0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TSB7192AIYDT

TSB7192AIYDT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SOIC8_150MIL

  • 描述:

    IC OPAMP GP 2 CIRCUIT 8SOIC

  • 数据手册
  • 价格&库存
TSB7192AIYDT 数据手册
TSB7191, TSB7191A TSB7192, TSB7192A Datasheet Precision rail-to-rail input / output 36 V, 22 MHz op-amps TSB7192 and TSB7192A MiniSO8 SO8 TSB7191 and TSB7191A SOT23-5 Product status link TSB7191, TSB7191A, TSB7192, TSB7192A Related products TSB572 TSB712 TSB712A Dual op-amps for the lowpower consumption version (380 µA with 2.5 MHz GBP) Precision rail-to-rail input / output 36 V, 6 MHz dual opamps Features • • • • • • • • • • • Rail-to-rail input and output Low offset voltage: 300 µV maximum Wide supply voltage range: 2.7 V to 36 V Gain bandwidth product: 22 MHz Slew rate: 12 V/µs Low noise: 12 nV/√Hz Stable with gain +10/-9 Integrated EMI filter 2 kV HBM ESD tolerance Extended temperature range: -40 °C to +125 °C Automotive-grade available Applications • • • • • • • High-side and low-side current sensing Hall effect sensors Data acquisition and instrumentation Test and measurement equipments Motor control Industrial process control Strain gauge Description The TSB7191, TSB7191A, TSB7192 and the TSB7192A 22 MHz bandwidth amplifier feature rail-to-rail input and output, which is guaranteed to operate from +2.7 V to +36 V single supply as well as from ±1.35 V to ±18 V dual supplies. These amplifiers have the advantage of offering a large span of supply voltage and an excellent input offset voltage of 300 µV maximum at 25 °C. The combination of wide bandwidth, slew rate, low noise, rail-to-rail capability and precision makes the TSB7191, TSB7191A, TSB7192 and the TSB7192A useful in a wide variety of applications such as: filters, power supply and motor control, actuator driving, hall effect sensors and resistive transducers. DS12641 - Rev 5 - October 2019 For further information contact your local STMicroelectronics sales office. www.st.com TSB7191, TSB7191A, TSB7192, TSB7192A Pin description 1 Pin description Figure 1. Pin connections (top view) VCC+ OUT VCC- IN- IN+ SOT23-5 Table 1. Pin description (SOT23-5) Pin n° Pin name Description 1 OUT Output channel 2 VCC- Negative supply voltage 3 IN1+ Non-inverting input channel 4 IN- Inverting input channel 5 VCC+ Positive supply voltage Figure 2. Pin connections (top view) OUT1 VCC+ IN1- OUT2 IN1+ IN2- VCC- IN2+ MiniSO8/SO8 Table 2. Pin description (MiniSO8/SO8) DS12641 - Rev 5 Pin n° Pin name 1 OUT1 Description Output channel 1 2 IN1- Inverting input channel 1 3 IN1+ Non-inverting input channel 1 4 VCC- Negative supply voltage 5 IN2+ Non-inverting input channel 2 6 IN2- Inverting input channel 2 7 OUT2 Output channel 2 8 VCC+ Positive supply voltage page 2/34 TSB7191, TSB7191A, TSB7192, TSB7192A Absolute maximum ratings and operating conditions 2 Absolute maximum ratings and operating conditions Table 3. Absolute maximum ratings Symbol Parameter VCC Supply voltage Vid Input voltage differential (2) Vin Input voltage Iin Input current (1) (3) Storage temperature Rth-ja Tj ESD Thermal resistance junction-to-ambient Value Unit +40 or ±20 V ±2 V (VCC-) - 0.2 to (VCC+) + 0.2 V ±10 mA -65 to +150 °C (4) (5) °C / W MiniSO-8 190 Maximum junction temperature 150 °C HBM: human body model (6) 2 kV CDM: charged device model (7) 1 kV 100 mA Latch-up immunity 1. All voltage values, except the differential voltage are with respect to the network ground terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. The maximum input voltage differential value may be extended to the condition that the input current is limited to ±10 mA. See Input pin voltage range. 3. Input current must be limited by a resistor in series with the inputs when the input voltage is beyond the rails (see Input pin voltage range). 4. Short-circuits can cause excessive heating and destructive dissipation. 5. Rth are typical values. 6. Human body according to JEDEC standard JESD22-A114F. 7. According to ANSI/ESD STM5.3.1. Table 4. Operating conditions Symbol DS12641 - Rev 5 Parameter VCC Supply voltage Vicm Common mode input voltage range Toper Operating free air temperature range Value 2.7 V to 36 V (VCC-) to (VCC+) + 0.1 V -40 °C to +125 °C page 3/34 TSB7191, TSB7191A, TSB7192, TSB7192A Electrical characteristics 3 Electrical characteristics Table 5. Electrical characteristics at VCC = 36 V, VICM = VOUT = VCC / 2, Tamb = 25 °C and RL connected to VCC / 2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance TSB7191A, TSB7192A, T = 25 °C, ± 300 VCC- ≤ VICM ≤ VCC+ -1.5 V TSB7191A, TSB7192A, T = 25 °C, ± 650 VCC- ≤ VICM ≤ VCC+ TSB7191A, TSB7192A, -40 °C < T < 125 °C, ± 580 VCC- ≤ VICM ≤ VCC+ -1.5 V TSB7191A, TSB7192A, -40 °C < T < 125 °C, Vio Input offset voltage ± 930 VCC- ≤ VICM ≤ VCC+ µV TSB7191, TSB7192, T = 25 °C, ± 800 VCC- ≤ VICM ≤ VCC+ -1.5 V TSB7191, TSB7192, T = 25 °C, ± 1200 VCC- ≤ VICM ≤ VCC+ TSB7191, TSB7192, -40 °C < T < 125 °C, ± 1100 VCC- ≤ VICM ≤ VCC+ -1.5 V TSB7191, TSB7192, -40 °C < T < 125 °C, ± 1400 VCC- ≤ VICM ≤ VCC+ ΔVio / ΔT ΔVio IIB IIO DS12641 - Rev 5 Input offset voltage drift -40 °C < T < 125 °C (1) Long-term input offset voltage drift Input bias current (3) Input offset current(4) 2.8 T = 25 °C (2) 0.57 µV/√mo VICM = VCC+, T = 25 °C 0 300 VICM = VCC+, -40 °C < T < 125 °C 0 900 VICM = VCC-, T = 25 °C -100 0 VICM = VCC-,-40 °C < T < 125 °C -200 0 VICM = VCC+ 10 VICM = VCC- 10 µV/°C nA page 4/34 TSB7191, TSB7191A, TSB7192, TSB7192A Electrical characteristics Symbol Parameter Conditions Min. Typ. 110 125 Max. Unit RL ≥ 10 kΩ, (VCC-) + 0.5 V ≤ VOUT ≤ (VCC+) -0.5 V, AVD Open loop gain T = 25 °C RL ≥ 10 kΩ, (VCC-) + 0.5 V ≤ VOUT ≤ (VCC+) -0.5 V, -40 °C < T < 125 °C (VCC-) ≤ VICM ≤ ( VCC+) - 1.5 V, T = 25 °C (VCC-) ≤ VICM ≤ (VCC+) - 1.5 V, -40 °C < T < 125 °C TSB7191A, TSB7192A (VCC-) ≤ VICM ≤ (VCC+), CMR Common-mode rejection ratio 20 log (∆VINCM / ∆VIO) 105 115 130 110 100 120 dB T = 25 °C TSB7191A, TSB7192A (VCC-) ≤ VICM ≤ (VCC+), 95 -40 °C < T < 125 °C TSB7191, TSB7192 (VCC-) ≤ VICM ≤ (VCC+), 90 120 T = 25 °C TSB7191, TSB7192 (VCC-) ≤ VICM ≤ (VCC+), 85 -40 °C < T < 125 °C SVR Power supply rejection ratio 20 log (∆VCC / ∆VIO) VOH VOL High level output voltage (drop voltage from VCC+) Low level output voltage ISINK IOUT ISOURCE ICC 5 V < VCC < 36 V, VICM = VCC/2 100 125 -40 °C < T < 125 °C No load, -40 °C < T < 125 °C 120 ISOURCE = 2 mA, -40 °C < T < 125 °C 200 ISOURCE = 15 mA, -40 °C < T < 125 °C 1000 No load , -40 °C < T < 125 °C 120 ISINK = 2 mA, -40 °C < T < 125 °C 200 ISINK = 15 mA , -40 °C < T < 125 °C 1000 VOUT = VCC, T = 25 °C 25 VOUT = VCC, -40 °C < T < 125 °C 20 VOUT = 0 V, T = 25 °C 25 VOUT = 0 V, -40 °C < T < 125 °C 20 Supply current by No load, T = 25 °C op-amp No load, -40 °C < T < 125 °C mV 50 mA 50 1.8 3 mA AC performance GBP DS12641 - Rev 5 Gain bandwidth product RL = 10 kΩ, CL = 100 pF 16 22 MHz page 5/34 TSB7191, TSB7191A, TSB7192, TSB7192A Electrical characteristics Symbol Parameter Conditions Min. Typ. Max. Unit No sustained oscillations. Positive gain configuration: 10 Vcc- < Vicm < Vcc+ + 0.1 V, Astab Minimum gain for stability -40 °C < T < 125 °C V/V No sustained oscillations. Negative gain configuration. -9 Vcc- < Vicm < Vcc+ + 0.1 V , -40 °C < T < 125 °C 9 V step, RL = 10 kΩ, SR Slew rate CL = 100 pF, AV = 1 V/V, 10% to 90% VIN = 0.1 Vrms , RL = 10 kΩ, AV = +1, THD+N Total harmonic distorsion + noise f = 1 kHz, BW = 22 kHz VIN = 0.1 Vrms , RL = 1 kΩ, AV = +1, f = 1 kHz, BW = 22 kHz VOUT = 5 Vpp, f = 1 kHz, AV = +11, CR Crosstalk RL = 10 kΩ VOUT = 5Vpp, f = 10 kHz, AV = +11, RL = 10 kΩ Φm CLOAD en Phase margin At gain= +10, 25 °C, 10 kΩ, 100 pF Capacitive load drive Input voltage noise density 8.5 12 V/µs 0.0022 % 0.0022 125 dB 100 68 ᵒ 100(5) pF f = 10 Hz 20 f = 100 Hz 13 f = 10 kHz 12 0.5 µVPP 0.15(6) pA/√Hz en p-p Input noise voltage 0.1 Hz ≤ f ≤ 10 Hz in Input current noise density f = 1 kHz nV/√Hz 1. See Input offset voltage drift over the temperature in application information. 2. Typical value is based on the VIO drift observed after 1000 h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. See Long term input offset voltage drift. 3. Current is positive when it is sinked into the op-amp. 4. Iio is defined as |Iibp – Iibn| 5. For higher capacitive values see Figure 24. Phase margin vs. output current at VCC = 36 V and Figure 25. Phase margin vs. capacitive load 6. Theoretical value of the input current noise density based on the measurement of the input transistor base current: in = 2. q.ib DS12641 - Rev 5 page 6/34 TSB7191, TSB7191A, TSB7192, TSB7192A Electrical characteristics Table 6. Electrical characteristics at VCC = 5 V, VICM = VOUT = VCC / 2, Tamb = 25 °C and RL connected to VCC / 2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance TSB7191A, TSB7192A, T = 25 °C, ± 350 VCC- ≤ VICM ≤ VCC+ -1.5 V TSB7191A, TSB7192A, T = 25 °C, ± 650 VCC- ≤ VICM ≤ VCC+ TSB7191A, TSB7192A, -40 °C < T < 125 °C, ± 750 VCC- ≤ VICM ≤ VCC+ -1.5 V TSB7191A, TSB7192A, -40 °C < T < 125 °C, Vio Input offset voltage ± 1050 VCC- ≤ VICM ≤ VCC+ µV TSB7191, TSB7192, T = 25 °C, ±800 VCC- ≤ VICM ≤ VCC+ -1.5 V TSB7191, TSB7192, T = 25 °C, ±1200 VCC- ≤ VICM ≤ VCC+ TSB7191, TSB7192, -40 °C < T < 125 °C, ±1100 VCC- ≤ VICM ≤ VCC+ -1.5 V TSB7191, TSB7192, -40 °C < T < 125 °C, ±1400 VCC- ≤ VICM ≤ VCC+ ΔVio / ΔT IIB IIO DS12641 - Rev 5 Input offset voltage drift Input bias current (2) Input offset current (3) -40°C < T < 125 °C(1) 4 VICM = VCC+, T = 25 °C 0 300 VICM = VCC+, -40 °C < T < 125 °C 0 900 VICM = VCC-, T = 25 °C -100 0 VICM = VCC-, -40 °C < T < 125 °C -200 0 VICM = VCC+ 10 VICM = VCC- 10 µV/°C nA page 7/34 TSB7191, TSB7191A, TSB7192, TSB7192A Electrical characteristics Symbol Parameter Conditions Min. Typ. (VCC-) + 0.5 V ≤ VOUT ≤ (VCC+) -0.5 V, T = 25 °C 105 120 Max. Unit RL ≥ 10 kΩ, AVD Open loop gain RL ≥ 10 kΩ, (VCC-) + 0.5 V ≤ VOUT ≤ (VCC+) -0.5 V, -40 °C < T < 125 °C (VCC-) ≤ VICM ≤ ( VCC+) -1.5 V, T = 25 °C (VCC-) ≤ VICM ≤ (VCC+) - 1.5 V, -40 °C < T < 125 °C TSB7191A,TSB7192A (VCC-) ≤ VICM ≤ (VCC+), CMR Common-mode rejection ratio 20 log (∆VINCM/∆VIO ) 100 95 125 90 dB 80 105 T = 25 °C TSB7191A, TSB7192A (VCC-) ≤ VICM ≤ (VCC+), 75 -40 °C < T < 125 °C TSB7191, TSB7192 (VCC-) ≤ VICM ≤ (VCC+), 75 105 T = 25 °C TSB7191, TSB7192 (VCC-) ≤ VICM ≤ (VCC+), 70 -40 °C < T < 125 °C High level output voltage (drop voltage from VCC+) No load, -40 °C < T < 125 °C 90 VOH ISOURCE = 2 mA, -40 °C < T < 125 °C 200 VOL Low level output voltage No load, -40 °C < T < 125 °C 90 ISINK = 2 mA, -40 °C < T < 125 °C 200 ISINK IOUT ISOURCE ICC Supply current by opamp VOUT = VCC, T = 25 °C 20 VOUT = VCC, -40 °C < T < 125 °C 15 VOUT = 0 V, T = 25 °C 20 VOUT = 0 V, -40 °C < T < 125 °C 15 No load, T = 25 °C mV 50 mA 50 1.4 No load, -40 °C < T < 125 °C 2.3 mA AC performance GBP Gain bandwidth product RL = 10 kΩ, CL = 100 pF 16 22 MHz No sustained oscillations. Positive gain configuration: Astab Minimum gain for stability 10 Vcc- < Vicm < Vcc+ + 0.1 V, -40 °C < T < 125 °C V/V No sustained oscillations. Negative gain configuration. -9 Vcc- < Vicm < Vcc+ + 0.1 V, -40 °C < T < 125 °C DS12641 - Rev 5 page 8/34 TSB7191, TSB7191A, TSB7192, TSB7192A Electrical characteristics Symbol SR Parameter Slew rate Conditions 3 V step, RL = 10 kΩ, CL = 100 pF, AV = 1 V/V, 10% to 90% Min. Typ. 7.5 11 Max. Unit V/µs VIN = 0.1 Vrms , RL = 10 kΩ, THD+N Total harmonic distorsion + noise AV = +1, f = 1 kHz, BW = 22 kHz VIN = 0.1 Vrms , RL = 1 kΩ, AV = +1, f = 1 kHz, BW = 22 kHz Φm CLOAD en Phase margin At gain = +10, 25 °C, 10 kΩ, 100 pF Capacitive load drive Input voltage noise density 0.0022 % 0.0024 63 ᵒ 100(4) pF f = 10 Hz 20 f = 100 Hz 13 f = 10 kHz 12 0.8 µVPP 0.15(5) pA/√Hz en p-p Input noise voltage 0.1 Hz ≤ f ≤ 10 Hz in Input current noise density f = 1 kHz nV/√Hz 1. See Input offset voltage drift over the temperature in application information. 2. Current is positive when it is sinked into the op-amp. 3. Iio is defined as |Iibp – Iibn|. 4. For higher capacitive values see Figure 23. Phase margin vs. output current at VCC = 5 V and Figure 25. Phase margin vs. capacitive load 5. Theoretical value of the input current noise density based on the measurement of the input transistor base current: in = 2. q.ib DS12641 - Rev 5 page 9/34 TSB7191, TSB7191A, TSB7192, TSB7192A Typical performance characteristics 4 Typical performance characteristics RL connected to VCC / 2 (unless otherwise specified). Figure 3. Supply current vs. supply voltage Figure 4. Input offset voltage distribution at VCC = 5 V TSB7191A, TSB7192A Figure 5. Input offset voltage distribution at VCC = 36 V TSB7191A, TSB7192A Figure 6. Input offset voltage vs. temperature at VCC = 5 V DS12641 - Rev 5 page 10/34 TSB7191, TSB7191A, TSB7192, TSB7192A Typical performance characteristics Figure 7. Input offset voltage vs. temperature at VCC = 36 V Figure 8. Input offset voltage thermal coefficient distribution at VCC = 5 V Figure 9. Input offset voltage vs. supply voltage Figure 10. Input offset voltage vs. common mode voltage at VCC = 5 V Figure 11. Input offset voltage vs. common mode voltage at VCC = 36 V Figure 12. Input bias current vs. temperature at VICM = VCC / 2 DS12641 - Rev 5 page 11/34 TSB7191, TSB7191A, TSB7192, TSB7192A Typical performance characteristics Figure 13. Output current vs. output voltage at VCC = 5 V Figure 14. Input bias current vs. common mode voltage at VCC = 5 V Figure 15. Input bias current vs. common mode voltage at Figure 16. Output current vs. output voltage at VCC = 36 V VCC = 36 V Figure 17. Output voltage (VOH) vs. supply voltage DS12641 - Rev 5 Figure 18. Output voltage (VOL) vs. supply voltage page 12/34 TSB7191, TSB7191A, TSB7192, TSB7192A Typical performance characteristics Figure 20. Negative slew rate at VCC = 36 V Figure 21. Bode diagram at VCC = 5 V Figure 22. Bode diagram at VCC = 36 V Figure 23. Phase margin vs. output current at VCC = 5 V Figure 24. Phase margin vs. output current at VCC = 36 V Phase margin (°) Phase margin (°) Figure 19. Positive slew rate at VCC = 36 V DC output current (mA) DS12641 - Rev 5 DC output current (mA) page 13/34 TSB7191, TSB7191A, TSB7192, TSB7192A Typical performance characteristics Figure 25. Phase margin vs. capacitive load Figure 26. Small step response vs. time at VCC = 5 V Figure 27. Desaturation time at low rail at VCC = 5 V Figure 28. Desaturation time at high rail at VCC = 5 V Figure 29. Small step response vs. time at VCC = 36 V Figure 30. Amplifier behavior close to the low rail at VCC = 36 V DS12641 - Rev 5 page 14/34 TSB7191, TSB7191A, TSB7192, TSB7192A Typical performance characteristics Figure 31. Amplifier behavior close to the high rail at VCC = 36 V Figure 32. Noise vs. frequency at VCC = 5 V Figure 33. Noise vs. frequency at VCC = 36 V Figure 34. Noise vs. time at VCC = 36 V Figure 35. THD+N vs. frequency Figure 36. THD+N vs. output voltage DS12641 - Rev 5 page 15/34 TSB7191, TSB7191A, TSB7192, TSB7192A Typical performance characteristics Figure 37. PSRR vs. frequency at VCC = 10 V Figure 38. CMRR vs. frequency at VCC = 10 V Figure 39. Channel separation vs. frequency at VCC = 36 V DS12641 - Rev 5 page 16/34 TSB7191, TSB7191A, TSB7192, TSB7192A Application information 5 Application information 5.1 Operating voltages The TSB7191, TSB7191A, TSB7192 and TSB7192A devices can operate from 2.7 to 36 V. The parameters are fully specified at 5 V and 36 V power supplies. However, the parameters are very stable over the full VCC range and several characterization curves show the TSB7191, TSB7191A, TSB7192 and TSB7192A device characteristics over the full operating range. Additionally, the main specifications are guaranteed in extended temperature range from -40 to 125 °C. 5.2 Input pin voltage range The TSB7191, TSB7191A, TSB7192 and TSB7192A devices have an internal ESD diode protection on the inputs. These diodes are connected between the inputs and each supply rail to protect the input stage from electrical discharge, as shown in the figure below. Figure 40. Input current limitation Vcc+ In- 100 Ω D1 In+ 100Ω D2 VCC + TSB7192 + Out Out VCC - Vcc- When the input pin voltage exceeds the power supply, the ESD diodes become conductive and, depending on this voltage, excessive current can flow through them. Without limitation this overcurrent can damage the device. In this case, the current has to be limited to 10 mA by adding a resistance in series with the input pin. Similarly, in order to avoid excessive current in the protection diodes between the positive and negative inputs, the differential voltage should be limited to ± 2 V, or the current limited to 10 mA. Such a high differential voltage can be reached when the output is in saturation mode, or slew rate limited. In particular, it can happen when the device is used in comparator mode. The TSB7191, TSB7191A, TSB7192 and TSB7192A do not show any phase reversal for any input common mode voltage inside the absolute maximum ratings (AMR) voltage window, (VCC-) - 200 mV < VICM < (VCC+) + 200 mV. DS12641 - Rev 5 page 17/34 TSB7191, TSB7191A, TSB7192, TSB7192A Rail-to-rail input stage 5.3 Rail-to-rail input stage The TSB7191, TSB7191A, TSB7192 and TSB7192A devices are built with two complementary NPN and PNP input differential pairs, as shown in the figure below. Figure 41. Rail-to-rail input stage V CC Ip VIP Pp Pn VIN […] […] […] Nn […] Np In GND The device has rail-to-rail inputs, and the input common mode range is extended from VCC- to (VCC+) + 0.1 V. However, the performance of these devices is optimized for the P-channel differential pair (which means from VCC- to (VCC+) - 1.5 V). Around (VCC+) – 1 V, and with slight variations depending on the process, a transition occurs between the P-channel and the N-channel differential pair, impacting the input offset voltage (see Figure 10. Input offset voltage vs. common mode voltage at VCC = 5 V and Figure 11. Input offset voltage vs. common mode voltage at VCC = 36 V). As a consequence, CMRR can be degraded around this transition region. In order to achieve the best possible performance, this operating point should be avoided. Please also notice that the input bias current polarity depends on the operation of NPN or PNP input stage. This transition is visible in figures Figure 14. Input bias current vs. common mode voltage at VCC = 5 V and Figure 15. Input bias current vs. common mode voltage at VCC = 36 V. 5.4 Input offset voltage drift over the temperature The maximum input voltage drift variation over temperature is defined as the offset variation related to the offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during the production at application level. The maximum input voltage drift overtemperature enables the system designer to anticipate the effect of temperature variations. The maximum input voltage drift overtemperature is computed using the following formula: ΔVio Vio T − Vio 25°C = max ΔT T − 25°C T = − 40 °C and T = 125 °C (1) The datasheet maximum value is guaranteed by a measurement on a representative sample size ensuring a Cpk (process capability index) greater than 1.3. DS12641 - Rev 5 page 18/34 TSB7191, TSB7191A, TSB7192, TSB7192A Long term input offset voltage drift 5.5 Long term input offset voltage drift To evaluate product reliability, two types of stress acceleration are used: Voltage acceleration, by changing the applied voltage. • • Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature. The voltage acceleration has been defined based on JEDEC results, and is defined using: (2) AFV = еβ.(VS - VU) Where: AFV is the voltage acceleration factor β is the voltage acceleration coefficient in 1/V, constant technology parameter (β = 1) VS is the stress voltage used for the accelerated test VU is the voltage used for the application The temperature acceleration is driven by the Arrhenius model, and is defined as follows: (3) Ea 1 1 AFT = e k . TU − TS . Where: AFT is the temperature acceleration factor Ea is the activation energy of the technology based on the failure rate k is the Boltzmann constant (8.6173 x 10-5 eV.K-1) TU is the temperature of the die when VU is used (K) TS is the temperature of the die under temperature stress (K) The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and the temperature acceleration factor. (4) AF = AFT . AFV AF is calculated using the temperature and voltage defined in the mission profile of the product. The AF value can then be used in Equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress duration. (5) Months = AF × 1000 h × 12 months / (24 h × 365.25 days) To evaluate the op-amp reliability, a follower stress condition is used where VCC is defined as a function of the maximum operating voltage and the absolute maximum ratings (as recommended by JEDEC rules). Vio drift (in µV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions. (6) VCC = max(VOP) with Vicm = VCC/2 The long term drift parameter ΔVio (in µV.month-1/2), estimating the reliability performance of the product, is obtained using the ratio of the Vio (input offset voltage value) drift over the square root of the calculated number of months. (7) Viodrift ∆ Vio = montℎs Where Vio drift is the measured drift value in the specified test conditions after 1000 h stress duration. DS12641 - Rev 5 page 19/34 TSB7191, TSB7191A, TSB7192, TSB7192A EMI rejection The Vio final drift, in µV, to be measured on the device in real operation conditions can be computed from: (8) Ea 1 1 Vio final drift top, Top, VCC = ∆ Vio,  25°C . top . eβ . VCC − VCC nom . e k . 297 − Top Where: ΔVio is the long term drift parameter in µV.month-1/2 top is the operating time seen by the device, in months Top is the operating temperature VCC is the power supply during operating time VCC nom is the nominal VCC at which the ΔVio is computed (36 V for the TSB7192A). Ea is the activation energy of the technology (here 0.7 eV). 5.6 EMI rejection The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational amplifiers. An adverse effect that is common to many op-amps is a change in the offset voltage as a result of RF signal rectification. EMIRR is defined as follows: EMIRR = 20.log Vin pp ΔVio (9) The TSB7191, TSB7191A, TSB7192 and TSB7192A have been specially designed to minimize susceptibility to EMIRR and shows a low sensitivity. As visible on figure below, EMI rejection ratio has been measured on both inputs and outputs, from 400 MHz to 2.4 GHz. Figure 42. EMIRR on In+, In- and out pins EMIRR performance might be improved by adding small capacitances (in the pF range) on the inputs, power supply and output pins. These capacitances help in minimizing the impedance of these nodes at high frequencies. 5.7 Minimum gain The TSB7191 and TSB7192 series is non-compensated op-amp, and thus it is not stable at unity gain. The minimum gain advised for this family is +10 or -9, for a capacitive load Cload = 100 pF; that guarantees a good stability at all biases and temperatures. For a lower gain, the TSB712 series must be preferred. However, a TSB7191 and TSB7192 op-amp can be used in follower mode at low frequency, provided that the circuit is externally compensated. This can be useful for the second channel, when the TSB7192 frequency or slew rate performance is needed for the first channel. In this case, the circuit topology described in the figure below can be used. At low frequency, the circuit behaves as a follower, but at high frequency (>1 MHz), the circuit is stabilized by attenuating the feedback injected into the negative input. DS12641 - Rev 5 page 20/34 TSB7191, TSB7191A, TSB7192, TSB7192A Minimum gain Figure 43. Proposed circuit configuration for unity gain stability Figure 44. Small step response vs. time in follower configuration Figure 45. Small step response vs. time in the proposed compensated circuit configuration DS12641 - Rev 5 page 21/34 TSB7191, TSB7191A, TSB7192, TSB7192A Unused channel 5.8 Unused channel When one of the two channels of the TSB7192 and TSB7192A is not used, it must be properly connected in order to avoid internal oscillations that can negatively impact the signal integrity on the other channel, as well as the current consumption. Two different configurations can be used: • Gain configuration: the channel can be set in gain at which the stability is guaranteed (+10/-9 or more). The input can be set to any voltage within the Vicm operating range. • 5.9 Comparator configuration: the channel can be set to a comparator configuration (without negative feedback). In this case, positive and negative inputs can be set to any value provided that these values are significantly different (100 mV or more, to avoid oscillations between positive and negative state) and the differential input is lower than the maximum specified in the operating range (maximum 2 V), or the input current is limited to less than 10 mA to avoid damaging the circuit. Maximum power dissipation The usable output load current drive is limited by the maximum power dissipation allowed by the device package. The absolute maximum junction temperature for the TSB7191, TSB7191A, TSB7192 and TSB7192A is 150 °C. The junction temperature can be estimated as follows: T J = PD × Rtℎ − ja + TA TJ is the die junction temperature (10) PD is the power dissipated in the package Rth-ja is the junction to ambient thermal resistance of the package TA is the ambient temperature The power dissipated in the package PD is the sum of the quiescent power dissipated and the power dissipated by the output stage transistor. It is calculated as follows: PD = VCC × ICC + VCC + − VOUT × ILoad (11) PD = VCC × ICC + VOUT − VCC− × ILoad (12) when the op-amp sources the current when the op-amp is sinks the current. Do not exceed the 150 °C maximum junction temperature for the device. Exceeding the junction temperature limit can cause degradation in the parametric performance or even destroy the device. 5.10 PCB layout recommendations Particular attention must be paid to the layout of the PCB tracks connected to the amplifier, load, and power supply. The power and ground traces are critical as they must provide adequate energy and grounding for all circuits. The best practice is to use short and wide PCB traces to minimize voltage drops and parasitic inductance. In addition, to minimize parasitic impedance over the entire surface, a multi-via technique that connects the bottom and top layer ground planes together in many locations is often used. The copper traces connecting the output pins to the load and supply pins should be as wide as possible to minimize trace resistance. 5.11 Decoupling capacitor In order to ensure op-amp full functionality, it is mandatory to place a decoupling capacitor of at least 22 nF as close as possible to the op-amp supply pin. A good decoupling helps to reduce electromagnetic interference impact. DS12641 - Rev 5 page 22/34 TSB7191, TSB7191A, TSB7192, TSB7192A Typical applications 6 Typical applications 6.1 Low-side current sensing Power management mechanisms are found in most electronic systems. Current sensing is useful to protect applications. The low-side current sensing method consists of placing a sense resistor between the load and the circuit ground. The resulting voltage drop is amplified using the TSB7191 and the TSB7192 (see the following figure). Figure 46. Low-side current sensing schematic C1 Rg1 I Rf1 In Rshunt Rg2 Ip 5V - + + - Vout TSB7191 TSB7192 Rf2 Vout can be expressed as follows: Rg2 Rf1 Rg2.Rf2 Rf1 VOUT = Rsℎunt.I 1 − . 1− + Ip. − In.Rf1 . 1+ Rg2 + Rf2 Rg1 Rg2 + Rf2 Rg1 Rf1 − Vio. 1 − Rg1 (13) Assuming that Rf2 = Rf1 = Rf and Rg2 = Rg1 = Rg, can be simplified in the following manner: Rf Rf VOUT = Rsℎunt.I . + Rf.Iio − Vio. 1 + Rg Rg (14) The main advantage of using the TSB7191 and the TSB7192 for a low-side current sensing relies on its low Vio, compared to general purpose operational amplifiers. For the same current and targeted accuracy, the shunt resistor can be chosen with a lower value, resulting in lower power dissipation, lower drop in the ground path, and lower cost. Particular attention must be paid to the matching and precision of Rg1, Rg2, Rf1, and Rf2, to maximize the accuracy of the measurement. DS12641 - Rev 5 page 23/34 TSB7191, TSB7191A, TSB7192, TSB7192A Package information 7 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 7.1 SOT23-5 package information Figure 47. SOT23-5 package outline DS12641 - Rev 5 page 24/34 TSB7191, TSB7191A, TSB7192, TSB7192A SOT23-5 package information Table 7. SOT23-5 package mechanical data Dimensions Ref. A Millimeters Min. Typ. Max. Min. Typ. Max. 0.90 1.20 1.45 0.035 0.047 0.057 A1 DS12641 - Rev 5 Inches 0.15 0.006 A2 0.90 1.05 1.30 0.035 0.041 0.051 B 0.35 0.40 0.50 0.014 0.016 0.020 C 0.09 0.15 0.20 0.004 0.006 0.020 D 2.80 2.90 3.00 0.110 0.114 0.118 D1 1.90 0.075 e 0.95 0.037 E 2.60 2.80 3.00 0.102 0.110 0.118 F 1.50 1.60 1.75 0.059 0.063 0.069 L 0.10 0.35 0.60 0.004 0.014 0.024 K 0° 10° 0° 10° page 25/34 TSB7191, TSB7191A, TSB7192, TSB7192A MiniSO8 package information 7.2 MiniSO8 package information Figure 48. MiniSO8 package outline Table 8. MiniSO8 mechanical data Dim. Millimeters Min. Inches Typ. A Min. Typ. 1.1 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.03 0.22 0.4 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.8 3 3.2 0.11 0.118 0.126 E 4.65 4.9 5.15 0.183 0.193 0.203 E1 2.8 3 3.1 0.11 0.118 0.122 e L 0.85 0.65 0.4 0.6 0.006 0.033 0.8 0.016 0.024 0.95 0.037 L2 0.25 0.01 ccc 0° 0.037 0.026 L1 k DS12641 - Rev 5 Max. 8° 0.1 0° 0.031 8° 0.004 page 26/34 TSB7191, TSB7191A, TSB7192, TSB7192A SO8 package information 7.3 SO8 package information Figure 49. SO8 package outline Table 9. SO-8 mechanical data Dim. mm Min. Inches Typ. A Min. Typ. 1.75 0.25 Max. 0.069 A1 0.1 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.01 D 4.8 4.9 5 0.189 0.193 0.197 E 5.8 6 6.2 0.228 0.236 0.244 E1 3.8 3.9 4 0.15 0.154 0.157 e 0.004 0.01 0.049 1.27 0.05 h 0.25 0.5 0.01 0.02 L 0.4 1.27 0.016 0.05 L1 k ccc DS12641 - Rev 5 Max. 1.04 0 0.04 8° 0.1 1° 8° 0.004 page 27/34 TSB7191, TSB7191A, TSB7192, TSB7192A Ordering information 8 Ordering information Table 10. Order code Order code TSB7191AILT TSB7191ILT TSB7191AIYLT TSB7191IYLT Temperature range -40 °C to +125 °C -40 °C to +125 °C automotive grade TSB7192AIST TSB7192AIDT TSB7192IDT -40 °C to +125 °C Package Packing Marking SOT23-5 K224 SOT23-5 K220 SOT23-5 K226 SOT23-5 K222 MiniSO8 K21A SO8 SO8 Tape and reel 7192AI 7192I TSB7192IST MiniSO8 792S TSB7192AIYDT SO8 7192AIY MiniSO8 792Y SO8 7192IY MiniSO8 K21Y TSB7192AIYST TSB7192IYDT TSB7192IYST -40 °C to 125 °C automotive grade(1) 1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent. SO8 package for single op-amp may be available for qualification upon customer request. Please contact sales office for such request. DFN8 package for dual op-amp may be available for qualification under customer request. Please contact sales office for such request. DS12641 - Rev 5 page 28/34 TSB7191, TSB7191A, TSB7192, TSB7192A Revision history Table 11. Document revision history Date Revision 29-Jun-2018 1 Changes Initial release. Added the TSB7192 as root part number; cover page has been updated accordingly. Updated Section 3 Electrical characteristics, Section 4 Typical performance 26-Sep-2018 2 characteristics, Section 5.1 Operating voltages, Section 5.2 Input pin voltage range, Section 5.3 Rail-to-rail input stage and Section 5.6 EMI rejection, Section 8 Ordering information. Added Section 7.2 SO8 package information. DS12641 - Rev 5 29-Nov-2018 3 Updated Table 5. Electrical characteristics at VCC = 36 V, VICM = VOUT = VCC / 2, Tamb = 25 °C and RL connected to VCC / 2 (unless otherwise specified) and Table 6. Electrical characteristics at VCC = 5 V, VICM = VOUT = VCC / 2, Tamb = 25 °C and RL connected to VCC / 2 (unless otherwise specified). 17-Jun-2019 4 Added root part numbers TSB7191A and TSB7192A, therefore the whole document has been updated accordingly. 15-Oct-2019 5 Updated Table 10. Order code. page 29/34 TSB7191, TSB7191A, TSB7192, TSB7192A Contents Contents 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 6 5.1 Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.2 Input pin voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.3 Rail-to-rail input stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.4 Input offset voltage drift over the temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.5 Long term input offset voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.6 EMI rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.7 Minimum gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.8 Unused channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.9 Maximum power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.10 PCB layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.11 Decoupling capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 6.1 7 8 Low-side current sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 7.1 SOT23-5 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7.2 MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7.3 SO8 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 DS12641 - Rev 5 page 30/34 TSB7191, TSB7191A, TSB7192, TSB7192A List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Pin description (SOT23-5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Pin description (MiniSO8/SO8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Electrical characteristics at VCC = 36 V, VICM = VOUT = VCC / 2, Tamb = 25 °C and RL connected to VCC / 2 (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Electrical characteristics at VCC = 5 V, VICM = VOUT = VCC / 2, Tamb = 25 °C and RL connected to VCC / 2 (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 SOT23-5 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 MiniSO8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 SO-8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Order code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 DS12641 - Rev 5 page 31/34 TSB7191, TSB7191A, TSB7192, TSB7192A List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. DS12641 - Rev 5 Pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input offset voltage distribution at VCC = 5 V TSB7191A, TSB7192A . . . . . . . . . Input offset voltage distribution at VCC = 36 V TSB7191A, TSB7192A . . . . . . . . Input offset voltage vs. temperature at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . Input offset voltage vs. temperature at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . Input offset voltage thermal coefficient distribution at VCC = 5 V . . . . . . . . . . . . Input offset voltage vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input offset voltage vs. common mode voltage at VCC = 5 V . . . . . . . . . . . . . . . Input offset voltage vs. common mode voltage at VCC = 36 V . . . . . . . . . . . . . . Input bias current vs. temperature at VICM = VCC / 2 . . . . . . . . . . . . . . . . . . . . Output current vs. output voltage at VCC = 5 V . . . . . . . . . . . . . . . . . . Input bias current vs. common mode voltage at VCC = 5 V . . . . . . . . . . . . . . . . Input bias current vs. common mode voltage at VCC = 36 V . . . . . . . . . . . . . . . Output current vs. output voltage at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . Output voltage (VOH) vs. supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output voltage (VOL) vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Positive slew rate at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Negative slew rate at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bode diagram at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bode diagram at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phase margin vs. output current at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . Phase margin vs. output current at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . Phase margin vs. capacitive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Small step response vs. time at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . Desaturation time at low rail at VCC = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . Desaturation time at high rail at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . Small step response vs. time at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . Amplifier behavior close to the low rail at VCC = 36 V . . . . . . . . . . . . . . . . . . . . Amplifier behavior close to the high rail at VCC = 36 V . . . . . . . . . . . . . . . . . . . Noise vs. frequency at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Noise vs. frequency at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Noise vs. time at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD+N vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THD+N vs. output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PSRR vs. frequency at VCC = 10 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CMRR vs. frequency at VCC = 10 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Channel separation vs. frequency at VCC = 36 V . . . . . . . . . . . . . . . . . . . . . . . Input current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rail-to-rail input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMIRR on In+, In- and out pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposed circuit configuration for unity gain stability . . . . . . . . . . . . . . . . . . . . Small step response vs. time in follower configuration . . . . . . . . . . . . . . . . . . . Small step response vs. time in the proposed compensated circuit configuration . Low-side current sensing schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SOT23-5 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MiniSO8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 2 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 14 15 15 15 15 15 15 16 16 16 17 18 20 21 21 21 23 24 26 page 32/34 TSB7191, TSB7191A, TSB7192, TSB7192A List of figures Figure 49. DS12641 - Rev 5 SO8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 page 33/34 TSB7191, TSB7191A, TSB7192, TSB7192A IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2019 STMicroelectronics – All rights reserved DS12641 - Rev 5 page 34/34
TSB7192AIYDT 价格&库存

很抱歉,暂时无法提供与“TSB7192AIYDT”相匹配的价格&库存,您可以联系我们找货

免费人工找货