SMAJ5.0A thru SMAJ188CA
www.vishay.com
Vishay General Semiconductor
Surface-Mount TRANSZORB® Transient Voltage Suppressors
FEATURES
• Low profile package
Available
• Ideal for automated placement
• Glass passivated chip junction
• Available in unidirectional and bidirectional
• 400 W peak pulse power capability with a
10/1000 μs waveform, repetitive rate (duty
cycle): 0.01 % (300 W above 78 V)
SMA (DO-214AC)
Cathode
Anode
Available
• Excellent clamping capability
(unidirectional)
(bidirectional)
LINKS TO ADDITIONAL RESOURCES
3D 3D
• Very fast response time
• Low incremental surge resistance
• Meets MSL level 1, per J-STD-020, LF maximum peak
of 260 °C
• AEC-Q101 qualified available
- Automotive ordering code: base P/NHE3 or P/NHM3
3D Models
• Material categorization: for definitions of compliance
please see www.vishay.com/doc?99912
PRIMARY CHARACTERISTICS
VBR uni-directional
6.40 V to 231 V
MECHANICAL DATA
VBR bi-directional
6.40 V to 231 V
VWM
5.0 V to 188 V
PPPM
400 W, 300 W
PD
3.3 W
Case: SMA (DO-214AC)
Molding compound meets UL 94 V-0 flammability rating
Base P/N-E3 - RoHS-compliant, commercial grade
Base P/N-M3 - halogen-free, RoHS-compliant, commercial
grade
Base P/NHE3_X - RoHS-compliant and AEC-Q101 qualified
Base P/NHM3_X - halogen-free, RoHS-compliant, and
AEC-Q101 qualified
(“_X” denotes revision code e.g. A, B, ...)
IFSM
40 A
TJ max.
150 °C
Polarity
Unidirectional, bidirectional
Package
SMA (DO-214AC)
For bidirectional use CA suffix (e.g. SMAJ10CA).
Electrical characteristics apply in both directions.
Terminals: matte tin plated leads, solderable per
J-STD-002 and JESD 22-B102
E3, M3, HE3, and HM3 suffix meets JESD 201 class 2
whisker test
TYPICAL APPLICATIONS
Polarity: for unidirectional types the band denotes cathode
end, no marking on bidirectional types
DEVICES FOR BIDIRECTION APPLICATIONS
Use in sensitive electronics protection against voltage
transients induced by inductive load switching and lighting
on ICs, MOSFET, signal lines of sensor units for consumer,
computer, industrial, automotive, and telecommunication.
MAXIMUM RATINGS (TA = 25 °C unless otherwise noted)
SYMBOL
VALUE
UNIT
Peak pulse power dissipation with a 10/1000 μs waveform (1)(2) (fig. 1)
PARAMETER
PPPM
400
W
Peak pulse current with a waveform (1)
IPPM
See next table
A
PD
3.3
W
Power dissipation on infinite heatsink at TA = 50 °C
Peak forward surge current 8.3 ms single half sine-wave unidirectional only (2)
Operating junction and storage temperature range
IFSM
40
A
TJ, TSTG
-55 to +150
°C
Notes
(1) Non-repetitive current pulse, per fig. 3 and derated above T = 25 °C per fig. 2. Rating is 300 W above 78 V
A
(2) Mounted on 0.2" x 0.2" (5.0 mm x 5.0 mm) copper pads to each terminal
Revision: 30-Jun-2021
Document Number: 88390
1
For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SMAJ5.0A thru SMAJ188CA
www.vishay.com
Vishay General Semiconductor
ELECTRICAL CHARACTERISTICS (TA = 25 °C unless otherwise noted)
DEVICE TYPE
(+)SMAJ5.0A (5)
(+)SMAJ6.0A
(+)SMAJ6.5A
(+)SMAJ7.0A
(+)SMAJ7.5A
(+)SMAJ8.0A
(+)SMAJ8.5A
(+)SMAJ9.0A
(+)SMAJ10A
(+)SMAJ11A
(+)SMAJ12A
(+)SMAJ13A
(+)SMAJ14A
(+)SMAJ15A
(+)SMAJ16A
(+)SMAJ17A
(+)SMAJ18A
(+)SMAJ20A
(+)SMAJ22A
(+)SMAJ24A
(+)SMAJ26A
(+)SMAJ28A
(+)SMAJ30A
(+)SMAJ33A
(+)SMAJ36A
(+)SMAJ40A
(+)SMAJ43A
(+)SMAJ45A
(+)SMAJ48A
(+)SMAJ51A
(+)SMAJ54A
(+)SMAJ58A
(+)SMAJ60A
(+)SMAJ64A
(+)SMAJ70A
(+)SMAJ75A
(+)SMAJ78A
(+)SMAJ85A
(+)SMAJ90A
(+)SMAJ100A
(+)SMAJ110A
(+)SMAJ120A
(+)SMAJ130A
(+)SMAJ150A
(+)SMAJ160A
(+)SMAJ170A
(+)SMAJ188A
DEVICE
MARKING
CODE
BREAKDOWN
VOLTAGE
VBR AT IT (1)
(V)
UNI
AE
AG
AK
AM
AP
AR
AT
AV
AX
AZ
BE
BG
BK
BM
BP
BR
BT
BV
BX
BZ
CE
CG
CK
CM
CP
CR
CT
CV
CX
CZ
RE
RG
RK
RM
RP
RR
RT
RV
RX
RZ
SE
VG
VK
VM
SP
SR
SS
MIN.
6.40
6.67
7.22
7.78
8.33
8.89
9.44
10.0
11.1
12.2
13.3
14.4
15.6
16.7
17.8
18.9
20.0
22.2
24.4
26.7
28.9
31.1
33.3
36.7
40.0
44.4
47.8
50.0
53.3
56.7
60.0
64.4
66.7
71.1
77.8
83.3
86.7
94.4
100
111
122
133
144
167
178
189
209
BI
WE
WG
WK
WM
WP
WR
WT
WV
WX
WZ
XE
XG
XK
XM
XP
XR
XT
XV
XX
XZ
YE
YG
YK
YM
YP
YR
YT
YV
YX
YZ
ZE
ZG
ZK
ZM
ZP
ZR
ZT
ZV
ZX
ZZ
VE
VG
VK
VM
VP
VR
VS
MAX.
7.07
7.37
7.98
8.60
9.21
9.83
10.4
11.1
12.3
13.5
14.7
15.9
17.2
18.5
19.7
20.9
22.1
24.5
26.9
29.5
31.9
34.4
36.8
40.6
44.2
49.1
52.8
55.3
58.9
62.7
66.3
71.2
73.7
78.6
86.0
92.1
95.8
104
111
123
135
147
159
185
197
209
231
TEST
CURRENT
IT
(mA)
STAND-OFF
VOLTAGE
VWM
(V)
MAXIMUM
REVERSE
LEAKAGE
AT VWM
ID (μA) (3)
MAXIMUM
PEAK PULSE
SURGE
CURRENT
IPPM (A) (2)
MAXIMUM
CLAMPING
VOLTAGE AT
IPPM
VC (V)
MAXIMUM
TEMPERATURE
COEFFICIENT
OF VBR
(%/°C)
10
10
10
10
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
5.0
6.0
6.5
7.0
7.5
8.0
8.5
9.0
10
11
12
13
14
15
16
17
18
20
22
24
26
28
30
33
36
40
43
45
48
51
54
58
60
64
70
75
78
85
90
100
110
120
130
150
160
170
188
800
800
500
200
100
50
10
5.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
43.5
38.8
35.7
33.3
31.0
29.4
27.8
26.0
23.5
22.0
20.1
18.6
17.2
16.4
15.4
14.5
13.7
12.3
11.3
10.3
9.5
8.8
8.3
7.5
6.9
6.2
5.8
5.5
5.2
4.9
4.6
4.3
4.1
3.9
3.5
3.3
3.2
2.2
2.1
1.9
1.7
1.6
1.4
1.2
1.2
1.09
0.91
9.2
10.3
11.2
12.0
12.9
13.6
14.4
15.4
17.0
18.2
19.9
21.5
23.2
24.4
26.0
27.6
29.2
32.4
35.5
38.9
42.1
45.4
48.4
53.3
58.1
64.5
69.4
72.7
77.4
82.4
87.1
93.6
96.8
103
113
121
126
137
146
162
177
193
209
243
259
275
328
0.057
0.059
0.061
0.065
0.067
0.069
0.073
0.074
0.078
0.080
0.083
0.084
0.087
0.088
0.089
0.090
0.092
0.094
0.096
0.096
0.097
0.098
0.099
0.100
0.100
0.101
0.102
0.102
0.103
0.104
0.104
0.104
0.105
0.105
0.105
0.106
0.106
0.106
0.106
0.107
0.107
0.108
0.108
0.108
0.108
0.108
0.108
Notes
(1) Pulse test: t ≤ 50 ms
p
(2) Surge current waveform per fig. 3 and derate per fig. 2
(3) For bidirectional types having V
WM of 10 V and less, the ID limit is doubled
(4) All terms and symbols are consistent with ANSI/IEEE C62.35
(5) For the bi-directional SMAJ5.0CA, the maximum V
BR is 7.25 V
(6) V = 3.5 V at I = 25 A (unidirectional only)
F
F
(+) Underwriters Laboratory Recognition for the classification of protectors (QVGQ2) under the UL standard for safety 497B and file number
E136766 for both unidirectional and bidirectional device
Revision: 30-Jun-2021
Document Number: 88390
2
For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SMAJ5.0A thru SMAJ188CA
www.vishay.com
Vishay General Semiconductor
THERMAL CHARACTERISTICS (TA = 25 °C unless otherwise noted)
PARAMETER
SYMBOL
VALUE
UNIT
Typical thermal resistance, junction to ambient (1)
RθJA
120
°C/W
Typical thermal resistance, junction to lead
RθJL
30
°C/W
Note
(1) Mounted on minimum recommended pad layout
ORDERING INFORMATION (Example)
PREFERRED P/N
SMAJ5.0A-E3/61
SMAJ5.0A-M3/61
SMAJ5.0A-E3/5A
SMAJ5.0A-M3/5A
SMAJ5.0AHE3_A/H (1)
SMAJ5.0AHM3_A/H (1)
SMAJ5.0AHE3_A/I (1)
SMAJ5.0AHM3_A/I (1)
UNIT WEIGHT (g)
PREFERRED PACKAGE CODE
BASE QUANTITY
DELIVERY MODE
0.064
61
1800
7" diameter plastic tape and reel
0.064
5A
7500
13" diameter plastic tape and reel
0.064
H
1800
7" diameter plastic tape and reel
0.064
I
7500
13" diameter plastic tape and reel
Note
(1) AEC-Q101 qualified
Revision: 30-Jun-2021
Document Number: 88390
3
For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SMAJ5.0A thru SMAJ188CA
www.vishay.com
Vishay General Semiconductor
RATINGS AND CHARACTERISTICS CURVES (TA = 25 °C unless otherwise noted)
PPPM - Peak Pulse Power (kW)
Non-Repetitive Pulse
Waveform Shown in Fig. 3
TA = 25 °C
10
1
0.2" x 0.2" (5.0 mm x 5.0 mm)
Copper Pad Areas
0.1
0.1
Measured at Stand-off
Voltage VWM
TJ = 25 °C
f = 1.0 MHz
Vsig = 50 mVp-p
1000
Uni-Directional
100
Bi-Directional
10
1
10
100
1000
10 000
1
10
100
td - Pulse Width (μs)
VWM - Reverse Stand-Off Voltage (V)
Fig. 1 - Peak Pulse Power Rating Curve
Fig. 4 - Typical Junction Capacitance
200
1000
100
Transient Thermal Impedance (°C/W)
Peak Pulse Power (PPP) or Current (IPP)
Derating in Percentage, %
SMAJ5.0
thru SMAJ78
SMAJ85
thru SMAJ188
CJ - Junction Capacitance (pF)
10 000
100
75
50
25
25
50
75
100
125
150
175
10
1
0.001
0
0
100
200
0.01
0.1
1.0
10
100
1000
TJ - Initial Temperature (°C)
tp - Pulse Duration (s)
Fig. 2 - Pulse Power or Current vs. Initial Junction Temperature
Fig. 5 - Typical Transient Thermal Impedance
tr = 10 μs
200
TJ = 25 °C
Pulse Width (td)
is Defined as the Point
Where the Peak Current
Decays to 50 % of IPPM
Peak Value
IPPM
Peak Forward Surge Current (A)
IPPM - Peak Pulse Current, % IRSM
150
100
Half Value - IPP
IPPM
2
50
10/1000 μs Waveform
as Defined by R.E.A.
TJ = TJ Max.
8.3 ms Single Half Sine-Wave
100
50
td
10
0
0
1.0
2.0
3.0
4.0
1
10
100
t - Time (ms)
Number of Cycles at 60 Hz
Fig. 3 - Pulse Waveform
Fig. 6 - Maximum Non-Repetitive Forward Surge Current
Unidirectional Only
Revision: 30-Jun-2021
Document Number: 88390
4
For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SMAJ5.0A thru SMAJ188CA
www.vishay.com
Vishay General Semiconductor
PACKAGE OUTLINE DIMENSIONS in inches (millimeters)
SMA (DO-214AC)
Cathode Band
Mounting Pad Layout
0.110 (2.79)
0.100 (2.54)
0.065 (1.65)
0.049 (1.25)
0.177 (4.50)
0.157 (3.99)
0.012 (0.305)
0.006 (0.152)
0.060 (1.52)
MIN.
0.208 (5.28)
REF.
0.090 (2.29)
0.078 (1.98)
0.060 (1.52)
0.030 (0.76)
0.074 (1.88)
MAX.
0.066 (1.68)
MIN.
0.008 (0.203)
0 (0)
0.208 (5.28)
0.194 (4.93)
Revision: 30-Jun-2021
Document Number: 88390
5
For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product
with the properties described in the product specification is suitable for use in a particular application. Parameters provided in
datasheets and / or specifications may vary in different applications and performance may vary over time. All operating
parameters, including typical parameters, must be validated for each customer application by the customer's technical experts.
Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited
to the warranty expressed therein.
Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and
for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of
any of the products, services or opinions of the corporation, organization or individual associated with the third-party website.
Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website
or for that of subsequent links.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
© 2023 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED
Revision: 01-Jan-2023
1
Document Number: 91000