0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PXE20-48WS12

PXE20-48WS12

  • 厂商:

    TDK(东电化)

  • 封装:

    DIP6 模块

  • 描述:

    隔离模块 直流转换器 1 输出 12V 1.67A 18V - 75V 输入

  • 数据手册
  • 价格&库存
PXE20-48WS12 数据手册
PXE20 Single Output DC/DC Converters 9 to 75 Vdc input, 3.3 to 15 Vdc Single Output, 20W Features  Low profile: 2.0x1.6x0.4 inches (50.8x40.6x10.2mm)  2:1 wide input voltage of 9-18, 18-36 and 36-75VDC  4:1 ultra wide input voltage of 9-36 and 18-75VDC  20 Watts output power  Input to output isolation: 1600Vdc, min  Operating case temperature range :100℃ max  Over-current protection, auto-recovery  Output over voltage protection  ISO 9001 certified manufacturing facilities  UL60950-1, EN60950-1 and IEC60950-1 licensed  CE Mark meet 2006/95/EC, 93/68/EEC and 2004/108/EC  Compliant to RoHS EU directive 2002/95/EC Applications  Distributed power architectures  Communications equipment  Computer equipment General Description The PXE20 single output series offers 20 Watts of output power from a 2 x 1.6 x 0.4 inch package. The PXE20-xxSxx models have a 2:1 wide input voltage of 9-18, 18-36 and 36-75VDC. The PXE20-xxWSxx models have a 4:1 wide input voltage of 9-36 and 18-75VDC. Table of contents Absolute Maximum Rating P2 External trim adjustment P7 Output Specifications P2 Characteristic curve P9 Input Specifications P3 Test configurations P26 General Specifications P3 Part number structure P27 Thermal Consideration P4 Mechanical data P27 Output over current protection P6 Safety and installation instruction P28 Short circuit protection P6 MTBF and Reliability P28 Solder and Reflow consideration P7 Absolute Maximum Rating Parameter 12Sxx 36 24Sxx 50 48Sxx 100 Unit Vdc Vdc Vdc +85 ℃ 100 ℃ Device Input Voltage Continuous Transient (100ms) Operating temperature range (Operating temperature will be depended De-rating curve) Standard Min Typ -40 Operating case range All Storage temperature All -55 I/O Isolation voltage All 1600 I/O Isolation capacitance All Max ℃ +105 Vdc 300 pF Output Specifications Parameter Device Min Typ Max xxS33 3.267 3.30 3.333 xxS05 4.95 5.00 5.05 xxS12 11.88 12.00 12.12 xxS15 14.85 15.00 15.15 Line Regulation(LL to HL at Full Load) All -0.2 0.2 % Load Regulation(Min. to 100% Full Load) All -0.5 0.5 % Output Ripple & Noise (20MHz bandwidth) All 75 mVp-p Temperature Coefficient All +0.02 %/℃ Operating Output Range Transient Response Recovery Time (25% load step change) Output Current -0.02 All Unit Vdc Vdc Vdc μS 250 xxS33 280 4000 mA xxS05 280 4000 mA xxS12 134 1670 mA xxS15 106 1330 mA xxS33 3.9 Vdc xxS05 6.2 Vdc xxS12 15 Vdc xxS15 18 Vdc Output Over Current Protection All 150 % FL. Output Short Circuit Protection All Output Over Voltage Protection Zener diode clamp Output Capacitor Load Hiccup, automatics recovery xxS33 13000 μF xxS05 6800 μF xxS12 2200 μF xxS15 755 μF 2 Input Specifications Parameter Operating Input Voltage Input reflected ripple current Start Up Time (nominal Vin and constant resistive load) Device Min Typ Max Unit 12Sxx 9 12 18 Vdc 24(W)Sxx 18(9) 24 36 Vdc 48(W)Sxx 36(18) 48 75 Vdc All 25 mA p-p All 20 mS Remote ON/OFF Positive Logic DC-DC ON All 3.5 12 Vdc DC-DC OFF All 0 1.2 Vdc General Specifications Parameter Efficiency Test at Vin, nom and full load Device Min Typ Max Unit 12S3P3 77 % 12S05 80 % 12S12 83 % 12S15 84 % 24(W)S3P3 79(76) % 24(W)S05 81(79) % 24(W)S12 86(81) % 24(W)S15 86(81) % 48(W)S3P3 79(77) % 48(W)S05 82(80) % 48(W)S12 86(82) % 48(W)S15 86(82) % 9 Ω Isolation Resistance All Isolation Capacitance All Switching Frequency(Test at Vin, nom and full load) All 300 KHz All 250 uS Transient Response Recovery Time (25% load step change) 10 300 Weight All 48 MTBF (please see the MTBF and reliability part) All 1.928×10 pF g 6 hours 3 Thermal Consideration The power module operates in a variety of thermal environments. However, sufficient cooling should be provided to help ensure reliable operation of the unit. Heat is removed by conduction, convection, and radiation to the surrounding environment. Proper cooling can be verified by measuring the point shown in the figure below. The temperature at this location should not exceed 100C. When operating, adequate cooling must be provided to maintain the test point temperature at or below 100C. Although the maximum point temperature of the power modules is 100C, limiting this temperature to a lower value will yield higher higher reliability. De-rating curves for PXE20-12S3P3, PXE20-24S05, PXE20-48S15, PXE20-24WS3P3, and PXE20-48WS12 PXE 20 -1 2S3 P3 De ra tin g C urve 1 20 Ou tpu t Pow e r(% ) 1 00 80 60 40 nature convection nature convection with heat-sink 20 0 - 40 -3 0 - 20 -1 0 0 10 20 30 40 50 60 70 80 9 0 10 0 70 80 90 1 00 Am bi e nt Temp e ratu re( ℃ ) PXE 20 -2 4S 05 De ra ti ng Cu rve 12 0 Outp ut Po wer(% ) 10 0 80 60 40 nature convection nature convection with heat-sink 20 0 -4 0 - 30 -2 0 -10 0 10 20 30 40 50 60 Am bi en t Te mp e ratu re( ℃ ) 4 PXE20-48S15 Derating Curve 120 100 Output Power(%) 80 60 40 nature convection nature convection with heat-sink 20 0 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 Ambient Temperature( ℃) PXE20-24WS3P3 120 Output Power(%) 100 80 60 nature convection nature convection with heat-sink 40 20 0 -40 -30 -20 -10 0 10 20 30 40 50 60 Ambient Temperature( ℃) 70 80 90 100 PXE20- 48WS12 120 100 80 nature convection nature convection with heat-sink 60 40 20 0 - 40 - 30 - 20 - 10 0 10 20 30 40 50 60 70 80 90 100 Ambient Temperature( ℃) 5 Output over current protection When excessive output currents occur in the system, circuit protection is required on all power supplies. Normally, overload current is maintained at approximately 150 percent of rated current for the PXE20-S Series. Hiccup-mode is a method of operation in a power supply whose purpose is to protect the power supply from being damaged during an over-current fault condition. It also enables the power supply to restart when the fault is removed. There are other ways of protecting the power supply when it is over-loaded, such as the maximum current limiting or current foldback methods. One of the problems resulting from over current is that excessive heat may be generated in power devices; especially MOSFET and Schottky diodes and the temperature of those devices may exceed their specified limits. A protection mechanism has to be used to prevent those power devices from being damaged. The operation of hiccup is as follows. When the current sense circuit sees an over-current event, the controller shuts off the power supply for a given time and then tries to start up the power supply again. If the over-load condition has been removed, the power supply will start up and operate normally; otherwise, the controller will see another over-current event and shut off the power supply again, repeating the previous cycle. Hiccup operation has none of the drawbacks of the other two protection methods, although its circuit is more complicated because it requires a timing circuit. The excess heat due to overload lasts for only a short duration in the hiccup cycle, hence the junction temperature of the power devices is much lower. The hiccup operation can be done in various ways. For example, one can start hiccup operation any time an over-current event is detected; or prohibit hiccup during a designated start-up is usually larger than during normal operation and it is easier for an over-current event is detected; or prohibit hiccup during a designated start-up interval (usually a few milliseconds). The reason for the latter operation is that during start-up, the power supply needs to provide extra current to charge up the output capacitor. Thus the current demand during start-up is usually larger than during normal operation and it is easier for an over-current event to occur. If the power supply starts to hiccup once there is an over-current, it might never start up successfully. Hiccup mode protection will give the best protection for a power supply against over current situations, since it will limit the average current to the load at a low level, so reducing power dissipation and case temperature in the power devices. Short Circuit Protection Continuous, hiccup and auto-recovery mode. 6 Soldering and Reflow Consideration Lead free wave solder profile for PXE20-S DIP type Zone Reference Parameter Preheat zone Rise temp. speed : 3℃/ sec max. Preheat temp. : 100~130℃ Actual heating Peak temp. : 250~260℃ Peak time (T1+T2 time) : 4~6 sec Reference Solder:Sn-Ag-Cu;Sn-Cu Hand Welding:Soldering iron:Power 90W Welding Time:2~4 sec Temp.:380~400 ℃ External trim adjustment Output voltage set point adjustment allows the user to increase or decrease the output voltage set point of a module. This is accomplished by connecting an external resistor between the TRIM pin and either the Vo (+) or Vo (-) pins. With an external resistor between the TRIM and Vo (+) pin, the output voltage set point decreases. With an external resistor between the TRIM and Vo (-) pin, the output voltage set point increases. 1 +Output♁ 6 -Output♁ 7 ♁ +Input Trim down Rd ♁ -Input 2 Trim ♁ 8 7 +Output♁ 1 6 ♁ +Input -Output♁ 7 ♁ -Input . Trim up 2 Trim Ru ♁ 8 EXTERNAL OUTPUT TRIMMING TRIM TABLE PXE20-xxS3P3 Trim down 1 2 3 4 5 6 7 8 9 10 % Vout= 3.266 3.233 3.200 3.167 3.134 3.101 3.068 3.035 3.002 2.969 Volts Rx= 69.470 31.235 18.490 12.117 8.294 5.745 3.924 2.559 1.497 0.647 K Ohms Trim up 1 2 3 4 5 6 7 8 9 10 % Vout= 3.332 3.365 3.398 3.431 3.464 3.497 3.530 3.563 3.596 3.629 Volts Rx= 57.930 26.165 15.577 10.283 7.106 4.988 3.476 2.341 1.459 0.753 K Ohms Trim down 1 2 3 4 5 6 7 8 9 10 % Vout= 4.952 4.902 4.852 4.802 4.752 4.702 4.652 4.602 4.552 4.502 Volts 0.676 K Ohms PXE20-xxS05 Rx= 45.533 20.612 12.306 8.152 5.660 3.999 2.812 1.922 1.230 Trim up 1 2 3 4 5 6 7 8 9 10 % Vout= 5.052 5.102 5.152 5.202 5.252 5.302 5.352 5.402 5.452 5.502 Volts Rx= 36.570 16.580 9.917 6.585 4.586 3.253 2.302 1.588 1.032 0.588 K Ohms 7 8 9 PXE20-xxS12 Trim down 1 2 3 Vout= 11.887 11.767 11.647 Rx= 4 5 6 10 11.527 11.407 11.287 11.166 11.046 10.926 10.806 460.659 207.779 123.486 81.340 56.052 39.193 27.151 18.120 11.095 5 6 7 8 9 1 2 3 Vout= 12.127 12.247 12.367 12.487 12.607 12.727 12.847 12.967 13.088 13.208 368.241 166.121 98.747 65.060 44.848 31.374 21.749 14.530 8.916 Volts 5.476 K Ohms Trim up Rx= 4 % 10 % Volts 4.424 K Ohms PXE20-xxS15 Trim down 1 2 3 Vout= 14.808 14.658 14.509 Rx= 5 6 7 8 1 2 3 Vout= 15.107 15.256 15.406 9 10 14.359 14.209 14.060 13.910 13.761 13.611 13.462 499.816 223.408 131.272 85.204 57.563 39.136 25.974 16.102 Trim up Rx= 4 4 5 6 7 8 8.424 9 6.687 Volts 2.282 K Ohms 10 15.556 15.705 15.855 16.004 16.154 16.304 16.453 404.184 180.592 106.061 68.796 46.437 31.531 20.883 12.898 % % Volts 1.718 K Ohms 8 Characteristic Curve Efficiency a. Efficiency with load change under different line condition at room temperature PXE20-12S3P3 85.00 80.00 Eff(%) 75.00 9V 12V 18V 70.00 65.00 60.00 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 lout(A ) PXE20-24S05 90.00 Eff(%) 85.00 80.00 75.00 18V 24V 36V 70.00 65.00 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 lout(A ) PXE20- 48S15 90.00 85.00 Eff(%) 80.00 75.00 36V 48V 75V 70.00 65.00 60.00 133 266 399 532 665 798 931 1064 1197 1330 lout(mA ) 9 P XE20-24WS3P 3 85.00 80.00 75.00 70.00 65.00 9V 24V 36V 60.00 55.00 50.00 400 800 1200 1600 2000 2400 2800 3200 3600 4000 lo ut(mA ) PXE20-48WS12 90.00 85.00 Eff(%) 80.00 75.00 70.00 18V 48V 75V 65.00 60.00 55.00 167 334 501 668 835 1002 1169 1336 1503 1670 lout(mA ) 10 b. Efficiency with line change under different load condition at room temperature PXE20-12S3P3 85.00 Eff(%) 80.00 75.00 4000mA 2000mA 400mA 70.00 65.00 60.00 9V 10V 11V 12V 13V 14V 15V 16V 17V 18V Vin(V) PXE20-24S05 90.00 Eff(%) 85.00 80.00 75.00 4000mA 2000mA 400mA 70.00 65.00 18V 20V 22V 24V 26V 28V 30V 32V 34V 36V Vin(V) PXE20-48S15 90.00 85.00 Eff(%) 80.00 75.00 70.00 1330mA 665mA 133mA 65.00 60.00 36V 40V 44V 48V 52V 56V 60V 64V 68V 75V Vin(V) 11 PXE20-24WS3P3 90.00 80.00 4000mA 2000mA 400mA Eff(%) 70.00 60.00 50.00 40.00 30.00 9V 12V 15V 18V 21V 24V 27V 30V 33V 36V Vin(V) PXE20-48WS12 90.00 85.00 Eff(%) 80.00 75.00 4000mA 2000mA 400mA 70.00 65.00 60.00 55.00 18V 24V 30V 36V 42V 48V 54V 60V 66V 75V Vin(V) 12 c. Power Dissipation Curves PXE20-12S3P3 5.000 pd(w) 4.000 9V 12V 18V 3.000 2.000 1.000 0.000 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 lout(A ) PXE20-24S05 5.000 pd(w) 4.000 18V 24V 36V 3.000 2.000 1.000 0.000 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 lout(A ) PXE20-48S15 4.500 pd(w) 3.500 2.500 36V 48V 75V 1.500 0.500 0.13 0.26 0.39 0.52 0.65 0.78 0.91 1.04 1.17 1.33 lout(A ) 13 PXE20-24WS3P3 4.500 18V 24V 36V pd(w) 3.500 2.500 1.500 0.500 400 800 1200 1600 2000 2400 2800 3200 3600 4000 lout(mA ) PXE20-48WS12 4.000 pd(w) 3.000 2.000 1.000 36V 48V 75V 0.000 167 334 501 668 835 1002 1169 1336 1503 1670 lout(mA ) 14 Output ripple & noise PXE20-12S3P3 Low Line, Full Load Normal Line, Full Load High Line, Full Load Ripple noise=10.0mV Ripple noise=10.8mV Ripple noise=12.4mV PXE20-24S05 Low Line, Full Load Normal Line, Full Load High Line, Full Load Ripple noise=11.2mV Ripple noise=13.6mV Ripple noise=18.4mV PXE20-48S15 Low Line, Full Load Normal Line, Full Load High Line, Full Load Ripple noise=19.2mV Ripple noise=22.4mV Ripple noise=35.2mV 15 PXE20-24WS3P3 Low Line, Full Load Normal Line, Full Load High Line, Full Load Ripple noise=23.2mV Ripple noise=31.5mV Ripple noise=30.4mV PXE20-48WS12 Low Line, Full Load Normal Line, Full Load High Line, Full Load Ripple noise=38.5mV Ripple noise=67.6mV Ripple noise=98.4mV 16 Transient Peak and Response PXE20-12S3P3 Low Line, Full Load Normal Line, Full Load High Line, Full Load Transient Peak 83.0mV Transient Peak 87.0mV Transient Peak 91.0mV Transient Response 102uS Transient Response 102uS Transient Response 106uS PXE20-24S05 Low Line, Full Load Normal Line, Full Load High Line, Full Load Transient Peak 103mV Transient Peak 106mV Transient Peak 106mV Transient Response 80uS Transient Response 86uS Transient Response 96uS PXE20-48S15 Low Line, Full Load Normal Line, Full Load High Line, Full Load Transient Peak 113mV Transient Peak 114mV Transient Peak 113mV Transient Response 100uS Transient Response 100uS Transient Response 106uS 17 PXE20-24WS3P3 Low Line, Full Load Normal Line, Full Load High Line, Full Load Transient Peak 110mV Transient Peak 115mV Transient Peak 125mV Transient Response 90Us Transient Response 86uS Transient Response 190uS PXE20-48WS12 Low Line, Full Load Normal Line, Full Load High Line, Full Load Transient Peak 182mV Transient Peak 204mV Transient Peak 232mV Transient Response 130uS Transient Response 164uS Transient Response 154uS 18 Inrush Current PXE20-12S3P3 Low Line, Full Load Normal Line, Full Load High Line, Full Load Inrush current=(61.2/10) X500mA=3060mA Inrush current=(38.2/10) x500mA=1910mA Inrush current=(26.2/10) x500mA=1310mA Low Line, Full Load Normal Line, Full Load High Line, Full Load Duration: 304uS Duration: 288uS Duration: 240uS PXE20-24S05 Low Line, Full Load Normal Line, Full Load High Line, Full Load Inrush current=(31.6/10) X500mA=1580mA Inrush current=(23.8/10) x500mA=1190mA Inrush current=(15.0/10) x500mA=750mA Low Line, Full Load Normal Line, Full Load High Line, Full Load Duration: 336uS Duration: 304uS Duration: 328uS 19 PXE20-48S15 Low Line, Full Load Normal Line, Full Load High Line, Full Load Inrush current=(41.0/10) X200mA=820mA Inrush current=(31.0/10) x200mA=620mA Inrush current=(21.6/10) x200mA=432mA Low Line, Full Load Normal Line, Full Load High Line, Full Load Duration: 600uS Duration: 540uS Duration: 520uS PXE20-24WS3P3 Low Line, Full Load Normal Line, Full Load High Line, Full Load Inrush current=(42.8/10) X500mA=2140mA Inrush current=(18.4/10) x500mA=920mA Inrush current=(13.8/10) x500mA=690mA Low Line, Full Load Normal Line, Full Load High Line, Full Load Duration: 240uS Duration: 180uS Duration: 160uS 20 PXE20-48WS12 Low Line, Full Load Normal Line, Full Load High Line, Full Load Inrush current=(23.4/10) X500mA=1170mA Inrush current=(10/10) x500mA=500mA Inrush current=(1010) x500mA=500mA Low Line, Full Load Normal Line, Full Load High Line, Full Load Duration: 0uS Duration: 200uS Duration: 140uS 21 Input Ripple Current PXE20-12S3P3 Low Line, Full Load Normal Line, Full Load High Line, Full Load Ripple current=(4.2/10) x20=8.4mA Ripple current=(3.2/10) x20=6.4mA Ripple current=(2.8/10) x20=5.6mA PXE20-24S05 Low Line, Full Load Normal Line, Full Load High Line, Full Load Ripple current=(2.41/10) x20=4.82mA Ripple current=(2.61/10) x20=5.22mA Ripple current=(2.79/10) x20=5.58mA PXE20-48S15 Low Line, Full Load Normal Line, Full Load High Line, Full Load Ripple current=(3.0/10) x20=6mA Ripple current=(3.4/10) x20=6.8mA Ripple current=(3.8/10) x20=7.6mA 22 PXE20-24WS3P3 Low Line, Full Load Normal Line, Full Load High Line, Full Load Ripple current=(4.6/10) x10=4.6mA Ripple current=(3.0/10) x10=3.0mA Ripple current=(3.2/10) x10=3.2mA PXE20-48WS12 Low Line, Full Load Normal Line, Full Load High Line, Full Load Ripple current=(3.4/10) x10=3.4mA Ripple current=(3..2/10) x10=3.2mA Ripple current=(3.6/10) x10=3.6mA 23 Delay Time and Raise Time PXE20-12S3P3 Normal Line, Full Load Normal Line, Full Load Rise Time=397.0uS Delay Time= 624uS PXE20-24S05 Normal Line, Full Load Normal Line, Full Load Rise Time=272.5uS Delay Time= 500uS PXE20-48S15 Normal Line, Full Load Normal Line, Full Load Rise Time=696.7uS DelayTime=1.16mS 24 PXE20-24WS3P3 Normal Line, Full Load Normal Line, Full Load Rise Time=480uS DelayTime=620uS PXE20-48WS12 Normal Line, Full Load Normal Line, Full Load Rise Time=5.12mS DelayTime=5.36mS 25 Testing Configurations Input reflected-ripple current Measurement: Component L C Value 12μH 220μF Voltage ---100V Reference ---Aluminum Electrolytic Capacitor Peak-to-peak output ripple & noise Measurement: Output Voltage and Efficiency Measurement: Note: All measurements are taken at the module terminals.  V  Io    100% Efficiency   o  Vin  I in  26 Part Number Structure PXE 20 – 24 (W)S 12 Total Output power 20 Watt Input Voltage Range 12xxx : 9~18V 24xxx : 18~36V 48xxx : 36~75V 24Wxxx: 9~36V 48Wxxx: 18~75V 4:1 Wide Input Voltage Range Output Voltage 3P3 : 3.3V 05 : 5V 12 : 12V 15 : 15V Single Output Mechanical Data Pin 1 2 4 5 6 7 8 PIN CONNECTION Function +INPUT -INPUT CTRL NO PIN +OUTPUT -OUTPUT TRIM EXTERNAL OUTPUT TRIMMING Output can be externally trimmed by using the method shown below. TRIM UP TRIM DOWN 7 8 RU 8 RD 6 27 Safety and Installation Instruction Isolation consideration The PXE20 series features 1.6k Volt DC isolation from input to output, input to case, and output to case. The input to 9 output resistance is greater than 10 ohms. Nevertheless, if the system using the power module needs safety agency approval, certain rules must be followed in the design of the system when using the product In particular, all of the creepage and clearance requirements of the end-use safety requirement must be observed. These documents include UL-60950-1, EN60950-1 and CSA 22.2-960, although specific applications may have other or additional requirements. Fusing Consideration Caution: This power module is not internally fused. An input line fuse must always be used. This encapsulated power module can be used in a wide variety of applications, ranging from simple stand-alone operation to an integrated part of a sophisticated power architecture. To maximum flexibility, internal fusing is not included; however, to achieve maximum safety and system protection, always use an input line fuse. The safety agencies require a slow-blow fuse with maximum rating of 6.3 A. Based on the information provided in this data sheet on inrush energy and maximum dc input current, the same type of fuse with lower rating can be used. Refer to the fuse manufacturer’s data for further information. Minimum Load Requirement 10%(of full load) minimum load required. The 10% minimum load requirement is in order to meet all performance specifications. The PXE20 Series does not properly maintain regulation and operate with a no load condition. The output voltage drops off about 10%. MTBF and Reliability The MTBF of PXE20- has been calculated using: 1.MIL-HDBK-217F under the following conditions: Nominal Input Voltage Io = Io, max Ta = 25℃ 5 The resulting figure for MTBF is 7.650× 10 hours. 2.Bell-core TR-NWT-000332 Case I: 50% stress, Operating Temperature at 40 ℃ (Ground fixed and controlled environment) 6 The resulting figure for MTBF is 1.928× 10 hours. 28
PXE20-48WS12 价格&库存

很抱歉,暂时无法提供与“PXE20-48WS12”相匹配的价格&库存,您可以联系我们找货

免费人工找货