XC9140 Series
ETR04015-009c
Step-Up Synchronous PFM DC/DC Converter
☆Green Operation Compatible
■ GENERAL DESCRIPTION
The XC9140 series are step-up synchronous DC/DC converters that support ceramic capacitors and have an internal 0.6Ω
Nch driver transistor and an internal 0.65Ω Pch synchronous rectifier switch transistor. PFM control enables a low quiescent
current, making these products ideal for portable devices that require high efficiency.
When the output voltage is 3.3V and the load current is 1mA, startup from an input voltage of VIN = 0.9V is possible which means that
these products can be used in applications that start using a single alkaline or nickel-metal hydride battery.
A version with a UVLO (Under Voltage Lock-out) function is also available. This function enables the reduction of battery leakage by
stopping IC’s operation when the input voltage is low. The standard product has a UVLO release voltage of 1.65V, 2.15V and a
custom version with a release voltage selectable from between 1.65V to 2.2V, in steps of 0.05V, is also available.
■FEATURES
■APPLICATIONS
●
●
●
●
●
●
Mouses, Keyboards
Bluetooth
Household use Medical equipments
Remote controls
Game consoles
Devices with 1~3 Alkaline, 1~3 Nickel Hydride,
1 Lithium and 1 Li-ion
Input Voltage Range
:
operating hold voltage
0.7V ~ 5.5V
Start-up voltage
0.9V ~ 5.5V
Output Voltage Setting
:
Without UVLO
1.8V ~ 5.0V (±2.0%)
Output Current
:
With UVLO
80mA@VOUT=3.3V, VBAT=1.8V
3.0V ~ 5.0V (±2.0%)
Driver Transistor
:
0.6Ω Nch driver transistor
Supply Current
:
6.3μA (VBAT=VOUT+0.5V)
Control Method
:
PFM Control
High speed transient response
:
50mV@VOUT=3.3V, VBAT=1.8V, IOUT=1→50mA
PFM Switching Current
:
350mA
Functions
:
Load Disconnection (A,B Type)
0.65Ω Pch synchronous rectifier switch transistor
Bypass Mode (C Type)
CL discharge (B Type), UVLO
Output Capacitor
Ceramic Capacitor
Operating Ambient Temperature
:
-40℃ ~ 85℃
Packages
:
SOT-25, USP-6EL
Environmentally Friendly
:
EU RoHS Compliant, Pb Free
■TYPICAL APPLICATION CIRCUIT
■TYPICAL PERFORMANCE
CHARACTERISTICS
●Efficiency vs. Output Current
XC9140A331MR-G(VOUT=3.3V)
100
L=4.7μH
2.5V
VOUT
CL=10μF
CE
VBAT
IN=4.7μF
CC
IN=10μF
GND
Efficiency : EFFI (%)
LX
VIN=0.9~5.5V
L=4.7μH(VLF302512M-4R7M),C IN =4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
80
3.0V
60
VBAT =1.8V
40
20
0
0.01
0.1
1
10
100
1000
Output Current : I OUT (mA)
1/33
XC9140 Series
■ BLOCK DIAGRAM
XC9140Axx1/XC9140Cxx1 Type
LX
PFM
CFB
RFB1
Parasitic Diode
Controller
VOUT
VOUT
Current Sense
RFB2
PFM
Comparator
FB
PFM Controller
+
VREF
CE
Buffer
Driver
and
Inrush
Currrent
Protection
GND
VOUT
VDD
CE and Bypass
Controller Logic
VBAT–VOUT Detector
VBAT
* Diodes inside the circuit are an ESD protection diodes and a parasitic diodes.
XC9140Bxx1 Type
LX
PFM
CFB
RFB1
Parasitic Diode
Controller
VOUT
VOUT
Current Sense
RFB2
PFM
Comparator
FB
CL
Auto
Discharge
PFM Controller
+
VREF
CE
CE and Bypass
Controller Logic
Buffer
Driver
and
Inrush
Currrent
Protection
GND
VOUT
VDD
VBAT–VOUT Detector
VBAT
* Diodes inside the circuit are an ESD protection diodes and a parasitic diodes.
2/33
XC9140 (Design Target)
XC9140
Series
■ BLOCK DIAGRAM
XC9140Axxx/XC9140Cxxx Type (Types other than XC9140Axx1/XC9140Cxx1)
LX
PFM Comparator
CFB
RFB1
Parasitic Diode
Controller
VOUT
VOUT
Current Sense
RFB2
PFM
Comparator
Buffer
Driver
and
Inrush
Currrent
Protection
FB PFM Controller
+
GND
VOUT
VREF
CE
VDD
CE and Bypass
Controller Logic
VBAT–VOUT Detector
Hysteresis UVLO
Comparator
VBAT
+
-
* Diodes inside the circuit are an ESD protection diodes and a parasitic diodes.
XC9140Bxxx Type (Types other than XC9140Bxx1)
LX
PFM Comparator
CFB
RFB1
Parasitic Diode
Controller
VOUT
VOUT
Current Sense
RFB2
PFM
Comparator
CL
Auto
Discharge
Buffer
Driver
and
Inrush
Currrent
Protection
FB PFM Controller
+
GND
VOUT
VREF
CE
CE and Bypass
Controller Logic
VDD
VBAT–VOUT Detector
Hysteresis UVLO
Comparator
VBAT
+
-
* Diodes inside the circuit are an ESD protection diodes and a parasitic diodes.
3/33
XC9140 Series
■ PRODUCT CLASSIFICATION
●Ordering Information
XC9140①②③④⑤⑥-⑦ (Without UVLO)
DESIGNATO
ITEM
R
SYMBOL
DESCRIPTION
Load Disconnection Without CL Auto Discharge
Load Disconnection With CL Auto Discharge
VBAT Bypass Without CL Auto Discharge
Output Voltage 1.8V ~ 5.0V (Increments : 0.1V)
②③
Output Voltage
18 ~ 50
e.g. 1.8V⇒②=1, ③=8
④ (*1)
UVLO Function
1
No UVLO
4R-G
USP-6EL (3,000pcs/Reel)
⑤⑥-⑦ (*2)
Packages (Order Unit)
MR-G
SOT-25 (3,000pcs/Reel)
(*2) The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.
①
Product Type
XC9140①②③④⑤⑥-⑦ (With UVLO)
DESIGNATO
ITEM
R
A
B
C
SYMBOL
①
Product Type
A
B
C
②③
Output Voltage
30 ~ 50
DESCRIPTION
Load Disconnection Without CL Auto Discharge
Load Disconnection With CL Auto Discharge
VBAT Bypass Without CL Auto Discharge
Output Voltage 3.0V ~ 5.0V (Increments : 0.1V)
e.g. 3.0V⇒②=3, ③=0
2
UVLO Function VUVLO_R=2.15V
6
UVLO Function VUVLO_R=1.65V
4R-G
USP-6EL (3,000pcs/Reel)
⑤⑥-⑦ (*2)
Packages (Order Unit)
MR-G
SOT-25 (3,000pcs/Reel)
(*1) Please contact our sales representatives for UVLO release voltage other than those listed above.
It can be set from 1.65V to 2.2V in 0.05V increments.
(*2) The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.
④
4/33
(*1)
UVLO Function
XC9140 (Design Target)
XC9140
Series
■PIN CONFIGURATION
LX
VOUT
5
4
1 LX
GND 6
1
2
3
CE
GND
VBAT
NC 5
2 VOUT
CE 4
3 VBAT
USP-6EL
USP-6EL
(BOTTOM
(BOTTOM VIEW)
VIEW)
SOT-25
SOT-25
(TOP VIEW)
VIEW)
(TOP
* The dissipation pad for the USP-6EL package should be solder-plated in recommended mount
pattern and metal masking so as to enhance mounting strength and heat release.
The mount pattern should be connected to GND pin (No.6).
■ PIN ASSIGNMENT
PIN NUMBER
USP-6EL
SOT-25
1
2
3
4
5
6
5
4
3
1
2
PIN NAME
FUNCTIONS
LX
VOUT
VBAT
CE
NC
GND
Switching
Output Voltage
Power Input
Chip Enable
No Connection
Ground
■ PIN FUNCTION ASSIGNMEN
PIN NAME
CE
SIGNAL
STATUS
H
Active (All Type)
Stand-by (A/B Type)
Bypass Mode (C Type)
L
* Please do not leave the CE pin open.
■ABSOLUTE MAXIMUM RATINGS
PARAMETER
SYMBOL
RATINGS
UNITS
BAT Pin Voltage
LX Pin Voltage
VOUT Pin Voltage
VBAT
VLX
VOUT
-0.3 ~ 7.0
-0.3 ~ VOUT + 0.3 or 7.0 (*1)
CE Pin Voltage
VCE
-0.3 ~ 7.0
-0.3 ~ 7.0
V
V
V
LX Pin Current
ILX
700
Power Dissipation
(Ta=25℃)
SOT-25
Pd
USP-6EL
250 (IC only)
600 (40mm x 40mm Standard board) (*2)
760 (JESD51-7 board) (*2)
120 (IC only)
1000 (40mm x 40mm Standard board) (*2)
-40 ~ 85
-55 ~ 125
Operating Ambient Temperature
Topr
Storage Temperature
Tstg
* All voltages are described based on the GND.
(*1) The maximum value should be either V
OUT+0.3V or 7.0V or in the lowest.
(*2) This power dissipation figure shown is PCB mounted and is for reference only.
Please refer to PACKAGING INFORMATION for the mounting condition.
V
mA
mW
˚C
˚C
5/33
XC9140 Series
■ELECTRICAL CHARACTERISTICS (Continued)
XC9140Axx1, XC9140Bxx1 Type
PARAMETER
SYMBOL
Input Voltage
VBAT
Output Voltage
VOUT(E) (*2)
Ta=25˚C
CONDITIONS
MIN.
TYP.
MAX.
UNITS
-
-
5.5
V
VPULL=1.5V, Voltage to start oscillation
E1
while VOUT is decreasing
CIRCUIT
V
①
Operation Start Voltage
VST1
IOUT=1mA
-
-
0.9
V
②
Operation Hold Voltage
VHLD
RL=1kΩ
-
0.7
-
V
②
Supply Current
Iq
μA
③
Input Pin Current
IBAT
VOUT=VOUT(T)+0.5V (*1)
-
0.25
1.0
μA
③
Stand-by Current
ISTB
VBAT=VLX=VOUT(T) (*1), VOUT=VCE=0V
-
0.1
1.0
μA
④
-
0.1
1.0
μA
⑤
295
350
405
mA
②
3.1
4.6
6.0
μs
①
-
81
-
%
②
-
85
-
%
②
-
86
-
%
②
Ω
⑦
Oscillation stops,
LX Leak Current
ILXL
VBAT=VLX=VOUT(T)
PFM Switching Current
IPFM
IOUT=3mA
Maximum ON Time
tONMAX
Efficiency (*3)
EFFI
Efficiency (*3)
EFFI
Efficiency (*3)
EFFI
LX SW “Pch” ON
Resistance
(*4)
LX SW “Nch” ON
Resistance (*5)
RLXP
RLXN
E2
VOUT=VOUT(T)+0.5V (*1)
(*1)
, VOUT=VCE=0V
VPULL=1.5V, VOUT=VOUT(T)×0.98 (*1)
VBAT=VCE=1.8V, VOUT(T)
(*1)
=2.5V,
IOUT=30mA
VBAT=VCE=1.8V, VOUT(T) (*1)=3.3V,
IOUT=30mA
VBAT=VCE=1.8V, VOUT(T) (*1)=5.0V,
IOUT=30mA
VBAT=VLX=VCE=VOUT(T)+0.5V (*1),
E3
IOUT=200mA
VBAT=VCE=3.3V, VOUT=1.7V
-
0.6
-
Ω
⑧
0.75
-
5.5
V
①
GND
-
0.3
V
①
VBAT=VPULL=1.5V,
CE “H” Voltage
VCEH
VOUT=VOUT(T)×0.98 (*1)
While VCE=0.3→0.75V,
Voltage to start oscillation
VBAT=VPULL=1.5V,
VOUT=VOUT(T)×0.98 (*1)
CE “L” Voltage
VCEL
CE “H” Current
ICEH
VBAT=VCE=VLX=VOUT=5.5V
-0.1
-
0.1
μA
①
CE “L” Current
ICEL
VBAT=VLX=VOUT=5.5V, VCE=0V
-0.1
-
0.1
μA
①
VBAT=VOUT=2.0V, VCE=0V
165
210
254
Ω
③
While VCE=0.75→0.3V,
Voltage to stop oscillation
CL Discharge
Resistance (B Type)
RDCHG
Unless otherwise stated, VBAT=VCE=1.5V
(*1)
VOUT(T)=Nominal Output Voltage
(*2)
VOUT(E)=Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.
Please refer to the characteristic example.
(*3)
EFFI={[(Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)]}×100
(*4)
LX SW “Pch” ON resistance=(VLX-VOUT pin measurement voltage) / 200mA
(*5)
The LX SW “Nch” ON resistance measurement method is shown in the measurement circuit diagram.
6/33
XC9140 (Design Target)
XC9140
Series
■ELECTRICAL CHARACTERISTICS (Continued)
XC9140Cxx1 Type
Ta=25˚C
PARAMETER
SYMBOL
Input Voltage
VBAT
CONDITIONS
MIN.
TYP.
MAX.
UNITS
CIRCUIT
-
-
5.5
V
-
V
①
VPULL=1.5V, Voltage to start oscillation
Output Voltage
VOUT(E) (*2)
Operation Start Voltage
VST1
IOUT=1mA
-
-
0.9
V
②
Operation Hold Voltage
VHLD
RL=1kΩ
-
0.7
-
V
②
μA
③
E1
while VOUT is decreasing
Oscillation stops,
Supply Current
Iq
Input Pin Current
IBAT
VOUT=VOUT(T)+0.5V (*1)
-
0.25
1.0
μA
③
Bypass Mode Current
IBYP
VBAT=VLX=5.5V, VCE=0V
-
3.5
6.1
μA
⑥
PFM Switching Current
IPFM
IOUT=3mA
295
350
405
mA
②
Maximum ON Time
tONMAX
VPULL=1.5V, VOUT=VOUT(T)×0.98 (*1)
3.1
4.6
6.0
μs
①
-
81
-
%
②
-
85
-
%
②
-
86
-
%
②
Ω
⑦
Efficiency (*3)
EFFI
Efficiency (*3)
EFFI
Efficiency (*3)
EFFI
LX SW “Pch” ON
Resistance
(*4)
LX SW “Nch” ON
Resistance (*5)
RLXP
RLXN
E2
VOUT=VOUT(T)+0.5V (*1)
VBAT=VCE=1.8V, VOUT(T) (*1)=2.5V,
IOUT=30mA
VBAT=VCE=1.8V, VOUT(T) (*1)=3.3V,
IOUT=30mA
VBAT=VCE=1.8V, VOUT(T) (*1)=5.0V,
IOUT=30mA
VBAT=VLX=VCE= VOUT(T)+0.5V (*1),
E3
IOUT=200mA
VBAT=VCE=3.3V, VOUT=1.7V
-
0.6
-
Ω
⑧
0.75
-
5.5
V
①
GND
-
0.3
V
①
VBAT=VPULL=1.5V,
CE “H” Voltage
VCEH
VOUT=VOUT(T)×0.98 (*1)
While VCE=0.3→0.75,
Voltage to start oscillation
VBAT=VPULL=1.5V,
VOUT=VOUT(T)×0.98 (*1)
CE “L” Voltage
VCEL
CE “H” Current
ICEH
VBAT=VCE=VLX=VOUT=5.5V
-0.1
-
0.1
μA
①
CE “L” Current
ICEL
VBAT=VLX=VOUT=5.5V, VCE=0V
-0.1
-
0.1
μA
①
While VCE=0.75→0.3V,
Voltage to stop oscillation
Unless otherwise stated, VBAT=VCE=1.5V
(*1)
VOUT(T)=Nominal Output Voltage
(*2)
VOUT(E)=Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.
Please refer to the characteristic example.
(*3)
EFFI={[(Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)]}×100
(*4)
LX SW “Pch” ON resistance=(VLX-VOUT pin measurement voltage) / 200mA
(*5)
The LX SW “Nch” ON resistance measurement method is shown in the measurement circuit diagram.
7/33
XC9140 Series
■ ELECTRICAL CHARACTERISTICS (Continued)
XC9140Axxx types (types other than XC9140Axx1), XC9140Bxxx types (types other than XC9140Bxx1)
PARAMETER
SYMBOL
CONDITIONS
Input Voltage
VBAT
Output Voltage
VOUT(E) (*2)
Operation Start Voltage
VST1
IOUT=1mA
Operation Hold Voltage
VHLD
RL=1kΩ
Supply Current2
Iq
Input Pin Current2
IBAT
TYP.
MAX.
UNITS
-
-
5.5
V
VPULL=1.5V, Voltage to start oscillation
E9
while VOUT is decreasing
VDETECT(E)
(*8)
Oscillation stops,
VOUT=VOUT(T)+0.5V (*1)
VOUT=VOUT(T)+0.5V (*1)
(*1)
Ta=25˚C
MIN.
CIRCUIT
V
①
V
②
V
②
E4
μA
③
E5
μA
③
-
VRELEASE(E)
(*7)
-
Stand-by Current
ISTB
VBAT=VLX=VOUT(T)
, VOUT=VCE=0V
-
0.1
1.0
μA
④
LX Leak Current
ILXL
VBAT=VLX=VOUT(T) (*1), VOUT=VCE=0V
-
0.1
1.0
μA
⑤
PFM Switching Current
IPFM
IOUT=3mA
295
350
405
mA
②
3.1
4.6
6.0
μs
①
VPULL= VRELEASE(T)+0.1V
(*6)
,
Maximum ON Time
tONMAX
Efficiency (*3)
EFFI
VOUT(T) (*1)=2.5V, IOUT=30mA
-
81
-
%
②
(*3)
EFFI
VOUT(T) (*1)=3.3V, IOUT=30mA
-
85
-
%
②
Efficiency (*3)
EFFI
VOUT(T) (*1)=5.0V, IOUT=30mA
-
86
-
%
②
Ω
⑦
Efficiency
LX SW “Pch” ON
Resistance (*4)
LX SW “Nch” ON
Resistance (*5)
VOUT=VOUT(T)×0.98 (*1)
VBAT=VLX=VCE=VOUT(T)+0.5V
RLXP
(*1)
,
E3
IOUT=200mA
RLXN
VBAT=VCE=3.3V, VOUT=1.7V
-
0.6
-
Ω
⑧
0.75
-
5.5
V
①
GND
-
0.3
V
①
VBAT=VPULL= VRELEASE(T)+0.1V (*6),
CE “H” Voltage
VCEH
VOUT=VOUT(T)×0.98 (*1)
While VCE=0.3→0.75V,
Voltage to start oscillation
VBAT=VPULL= VRELEASE(T)+0.1V (*6),
CE “L” Voltage
VOUT=VOUT(T)×0.98 (*1)
VCEL
While VCE=0.75→0.3V,
Voltage to stop oscillation
CE “H” Current
ICEH
VBAT=VCE=VLX=VOUT=5.5V
-0.1
-
0.1
μA
①
CE “L” Current
ICEL
VBAT=VLX=VOUT=5.5V, VCE=0V
-0.1
-
0.1
μA
①
E6
μA
②
E7
V
①
V
①
UVLO Current
UVLO Release Voltage
VBAT= VCE= VDETECT(E) - 0.1V
IDQ
(*8)
,
IOUT=0mA
VRELEASE(E)
(*7)
VPULL= VOUT= VOUT(T)×0.98(*1),VBAT= VCE
Voltage to start oscillation while
VBAT is increasing
UVLO Hysteresis
Voltage
VPULL= VOUT= VOUT(T)×0.98(*1),VBAT= VCE
VHYS(E)
(*9)
VRELEASE(E) - Voltage to stop oscillation
0.1
0.15
0.2
while VBAT is decreasing(*7)
Unless otherwise stated, VBAT=VCE=VRELEASE(T)+0.1V (*6)
(*1)
VOUT(T)= Nominal Output Voltage
(*2)
VOUT(E)= Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC. Therefore, the DC/DC circuit output voltage, including
the peripheral components, is boosted by the ripple voltage average value. Please refer to the characteristic example.
(*3)
EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100
(*4)
LX SW “Pch” ON resistance=(VLX-VOUT pin measurement voltage) / 200mA
(*5)
The LX SW “Nch” ON resistance measurement method is shown in the measurement circuit diagram.
(*6)
VRELEASE(T)= Nominal UVLO release voltage
(*7)
VRELEASE(E)= Actual UVLO release voltage
(*8)
VDETECT(E)=VRELEASE(E) -VHYS(E)= Actual UVLO detect voltage
(*9)
VHYS(E)= Actual UVLO hysteresis voltage
8/33
XC9140 (Design Target)
XC9140
Series
■ELECTRICAL CHARACTERISTICS (Continued)
XC9140Cxxx type (types other than XC9140Cxx1)
PARAMETER
SYMBOL
Input Voltage
VBAT
Output Voltage
VOUT(E) (*2)
Operation Start Voltage
VST1
IOUT=1mA
Operation Hold Voltage
VHLD
RL=1kΩ
Supply Current2
Iq
Input Pin Current2
IBAT
Ta=25˚C
CONDITIONS
MIN.
TYP.
MAX.
UNITS
-
-
5.5
V
VPULL=1.5V, Voltage to start oscillation
E9
while VOUT is decreasing
VDETECT(E)
(*8)
Oscillation stops,
VOUT=VOUT(T)+0.5V (*1)
VOUT=VOUT(T)+0.5V (*1)
Bypass Mode Current
IBYP
VBAT=VLX= VRELEASE(T)+0.1V
PFM Switching Current
IPFM
IOUT=3mA
(*6)
, VCE=0V
VPULL= VRELEASE(T)+0.1V (*6),
CIRCUIT
V
①
V
②
V
②
E4
μA
③
E5
μA
③
-
VRELEASE(E)
(*7)
-
-
5.5
8.1
μA
⑥
295
350
405
mA
②
3.1
4.6
6.0
μs
①
Maximum ON Time
tONMAX
Efficiency (*3)
EFFI
VOUT(T) (*1)=2.5V, IOUT=30mA
-
81
-
%
②
(*3)
EFFI
VOUT(T) (*1)=3.3V, IOUT=30mA
-
85
-
%
②
Efficiency (*3)
EFFI
VOUT(T) (*1)=5.0V, IOUT=30mA
-
86
-
%
②
Ω
⑦
Efficiency
LX SW “Pch” ON
Resistance (*4)
LX SW “Nch” ON
Resistance (*5)
VOUT=VOUT(T)×0.98 (*1)
VBAT=VLX=VCE= VOUT(T)+0.5V (*1),
RLXP
E3
IOUT=200mA
RLXN
VBAT=VCE=3.3V, VOUT=1.7V
-
0.6
-
Ω
⑧
0.75
-
5.5
V
①
GND
-
0.3
V
①
VBAT=VPULL= VRELEASE(T)+0.1V (*6),
CE “H” Voltage
VCEH
VOUT=VOUT(T)×0.98(*1)
While VCE=0.3→0.75V,
Voltage to start oscillation
VBAT=VPULL= VRELEASE(T)+0.1V (*6),
CE “L” Voltage
VOUT=VOUT(T)×0.98 (*1)
VCEL
While VCE=0.75→0.3V,
Voltage to stop oscillation
CE “H” Current
ICEH
VBAT=VCE=VLX=VOUT=5.5V
-0.1
-
0.1
μA
①
CE “L” Current
ICEL
VBAT=VLX=VOUT=5.5V, VCE=0V
-0.1
-
0.1
μA
①
E6
μA
②
E8
μA
⑥
E7
V
①
V
①
VBAT= VCE= VDETECT(E) - 0.1V (*8),
UVLO Current
IDQ
UVLO Bypass Current
IDBYP
UVLO Release Voltage
IOUT=0mA
VRELEASE(E)
(*7)
VBAT= VLX= VDETECT(E) - 0.1V (*8), VCE=0V
VPULL= VOUT= VOUT(T)×0.98(*1), VBAT= VCE
Voltage to start oscillation while
VBAT is increasing
UVLO Hysteresis
Voltage
VPULL= VOUT= VOUT(T)×0.98(*1), VBAT= VCE
VHYS(E)
(*9)
VRELEASE(E) - Voltage to stop oscillation
0.1
0.15
0.2
while VBAT is decreasing(*7)
Unless otherwise stated, VBAT=VCE= VRELEASE(T)+0.1V (*6)
(*1)
VOUT(T)=Nominal Output Voltage
(*2)
VOUT(E)=Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC. Therefore, the DC/DC circuit output voltage, including
the peripheral components, is boosted by the ripple voltage average value. Please refer to the characteristic example.
(*3)
EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100
(*4)
LX SW “Pch” ON resistance=(VLX-VOUT pin measurement voltage) / 200mA
(*5)
The LX SW “Nch” ON resistance measurement method is shown in the measurement circuit diagram.
(*6)
VRELEASE(T)= Nominal UVLO release voltage
(*7)
VRELEASE(E)= Actual UVLO release voltage
(*8)
VDETECT(E)= VRELEASE(E) -VHYS(E)= Actual UVLO detect voltage
(*9)
VHYS(E)= Actual UVLO hysteresis voltage
9/33
XC9140 Series
■ELECTRICAL CHARACTERISTICS (Continued)
XC9140 Voltage Chart 1
SYMBOL
E1
E9
E2
E3
E4
PARAME
TER
Output Voltage
(XC9140xxx1)
Output Voltage
(types other than
XC9140xxx1)
Supply Current
LX SW “Pch” ON
RESISTANCE
Supply Current2
UNITS: V
UNITS: V
UNITS: V
UNITS: μA
UNITS: Ω
UNITS: μA
OUTPUT
VOLTAG
E
MIN.
MAX.
MIN.
MAX.
1.8
1.764
1.836
-
-
1.9
1.862
1.938
-
-
2.0
1.960
2.040
-
-
2.1
2.058
2.142
-
-
2.2
2.156
2.244
-
-
2.3
2.254
2.346
-
-
2.4
2.352
2.448
-
-
2.5
2.450
2.550
-
-
2.6
2.548
2.652
-
-
2.7
2.646
2.754
-
-
2.8
2.744
2.856
-
-
2.9
2.842
2.958
-
-
3.0
2.940
3.060
2.940
3.060
3.1
3.038
3.162
3.038
3.162
3.2
3.136
3.264
3.136
3.264
3.3
3.234
3.366
3.234
3.366
3.4
3.332
3.468
3.332
3.468
3.5
3.430
3.570
3.430
3.570
3.6
3.528
3.672
3.528
3.672
3.7
3.626
3.774
3.626
3.774
3.8
3.724
3.876
3.724
3.876
3.9
3.822
3.978
3.822
3.978
4.0
3.920
4.080
3.920
4.080
4.1
4.018
4.182
4.018
4.182
4.2
4.116
4.284
4.116
4.284
4.3
4.214
4.386
4.214
4.386
4.4
4.312
4.488
4.312
4.488
4.5
4.410
4.590
4.410
4.590
4.6
4.508
4.692
4.508
4.692
4.7
4.606
4.794
4.606
4.794
4.8
4.704
4.896
4.704
4.896
4.9
4.802
4.998
4.802
4.998
5.0
4.900
5.100
4.900
5.100
10/33
TYP.
MAX.
TYP.
MAX.
TYP.
MAX.
6.1
9.4
0.84
1.08
6.8
9.7
6.2
9.7
0.75
0.97
6.9
9.8
6.3
10.0
0.65
0.85
7.0
10.0
6.4
10.2
0.61
0.78
7.1
10.1
6.5
10.4
0.57
0.74
7.2
10.2
6.7
10.7
0.53
0.72
7.3
10.3
XC9140 (Design Target)
XC9140
Series
■ELECTRICAL CHARACTERISTICS (Continued)
XC9140 Voltage Chart 2
SYMBOL
E5
E6
E7
E8
PARAMETER
Input Pin Current2
UVLO Current
UVLO RELEASE
VOLTAGE
UVLO Bypass Current
UNITS: V
UNITS: μA
UNITS: μA
UNITS: V
UNITS: μA
UVLO
Release
Voltage
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
2.05
2.10
2.15
2.20
TYP.
MAX.
TYP.
MAX.
0.71
1.50
3.25
6.00
0.73
1.60
3.27
6.10
0.75
1.60
3.29
6.20
0.77
1.60
3.31
6.20
0.79
1.70
3.33
6.30
0.82
1.70
3.35
6.30
MIN.
MAX.
1.601
1.699
1.649
1.751
1.698
1.802
1.746
1.854
1.795
1.905
1.843
1.957
1.892
2.008
1.940
2.060
1.989
2.111
2.037
2.163
2.086
2.214
2.134
2.266
TYP.
MAX.
2.15
4.10
2.20
4.20
2.30
4.20
2.35
4.30
2.40
4.30
2.45
4.40
11/33
XC9140 Series
■TEST CIRCUITS
< Test Circuit No.⑤ >
< Test Circuit No.① >
Waveform check point
Rpull
LX
LX
GND
VOUT
CE
VOUT
A
VBAT
Vpull
CL
CIN
V
GND
A
CE
VBAT
*External components
CIN:4.7μF (ceramic)
CL:10μF (ceramic)
Rpull:100Ω
< Test Circuit No.⑥ >
< Test Circuit No.② >
Waveform check point
GND
LX
LX
GND
VOUT
VOUT
CE
CE
A
IOUT
RL
VBAT
V
A
VBAT
CL
A
CIN
V
*External components
L: 4.7μH
CIN:4.7μF (ceramic)
CL:10μF (ceramic)
< Test Circuit No.⑦ >
< Test Circuit No.③ >
LX
LX
VOUT
GND
GND
VOUT
CE
CE
IOUT
VBAT
A
VBAT
A
CIN
V
*External components
CIN:4.7μF (ceramic)
< Test Circuit No.⑧ >
< Test Circuit No.④ >
Waveform check point
LX
Rpull
GND
LX
GND
V1
VOUT
CE
VOUT
VBAT
A
CE
VBAT
Vpull
CL
CIN
*External components
CIN:4.7μF (ceramic)
CL:10μF (ceramic)
Rpull:4.7Ω
Use Test Circuit No.8 to adjust Vpull so that the LX pin voltage becomes 100mV when the Nch drive Tr is ON and then the voltage
at both ends of Rpull is measured to find the Lx SW "Nch" ON resistance.
RLXN=0.1V / {(V1 - 0.1V) / 4.7Ω)}
Note that V1 is the Rpull previous voltage when the Nch driver Tr is ON. Use an oscilloscope or other instrument to measure the
LX pin voltage and V1.
12/33
XC9140 (Design Target)
XC9140
Series
■TYPICAL APPLICATION CIRCUIT
L
LX
VOUT
VOUT
CL
(Ceramic)
CE
VBAT
VBAT
GND
CIN
(Ceramic)
【Typical External Components】
MANUFACTURE
PRODUCT NUMBER
VALUE
TDK
VLF302512M-4R7
4.7μH
Murata
1239AS-H-4R7M
4.7μH
CIN
TAIYO YUDEN
LMK107BJ475MA
4.7μF/10V
CL
TAIYO YUDEN
LMK107BJ106MA
10μF/10V
L
* When selecting components, take into consideration capacitance reduction, voltage, etc.
* The characteristics are dependent on the variation in the coil inductance value, so check these carefully in the actual product.
* A coil inductance value of 4.7μH to 10μH can be used, but using 4.7μH is recommended.
* The ripple voltage will increase if tantalum or electrolytic capacitors are used for the load capacitor CL.
The operation could also become unstable, so carefully check this in the actual product.
13/33
XC9140 Series
■OPERATIONAL EXPLANATION
The XC9140 Series consists of a standard voltage source, a PFM comparator, a Nch driver Tr, a Pch synchronous rectifier switch
Tr, a current sense circuit, a PFM control circuit and a CE control circuit, etc. (refer to the block diagram below.)
LX
PFM Comparator Unit
CFB
RFB1
Parasitic Diode
Controller
VOUT
VOUT
Current Sense
RFB2
PFM
Comparator
CL
Discharge
Buffer
Driver
and
Inrush
Currrent
Protection
FB PFM Controller
+
GND
VOUT
VREF
CE
VDD
CE and Bypass
Controller Logic
Hysteresis UVLO
Comparator
VBAT–VOUT Detector
VBAT
+
-
Current limit PFM control is used for the control method to make it difficult for the output voltage ripple to increase even when
the switching current is superimposed, so the product can be used within a wide voltage and current range. Further, because PFM
control is used, it has excellent transient response to support low capacity ceramic capacitors to realize a compact, highperformance boost DC/DC converter.
The synchronous driver and rectifier switch Tr efficiently sends the coil energy to the capacitor connected to the VOUT pin to
achieve highly efficient operation from low to high loads.
The electrical characteristics actual output voltage VOUT(E) is the PFM comparator threshold voltage shown in the block diagram.
Therefore, the booster circuit output voltage average value, including the peripheral components, depends on the ripple voltage,
so this must be carefully evaluated before being used in the actual product.
VBAT=VCE=2.0V、VOUT=3.3V、IOUT=20mA、L=4.7μH、CL=10μF、Ta=25℃
VOUT Voltage
Average
VBAT=VCE=2.0V、VOUT=3.3V、IOUT=70mA、L=4.7μH、CL=10μF、Ta=25℃
VLX
VLX
VOUT
VOUT
VLX:2V/div
VOUT Voltage
V
OUT:50mV/div
Average
ILX:200mA/div
VOUT(E)
VOUT(E)
IPFM
ILX
ILX
2[μs/div]
2[μs/div]
< Reference Voltage Source (VREF)>
The reference voltage source (VREF voltage) provides the reference voltage to ensure stable output voltage of the DC/DC
converter.
< PFM Control >
①The voltage from the output voltage divided by the division resistors RFB1 and RFB2 in the IC is used as feedback voltage (FB voltage),
and the PFM comparator is compared with the FB voltage and VREF. If the FB voltage is lower than VREF, the signal is sent to the buffer
driver via the PFM control circuit and the Nch driver Tr is turned ON. If the FB voltage is higher than VREF, the PFM comparator sends a
signal that does not turn ON the Nch driver Tr.
②The current sense circuit monitors the current flowing in the Nch driver Tr connected to the Lx pin when the Nch driver Tr is
ON. When the prescribed PFM switching current (IPFM) is reached, the signal is sent to the buffer driver via the PFM control circuit
to turn OFF the Nch driver Tr and turn ON the Pch synchronous rectifier switch Tr.
③The Pch synchronous rectifier switch Tr ON time (off time) is dynamically optimized internally. After the off time has passed,
when the PFM comparator confirms the VOUT voltage has exceeded the set voltage, a signal that does not allow the Nch driver Tr
to be turned on is sent from the PFM comparator to the PFM control circuit, but if the VOUT voltage remains lower than the set
voltage, then Nch driver Tr ON is started.
The intervals of the above ①②③ linked operations are continuously adjusted in response to the load current to ensure the output
voltage is kept stable from low to high loads and that it is done with good efficiency.
14/33
XC9140 (Design Target)
XC9140
Series
■OPERATIONAL EXPLANATION (Continued)
The PFM switching current unit monitors the current flowing in the Nch driver Tr and functions to limit the current flowing in the
Nch driver Tr, but if the load current becomes much larger than the PFM switching energy, the VOUT voltage becomes lower and
prevents the coil current in the Nch driver Tr OFF period from lowering, which affects the internal circuit delay time and results in
an excessive current that is larger than the PFM switching current flowing in the Nch driver Tr and Pch synchronous rectifier switch
Tr.
When a "L" voltage is input to the CE pin, the A/B type enters into standby mode and the C type enters into bypass mode to stop
the circuit required for the boost operation.
In the standby mode the load cut-off function operates and both the Nch driver Tr and Pch synchronous rectifier switch Tr are turned
OFF, which cuts off the current to the LX pin and VOUT pin and the parasitic diode control circuit connects the parasitic diode cathode
of the Pch synchronous rectifier switch Tr to the LX pin ①.
In the bypass mode the Nch driver Tr is OFF, the Pch synchronous rectifier switch Tr is ON when VLX > VOUT, and the parasitic diode
control circuit connects the parasitic diode cathode of the Pch synchronous rectifier switch Tr to the VOUT pin ②. Also, when VLX <
VOUT, the Pch synchronous rectifier switch Tr is turned OFF and the parasitic diode cathode is connected to the VOUT pin ②.
Note: Except for the moment when the VBAT voltage is input.
①
②
Parasitic Diode
Controller
LX Pin Side
VOUT Pin Side
Parasitic Diode
Controller
LX Pin Side
VOUT Pin Side
Buffer Driver
Buffer Driver
< VBAT-VOUT Voltage Detection Circuit>
The VBAT-VOUT voltage detection circuit compares the VBAT pin voltage with the VOUT pin voltage, and whichever is the highest is
operated to become the IC power supply (VDD).
In addition, if, during normal operation, the input voltage becomes higher than the output voltage, the Nch driver Tr is turned
OFF and the Pch synchronous rectifier switch Tr is kept ON so that the input voltage pass through to the output voltage (through
mode). When the input voltage becomes lower than the output voltage, the circuit automatically returns to the normal boost
operation. This detection circuit does not operate when in the standby mode.
When the VBAT or VCE power supply is input, CL is charged via the stable current that results from the inrush current protection
function (refer to graphs below). Therefore, this function minimizes potential over current from the VBAT pin to the VOUT pin. Also,
this current value depends on the VBAT voltage. After CL is charged by the aforementioned stable current and VOUT reaches around
the VBAT voltage level, the inrush current protection function will be released after several hundred μs ~ several ms and the IC
will then move to step-up mode, by pass mode or through mode.
Inrush Current Protection Characteristics
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA),IOUT =1mA,Ta=25℃
600
Inrush Current Protection (mA)
300
550
250
500
200
450
150
400
350
100
300
50
0
0.5
250
1.0
1.5
2.0
2.5
200
3.0
3.0
Input Voltage: V BAT (V)
3.5
4.0
4.5
5.0
5.5
15/33
XC9140 Series
■OPERATIONAL EXPLANATION (Continued)
The UVLO function is selectable on the XC9140 series as an option. When the VBAT pin voltage falls below the UVLO detect
voltage, the IC stops switching or BYPASS operation and cuts off the current to the LX pin and VOUT pin (UVLO mode). In addition,
when the VBAT pin voltage recovers to above the UVLO release voltage, the IC begins operating again.
B types can discharge the electric charge at the output capacitor (CL) quickly during standby mode(CE=”L”) via the Nch FET
located between VOUT and GND.
Electric charge at the output capacitor (CL) is quickly discharged so that it may avoid application malfunction during standby
mode.
Discharge time of the output capacitor (CL) is set by the CL discharge resistance (RDCHG) and the output capacitor (CL). By setting
time constant of a CL discharge resistance value [RDCHG] and an output capacitor value (CL) as τ(τ=CL×RDCHG), discharge time
can be the calculated by the following formulas.
However, the CL discharge resistance [RDCHG] is depends on the VBAT or VOUT. We recommend that you fully check actual
performance.
V=VOUT × e - t /τ or t=τIn(VOUT / V)
V
VOUT
t
τ
CL
RDCHG
16/33
: Output voltage after discharge
: Output voltage
: Discharge time
: CL × RDCHG
: Capacity value of the load capacitor (CL)
: CL Discharge resistance, it depends on the VBAT or VOUT
XC9140 (Design Target)
XC9140
Series
■NOTE ON USE
1. Be careful not to exceed the absolute maximum ratings for externally connected components and this IC.
2. The DC/DC converter characteristics greatly depend not only on the characteristics of this IC but also on those of externally
connected components, so refer to the specifications of each component and be careful when selecting the components. Be
especially careful of the characteristics of the capacitor used for the load capacity CL and use a capacitor with B characteristics
(JIS Standard) or an X7R/X5R (EIA Standard) ceramic capacitor.
3. Use a ground wire of sufficient strength. Ground potential fluctuation caused by the ground current during switching could cause
the IC operation to become unstable, so reinforce the area around the GND pin of the IC in particular.
4. Mount the externally connected components in the vicinity of the IC. Also use short, thick wires to reduce the wire impedance.
5. An excessive current that is larger than the PFM switching current flowing in the Nch driver Tr and Pch synchronous rectifier
switch Tr, which could destroy the IC.
6. When in the bypass mode, the internal Pch synchronous rectifier switch Tr turns ON to allow current to flow to the Lx pin and VOUT
pin. When an excessive current comes from the VOUT pin when this bypass operates, it could destroy the Pch synchronous rectifier
switch Tr.
7. The CE pin does not have an internal pull-up or pull-down, etc. Apply the prescribed voltage to the CE pin.
8. The coil inductance value applicable range is 4.7μH to 10μH, but 4.7μH is recommended because at this value the coil size
and DC/DC performance are optimized. If you want to use another inductance value other than 4.7μH but which is in the
above applicable range, be sure to carefully evaluate it first before use.
9. At high temperatures, the product performance could vary causing the efficiency to decline. Evaluate this carefully before use
if the product will be used at high temperatures.
10. Please note that the leak current of the Pch synchronous rectifier switch Tr during high-temperature standby operation could
cause the output voltage to increase.
11. The output voltage ripple effect from the load current causes the output voltage average value to fluctuate, so carefully evaluate
this in the actual product before use.
12. When the booster circuit is activated by a low input voltage, during the time until the output voltage reaches about 1.7V, the
PFM switching current function might not operate causing the coil current to be superimposed. (See the figure below.)
VBAT=VCE=0→0.9V、VOUT=1.8V、IOUT=1mA、L=4.7μH、CL=10μF、Ta=25℃
V OUT
V BAT =V CE
VBAT=VCE:1.0V/div
V LX
VOUT:1.0V/div
VLX:2.0V/div
ILX:200mA/div
ILX
200[μs/div]
V OUT
V BAT =V CE
VBAT=VCE:1.0V/div
V LX
Zoom
VOUT:1.0V/div
VLX:2.0V/div
ILX:200mA/div
ILX
50[μs/div]
VBAT=VCE=0→1.7V、VOUT=1.8V、IOUT=1mA、L=4.7μH、CL=10μF、Ta=25℃
V BAT =V CE
V LX
VBAT=VCE:1.0V/div
V OUT
VOUT:1.0V/div
VLX:2.0V/div
ILX
ILX:200mA/div
200[μs/div]
V BAT =V CE
V LX
V OUT
VBAT=VCE:1.0V/div
VOUT:1.0V/div
Zoom
VLX:2.0V/div
ILX
ILX:200mA/div
50[μs/div]
17/33
XC9140 Series
■NOTE ON USE (Continued)
13. If the CL capacity or load current becomes excessively large, the output voltage start-up time, when the power is turned on,
will increase, so the coil current might be superimposed during the time it takes for the output voltage to become sufficiently
higher than the VBAT voltage.
14. If the input voltage is higher than the output voltage, then the circuit automatically enters the through mode. When the input
voltage becomes close to the output voltage, there could be repeated switching between the boost mode and through mode
causing the ripple voltage to fluctuate. (Refer to the graphic below)
VBAT=VCE=3.316V,V OUT=3.412V,IOUT=3mA,L=4.7μH,CL=10μF,Ta=25℃
VOUT
VOUT:100mV/div
VBAT
VBAT:100mV/div
VLX
VLX:2.0V/div
200[μs/div]
15. If a different power supply is connected from an external source to the IC could be destroyed.
Refer to the table below for external voltage availability for each product type and operating conditions.
TYPE
XC9140Axx1
Applied Voltage
to the VOUT pin
XC9140Bxx1
XC9140Cxx1
TYPE
0.9V≦VBAT≦5.5V
CE=”L”
Applied Voltage
to the VOUT pin
Other than
XC9140Bxx1
Other than
XC9140Cxx1
18/33
CE=”H”
CE=”H”
CE=”L”
Yes
No
No
Yes
No
(CL Discharge Operation)
No
(Reverse Flow toward
the input)
0.9V≦VBAT≦5.5V
(UVLO Release State)
CE=”L”
Other than
XC9140Axx1
VBAT<0.9V
CE=”H”
0.9V≦VBAT<VRELEASE(E)
(UVLO Detect State)
CE=”H”
CE=”L”
Yes
Yes
Yes
No
(CL Discharge
Operation)
No
(Reverse Flow toward
the input)
No
(CL Discharge
Operation)
No
(CL Discharge
Operation)
Yes
Yes
Yes
VBAT<0.9V
CE=”H”
CE=”L”
No
No
XC9140 (Design Target)
XC9140
Series
■NOTE ON USE (Continued)
16. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be
exceeded.
17. Torex places an importance on improving our products and their reliability.
We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their
systems.
18. When the VBAT power supply or VCE power supply is input, if the VOUT pin voltage does not exceed VBAT -0.35V, which can
happen due to the load current being more than the inrush protection current, by pass mode operations won’t function correctly.
19. In the case of products with the UVLO function that do not have CL discharge, the output voltage may occasionally rise due to
leakage current from the Pch synchronous switch Tr when high-temperature UVLO mode operates.
19/33
XC9140 Series
■NOTE ON USE (Continued)
●Instructions of pattern layouts
1. In order to stabilize VBAT voltage level, we recommend that a by-pass capacitor (CIN) be connected as close as possible to the VBAT
and ground pins.
2. Please mount each external component as close to the IC as possible.
3. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance.
4. Make sure that the ground traces are as thick as possible, as variations in ground potential caused by high ground currents
at the time of switching may result in instability of the IC.
5. Internal driver transistors bring on heat because of the transistor current and ON resistance of the driver transistors.
●Recommended Pattern Layout (SOT-25)
FRONT
BACK
●Recommended Pattern Layout (USP-6EL)
FRONT
20/33
BACK
XC9140 (Design Target)
XC9140
Series
■TYPICAL PERFORMANCE CHARACTERISTICS
(1) Efficiency vs. Output Current
XC9140A331MR-G(VOUT=3.3V)
L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
XC9140A331MR-G(VOUT=3.3V)
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
100
100
2.5V
80
3.0V
Efficiency : EFFI (%)
Efficiency : EFFI (%)
2.5V
VBAT=1.8V
60
40
20
80
60
40
20
0
0.01
0.1
1
10
100
0
0.01
1000
0.1
Output Current : IOUT (mA)
1
10
100
1000
Output Current : IOUT (mA)
XC9140A501MR-G(VOUT=5.0V)
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
XC9140A501MR-G(VOUT=5.0V)
L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
100
100
4.2V
4.2V
80
3.7V
Efficiency : EFFI (%)
Efficiency : EFFI (%)
3.0V
VBAT=1.8V
VBAT=3.0V
60
40
80
VBAT=3.0V
3.7V
60
40
20
20
0
0.01
0.1
1
10
100
0
0.01
1000
0.1
Output Current : IOUT (mA)
1
10
Output Current : IOUT (mA)
100
1000
(2) Output Voltage vs. Output Current
XC9140A331MR-G(VOUT=3.3V)
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
XC9140A331MR-G(VOUT=3.3V)
L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
3.9
3.7
2.5V
Output Voltage : VOUT (V)
Output Voltage : VOUT (V)
3.9
3.0V
3.5
3.3
2.5V
3.0V
3.5
3.3
VBAT=1.8V
VBAT=1.8V
3.1
3.7
3.1
2.9
2.9
0.01
0.1
1
10
Output Current : IOUT (mA)
100
1000
0.01
0.1
1
10
100
1000
Output Current : IOUT (mA)
21/33
XC9140 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(2) Output Voltage vs. Output Current (Continued)
XC9140A501MR-G(VOUT=5.0V)
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
XC9140A501MR-G(VOUT=5.0V)
L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
5.6
Output Voltage : VOUT (V)
Output Voltage : VOUT (V)
5.6
5.4
4.2V
5.2
5.0
VBAT=3.0V
5.4
4.2V
5.2
5.0
VBAT=3.0V
3.7V
3.7V
4.8
4.8
4.6
4.6
0.01
0.1
1
10
100
0.01
1000
0.1
Output Current : IOUT (mA)
1
10
100
1000
Output Current : IOUT (mA)
(3) Ripple Voltage vs. Output Current
XC9140A331MR-G(VOUT=3.3V)
L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
300
300
250
250
Ripple Voltage : Vr (mV)
Ripple Voltage : Vr (mV)
XC9140A331MR-G(VOUT=3.3V)
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
200
150
2.5V
VBAT=1.8V
3.0V
100
200
3.0V
2.5V
150
100
50
50
VBAT=1.8V
0
0.01
0.1
1
10
100
0
0.01
1000
Output Current : IOUT (mA)
1
10
100
1000
Output Current : IOUT (mA)
XC9140A501MR-G(VOUT=5.0V)
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
XC9140A501MR-G(VOUT=5.0V)
L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
300
Ripple Voltage : Vr (mV)
300
Ripple Voltage : Vr (mV)
0.1
250
200
150
4.2V
3.7V
VBAT=3.0V
250
4.2V
3.7V
200
150
100
100
50
50
VBAT=3.0V
0
0.01
0.1
1
10
Output Current : IOUT (mA)
22/33
100
1000
0
0.01
0.1
1
10
Output Current : IOUT (mA)
100
1000
XC9140 (Design Target)
XC9140
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(4) Output Voltage vs. Ambient Temperature
XC9140x50x(VOUT=5.0V)
3.6
5.3
3.5
5.2
Output Voltage : VOUT (V)
Output Voltage : VOUT (V)
XC9140x33x(VOUT=3.3V)
3.4
3.3
3.2
3.1
5.1
5.0
4.9
4.8
3.0
-50
-25
0
25
50
75
4.7
100
-50
-25
Ambient Temperature: Ta(℃)
25
50
75
100
Ambient Temperature: Ta(℃)
(5) Supply Current vs. Ambient Temperature
(6) Input Pin Current vs. Ambient Temperature
XC9140xxx1
XC9140xxx1
20
2.0
VOUT=5.0V
3.0V
18
VOUT=5.0V
3.0V
1.8
Input Pin Current: IBAT (μA)
16
Supply Current: Iq (μA)
0
14
12
10
8
6
1.6
1.4
1.2
1.0
0.8
0.6
4
0.4
2
0.2
0.0
0
-50
-25
0
25
50
75
-50
100
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
Ambient Temperature: Ta (℃)
(8) MAX. ON Time vs. Ambient Temperature
(7) Stand-by Current vs. Ambient Temperature
XC9140A
XC9140
VOUT=5.0V
3.0V
1.8V
2.5
MAX ON Time: tONMAX (μs)
Stand-by Current: ISTB (μA)
3.0
2.0
1.5
1.0
0.5
10.0
VOUT=3.0V
5.0V
1.8V
8.0
6.0
4.0
2.0
0.0
-50
-25
0
25
50
75
100
0.0
-50
Ambient Temperature: Ta (℃)
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
23/33
XC9140 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(9) CL Discharge Resistance RDCHG vs. Output Voltage
XC9140B
(10) CL Discharge Resistance RDCHG vs. Input Voltage
XC9140B
VBAT=2.0V
350
300
250
200
150
100
50
0
0.5
1.0
1.5
450
400
350
300
250
200
150
100
50
0
2.0
1.0
1.5
2.0
Output Voltage: VOUT (V)
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
Input Voltage: VBAT (V)
(11) PFM Switching Current vs. Ambient Temperature
(12) PFM Switching Current vs. Input Voltage
XC9140x50x
XC9140
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
500
500
VOUT=5.0V
3.0V
1.8V
450
PFM Switching Current: IPFM (mA)
PFM Switching Current: IPFM (mA)
VOUT=0.5V
500
CL Discharge Resistance: RDCHG (Ω)
CL Discharge Resistance: RDCHG (Ω)
400
400
350
300
250
450
400
350
300
250
200
200
-50
-25
0
25
50
75
0
100
1
2
Ambient Temperature: Ta (℃)
3
4
5
6
Input Voltage: VBAT (V)
(13) Lx SW “Nch” ON Resistance vs. Output Voltage
(14) Lx SW “Pch” ON Resistance vs. Output Voltage
XC9140xxx1
XC9140
VBAT=VLX=VCE=VOUT(E)+0.5V,IOUT=200mA
1.2
Ta=85℃
25℃
-40℃
1.0
LX SW “Pch” ON Resistance: RLXP (Ω)
LX SW “Nch” ON Resistance: RLXN (Ω)
1.2
0.8
0.6
0.4
0.2
0.0
1.5
2.0
2.5
3.0
3.5
4.0
Output Voltage : VOUT (V)
24/33
4.5
5.0
Ta=85℃
25℃
-40℃
1.0
0.8
0.6
0.4
0.2
0.0
1.5
2.0
2.5
3.0
3.5
4.0
Output Voltage : VOUT (V)
4.5
5.0
XC9140 (Design Target)
XC9140
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) Lx Leak Current vs. Ambient Temperature
XC9140Axx1
VBAT=VLX=VOUT(E), VOUT=VCE=0V
LX Leak Current : ILXL (μA)
3.0
VLX=5.0V
3.3V
1.8V
2.5
2.0
1.5
1.0
0.5
0.0
-50
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
(16) CE “H” Voltage vs. Output Voltage
(17) CE “L” Voltage vs. Output Voltage
XC9140
XC9140
0.8
Ta=-40℃
25℃
85℃
0.7
CE “Low” Voltage: VCEL (V)
CE “High” Voltage: VCEH (V)
0.8
0.6
0.5
0.4
Ta=-40℃
25℃
85℃
0.7
0.6
0.5
0.4
0.3
0.3
0.2
0.2
0
1
2
3
4
5
0
6
1
Output Voltage : VOUT (V)
3
4
5
6
Output Voltage : VOUT (V)
(18) Operation Start Voltage vs. Ambient Temperature
(19) Operation Hold Voltage vs. Ambient Temperature
XC9140xxx1
XC9140xxx1
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA),RL=1kΩ
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA),RL=VOUT(E)/1mA
1.0
1.0
VOUT=1.8V
3.3V
5.0V
0.9
Operation Hold Voltage : VHLD (V)
Operation Start Voltage : VST1 (V)
2
0.8
0.7
0.6
0.5
VOUT=5.0V
3.3V
1.8V
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.4
-50
-25
0
25
50
Ambient Temperature: Ta (℃)
75
100
-50
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
25/33
XC9140 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(20) UVLO Release XC9140x18x(V
Voltage vs. Ambient
Temperature
=1.8V)
XC9140x50x(VOUT=5.0V)
OUT
2.35
VRELEASE(T)= 1.65V
1.75
UVLO Release Voltage: VRELEASE (V)
UVLO Release Voltage: VRELEASE (V)
1.80
1.70
1.65
1.60
1.55
1.50
1.45
1.40
VRELEASE(T)= 2.2V
2.30
2.25
2.20
2.15
2.10
2.05
2.00
1.95
-50
-25
0
25
50
75
100
-50
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
Ambient Temperature: Ta (℃)
(21) UVLO Detect Voltage vs. Ambient Temperature
XC9140x50x(VOUT=5.0V)
XC9140x18x(VOUT=1.8V)
2.35
VRELEASE(T)= 1.65V
1.75
UVLO Detect Voltage: VDETECT (V)
UVLO Detect Voltage: VDETECT (V)
1.80
1.70
1.65
1.60
1.55
1.50
1.45
VRELEASE(T)= 2.2V
2.30
2.25
2.20
2.15
2.10
2.05
2.00
1.40
-50
-25
0
25
50
75
1.95
100
-50
-25
Ambient Temperature: Ta (℃)
0
25
50
75
100
Ambient Temperature: Ta (℃)
(22) UVLO Hysteresis Voltage vs. Ambient Temperature
XC9140x50x(VOUT=5.0V)
XC9140x18x(VOUT=1.8V)
0.30
0.30
VRELEASE(T)= 2.2V
0.25
UVLO Hysteresis Voltage: VHYS (V)
UVLO Hysteresis Voltage: VHYS (V)
VRELEASE(T)= 1.65V
0.20
0.15
0.10
0.05
0.20
0.15
0.10
0.05
0.00
0.00
-50
-25
0
25
50
Ambient Temperature: Ta (℃)
26/33
0.25
75
100
-50
-25
0
25
50
Ambient Temperature: Ta (℃)
75
100
XC9140 (Design Target)
XC9140
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(23) No Load Input Current vs. Input Voltage
XC9140x18x(VOUT=1.8V)
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA),VBAT= VCE,IOUT=0mA
XC9140x50x(VOUT=5.0V)
L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA),VBAT= VCE,IOUT=0mA
30
VRELEASE(T)= 1.65V
Ta=25℃
25
No load Input Current: IIN (μA)
No Load Input Current: IIN (μA)
30
20
15
10
VRELEASE(T)= 2.2V
Ta=25℃
25
20
15
10
5
5
0
0
0.95
1.15
1.35
1.55
1.0
1.75
2.0
3.0
4.0
5.0
Input Voltage: VBAT (V)
Input Voltage: VBAT (V)
(24) UVLO Bypass Current vs. Input Voltage
XC9140C18x(VOUT=1.8V)
XC9140C50x(VOUT=5.0V)
25
VRELEASE(T)= 1.65V
Ta=25℃
UVLO Bypass Current: IDBYP (μA)
UVLO Bypass Current: IDBYP (μA)
25
20
15
10
5
0
1.0
1.5
2.0
Input Voltage: VBAT (V)
2.5
3.0
VRELEASE(T)= 2.2V
Ta=25℃
20
15
10
5
0
1.0
1.5
2.0
2.5
3.0
Input Voltage: VBAT (V)
27/33
XC9140 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(25) Load Transient Response
XC9140x331
XC9140x331
VOUT=3.3V,VBAT=VCE=0→1.8V,RL=330Ω
VOUT=3.3V,VBAT=VCE=0→0.9V,RL=3300Ω
VOUT
VOUT
VBAT =VCE
VBAT =VCE
VLX
VLX
I LX
I LX
VOUT:2V/div,VBAT:2V/div,VLX:5V/div,ILX:500mA/div,Time:500μs/div
L=4.7μH(VLF302512M-4R7M),C IN =4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
VOUT:2V/div,VBAT:2V/div,VLX:5V/div,ILX:500mA/div,Time:500μs/div
L=4.7μH(VLF302512M-4R7M),C IN =4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
XC9140x501
XC9140x501
VOUT=5.0V,VBAT=VCE=0→3.3V,R L=500Ω
VOUT=5.0V,VBAT=VCE=0→5.5V,RL=500Ω
VOUT
VBAT =VCE
VBAT =VCE
VOUT
VLX
VLX
I LX
I LX
VOUT:2V/div,VBAT:2V/div,VLX:5V/div,ILX:500mA/div,Time:500μs/div
L=4.7μH(VLF302512M-4R7M),C IN =4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
28/33
VOUT:2V/div,VBAT:2V/div,VLX:5V/div,ILX:500mA/div,Time:500μs/div
L=4.7μH(VLF302512M-4R7M),C IN =4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
XC9140 (Design Target)
XC9140
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
[[ (25) Load Transient Response
XC9140x181
VOUT=1.8V,VBAT=VCE=0.9V,IOUT=1mA→ 25mA
XC9140x181
VOUT=1.8V,VBAT=VCE=0.9V,IOUT=25m A→ 1mA
VOUT
VOUT
VLX
VLX
I LX
I LX
I OUT
I OUT
VOUT:100mV/div,VLX:5V/div,ILX:500m A/div,IOUT:25mA/div,Time:50s/div
L=4.7μH(VLF302512M-4R7M),C IN =4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
XC9140x331
VOUT=3.3V,VBAT=VCE=1.8V,IOUT=1mA→ 50mA
VOUT:100mV/div,VLX:5V/div,ILX:500m A/div,IOUT:25mA/div,Time:50μs/div
L=4.7μH(VLF302512M-4R7M),C IN =4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
XC9140x331
VOUT=3.3V,VBAT=VCE=1.8V,IOUT=50m A→ 1mA
VOUT
VOUT
VLX
VLX
I LX
I LX
I OUT
I OUT
VOUT:100mV/div,VLX:5V/div,ILX:500m A/div,IOUT:50mA/div,Time:50μs/div
L=4.7μH(VLF302512M-4R7M),C IN =4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
VOUT:100mV/div,VLX:5V/div,ILX:500m A/div,IOUT:50mA/div,Time:50μs/div
L=4.7μH(VLF302512M-4R7M),C IN =4.7μF(LMK107BJ475MA),
C L=10μF(LMK107BJ106MA)
XC9140x501
XC9140x501
VOUT=5.0V,VBAT=VCE=3.7V,IOUT=1mA→ 100m A
VOUT=5.0V,VBAT=VCE=3.7V,IOUT=100mA→ 1m A
VOUT
VOUT
VLX
VLX
I LX
I LX
I OUT
I OUT
VOUT:100mV/div,VLX:5V/div,ILX:500m A/div,IOUT:100m A/div,Tim e:50μ s/div
L=4.7μH(VLF302512M-4R7M),C IN =4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
VOUT:100mV/div,VLX:5V/div,ILX:500m A/div,IOUT:100m A/div,Tim e:50μ s/div
L=4.7μH(VLF302512M-4R7M),C IN =4.7μF(LMK107BJ475MA),
CL=10μF(LMK107BJ106MA)
29/33
XC9140 Series
■PACKAGING INFORMATION
For the latest package information go to, www.torexsemi.com/technical-support/packages
PACKAGE
OUTLINE / LAND PATTERN
THERMAL CHARACTERISTICS
SOT-25
SOT-25 PKG
SOT-25 Power Dissipation
USP-6EL
USP-6EL PKG
USP-6EL Power Dissipation
30/33
XC9140 (Design Target)
XC9140
Series
■MARKING RULE
① represents product series
●SOT-25
MARK
PRODUCT SERIES
4
XC9140A**1/2**-G
XC9140C**1/2**-G
② represents output voltage
MARK
●USP-6EL
②
⑤
③
3
④
2
①
1
OUTPUT
VOLTAGE
MARK
OUTPUT
VOLTAGE
0
1.8
3.5
9
2.7
4.4
1
1.9
3.6
A
2.8
4.5
2
2.0
3.7
B
2.9
4.6
3
2.1
3.8
C
3.0
4.7
4
2.2
3.9
D
3.1
4.8
6
5
2.3
4.0
E
3.2
4.9
5
6
2.4
4.1
F
3.3
5.0
4
7
2.5
4.2
H
3.4
-
8
2.6
4.3
③ represents product function
MARK
OUTPUT
UVLO Release
VOLTAGE
Voltage
N
1.8~3.4V
P
3.5~5.0V
R
3.0~3.4V
S
3.5~5.0V
T
1.8~3.4V
U
3.5~5.0V
V
3.0~3.4V
X
3.5~5.0V
PRODUCT SERIES
No UVLO
XC9140A**1**-G
2.15
XC9140A**2**-G
No UVLO
XC9140C**1**-G
2.15
XC9140C**2**-G
④⑤ represents production lot number
01~09, 0A~0Z, 11~9Z, A1~A9, AA~AZ, B1~
ZZ in order. (G, I, J, O, Q, W excluded)
*No character inversion used.
31/33
XC9140 Series
■MARKING RULE
① represents product series
●SOT-25 (with underline mark)
5
①
4
②
1
③
④
2
⑤
3
MARK
PRODUCT SERIES
PKG
4
XC9140A**3/4/5/6/7/8/9/A/B/C/DM*-G
SOT-25(under dot)
3
XC9140B**1/2/3/4/5/6/7/8/9/A/B/C/DM*-G
SOT-25(under dot)
2
XC9140C**3/4/5/6/7/8/9/A/B/C/DM*-G
SOT-25(under dot)
7
XC9140A**3/4/5/6/7/8/9/A/B/C/D4*-G
USP-6EL
3
XC9140B**1/2/3/4/5/6/7/8/9/A/B/C/D4*-G
USP-6EL
2
XC9140C**3/4/5/6/7/8/9/A/B/C/D4*-G
USP-6EL
② represents output voltage
MARK
①
④
②
⑤
③
2
3
MARK
OUTPUT
VOLTAGE
5
1.8
3.5
R
2.7
4.4
6
1.9
3.6
S
2.8
4.5
7
2.0
3.7
T
2.9
4.6
8
2.1
3.8
U
3.0
4.7
9
2.2
3.9
V
3.1
4.8
6
L
2.3
4.0
X
3.2
4.9
5
M
2.4
4.1
Y
3.3
5.0
4
N
2.5
4.2
Z
3.4
4.4
P
2.6
4.3
●USP-6EL
1
OUTPUT
VOLTAGE
③ represents product function
MARK
OUTPUT
UVLO Release
VOLTAGE
Voltage
0
3.0~3.4V
1
3.5~5.0V
2
3.0~3.4V
3
3.5~5.0V
4
3.0~3.4V
5
3.0~5.0V
6
3.0~3.4V
7
3.0~5.0V
8
3.0~3.4V
9
3.5~5.0V
A
3.0~3.4V
B
3.5~5.0V
C
3.0~3.4V
D
3.5~5.0V
E
3.0~3.4V
F
3.5~5.0V
H
3.0~3.4V
K
3.5~5.0V
L
3.0~3.4V
M
3.5~5.0V
N
3.0~3.4V
P
3.5~5.0V
④⑤ represents production lot number
R
1.8~3.4V
01~09, 0A~0Z, 11~9Z, A1~A9, AA~AZ, B1~
S
3.5~5.0V
ZZ in order. (G, I, J, O, Q, W excluded)
T
3.0~3.4V
U
3.5~5.0V
*No character inversion used.
32/33
PRODUCT SERIES
2.20
XC9140***3**-G
2.00
XC9140***4**-G
1.80
XC9140***5**-G
1.65
XC9140***6**-G
1.70
XC9140***7**-G
1.75
XC9140***8**-G
1.85
XC9140***9**-G
1.90
XC9140***A**-G
1.95
XC9140***B**-G
2.05
XC9140***C**-G
2.10
XC9140***D**-G
No UVLO
XC9140B**1**-G
2.15
XC9140B**2**-G
XC9140 (Design Target)
XC9140
Series
1.
The product and product specifications contained herein are subject to change without notice to
improve performance characteristics. Consult us, or our representatives before use, to confirm that
the information in this datasheet is up to date.
2.
The information in this datasheet is intended to illustrate the operation and characteristics of our
products. We neither make warranties or representations with respect to the accuracy or
completeness of the information contained in this datasheet nor grant any license to any intellectual
property rights of ours or any third party concerning with the information in this datasheet.
3.
Applicable export control laws and regulations should be complied and the procedures required by
such laws and regulations should also be followed, when the product or any information contained in
this datasheet is exported.
4.
The product is neither intended nor warranted for use in equipment of systems which require
extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss
of human life, bodily injury, serious property damage including but not limited to devices or equipment
used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and
other transportation industry and 5) safety devices and safety equipment to control combustions and
explosions. Do not use the product for the above use unless agreed by us in writing in advance.
5.
Although we make continuous efforts to improve the quality and reliability of our products;
nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal
injury and/or property damage resulting from such failure, customers are required to incorporate
adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention
features.
6.
Our products are not designed to be Radiation-resistant.
7.
Please use the product listed in this datasheet within the specified ranges.
8.
We assume no responsibility for damage or loss due to abnormal use.
9.
All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex
Semiconductor Ltd in writing in advance.
TOREX SEMICONDUCTOR LTD.
33/33