5.2 Input pin voltage range The TSB711, TSB711A,TSB712 and TSB712A devices have an internal ESD diode protection on the inputs. These diodes are connected between the inputs and each supply rail to protect the input stage from electrical discharge, as shown in the figure below. Figure 42. Input current limitation Vcc+ In - 100Ω D1 In+ 100Ω - VCC + Out D2 + Out VCC - Vcc- When the input pin voltage exceeds the power supply, the ESD diodes become conductive and, depending on this voltage, excessive current can flow through them. Without limitation this overcurrent can damage the device. In this case, the current has to be limited to 10 mA by adding a resistance in series with the input pin. Similarly, in order to avoid excessive current in the protection diodes between the positive and negative inputs, the differential voltage should be limited to ± 2 V, or the current limited to 10 mA. Such a high differential voltage can be reached when the output is in saturation mode, or slew rate limited. In particular, it can happen when the device is used in comparator mode. The TSB711, TSB711A, TSB712, TSB712A do not show any phase reversal for any input common mode voltage inside the absolute maximum ratings (AMR) voltage window, (VCC-) - 200 mV < VICM < (VCC+) + 200 mV. DS12487 - Rev 6 page 17/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Rail-to-rail input stage 5.3 Rail-to-rail input stage The TSB711, TSB711A, TSB712, TSB712A devices are built with two complementary NPN and PNP input differential pairs, as shown in the figure below. Figure 43. Rail-to-rail input stage V CC Ip VIP Pp Pn VIN […] […] […] Nn […] Np In GND The devices have rail-to-rail inputs, and the input common mode range is extended from VCC- to (VCC+) + 0.1 V. However, the performance of these devices is optimized for the P-channel differential pair (which means from VCC- to (VCC+) - 1.5 V). Around (VCC+) – 1 V, and with slight variations depending on the process, a transition occurs between the P-channel and the N-channel differential pair, impacting the input offset voltage (see Figure 12. Input offset voltage vs. common mode voltage at VCC = 5 V TSB711A, TSB712A and Figure 13. Input offset voltage vs. common mode voltage at VCC = 36 V TSB711A, TSB712A). As a consequence, CMRR can be degraded around this transition region. In order to achieve the best possible performance, this operating point should be avoided. Please also notice that the input bias current polarity depends on the operation of NPN or PNP input stage. This transition is visible in figures Figure 16. Input bias current vs. common mode voltage at VCC = 5 V and Figure 17. Input bias current vs. common mode voltage at VCC = 36 V. 5.4 Input offset voltage drift over the temperature The maximum input voltage drift variation over temperature is defined as the offset variation related to the offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during the production at application level. The maximum input voltage drift overtemperature enables the system designer to anticipate the effect of temperature variations. The maximum input voltage drift overtemperature is computed using the following formula: ΔVio Vio T − Vio 25°C ΔT = max T − 25°C T = − 40 °C and T = 125 °C (1) The datasheet maximum value is guaranteed by a measurement on a representative sample size ensuring a Cpk (process capability index) greater than 1.3. DS12487 - Rev 6 page 18/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Long term input offset voltage drift 5.5 Long term input offset voltage drift To evaluate product reliability, two types of stress acceleration are used: • Voltage acceleration, by changing the applied voltage. • Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature. The voltage acceleration has been defined based on JEDEC results, and is defined using: (2) AFV = еβ.(VS - VU) Where: AFV is the voltage acceleration factor β is the voltage acceleration coefficient in 1/V, constant technology parameter (β = 1) VS is the stress voltage used for the accelerated test VU is the voltage used for the application The temperature acceleration is driven by the Arrhenius model, and is defined as follows: (3) Ea 1 1 AFT = e k . TU − TS . Where: AFT is the temperature acceleration factor Ea is the activation energy of the technology based on the failure rate k is the Boltzmann constant (8.6173 x 10-5 eV.K-1) TU is the temperature of the die when VU is used (K) TS is the temperature of the die under temperature stress (K) The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and the temperature acceleration factor. (4) AF = AFT . AFV AF is calculated using the temperature and voltage defined in the mission profile of the product. The AF value can then be used in Equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress duration. (5) Months = AF × 1000 h × 12 months / (24 h × 365.25 days) To evaluate the op-amp reliability, a follower stress condition is used where VCC is defined as a function of the maximum operating voltage and the absolute maximum ratings (as recommended by JEDEC rules). Vio drift (in µV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions. (6) VCC = max(VOP) with Vicm = VCC/2 The long term drift parameter ΔVio (in µV.month-1/2), estimating the reliability performance of the product, is obtained using the ratio of the Vio (input offset voltage value) drift over the square root of the calculated number of months. (7) V drift ∆ Vio = io montℎs Where Vio drift is the measured drift value in the specified test conditions after 1000 h stress duration. The Vio final drift, in µV, to be measured on the device in real operation conditions can be computed from: (8) Ea 1 1 Vio final drift top, Top, VCC = ∆ Vio,  25°C . top . eβ . VCC − VCC nom . e k . 297 − Top DS12487 - Rev 6 page 19/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A EMI rejection Where: ΔVio is the long term drift parameter in µV.month-1/2 top is the operating time seen by the device, in months Top is the operating temperature VCC is the power supply during operating time VCC nom is the nominal VCC at which the ΔVio is computed (36 V for the TSB712A). Ea is the activation energy of the technology (here 0.7 eV). 5.6 EMI rejection The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational amplifiers. An adverse effect that is common to many op-amps is a change in the offset voltage as a result of RF signal rectification. EMIRR is defined as follows: EMIRR = 20.log Vin pp ΔVio (9) The TSB711, TSB711A, TSB712, TSB712A have been specially designed to minimize susceptibility to EMIRR and shows a low sensitivity. As visible on figure below, EMI rejection ratio has been measured on both inputs and outputs, from 400 MHz to 2.4 GHz. Figure 44. EMIRR on In+, In- and out pins EMIRR performance might be improved by adding small capacitances (in the pF range) on the inputs, power supply and output pins. These capacitances help in minimizing the impedance of these nodes at high frequencies. DS12487 - Rev 6 page 20/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Maximum power dissipation 5.7 Maximum power dissipation The usable output load current drive is limited by the maximum power dissipation allowed by the device package. The absolute maximum junction temperature for the TSB711, TSB711A, TSB712, TSB712A is 150 °C. The junction temperature can be estimated as follows: T J = PD × Rtℎ − ja + TA TJ is the die junction temperature (10) PD is the power dissipated in the package Rth-ja is the junction to ambient thermal resistance of the package TA is the ambient temperature The power dissipated in the package PD is the sum of the quiescent power dissipated and the power dissipated by the output stage transistor. It is calculated as follows: PD = VCC × ICC + VCC + − VOUT × ILoad (11) PD = VCC × ICC + VOUT − VCC− × ILoad (12) when the op-amp sources the current when the op-amp is sinks the current. Do not exceed the 150 °C maximum junction temperature for the device. Exceeding the junction temperature limit can cause degradation in the parametric performance or even destroy the device. 5.8 Capacitive load and stability Stability analysis must be performed for large capacitive loads over 100 pF. Increasing the load capacitance to high values produces gain peaking in the frequency response, with overshoot and ringing in the step response. Generally, unity gain configuration is the worst situation for stability and the ability to drive large capacitive loads. For additional capacitive load drive capability in unity-gain configuration, stability can be improved by inserting a small resistor RISO (10 Ω to 30 Ω) in series with the output. This resistor significantly reduces ringing while maintaining DC performance for purely capacitive loads. However, if there is a resistive load in parallel with the capacitive load, a voltage divider is created introducing a gain error on the output and slightly reducing the output swing. The error introduced is proportional to the ratio RISO / RL. RISO modifies the maximum capacitive load acceptable from a stability point-of-view as described in the following figure: Figure 45. Stability criteria with a serial resistor at different capacitive loads S Unstable DS12487 - Rev 6 page 21/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Capacitive load and stability Figure 46. Test configuration for RISO Please note that RISO = 30 Ω is sufficient to make the TSB711, TSB711A, TSB712, TSB712A stable whatever the capacitive load. DS12487 - Rev 6 page 22/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A PCB layout recommendations 5.9 PCB layout recommendations Particular attention must be paid to the layout of the PCB tracks connected to the amplifier, load, and power supply. The power and ground traces are critical as they must provide adequate energy and grounding for all circuits. The best practice is to use short and wide PCB traces to minimize voltage drops and parasitic inductance. In addition, to minimize parasitic impedance over the entire surface, a multi-via technique that connects the bottom and top layer ground planes together in many locations is often used. The copper traces connecting the output pins to the load and supply pins should be as wide as possible to minimize trace resistance. 5.10 Decoupling capacitor In order to ensure op-amp full functionality, it is mandatory to place a decoupling capacitor of at least 22 nF as close as possible to the op-amp supply pin. A good decoupling helps to reduce electromagnetic interference impact. DS12487 - Rev 6 page 23/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Typical applications 6 Typical applications 6.1 Low-side current sensing Power management mechanisms are found in most electronic systems. Current sensing is useful to protect applications. The low-side current sensing method consists of placing a sense resistor between the load and the circuit ground. The resulting voltage drop is amplified using the TSB711A and the TSB712A (see the following figure). Figure 47. Low-side current sensing schematic C1 Rg1 I Rf1 In Rshunt Rg2 Ip 5V - + + - Vout TSB711A TSB712A Rf2 Vout can be expressed as follows: Rg2 Rf1 VOUT = Rsℎunt.I 1 − . 1− Rg2 + Rf2 Rg1 Rf1 − Vio. 1 − Rg1 + Ip. Rg2.Rf2 Rf1 1+ − In.Rf1 Rg2 + Rf2 . Rg1 (13) Assuming that Rf2 = Rf1 = Rf and Rg2 = Rg1 = Rg, can be simplified in the following manner: Rf Rf VOUT = Rsℎunt.I . 1+ + Rf.Iio Rg − Vio. Rg (14) The main advantage of using the TSB711A and the TSB712A for a low-side current sensing relies on its low Vio, compared to general purpose operational amplifiers. For the same current and targeted accuracy, the shunt resistor can be chosen with a lower value, resulting in lower power dissipation, lower drop in the ground path, and lower cost. Particular attention must be paid to the matching and precision of Rg1, Rg2, Rf1, and Rf2, to maximize the accuracy of the measurement. DS12487 - Rev 6 page 24/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Package information 7 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 7.1 SOT23-5 package information Figure 48. SOT23-5 package outline Table 8. SOT23-5 package mechanical data Dimensions Millimeters Ref. A Min. Typ. Max. Min. Typ. Max. 0.90 1.20 1.45 0.035 0.047 0.057 A1 0.15 0.006 A2 0.90 1.05 1.30 0.035 0.041 0.051 B 0.35 0.40 0.50 0.014 0.016 0.020 C 0.09 0.15 0.20 0.004 0.006 0.020 D 2.80 2.90 3.00 0.110 0.114 0.118 D1 1.90 e DS12487 - Rev 6 Inches 0.075 0.95 0.037 E 2.60 2.80 3.00 0.102 0.110 0.118 F 1.50 1.60 1.75 0.059 0.063 0.069 L 0.10 0.35 0.60 0.004 0.014 0.024 K 0° 10° 0° 10° page 25/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A MiniSO8 package information 7.2 MiniSO8 package information Figure 49. MiniSO8 package outline Table 9. MiniSO8 mechanical data Dim. Millimeters Min. Inches Typ. A 0 Typ. A2 0.75 b c D 2.8 E E1 0.043 0 0.95 0.03 0.22 0.4 0.009 0.016 0.08 0.23 0.003 0.009 3 3.2 0.11 0.118 0.126 4.65 4.9 5.15 0.183 0.193 0.203 2.8 3 3.1 0.11 0.118 0.122 0.85 0.65 0.4 0.6 0.006 0.033 0.8 0.016 0.024 0.95 0.037 L2 0.25 0.01 ccc 0° 0.037 0.026 L1 k Max. 0.15 e DS12487 - Rev 6 Min. 1.1 A1 L Max. 8° 0.1 0° 0.031 8° 0.004 page 26/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A SO8 package information 7.3 SO8 package information Figure 50. SO8 package outline Table 10. SO-8 mechanical data Dim. mm Min. Inches Typ. A Min. Typ. 1.75 0.25 Max. 0.069 A1 0.1 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.01 D 4.8 4.9 5 0.189 0.193 0.197 E 5.8 6 6.2 0.228 0.236 0.244 E1 3.8 3.9 4 0.15 0.154 0.157 e 0.004 0.01 0.049 1.27 0.05 h 0.25 0.5 0.01 0.02 L 0.4 1.27 0.016 0.05 L1 k ccc DS12487 - Rev 6 Max. 1.04 0 0.04 8° 0.1 1° 8° 0.004 page 27/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A SO14 package information 7.4 SO14 package information Figure 51. SO14 package outline Table 11. SO14 mechanical data Dimensions (1) Symbol Millimeters Min. Typ. Inches Max. Min. Typ. Max. A 1.35 1.75 0.05 0.068 A1 0.10 0.25 0.004 0.009 A2 1.10 1.65 0.04 0.06 B 0.33 0.51 0.01 0.02 C 0.19 0.25 0.007 0.009 D (2) 8.55 8.75 0.33 0.34 E 3.80 4.0 0.15 e 1.27 0.15 0.05 H 5.80 6.20 0.22 0.24 L 0.40 1.27 0.015 0.05 k 0° 8° 0° 8° ddd 0.10 0.004 1. Drawing dimensions include “Single” and “Matrix” versions. 2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm per side. DS12487 - Rev 6 page 28/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A TSSOP14 package information 7.5 TSSOP14 package information Figure 52. TSSOP14 package outline E1 D A1 A2 A aaa C b 14 8 c SEATING PLANE 0.25 mm GAGE PLANE C E k PIN 1 IDENTIFICATION L 1 7 L1 e Table 12. TSSOP14 mechanical data Dimensions Millimeters Symbol Min. Typ. A Max. Min. Typ. 1.20 A1 0.05 A2 0.80 b Max. 0.047 0.15 0.002 0.004 0.006 1.05 0.031 0.039 0.041 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0089 D 4.90 5.00 5.10 0.193 0.197 0.201 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.176 e L k aaa 1.00 0.65 0.45 L1 DS12487 - Rev 6 Inches 0.60 0.0256 0.75 0.018 1.00 0° 0.024 0.030 0.039 8° 0.10 0° 8° 0.004 page 29/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Ordering information 8 Ordering information Table 13. Order code Order code TSB711AILT Temperature range Package Packing Marking SOT23-5 K223 SOT23-5 K219 SOT23-5 K225 SOT23-5 K221 MiniSO8 K214 SO8 TSB712AI SO8 TSB712I TSB712IST MiniSO8 712S TSB712AIYDT SO8 712AIY TSB711ILT TSB711AIYLT TSB711IYLT -40° to +125 °C -40 °C to +125 °C automotive grade TSB712AIST TSB712AIDT TSB712IDT TSB712AIYST TSB712IYDT -40° to +125 °C -40 to 125 °C automotive grade (1) TSB712IYST TSB714AIDT TSB714IDT TSB714AIYDT TSB714IYDT TSB714AIPT TSB714IPT TSB714AIYPT TSB714IYPT MiniSO8 SO8 MiniSO8 712Y 712IY K215 B714AI -40° to +125 °C SO14 -40 to 125 °C automotive grade (1) B714I B714AY B714Y B714AI -40° to +125 °C TSSOP14 -40 to 125 °C automotive grade (1) Tape and reel B714I B714AY B714IY 1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent. SO8 package for single op-amp may be available for qualification under customer request. Please contact sales office for such request. DFN8 package for dual op-amp may be available for qualification under customer request. Please contact sales office for such request. DS12487 - Rev 6 page 30/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Revision history Table 14. Document revision history Date Revision 23-Apr-2018 1 Changes Initial release. Added the TSB712 as root part number; cover page has been updated accordingly. 17-Sep-2018 2 Updated Section 3 Electrical characteristics, Section 4 Typical performance characteristics, Section 5 Application information and Table 7. Order code. Added Section 7.2 SO8 package information. DS12487 - Rev 6 29-Nov-2018 3 Updated Table 3. Electrical characteristics at VCC = 36 V, VICM = VOUT = VCC / 2, Tamb = 25 °C and RL connected to VCC / 2 (unless otherwise specified) and Table 4. Electrical characteristics at VCC = 5 V, VICM = VOUT = VCC / 2, Tamb = 25 °C and RL connected to VCC / 2 (unless otherwise specified). 18-Feb-2019 4 Updated Figure 44. Stability criteria with a serial resistor at different capacitive loads. 11-Jun-2019 5 Added the root part numbers TSB711 and TSB711A, therefore the whole document has been updated accordingly. 28-Oct-2020 6 Added new part numbers in Table 13. Order code, new Section 7.4 SO14 package information and Section 7.5 TSSOP14 package information. page 31/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A Contents Contents 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 6 5.1 Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.2 Input pin voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.3 Rail-to-rail input stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.4 Input offset voltage drift over the temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.5 Long term input offset voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.6 EMI rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.7 Maximum power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.8 Capacitive load and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.9 PCB layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.10 Decoupling capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 6.1 7 8 Low-side current sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 7.1 SOT23-5 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.2 MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7.3 SO8 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.4 SO14 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.5 TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 DS12487 - Rev 6 page 32/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. TSB711 pin description (SOT23-5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 TSB712 pin description (miniSO8/SO8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 TSB714 pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Electrical characteristics at VCC = 36 V, VICM = VOUT = VCC / 2, Tamb = 25 °C and RL connected to VCC / 2 (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Electrical characteristics at VCC = 5 V, VICM = VOUT = VCC / 2, Tamb = 25 °C and RL connected to VCC / 2 (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 SOT23-5 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 MiniSO8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 SO-8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 SO14 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 TSSOP14 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Order code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 DS12487 - Rev 6 page 33/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. DS12487 - Rev 6 TSB711 pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TSB712 pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TSB714 pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input offset voltage distribution at VCC = 5 V TSB711A, TSB712A . . . . . . . . . . . . Input offset voltage distribution at VCC = 36 V TSB711A, TSB712A . . . . . . . . . . . Input offset voltage vs. temperature at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . Input offset voltage vs. temperature at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . Input offset voltage thermal coefficient distribution at VCC = 5 V . . . . . . . . . . . . . Channel separation vs. frequency at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . Input offset voltage vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input offset voltage vs. common mode voltage at VCC = 5 V TSB711A, TSB712A . Input offset voltage vs. common mode voltage at VCC = 36 V TSB711A, TSB712A Input bias current vs. temperature at VICM = VCC / 2 . . . . . . . . . . . . . . . . . . . . . Output current vs. output voltage at VCC = 5 V . . . . . . . . . . . . . . . . . . . Input bias current vs. common mode voltage at VCC = 5 V . . . . . . . . . . . . . . . . . Input bias current vs. common mode voltage at VCC = 36 V . . . . . . . . . . . . . . . . Output current vs. output voltage at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . Output voltage (VOH) vs. supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output voltage (VOL) vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Positive slew rate at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Negative slew rate at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bode diagram at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bode diagram at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phase margin vs. output current at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . Phase margin vs. output current at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . Phase margin vs. capacitive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overshoot vs. capacitive load at VCC = 36 V. . . . . . . . . . . . . . . . . . . . . . . . . . . Small step response vs. time at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . Desaturation time at low rail at VCC = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Desaturation time at high rail at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . Small step response vs. time at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . Amplifier behavior close to the low rail at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . Amplifier behavior close to the high rail at VCC = 36 V . . . . . . . . . . . . . . . . . . . . Noise vs. frequency at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Noise vs. frequency at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Noise vs. time at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD+N vs. output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PSRR vs. frequency at VCC = 10 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CMRR vs. frequency at VCC = 10 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rail-to-rail input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMIRR on In+, In- and out pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stability criteria with a serial resistor at different capacitive loads. . . . . . . . . . . . . Test configuration for RISO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Low-side current sensing schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SOT23-5 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 2 . 3 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 14 15 15 15 15 15 15 16 16 16 16 17 18 20 21 22 24 25 page 34/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A List of figures Figure 49. Figure 50. Figure 51. Figure 52. DS12487 - Rev 6 MiniSO8 package outline . . SO8 package outline . . . . . SO14 package outline . . . . TSSOP14 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 27 28 29 page 35/36 TSB711, TSB711A, TSB712, TSB712A, TSB714, TSB714A IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2020 STMicroelectronics – All rights reserved DS12487 - Rev 6 page 36/36
TSB712IST 价格&库存

很抱歉,暂时无法提供与“TSB712IST”相匹配的价格&库存,您可以联系我们找货

免费人工找货