0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRFP350LCPBF

IRFP350LCPBF

  • 厂商:

    TFUNK(威世)

  • 封装:

    TO247

  • 描述:

    MOSFET N-CH 400V 16A TO-247AC

  • 数据手册
  • 价格&库存
IRFP350LCPBF 数据手册
IRFP350LC, SiHFP350LC Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • • • • • • • • 400 RDS(on) (Ω) VGS = 10 V Qg (Max.) (nC) 0.30 76 Qgs (nC) 20 Qgd (nC) 37 Configuration Single RoHS* COMPLIANT This new series of low charge Power MOSFETs achieve significantly lower gate charge over conventional MOSFETs. Utilizing advanced MOSFETs technology the device improvements allow for reduced gate drive requirements, faster switching speeds and increased total system savings. These device improvements combined with the proven ruggedness and reliability of MOSFETs offer the designer a new standard in power transistors for switching applications. The TO-247AC package is preferred for commercial-industrial applications where higher power levels preclude the use of TO-220AB devices. The TO-247AC is similar but superior to the earlier TO-218 package because of its isolated mounting hole. TO-247AC G S G Available DESCRIPTION D D Ultra Low Gate Charge Reduced Gate Drive Requirement Enhanced 30V VGS Rating Reduced Ciss, Coss, Crss Isolated Central Mounting Hole Dynamic dV/dt Rated Repetitive Avalanche Rated Compliant to RoHS Directive 2002/95/EC S N-Channel MOSFET ORDERING INFORMATION Package TO-247AC IRFP350LCPbF SiHFP350LC-E3 IRFP350LC SiHFP350LC Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted) PARAMETER Drain-Source Voltage Gate-Source Voltage Continuous Drain Current SYMBOL VDS VGS VGS at 10 V TC = 25 °C TC = 100 °C Currenta Pulsed Drain Linear Derating Factor Single Pulse Avalanche Energyb Repetitive Avalanche Currenta Repetitive Avalanche Energya Maximum Power Dissipation Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque ID IDM TC = 25 °C for 10 s 6-32 or M3 screw EAS IAR EAR PD dV/dt TJ, Tstg LIMIT 400 ± 30 16 9.9 64 1.5 390 16 19 190 4.0 - 55 to + 150 300d 10 1.1 UNIT V A W/°C mJ A mJ W V/ns °C lbf · in N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. VDD = 25 V, starting TJ = 25 °C, L = 2.7 mH, Rg = 25 Ω, IAS = 16 A (see fig. 12). c. ISD ≤ 16 A, dI/dt ≤ 200 A/μs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91224 S11-0448-Rev. B, 14-Mar-11 www.vishay.com 1 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRFP350LC, SiHFP350LC Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 40 Case-to-Sink, Flat, Greased Surface RthCS 0.24 - Maximum Junction-to-Case (Drain) RthJC - 0.65 UNIT °C/W SPECIFICATIONS (TJ = 25 °C, unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT VDS VGS = 0 V, ID = 250 μA 400 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.49 - V/°C VGS(th) VDS = VGS, ID = 250 μA 2.0 - 4.0 V Gate-Source Leakage IGSS VGS = ± 20 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 400 V, VGS = 0 V - - 25 VDS = 320 V, VGS = 0 V, TJ = 125 °C - - 250 Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage ID = 9.6 Ab μA - - 0.30 Ω gfs VDS = 50 V, ID = 9.6 Ab 8.1 - - S Input Capacitance Ciss VGS = 0 V, - 2200 - Output Capacitance Coss VDS = 25 V, - 390 - Reverse Transfer Capacitance Crss f = 1.0 MHz, see fig. 5 - 31 - Total Gate Charge Qg - - 76 - - 20 Drain-Source On-State Resistance Forward Transconductance RDS(on) VGS = 10 V Dynamic VGS = 10 V ID = 16 A, VDS = 320 V pF Gate-Source Charge Qgs Gate-Drain Charge Qgd - - 37 Turn-On Delay Time td(on) - 14 - VDD = 200 V, ID = 16 A, - 54 - Rg = 6.2 Ω, RD = 12 Ω, see fig. 10b - 33 - - 35 - - - 16 - - 64 - - 1.6 V - 440 660 ns - 4.1 6.2 μC Rise Time Turn-Off Delay Time Fall Time tr td(off) see fig. 6 and 13b tf nC ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 °C, IS = 16 A, VGS = 0 Vb TJ = 25 °C, IF = 16 A, dI/dt = 100 A/μsb Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 μs; duty cycle ≤ 2 %. www.vishay.com 2 Document Number: 91224 S11-0448-Rev. B, 14-Mar-11 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRFP350LC, SiHFP350LC Vishay Siliconix TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted) Fig. 1 - Typical Output Characteristics, TC = 25 °C Fig. 2 - Typical Output Characteristics, TC = 150 °C Document Number: 91224 S11-0448-Rev. B, 14-Mar-11 Fig. 3 - Typical Transfer Characteristics Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRFP350LC, SiHFP350LC Vishay Siliconix Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 Fig. 7 - Typical Source-Drain Diode Forward Voltage Fig. 8 - Maximum Safe Operating Area Document Number: 91224 S11-0448-Rev. B, 14-Mar-11 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRFP350LC, SiHFP350LC Vishay Siliconix RD VDS VGS D.U.T. RG + - VDD 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % Fig. 10a - Switching Time Test Circuit VDS 90 % 10 % VGS td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature tr td(off) tf Fig. 10b - Switching Time Waveforms Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case Document Number: 91224 S11-0448-Rev. B, 14-Mar-11 www.vishay.com 5 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRFP350LC, SiHFP350LC Vishay Siliconix VDS L Vary tp to obtain required IAS VDS tp VDD D.U.T RG + - IAS V DD A VDS 10 V 0.01 Ω tp Fig. 12a - Unclamped Inductive Test Circuit IAS Fig. 12b - Unclamped Inductive Waveforms Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 kΩ QG 10 V 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.vishay.com 6 Fig. 13b - Gate Charge Test Circuit Document Number: 91224 S11-0448-Rev. B, 14-Mar-11 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRFP350LC, SiHFP350LC Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - Rg • • • • + dV/dt controlled by Rg Driver same type as D.U.T. ISD controlled by duty factor “D” D.U.T. - device under test + - VDD Driver gate drive P.W. Period D= P.W. Period VGS = 10 Va D.U.T. lSD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage Inductor current VDD Body diode forward drop Ripple ≤ 5 % ISD Note a. VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91224. Document Number: 91224 S11-0448-Rev. B, 14-Mar-11 www.vishay.com 7 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Package Information www.vishay.com Vishay Siliconix TO-247AC (High Voltage) VERSION 1: FACILITY CODE = 9 MILLIMETERS DIM. MIN. MAX. A 4.83 A1 2.29 MILLIMETERS NOTES DIM. MIN. MAX. NOTES 5.21 D1 16.25 16.85 5 2.55 D2 0.56 0.76 A2 1.50 2.49 E 15.50 15.87 b 1.12 1.33 E1 13.46 14.16 5 b1 1.12 1.28 E2 4.52 5.49 3 b2 1.91 2.39 b3 1.91 2.34 b4 2.87 3.22 b5 2.87 3.18 c 0.55 0.69 c1 0.55 0.65 D 20.40 20.70 4 6 e L 14.90 15.40 6, 8 L1 3.96 4.16 6 ØP 3.56 3.65 7 6 4 5.44 BSC Ø P1 7.19 ref. Q 5.31 5.69 S 5.54 5.74 Notes (1) Package reference: JEDEC® TO247, variation AC (2) All dimensions are in mm (3) Slot required, notch may be rounded (4) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm per side. These dimensions are measured at the outermost extremes of the plastic body (5) Thermal pad contour optional with dimensions D1 and E1 (6) Lead finish uncontrolled in L1 (7) Ø P to have a maximum draft angle of 1.5° to the top of the part with a maximum hole diameter of 3.91 mm (8) Dimension b2 and b4 does not include dambar protrusion. Allowable dambar protrusion shall be 0.1 mm total in excess of b2 and b4 dimension at maximum material condition Revision: 19-Oct-2020 Document Number: 91360 1 For technical questions, contact: hvm@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Package Information www.vishay.com Vishay Siliconix VERSION 2: FACILITY CODE = Y A A 4 E B 3 R/2 E/2 7 ØP Ø k M DBM A2 S (Datum B) ØP1 A D2 Q 4 4 2xR (2) D1 D 1 2 4 D 3 Thermal pad 5 L1 C L See view B 2 x b2 3xb 0.10 M C A M 4 E1 A 0.01 M D B M View A - A C 2x e A1 b4 (b1, b3, b5) Planting Lead Assignments 1. Gate 2. Drain 3. Source 4. Drain D DE Base metal E C (c) C c1 (b, b2, b4) (4) Section C - C, D - D, E - E View B MILLIMETERS DIM. MIN. MAX. A 4.58 5.31 MILLIMETERS NOTES DIM. MIN. MAX. D2 0.51 1.30 15.87 A1 2.21 2.59 E 15.29 A2 1.17 2.49 E1 13.72 b 0.99 1.40 e 5.46 BSC b1 0.99 1.35 Øk b2 1.53 2.39 L 14.20 16.25 b3 1.65 2.37 L1 3.71 4.29 b4 2.42 3.43 ØP 3.51 3.66 b5 2.59 3.38 Ø P1 - 7.39 c 0.38 0.86 Q 5.31 5.69 4.52 c1 0.38 0.76 R D 19.71 20.82 S D1 13.08 - NOTES 0.254 5.49 5.51 BSC Notes (1) Dimensioning and tolerancing per ASME Y14.5M-1994 (2) Contour of slot optional (3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body (4) Thermal pad contour optional with dimensions D1 and E1 (5) Lead finish uncontrolled in L1 (6) Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154") (7) Outline conforms to JEDEC outline TO-247 with exception of dimension c Revision: 19-Oct-2020 Document Number: 91360 2 For technical questions, contact: hvm@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Package Information www.vishay.com Vishay Siliconix VERSION 3: FACILITY CODE = N A E R/2 D2 B A P A2 D1 L1 D D K M D BM R S Q N P1 b2 L C e b b4 C E1 A1 0.01 M D B M 0.10 M C A M b1, b3, b5 c c1 Base metal Plating b, b2, b4 MILLIMETERS MILLIMETERS DIM. MIN. MAX. DIM. MIN. A 4.65 5.31 D2 0.51 MAX. 1.35 A1 2.21 2.59 E 15.29 15.87 13.46 A2 1.17 1.37 E1 b 0.99 1.40 e - b1 0.99 1.35 k b2 1.65 2.39 L 14.20 b3 1.65 2.34 L1 3.71 b4 2.59 3.43 N b5 2.59 3.38 P 3.56 c 0.38 0.89 P1 - 7.39 c1 0.38 0.84 Q 5.31 5.69 D 19.71 20.70 R 4.52 D1 13.08 - S 5.46 BSC 0.254 16.10 4.29 7.62 BSC 3.66 5.49 5.51 BSC ECN: E20-0545-Rev. F, 19-Oct-2020 DWG: 5971 Notes (1) Dimensioning and tolerancing per ASME Y14.5M-1994 (2) Contour of slot optional (3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body (4) Thermal pad contour optional with dimensions D1 and E1 (5) Lead finish uncontrolled in L1 (6) Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154") Revision: 19-Oct-2020 Document Number: 91360 3 For technical questions, contact: hvm@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Legal Disclaimer Notice www.vishay.com Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. © 2021 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED Revision: 09-Jul-2021 1 Document Number: 91000
IRFP350LCPBF 价格&库存

很抱歉,暂时无法提供与“IRFP350LCPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货
IRFP350LCPBF
  •  国内价格
  • 25+37.56121
  • 125+33.80532

库存:525