0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TSX564IYPT

TSX564IYPT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    TSSOP14_5X4.4MM

  • 描述:

    IC OPAMP GP 4 CIRCUIT 14TSSOP

  • 数据手册
  • 价格&库存
TSX564IYPT 数据手册
TSX56x, TSX56xA Micropower, wide bandwidth (900 kHz), 16 V CMOS operational amplifiers Datasheet - production data Easy interfacing with high impedance sensors SOT23- 5 ( single) DFN8 2x2 ( dual) Related topics See TSX63x series for reduced power consumption (45 mA, 200 kHz) See TSX92x series for higher gain bandwidth products (10 MHz) Applications MiniSO8 ( dual) Industrial and automotive signal conditioning Active filtering Medical instrumentation High impedance sensors Description QFN16 3x3 ( quad) TSSOP14 ( quad) Features Low power consumption: 235 µA typ. at 5 V Supply voltage: 3 V to 16 V Gain bandwidth product: 900 kHz typ. Low offset voltage “A” version: 600 µV max. Standard version: 1 mV max. Low input bias current: 1 pA typ. High tolerance to ESD: 4 kV Wide temperature range: -40 to 125 °C Automotive qualification Tiny packages available: SOT23-5, DFN8 2 mm x 2 mm, MiniSO8, QFN16 3 mm x 3 mm, and TSSOP14 The TSX56x, TSX56xA series of operational amplifiers benefit from STMicroelectronics® 16 V CMOS technology to offer state-of-the-art accuracy and performance in the smallest industrial packages. The TSX56x, TSX56xA have pinouts compatible with industrial standards and offer an outstanding speed/power consumption ratio, 900 kHz gain bandwidth product while consuming only 250 µA at 16 V. Such features make the TSX56x, TSX56xA ideal for sensor interfaces and industrial signal conditioning. The wide temperature range and high ESD tolerance ease use in harsh automotive applications. Table 1: Device summary Version Standard VIO Enhanced VIO Single TSX561 TSX561A Dual TSX562 TSX562A Quad TSX564 TSX564A Benefits Power savings in power-conscious applications February 2017 DocID023274 Rev 5 This is information on a product in full production. 1/28 www.st.com Contents TSX56x, TSX56xA Contents 1 Pinout information........................................................................... 3 2 Absolute maximum ratings and operating conditions ................. 4 3 4 Electrical characteristics ................................................................ 6 Electrical characteristic curves .................................................... 12 5 Application information ................................................................ 16 6 5.1 Operating voltages .......................................................................... 16 5.2 Rail-to-rail input ............................................................................... 16 5.3 Input offset voltage drift over temperature ....................................... 16 5.4 Long term input offset voltage drift .................................................. 17 5.5 PCB layouts .................................................................................... 18 5.6 Macromodel .................................................................................... 18 Package information ..................................................................... 19 6.1 SOT23-5 package information ........................................................ 20 6.2 DFN8 2x2 package information ....................................................... 21 6.3 MiniSO8 package information ......................................................... 22 6.4 QFN16 3x3 package information..................................................... 23 6.5 TSSOP14 package information ....................................................... 25 7 Ordering information..................................................................... 26 8 Revision history ............................................................................ 27 2/28 DocID023274 Rev 5 TSX56x, TSX56xA 1 Pinout information Pinout information Figure 1: Pin connections for each package (top view) Single SOT23-5 ( TSX561) Dual DFN8 2x2 ( TSX562) MiniSO8 ( TSX562) Quad QFN16 3x3 (TSX564) DocID023274 Rev 5 TSSOP14 ( TSX564) 3/28 Absolute maximum ratings and operating conditions 2 TSX56x, TSX56xA Absolute maximum ratings and operating conditions Table 2: Absolute maximum ratings (AMR) Symbol Parameter VCC Supply voltage (1) Vid Differential input voltage (2) Vin Iin Tstg Value Unit 18 ±VCC Input voltage (3) (VCC-) - 0.2 to (VCC+) + 0.2 Input current (4) 10 Storage temperature V mA -65 to 150 °C Tj Maximum junction temperature 150 SOT23-5 250 DFN8 2x2 120 MiniSO8 190 QFN16 3x3 80 TSSOP14 100 DFN8 2x2 33 QFN16 3x3 30 Thermal resistance junction-to-ambient (5) (6) Rthja Thermal resistance junction-to-case Rthjc HBM: human body model (7) 4 MM: machine model for TSX561 ESD (8) MM: machine model for TSX562 and TSX564 CDM: charged device model °C/W kV 200 (8) (9) Latch-up immunity V 100 1.5 kV 200 mA Notes: (1)All voltage values, except the differential voltage are with respect to the network ground terminal. (2)The (3)V cc differential voltage is the non-inverting input terminal with respect to the inverting input terminal. - Vin must not exceed 18 V, Vin must not exceed 18 V (4)Input (5)R th current must be limited by a resistor in series with the inputs. are typical values. (6)Short-circuits can cause excessive heating and destructive dissipation. (7)Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating. (8)Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating. (9)Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground. 4/28 DocID023274 Rev 5 TSX56x, TSX56xA Absolute maximum ratings and operating conditions Table 3: Operating conditions Symbol Parameter VCC Supply voltage Vicm Common-mode input voltage range Toper Operating free-air temperature range Value 3 to 16 DocID023274 Rev 5 (VCC-) - 0.1 to (VCC+) + 0.1 -40 to 125 Unit V °C 5/28 Electrical characteristics 3 TSX56x, TSX56xA Electrical characteristics Table 4: Electrical characteristics at VCC+ = 3.3 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance Vio Offset voltage TSX56xA, T = 25 °C 600 TSX56xA, -40 °C < T < 125 °C 1800 TSX56x, T = 25 °C 1 TSX56x, -40 °C < T < 125 °C 2.2 ΔVio/ΔT Input offset voltage drift -40 °C < T < 125 °C (1) 2 12 Iib Input bias current, Vout = VCC/2 T = 25 °C 1 100 (2) -40 °C < T < 125 °C 1 200 (2) Iio Input offset current, Vout = VCC/2 T = 25 °C 1 100 (2) -40 °C < T < 125 °C 1 200 (2) CMR1 Common mode rejection ratio, CMR = 20 log (ΔVic/ΔVio), Vic = -0.1 V to VCC - 1.5 V, Vout = VCC/2, RL > 1 MΩ CMR2 Common mode rejection ratio, CMR = 20 log (ΔVic/ΔVio), Vic = -0.1 V to VCC + 0.1 V, Vout = VCC/2, RL > 1 MΩ Avd Large signal voltage gain, Vout = 0.5 V to (VCC - 0.5 V), RL > 1 MΩ VOH High-level output voltage, VOH = VCC - Vout VOL Low-level output voltage Isink, Vout = VCC Iout Isource, Vout = 0 V ICC Supply current, per channel, Vout = VCC/2, RL > 1 MΩ T = 25 °C 63 -40 °C < T < 125 °C 59 T = 25 °C 47 μV mV µV/°C pA 80 66 dB -40 °C < T < 125 °C 45 T = 25 °C 85 -40 °C < T < 125 °C 83 T = 25 °C 70 -40 °C < T < 125 °C 100 T = 25 °C 70 -40 °C < T < 125 °C mV 100 T = 25 °C 4.3 -40 °C < T < 125 °C 2.5 T = 25 °C 3.3 -40 °C < T < 125 °C 2.5 T = 25 °C 5.3 mA 4.3 220 -40 °C < T < 125 °C 300 350 μA AC performance GBP Gain bandwidth product Fu Unity gain frequency ɸm Phase margin Gm Gain margin 6/28 600 RL = 10 kΩ, CL = 100 pF DocID023274 Rev 5 800 690 kHz 55 Degrees 9 dB TSX56x, TSX56xA Electrical characteristics Symbol Parameter Conditions Min. Typ. Max. Unit SR Slew rate RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5 V 1 en Equivalent input noise voltage density f = 1 kHz 55 f = 10 kHz 29 ∫en Low-frequency peak-topeak input noise Bandwidth, f = 0.1 to 10 Hz 16 µVpp THD+N Total harmonic distortion + noise Follower configuration, fin = 1 kHz, RL = 100 kΩ, Vicm = (VCC -1.5 V)/2, BW = 22 kHz, Vout = 1 Vpp 0.004 % V/μs nV/√Hz Notes: (1)See Section 5.3: "Input offset voltage drift over temperature" (2)Guaranteed by design DocID023274 Rev 5 7/28 Electrical characteristics TSX56x, TSX56xA Table 5: Electrical characteristics at VCC+ = 5 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance Vio Offset voltage TSX56xA, T = 25 °C 600 TSX56xA, -40 °C < T < 125 °C 1800 TSX56x, T = 25 °C 1 TSX56x, -40 °C < T < 125 °C 2.2 ΔVio/ΔT Input offset voltage drift -40 °C < T < 125 °C (1) 2 ΔVio Long-term input offset voltage drift T = 25 °C (2) 5 Iib Input bias current, Vout = VCC/2 T = 25 °C 1 100 (3) -40 °C < T < 125 °C 1 200 (3) Iio Input offset current, Vout = VCC/2 T = 25 °C 1 100 (3) -40 °C < T < 125 °C 1 200 (3) CMR1 Common mode rejection ratio, CMR = 20 log (ΔVic/ΔVio), Vic = -0.1 V to VCC - 1.5 V, Vout = VCC/2, RL > 1 MΩ CMR2 Common mode rejection ratio, CMR = 20 log (ΔVic/ΔVio), Vic = -0.1 V to VCC + 0.1 V, Vout = VCC/2, RL > 1 MΩ Avd Large signal voltage gain, Vout = 0.5 V to (VCC - 0.5 V), RL > 1 MΩ VOH High-level output voltage, VOH = VCC - Vout VOL Low-level output voltage Isink Iout Isource ICC Supply current, per channel, Vout = VCC/2, RL > 1 MΩ T = 25 °C 66 -40 °C < T < 125 °C 63 T = 25 °C 50 12 μV mV µV/°C nV/ √month pA 84 69 dB -40 °C < T < 125 °C 47 T = 25 °C 85 -40 °C < T < 125 °C 83 RL = 10 kΩ, T = 25 °C 70 RL = 10 kΩ, -40 °C < T < 125 °C 100 RL = 10 kΩ, T = 25 °C 70 RL = 10 kΩ, -40 °C < T < 125 °C 100 Vout = VCC, T = 25 °C 11 Vout = VCC, -40 °C < T < 125 °C 8 Vout = 0 V, T = 25 °C 9 Vout = 0 V, -40 °C < T < 125 °C 7 T = 25 °C mV 14 mA 12 235 -40 °C < T < 125 °C 350 400 μA AC performance GBP Gain bandwidth product Fu Unity gain frequency ɸm Phase margin Gm Gain margin 8/28 700 RL = 10 kΩ, CL = 100 pF DocID023274 Rev 5 850 730 kHz 55 Degrees 9 dB TSX56x, TSX56xA Electrical characteristics Symbol Parameter Conditions Min. Typ. Max. Unit SR Slew rate RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5 V 1.1 en Equivalent input noise voltage density f = 1 kHz 55 f = 10 kHz 29 ∫en Low-frequency peak-topeak input noise Bandwidth, f = 0.1 to 10 Hz 15 µVpp THD+N Total harmonic distortion + noise Follower configuration, fin = 1 kHz, RL = 100 kΩ, Vicm = (VCC -1.5 V)/2, BW = 22 kHz, Vout = 2 Vpp 0.002 % V/μs nV/√Hz Notes: (1)See Section 5.3: "Input offset voltage drift over temperature" (2)Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. (3)Guaranteed by design DocID023274 Rev 5 9/28 Electrical characteristics TSX56x, TSX56xA Table 6: Electrical characteristics at VCC+ = 16 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance Vio Offset voltage TSX56xA, T = 25 °C 600 TSX56xA, -40 °C < T < 125 °C 1800 TSX56x, T = 25 °C 1 TSX56x, -40 °C < T < 125 °C 2.2 ΔVio/ΔT Input offset voltage drift -40 °C < T < 125 °C (1) 2 ΔVio Long-term input offset voltage drift T = 25 °C (2) 1.6 Iib Input bias current, Vout = VCC/2 T = 25 °C 1 100 (3) -40 °C < T < 125 °C 1 200 (3) Iio Input offset current, Vout = VCC/2 T = 25 °C 1 100 (3) -40 °C < T < 125 °C 1 200 (3) CMR1 Common mode rejection ratio, CMR = 20 log (ΔVic/ΔVio), Vic = -0.1 V to VCC - 1.5 V, Vout = VCC/2, RL > 1 MΩ CMR2 Common mode rejection ratio, CMR = 20 log (ΔVic/ΔVio), Vic = -0.1 V to VCC + 0.1 V, Vout = VCC/2, RL > 1 MΩ SVR Common mode rejection ratio, 20 log (ΔVCC/ΔVio), VCC = 3 V to 16 V, Vout = Vicm = VCC/2 Avd Large signal voltage gain, Vout = 0.5 V to (VCC - 0.5 V), RL > 1 MΩ VOH High-level output voltage, VOH = VCC - Vout VOL Low-level output voltage Isink Iout Isource ICC 10/28 Supply current, per channel, Vout = VCC/2, RL > 1 MΩ T = 25 °C 76 -40 °C < T < 125 °C 72 T = 25 °C 60 -40 °C < T < 125 °C 56 T = 25 °C 76 -40 °C < T < 125 °C 72 T = 25 °C 85 -40 °C < T < 125 °C 83 12 dB 90 100 RL = 10 kΩ, T = 25 °C 70 RL = 10 kΩ, -40 °C < T < 125 °C 100 35 Vout = 0 V, T = 25 °C 30 Vout = 0 V, -40 °C < T < 125 °C 25 T = 25 °C -40 °C < T < 125 °C DocID023274 Rev 5 pA 78 RL = 10 kΩ, -40 °C < T < 125 °C Vout = VCC, -40 °C < T < 125 °C µV/°C 95 70 40 mV nV/ √month RL = 10 kΩ, T = 25 °C Vout = VCC, T = 25 °C μV mV 92 mA 90 250 360 400 μA TSX56x, TSX56xA Symbol Parameter Electrical characteristics Conditions Min. Typ. 750 900 Max. Unit AC performance GBP Gain bandwidth product Fu Unity gain frequency ɸm Phase margin Gm Gain margin RL = 10 kΩ, CL = 100 pF kHz 750 55 Degrees 9 dB RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5 V 1.1 V/μs f = 1 kHz 48 f = 10 kHz 27 SR Slew rate en Equivalent input noise voltage density ∫en Low-frequency peak-topeak input noise Bandwidth, f = 0.1 to 10 Hz 15 µVpp THD+N Total harmonic distortion + noise Follower configuration, fin = 1 kHz, RL = 100 kΩ, Vicm = (VCC -1.5 V)/2, BW = 22 kHz, Vout = 5 Vpp 0.000 5 % nV/√Hz Notes: (1)See Section 5.3: "Input offset voltage drift over temperature" (2)Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. (3)Guaranteed by design DocID023274 Rev 5 11/28 Electrical characteristic curves 4 TSX56x, TSX56xA Electrical characteristic curves Figure 2: Supply current vs. supply voltage at Vicm = VCC/2 Figure 3: Input offset voltage distribution at VCC = 16 V and Vicm = 8 V Figure 4: Input offset voltage temperature coefficient distribution at VCC = 16 V, Vicm = 8 V Figure 5: Input offset voltage vs. input common-mode voltage at VCC = 12 V Figure 6: Input offset voltage vs. temperature at VCC = 16 V 2500 2000 Limit for TSX56xA Limit for TSX56x 1500 1000 500 0 -500 -1000 -1500 VCC= 16V, Vicm = 8V -2000 -2500 -40 12/28 -20 0 20 40 60 DocID023274 Rev 5 80 100 120 TSX56x, TSX56xA Electrical characteristic curves Figure 7: Output current vs. output voltage at VCC = 3.3 V Figure 8: Output current vs. output voltage at VCC = 5 V Figure 9: Output current vs. output voltage at VCC = 16 V Figure 10: Bode diagram at VCC = 3.3 V Figure 11: Bode diagram at VCC = 5 V Figure 12: Bode diagram at VCC = 16 V DocID023274 Rev 5 13/28 Electrical characteristic curves TSX56x, TSX56xA Figure 13: Phase margin vs. capacitive load at VCC = 12 V Figure 14: GBP vs. input common-mode voltage at VCC = 12 V Figure 15: Avd vs. input common-mode voltage at VCC = 12 V Figure 16: Slew rate vs. supply voltage Figure 17: Noise vs. frequency at VCC = 3.3 V Figure 18: Noise vs. frequency at VCC = 5 V 14/28 DocID023274 Rev 5 TSX56x, TSX56xA Electrical characteristic curves Figure 19: Noise vs. frequency at VCC = 16 V Figure 20: Distortion and noise vs. output voltage amplitude Figure 21: Distortion and noise vs. amplitude at Vicm = VCC/2 and VCC = 12 V Figure 22: Distortion and noise vs. frequency DocID023274 Rev 5 15/28 Application information TSX56x, TSX56xA 5 Application information 5.1 Operating voltages The amplifiers of the TSX56x and TSX56xA series can operate from 3 V to 16 V. Their parameters are fully specified at 3.3 V, 5 V, and 16 V power supplies. However, the parameters are very stable in the full VCC range. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 to 125 ° C. 5.2 Rail-to-rail input The TSX56x and TSX56xA devices are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common mode range is extended from (VCC-) - 0.1 V to (VCC+) + 0.1 V. However, the performance of these devices is clearly optimized for the PMOS differential pairs (which means from (VCC-) - 0.1 V to (VCC+) - 1.5 V). Beyond (VCC+) - 1.5 V, the operational amplifiers are still functional but with degraded performance, as can be observed in the electrical characteristics section of this datasheet (mainly Vio and GBP). These performances are suitable for a number of applications that need to be rail-to-rail. The devices are designed to prevent phase reversal. 5.3 Input offset voltage drift over temperature The maximum input voltage drift over the temperature variation is defined as the offset variation related to the offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effects of temperature variations. The maximum input voltage drift over temperature is computed using Equation 1. Equation 1 ∆Vio V T – Vio 25 °C = max io ∆T T – 25 °C Where T = -40 °C and 125 °C. The datasheet maximum value is guaranteed by measurements on a representative sample size ensuring a Cpk (process capability index) greater than 2. 16/28 DocID023274 Rev 5 TSX56x, TSX56xA 5.4 Application information Long term input offset voltage drift To evaluate product reliability, two types of stress acceleration are used: Voltage acceleration, by changing the applied voltage Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature. The voltage acceleration has been defined based on JEDEC results, and is defined using Equation 2. Equation 2 AFV = e β . V S – VU Where: AFV is the voltage acceleration factor β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1) VS is the stress voltage used for the accelerated test VU is the voltage used for the application The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3. Equation 3 AFT = e Ea 1 1 ------ . – k TU TS Where: AFT is the temperature acceleration factor Ea is the activation energy of the technology based on the failure rate k is the Boltzmann constant (8.6173 x 10-5 eV.K-1) TU is the temperature of the die when VU is used (K) TS is the temperature of the die under temperature stress (K) The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and the temperature acceleration factor (Equation 4). Equation 4 AF = AFT × AFV AF is calculated using the temperature and voltage defined in the mission profile of the product. The AF value can then be used in Equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress duration. Equation 5 Months = AF × 1000 h × 12 months / 24 h × 365.25 days DocID023274 Rev 5 17/28 Application information TSX56x, TSX56xA To evaluate the op amp reliability, a follower stress condition is used where V CC is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules). The Vio drift (in µV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see Equation 6). Equation 6 VCC = maxVop with Vicm = VCC 2 The long term drift parameter (ΔVio), estimating the reliability performance of the product, is obtained using the ratio of the Vio (input offset voltage value) drift over the square root of the calculated number of months (Equation 7). Equation 7 ∆Vio = Vio dr ift month s Where Vio drift is the measured drift value in the specified test conditions after 1000 h stress duration. 5.5 PCB layouts For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins. 5.6 Macromodel Accurate macromodels of the TSX56x, TSX56xA devices are available on the STMicroelectronics’ website at: www.st.com. These models are a trade-off between accuracy and complexity (that is, time simulation) of the TSX56x and TSX56xA operational amplifiers. They emulate the nominal performance of a typical device within the specified operating conditions mentioned in the datasheet. They also help to validate a design approach and to select the right operational amplifier, but they do not replace on-board measurements. 18/28 DocID023274 Rev 5 TSX56x, TSX56xA 6 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. DocID023274 Rev 5 19/28 Package information 6.1 TSX56x, TSX56xA SOT23-5 package information Figure 23: SOT23-5 package outline Table 7: SOT23-5 mechanical data Dimensions Ref. A Millimeters Min. Typ. Max. Min. Typ. Max. 0.90 1.20 1.45 0.035 0.047 0.057 A1 20/28 Inches 0.15 0.006 A2 0.90 1.05 1.30 0.035 0.041 0.051 B 0.35 0.40 0.50 0.014 0.016 0.020 C 0.09 0.15 0.20 0.004 0.006 0.008 D 2.80 2.90 3.00 0.110 0.114 0.118 D1 1.90 0.075 e 0.95 0.037 E 2.60 2.80 3.00 0.102 0.110 0.118 F 1.50 1.60 1.75 0.059 0.063 0.069 L 0.10 0.35 0.60 0.004 0.014 0.024 K 0 degrees 10 degrees 0 degrees DocID023274 Rev 5 10 degrees TSX56x, TSX56xA 6.2 Package information DFN8 2x2 package information Figure 24: DFN8 2x2 package outline Table 8: DFN8 2x2 mechanical data Dimensions Ref. Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 0.70 0.75 0.80 0.028 0.030 0.031 A1 0.00 0.02 0.05 0.000 0.001 0.002 b 0.15 0.20 0.25 0.006 0.008 0.010 D 2.00 0.079 E 2.00 0.079 e 0.50 0.020 L 0.045 0.55 0.65 DocID023274 Rev 5 0.018 0.022 0.026 21/28 Package information 6.3 TSX56x, TSX56xA MiniSO8 package information Figure 25: MiniSO8 package outline Table 9: MiniSO8 mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.1 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.030 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.80 3.00 3.20 0.11 0.118 0.126 E 4.65 4.90 5.15 0.183 0.193 0.203 E1 2.80 3.00 3.10 0.11 0.118 0.122 e L 0.85 0.65 0.40 0.60 0.006 0.033 0.80 0.016 0.024 0.95 0.037 L2 0.25 0.010 ccc 0° 0.037 0.026 L1 k 22/28 Inches 8° 0.10 DocID023274 Rev 5 0° 0.031 8° 0.004 TSX56x, TSX56xA QFN16 3x3 package information Figure 26: QFN16 3x3 package outline D A B aaa C 2x E INDEX AREA ( D/ 2xE/ 2) aaa C 2x TOP VI EW A1 ccc C C A 6.4 Package information SEATING PLANE SI DE VIEW eee C e L b 5 bbb 8 bbb Pin#1 ID R0.11 4 9 1 12 16 C A B C 13 BOTTOM VIEW DocID023274 Rev 5 23/28 Package information TSX56x, TSX56xA Table 10: QFN16 3x3 mechanical data Dimensions Ref. Millimeters Min. Max. Min. Typ. Max. A 0.50 0.65 0.020 0.026 A1 0 0.05 0 0.002 b 0.18 0.30 0.007 0.25 0.010 D 3.00 0.118 E 3.00 0.118 e L 24/28 Typ. Inches 0.50 0.30 0.012 0.020 0.50 0.012 0.020 aaa 0.15 0.006 bbb 0.10 0.004 ccc 0.10 0.004 ddd 0.05 0.002 eee 0.08 0.003 DocID023274 Rev 5 TSX56x, TSX56xA 6.5 Package information TSSOP14 package information Figure 27: TSSOP14 package outline aaa Table 11: TSSOP14 mechanical data Dimensions Ref. Millimeters Min. Typ. A 0.05 A2 0.80 b c D 4.90 E E1 Typ. Max. 0.047 0.002 0.004 0.006 1.05 0.031 0.039 0.041 0.19 0.30 0.007 0.012 0.09 0.20 0.004 0.0089 5.00 5.10 0.193 0.197 0.201 6.20 6.40 6.60 0.244 0.252 0.260 4.30 4.40 4.50 0.169 0.173 0.176 1.00 0.65 0.45 L1 k Min. 0.15 e aaa Max. 1.20 A1 L Inches 0.60 0.0256 0.75 0.018 1.00 0° 0.024 0.030 0.039 8° 0.10 DocID023274 Rev 5 0° 8° 0.004 25/28 Ordering information 7 TSX56x, TSX56xA Ordering information Table 12: Order codes Order code Temperature range TSX561ILT TSX562IQ2T -40 to 125 °C TSX562IST TSX564IQ4T Channel number Package 1 SΟΤ23-5 2 4 TSX564IPT DFN8 2x2 TSSOP14 2 MiniSO8 TSX564IYPT (1) 4 TSSOP14 TSX561AILT 1 SΟΤ23-5 2 MiniSO8 4 TSSOP14 1 SΟΤ23-5 2 MiniSO8 4 TSSOP14 TSX562IYST (1) TSX562AIST -40 to 125 °C TSX564AIPT TSX561AIYLT (1) TSX562AIYST (1) TSX564AIYPT (1) -40 to 125 °C automotive grade K23 QFN16 3x3 SΟΤ23-5 -40 to 125 °C automotive grade Marking MiniSO8 1 TSX561IYLT (1) Packaging TSX5641 K116 Tape and reel TSX5641Y K117 TSX564AI K118 TSX564AIY Notes: (1)Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent 26/28 DocID023274 Rev 5 TSX56x, TSX56xA 8 Revision history Revision history Table 13: Document revision history Date Revision 06-Aug-2012 1 Initial release. 2 Added TSX562, TSX564, TSX562A, and TSX564A devices. Updated Features, Description, Figure 1, Table 1 (added DFN8, MiniSO8, QFN16, and TSSOP14 package). Updated Table 1 (updated ESD MM values). Updated Table 4 and Table 5 (added footnotes), Section 5 (added Figure 24 to Figure 28 and Table 8 to Table 12), Table 13 (added dual and quad devices). Minor corrections throughout document. 3 Replaced the silhouette, pinout, package diagram, and mechanical data of the DFN8 2x2 and QFN16 3x3 packages. Added Benefits and Related products. Table 1: updated Rthja values and added Rthjc values for DFN8 2x2 and QFN16 3x3. Updated Section 4.3, Section 4.4, and Section 4.6 Replaced Figure 23: SOT23-5 package mechanical drawing and Table 7: SOT23-5 package mechanical data. 4 Added SO8 package for dual version TSX562 and TSX562A. Table 2: updated for SO8 package Table 13: added order codes TSX562IDT, TSX562IYDT, TSX562AIDT, TSX562AIYDT; updated automotive grade status. 5 Removed SO8 package Table 8: "DFN8 2x2 mechanical data": removed "N" Table 11: "TSSOP14 mechanical data": added "L" and " L1" in inches; updated "aaa" in inches. Table 12: "Order codes": removed TSX562IDT, TSX562IYDT, TSX562AIDT, TSX562AIYDT. Updated terminology 18-Sep-2012 23-May-2013 09-Aug-2013 07-Feb-2017 Changes DocID023274 Rev 5 27/28 TSX56x, TSX56xA IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2017 STMicroelectronics – All rights reserved 28/28 DocID023274 Rev 5
TSX564IYPT 价格&库存

很抱歉,暂时无法提供与“TSX564IYPT”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TSX564IYPT
    •  国内价格 香港价格
    • 2500+9.801512500+1.19011

    库存:0