0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
XC9140C411MR-G

XC9140C411MR-G

  • 厂商:

    TOREX(特瑞仕)

  • 封装:

    SC74A

  • 描述:

    PFM STEP-UP SYNCHRONOUS DCDC CON

  • 数据手册
  • 价格&库存
XC9140C411MR-G 数据手册
XC9140 Series ETR04015-005 Step-Up Synchronous PFM DC/DC Converter ☆Green Operation Compatible ■ GENERAL DESCRIPTION The XC9140 series are step-up synchronous DC/DC converters that support ceramic capacitors and have an internal 0.6Ω (TYP.) Nch driver transistor and an internal 0.65Ω (TYP.) Pch synchronous rectifier switch transistor. PFM control enables a low quiescent current, making these products ideal for portable devices that require high efficiency. When the output voltage is 3.3V and the load current is 1mA (XC9140Axx1 type and XC9140Cxx1 type), startup from an input voltage of VIN = 0.9V is possible which means that these products can be used in applications that start using a single alkaline or nickel-metal hydride battery. The output voltage can be set from 1.8V to 5.0V (±2.0%) in steps of 0.1V. The XC9140 features a load disconnect function to break continuity between the input and output at shutdown (XC9140A), and also a bypass mode function to maintain continuity between the input and output (XC9140C). A version with a UVLO (Under Voltage Lock-out) function is also available. This function enables the prevention of battery leakage by stopping IC’s operation when the input voltage is low. The standard product has a UVLO release voltage of 2.15V (±3.0%), and a custom version with a release voltage selectable from between 1.65V to 2.2V, in steps of 0.05V, is also available. ■FEATURES ■APPLICATIONS ● ● ● ● ● ● Mouses, Keyboards Bluetooths Household use Medical equipments Remote controls Game consoles Devices with 1~3 Alkaline, 1~3 Nickel Hydride, 1 Lithium and 1 Li-ion Input Voltage Range : operating hold voltage 0.7V ~ 5.5V Output Voltage Setting : Start-up voltage 1.8V ~ 5.0V (±2.0%) 0.1V increments 0.9V ~ 5.5V Output Current : 100mA@VOUT=3.3V, VBAT=1.8V (TYP.) Driver Transistor : 0.6Ω Nch driver transistor 0.65Ω Pch synchronous rectifier switch transistor Supply Current : 6.3μA (VBAT=VOUT+0.5V) Control Method : PFM Control High speed transient response : 50mV@VOUT=3.3V, VBAT=1.8V, IOUT=1→50mA PFM Switching Current : 350mA Functions : Load Disconnection Function or Bypass Mode Function UVLO Function Ceramic Capacitor Operating Ambient Temperature : -40℃ ~ 85℃ Packages : SOT-25, USP-6EL Environmentally Friendly : EU RoHS Compliant, Pb Free ■TYPICAL APPLICATION CIRCUIT ■TYPICAL PERFORMANCE CHARACTERISTICS ●Efficiency vs. Output Current XC9140A331MR-G(VOUT=3.3V) 100 L=4.7μH 2.5V VOUT CL=10μF CE IN=4.7μF CC IN=10μF VBAT GND Efficiency : EFFI (%) LX VIN=0.9~5.5V L= 4.7μH(VLF302512M-4R7M),CIN = 4.7μF(LMK107BJ475MA), CL= 10μF(LMK107BJ106MA) 80 3.0V 60 VBAT =1.8V 40 20 0 0.01 0.1 1 10 100 1000 Output Current : I OUT (mA) 1/28 XC9140 Series ■ BLOCK DIAGRAM LX CFB RFB1 Parasitic Diode Controller VOUT Current Sense RFB2 VOUT PFM Comparator FB + CL Discharge Buffer Driver and Inrush Currrent Protection PFM Controller GND VOUT VREF VDD CE and Bypass Controller Logic CE VBAT–VOUT Detector Hysteresis UVLO Comparator VBAT + - * Diodes inside the circuits are ESD protection diodes and parasitic diodes. The XC9140A /XC9140C series do not have the CL discharge function. The XC9140Axx1/XC9140Cxx1 series do not have the UVLO function. ■ PRODUCT CLASSIFICATION ●Ordering Information XC9140①②③④⑤⑥-⑦ DESIGNATO R ① (*1) ②③ ④ (*2) SYMBOL Product Type A C Output Voltage 18 ~ 50 UVLO Function (*3) ⑤⑥-⑦ ITEM (*4) Packages (Order Unit) 1 2 4R-G MR-G DESCRIPTION Load Disconnection Without CL Auto Discharge VBAT Bypass Without CL Auto Discharge Output Voltage e.g. VOUT=3.3V⇒②=3, ③=3 No UVLO UVLO Function VUVLO_R=2.15V USP-6EL (3,000pcs/Reel) SOT-25 (3,000pcs/Reel) (*1) The product with the CL discharge function is a semi-custom product. (*2) VOUT=3.3V is standard. (*3) The standard product has a UVLO release voltage of 2.15V. For other voltages, consult our sales department. The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant. (*4) 2/28 XC9140 (Design Target) XC9140 Series ■PIN CONFIGURATION LX VOUT 5 4 1 LX GND 6 1 2 3 CE GND VBAT NC 5 2 VOUT CE 4 3 VBAT USP-6EL (BOTTOM VIEW) SOT-25 (TOP VIEW) * The dissipation pad for the USP-6EL package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release. The mount pattern should be connected to GND pin (No.6). ■ PIN ASSIGNMENT PIN NUMBER USP-6EL SOT-25 1 2 3 4 5 6 5 4 3 1 2 PIN NAME FUNCTIONS LX VOUT VBAT CE NC GND Switching Output Voltage Power Input Chip Enable No Connection Ground ■ PIN FUNCTION ASSIGNMEN PIN NAME SIGNAL STATUS CE H L Active (All Series) Stand-by (XC9140A Series) or Bypass Mode (XC9140C Series) * Please do not leave the CE pin open. ■ABSOLUTE MAXIMUM RATINGS PARAMETER SYMBOL RATINGS UNITS BAT Pin Voltage LX Pin Voltage VOUT Pin Voltage VBAT VLX VOUT -0.3 ~ 7.0 -0.3 ~ VOUT + 0.3 or 7.0 (*1) V V V CE Pin Voltage LX Pin Current Power Dissipation (Ta=25℃) VCE -0.3 ~ 7.0 -0.3 ~ 7.0 V ILX 700 mA SOT-25 Pd USP-6EL Operating Ambient Temperature Storage Temperature Topr Tstg 250 600 (40mm x 40mm Standard board) (*2) 760 (JESD51-7 board) (*2) 120 1000 (40mm x 40mm Standard board) (*2) -40 ~ 85 -55 ~ 125 mW ˚C ˚C * All voltages are described based on the GND. (*1) The maximum value should be either VOUT+0.3V or +7.0V or in the lowest. (*2) This power dissipation figure shown is PCB mounted and is for reference only. The mounting condition is please refer to PACKAGING INFORMATION 3/28 XC9140 Series ■ ELECTRICAL CHARACTERISTICS Ta=25˚C ●XC9140Axx1 Type, without UVLO function, without CL discharge function PARAMETER SYMBOL Input Voltage VBAT Output Voltage VOUT(E) (*2) Operation Start Voltage VST1 Operation Hold Voltage VHLD CONDITIONS MIN. TYP. MAX. UNITS CIRCUIT - - 5.5 V - V ① VPULL=1.5V, Voltage to start oscillation E1 while VOUT is decreasing IOUT=1mA - - 0.9 V ② RL=1kΩ - 0.7 - V ② μA ③ Oscillation stops, Supply Current Iq Input Pin Current IBAT VOUT=VOUT(T)+0.5V (*1) - 0.25 1.0 μA ③ Stand-by Current ISTB VBAT=VLX=VOUT(T) (*1), VOUT=VCE=0V - 0.1 1.0 μA ④ LX Leak Current ILXL VBAT=VLX=VOUT(T) (*1), VOUT=VCE=0V - 0.1 1.0 μA ⑤ PFM Switching Current IPFM IOUT=3mA 295 350 405 mA ② Maximum ON Time tONMAX VPULL=1.5V, VOUT=VOUT(T)×0.98V (*1) 3.1 4.6 6.0 μs ① - 81 - % ② - 85 - % ② - 86 - % ② Ω ⑦ Efficiency (*3) EFFI Efficiency (*3) EFFI Efficiency (*3) EFFI LX SW “Pch” ON Resistance (*4) LX SW “Nch” ON Resistance (*5) RLXP RLXN E2 VOUT=VOUT(T)+0.5V (*1) VBAT=VCE=1.8V, VOUT(T) (*1)=2.5V, IOUT=30mA VBAT=VCE=1.8V, VOUT(T) (*1)=3.3V, IOUT=30mA VBAT=VCE=1.8V, VOUT(T) (*1)=5.0V, IOUT=30mA VBAT=VLX=VCE=VOUT(T)+0.5V (*1), E3 IOUT=200mA VBAT=VCE=3.3V, VOUT=1.7V - 0.6 - Ω ⑧ 0.75 - 5.5 V ① GND - 0.3 V ① VBAT=VPULL=1.5V, CE “H” Voltage VCEH VOUT=VOUT(T)×0.98V (*1) While VCE=0.3→0.75V, Voltage to start oscillation VBAT=VPULL=1.5V, CE “L” Voltage VCEL VOUT=VOUT(T)×0.98V (*1) While VCE=0.75→0.3V, Voltage to stop oscillation CE “H” Current ICEH VBAT=VCE=VLX=VOUT=5.5V -0.1 - 0.1 μA ① CE “L” Current ICEL VBAT=VLX=VOUT=5.5V, VCE=0V -0.1 - 0.1 μA ① Unless otherwise stated, VBAT=VCE=1.5V (*1) VOUT(T)=Nominal Output Voltage (*2) VOUT(E)=Effective Output Voltage The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC. Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value. Please refer to the characteristic example. (*3) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100 (*4) LX SW “Pch” ON resistance=(VLX-VOUT pin measurement voltage) / 200mA (*5) The LX SW “Nch” ON resistance measurement method is shown in the measurement circuit diagram. 4/28 XC9140 (Design Target) XC9140 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XC9140Cxx1 Type, without UVLO function, without CL discharge function PARAMETER SYMBOL Input Voltage VBAT CONDITIONS Ta=25˚C MIN. TYP. MAX. UNITS CIRCUIT - - 5.5 V - V ① VPULL=1.5V, Voltage to start oscillation Output Voltage VOUT(E) (*2) E1 Operation Start Voltage VST1 IOUT=1mA - - 0.9 V ② Operation Hold Voltage VHLD RL=1kΩ - 0.7 - V ② μA ③ while VOUT is decreasing Oscillation stops, Supply Current Iq Input Pin Current IBAT VOUT=VOUT(T)+0.5V (*1) - 0.25 1.0 μA ③ Bypass Mode Current IBYP VBAT=VLX=5.5V, VCE=0V - 3.5 6.1 μA ⑥ PFM Switching Current IPFM IOUT=3mA 295 350 405 mA ② Maximum ON Time tONMAX VPULL=1.5V, VOUT=VOUT(T)×0.98V (*1) 3.1 4.6 6.0 μs ① - 81 - % ② - 85 - % ② - 86 - % ② Ω ⑦ Efficiency (*3) EFFI Efficiency (*3) EFFI Efficiency (*3) EFFI LX SW “Pch” ON Resistance (*4) LX SW “Nch” ON Resistance (*5) RLXP RLXN E2 VOUT=VOUT(T)+0.5V (*1) VBAT=VCE=1.8V, VOUT(T) (*1)=2.5V, IOUT=30mA VBAT=VCE=1.8V, VOUT(T) (*1)=3.3V, IOUT=30mA VBAT=VCE=1.8V, VOUT(T) (*1)=5.0V, IOUT=30mA VBAT=VLX=VCE= VOUT(T)+0.5V (*1), E3 IOUT=200mA VBAT=VCE=3.3V, VOUT=1.7V - 0.6 - Ω ⑧ 0.75 - 5.5 V ① GND - 0.3 V ① VBAT=VPULL=1.5V, CE “H” Voltage VCEH VOUT=VOUT(T)×0.98V (*1) While VCE=0.3→0.75V, Voltage to start oscillation VBAT=VPULL=1.5V, VOUT=VOUT(T)×0.98V (*1) CE “L” Voltage VCEL CE “H” Current ICEH VBAT=VCE=VLX=VOUT=5.5V -0.1 - 0.1 μA ① CE “L” Current ICEL VBAT=VLX=VOUT=5.5V, VCE=0V -0.1 - 0.1 μA ① While VCE=0.75→0.3V, Voltage to stop oscillation Unless otherwise stated, VBAT=VCE=1.5V (*1) VOUT(T)=Nominal Output Voltage (*2) VOUT(E)=Effective Output Voltage The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC. Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value. Please refer to the characteristic example. (*3) EFFI={[(Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)]}×100 (*4) LX SW “Pch” ON resistance=(VLX-VOUT pin measurement voltage) / 200mA (*5) The LX SW “Nch” ON resistance measurement method is shown in the measurement circuit diagram. 5/28 XC9140 Series ■ ELECTRICAL CHARACTERISTICS (Continued) ●XC9140Axxx types (types other than XC9140Axx1), with UVLO function, without CL discharge function PARAMETER SYMBOL CONDITIONS Input Voltage VBAT Output Voltage VOUT(E) (*2) Operation Start Voltage VST1 IOUT=1mA Operation Hold Voltage VHLD RL=1kΩ Supply Current2 Iq Input Pin Current2 IBAT VOUT=VOUT(T)+0.5V (*1) Stand-by Current ISTB VBAT=VLX=VOUT(T) , VOUT=VCE=0V - 0.1 LX Leak Current ILXL VBAT=VLX=VOUT(T) (*1), VOUT=VCE=0V - 0.1 PFM Switching Current IPFM IOUT=3mA 295 - TYP. MAX. UNITS - - 5.5 V VPULL=1.5V, Voltage to start oscillation E1 ① (*7) V ② - V ② E4 μA ③ E5 μA ③ 1.0 μA ④ 1.0 μA ⑤ 350 405 mA ② 3.1 4.6 6.0 μs ① VDETECT(E) (*8) Oscillation stops, VOUT=VOUT(T)+0.5V (*1) VPULL= VRELEASE(T)+0.1V (*6) , CIRCUIT V while VOUT is decreasing (*1) Ta=25˚C MIN. - VRELEASE(E) Maximum ON Time tONMAX Efficiency (*3) EFFI VOUT(T) (*1)=2.5V, IOUT=30mA - 81 - % ② Efficiency (*3) EFFI VOUT(T) (*1)=3.3V, IOUT=30mA - 85 - % ② Efficiency (*3) EFFI VOUT(T) (*1)=5.0V, IOUT=30mA - 86 - % ② Ω ⑦ LX SW “Pch” ON Resistance (*4) LX SW “Nch” ON Resistance (*5) RLXP RLXN VOUT=VOUT(T)×0.98V (*1) VBAT=VLX=VCE=VOUT(T)+0.5V (*1) , E3 IOUT=200mA VBAT=VCE=3.3V, VOUT=1.7V - 0.6 - Ω ⑧ 0.75 - 5.5 V ① GND - 0.3 V ① VBAT=VPULL= VRELEASE(T)+0.1V (*6), CE “H” Voltage VCEH VOUT=VOUT(T)×0.98V (*1) While VCE=0.3→0.75V, Voltage to start oscillation VBAT=VPULL= VRELEASE(T)+0.1V (*6), CE “L” Voltage VCEL VOUT=VOUT(T)×0.98V (*1) While VCE=0.75→0.3V, Voltage to stop oscillation CE “H” Current ICEH VBAT=VCE=VLX=VOUT=5.5V -0.1 - 0.1 μA ① CE “L” Current ICEL VBAT=VLX=VOUT=5.5V, VCE=0V -0.1 - 0.1 μA ① E6 μA ② E7 V ① V ① UVLO Current IDQ VBAT= VCE= VDETECT(E) - 0.1V (*8) , IOUT=0mA VPULL= VOUT= VOUT(T)×0.98V (*1), UVLO Release Voltage VRELEASE(E) (*7) VBAT= VCE Voltage to start oscillation while VBAT is increasing VPULL= VOUT= VOUT(T)×0.98V (*1), UVLO Hysteresis Voltage VHYS(E) (*9) VBAT= VCE VRELEASE(E) - Voltage to stop oscillation 0.1 0.15 0.2 while VBAT is decreasing(*7) Unless otherwise stated,, VBAT=VCE=VRELEASE(T)+0.1V (*6) (*1) VOUT(T)= Nominal Output Voltage (*2) VOUT(E)= Effective Output Voltage The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC. Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value. Please refer to the characteristic example. EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100 (*3) (*4) LX SW “Pch” ON resistance=(VLX-VOUT pin measurement voltage) / 200mA The LX SW “Nch” ON resistance measurement method is shown in the measurement circuit diagram. (*6) VRELEASE(T)= Nominal UVLO release voltage (*7) VRELEASE(E)= Actual UVLO release voltage (*8) VDETECT(E)=VRELEASE(E) -VHYS(E)= Actual UVLO detect voltage (*9) VHYS(E)= Actual UVLO hysteresis voltage (*5) 6/28 XC9140 (Design Target) XC9140 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XC9140Cxxx type (types other than XC9140Cxx1), with UVLO function, without CL discharge function PARAMETER SYMBOL CONDITIONS Input Voltage VBAT Output Voltage VOUT(E) (*2) Operation Start Voltage VST1 IOUT=1mA Operation Hold Voltage VHLD RL=1kΩ Supply Current2 Iq Input Pin Current2 IBAT VOUT=VOUT(T)+0.5V (*1) Bypass Mode Current IBYP VBAT=VLX= VRELEASE(T)+0.1V PFM Switching Current IPFM IOUT=3mA TYP. MAX. UNITS - - 5.5 V VPULL=1.5V, Voltage to start oscillation E1 while VOUT is decreasing VDETECT(E) (*8) Oscillation stops, VOUT=VOUT(T)+0.5V (*1) (*6) Ta=25˚C MIN. , VCE=0V VPULL= VRELEASE(T)+0.1V (*6), CIRCUIT V ① (*7) V ② - V ② E4 μA ③ E5 μA ③ - VRELEASE(E) - 5.5 8.1 μA ⑥ 295 350 405 mA ② 3.1 4.6 6.0 μs ① Maximum ON Time tONMAX Efficiency (*3) EFFI VOUT(T) (*1)=2.5V, IOUT=30mA - 81 - % ② Efficiency (*3) EFFI VOUT(T) (*1)=3.3V, IOUT=30mA - 85 - % ② Efficiency (*3) EFFI VOUT(T) (*1)=5.0V, IOUT=30mA - 86 - % ② Ω ⑦ LX SW “Pch” ON Resistance (*4) LX SW “Nch” ON Resistance (*5) RLXP RLXN VOUT=VOUT(T)×0.98V (*1) VBAT=VLX=VCE= VOUT(T)+0.5V (*1), E3 IOUT=200mA VBAT=VCE=3.3V, VOUT=1.7V - 0.6 - Ω ⑧ 0.75 - 5.5 V ① GND - 0.3 V ① VBAT=VPULL= VRELEASE(T)+0.1V (*6), CE “H” Voltage VCEH VOUT=VOUT(T)×0.98V (*1) While VCE=0.3→0.75V, Voltage to start oscillation VBAT=VPULL= VRELEASE(T)+0.1V (*6), CE “L” Voltage VCEL VOUT=VOUT(T)×0.98V (*1) While VCE=0.75→0.3V, Voltage to stop oscillation CE “H” Current ICEH VBAT=VCE=VLX=VOUT=5.5V -0.1 - 0.1 μA ① CE “L” Current ICEL VBAT=VLX=VOUT=5.5V, VCE=0V -0.1 - 0.1 μA ① E6 μA ② E8 μA ⑥ E7 V ① V ① UVLO Current IDQ UVLO Bypass Current IDBYP VBAT= VCE= VDETECT(E) - 0.1V (*8), IOUT=0mA VBAT= VLX= VDETECT(E) - 0.1V (*8), VCE=0V VPULL= VOUT= VOUT(T)×0.98V (*1), UVLO Release Voltage VRELEASE(E) (*7) VBAT= VCE Voltage to start oscillation while VBAT is increasing VPULL= VOUT= VOUT(T)×0.98V (*1), UVLO Hysteresis Voltage VHYS(E) (*9) VBAT= VCE VRELEASE(E) - Voltage to stop oscillation 0.1 0.15 0.2 while VBAT is decreasing(*7) Unless otherwise stated, VBAT=VCE= VRELEASE(T)+0.1V (*6) (*1) VOUT(T)=Nominal Output Voltage (*2) VOUT(E)=Effective Output Voltage The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC. Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value. Please refer to the characteristic example. (*3) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100 (*4) LX SW “Pch” ON resistance=(VLX-VOUT pin measurement voltage) / 200mA The LX SW “Nch” ON resistance measurement method is shown in the measurement circuit diagram. (*6) VRELEASE(T)= Nominal UVLO release voltage (*7) VRELEASE(E)= Actual UVLO release voltage (*8) VDETECT(E)= VRELEASE(E) -VHYS(E)= Actual UVLO detect voltage (*9) VHYS(E)= Actual UVLO hysteresis voltage (*5) 7/28 XC9140 Series ■ELECTRICAL CHARACTERISTICS (Continued) XC9140 Voltage Chart 1 SYMBOL E1 E2 E3 E4 PARAMETER Output Voltage Supply Current LX SW “Pch” ON RESISTANCE Supply Current2 UNITS: V UNITS: V UNITS: μA UNITS: Ω UNITS: μA OUTPUT VOLTAGE MIN. MAX. 1.8 1.764 1.836 1.9 1.862 1.938 2.0 1.960 2.040 2.1 2.058 2.142 2.2 2.156 2.244 2.3 2.254 2.346 2.4 2.352 2.448 2.5 2.450 2.550 2.6 2.548 2.652 2.7 2.646 2.754 2.8 2.744 2.856 2.9 2.842 2.958 3.0 2.940 3.060 3.1 3.038 3.162 3.2 3.136 3.264 3.3 3.234 3.366 3.4 3.332 3.468 3.5 3.430 3.570 3.6 3.528 3.672 3.7 3.626 3.774 3.8 3.724 3.876 3.9 3.822 3.978 4.0 3.920 4.080 4.1 4.018 4.182 4.2 4.116 4.284 4.3 4.214 4.386 4.4 4.312 4.488 4.5 4.410 4.590 4.6 4.508 4.692 4.7 4.606 4.794 4.8 4.704 4.896 4.9 4.802 4.998 5.0 4.900 5.100 8/28 TYP. MAX. TYP. MAX. TYP. MAX. 6.1 9.4 0.84 1.08 6.8 9.7 6.2 9.7 0.75 0.97 6.9 9.8 6.3 10.0 0.65 0.85 7.0. 10.0 6.4 10.2 0.61 0.78 7.1 10.1 6.5 10.4 0.57 0.74 7.2 10.2 6.7 10.7 0.53 0.72 7.3 10.3 XC9140 (Design Target) XC9140 Series ■ELECTRICAL CHARACTERISTICS (Continued) XC9140 Voltage Chart 2 SYMBOL E5 E6 E7 E8 PARAMETER Input Pin Current2 UVLO Current UVLO RELEASE VOLTAGE UVLO Bypass Current UNITS: V UNITS: μA UNITS: μA UNITS: V UNITS: μA UVLO Release Voltage 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 TYP. MAX. TYP. MAX. 0.71 1.50 3.25 6.00 0.73 1.60 3.27 6.10 0.75 1.60 3.29 6.20 0.77 1.60 3.31 6.20 0.79 1.70 3.33 6.30 0.82 1.70 3.35 6.30 MIN. MAX. 1.601 1.699 1.649 1.751 1.698 1.802 1.746 1.854 1.795 1.905 1.843 1.957 1.892 2.008 1.940 2.060 1.989 2.111 2.037 2.163 2.086 2.214 2.134 2.266 TYP. MAX. 2.15 4.10 2.20 4.20 2.30 4.20 2.35 4.30 2.40 4.30 2.45 4.40 9/28 XC9140 Series ■TEST CIRCUITS < Test Circuit No.⑤ > < Test Circuit No.① > Waveform check point Rpull GND LX VOUT Vpull CL CE GND VOUT A VBAT CIN V LX A CE VBAT *External components CIN:4.7μF (ceramic) CL:10μF (ceramic) Rpull:100Ω < Test Circuit No.⑥ > < Test Circuit No.② > Waveform check point LX LX GND GND VOUT RL A V VOUT IOUT CL CIN VBAT A VBAT A CE CE V *External components L: 4.7μH CIN:4.7μF (ceramic) CL:10μF (ceramic) < Test Circuit No.⑦ > < Test Circuit No.③ > LX VOUT LX GND GND VOUT CE CE IOUT A VBAT A VBAT CIN V *External components CIN:4.7μF (ceramic) < Test Circuit No.⑧ > < Test Circuit No.④ > Waveform check point LX Rpull GND LX GND V1 VOUT A CE VOUT VBAT Vpull CL CIN CE VBAT *External components CIN:4.7μF (ceramic) CL:10μF (ceramic) Rpull:4.7Ω Use Test Circuit No.8 to adjust Vpull so that the LX pin voltage becomes 100mV when the Nch drive Tr is ON and then the voltage at both ends of Rpull is measured to find the Lx SW "Nch" ON resistance. RLXN=0.1 / {(V1 - 0.1) / 4.7)} Note that V1 is the Rpull previous voltage when the Nch driver Tr is ON. Use an oscilloscope or other instrument to measure the LX pin voltage and V1. 10/28 XC9140 (Design Target) XC9140 Series ■TYPICAL APPLICATION CIRCUIT L LX VOUT VOUT CL (Ceramic) CE VBAT VBAT GND CIN (Ceramic) 【Typical External Components】 MANUFACTURE PRODUCT NUMBER VALUE L TDK VLF302512M-4R7 4.7μH CIN TAIYO YUDEN LMK107BJ475MA 4.7μF/10V CL TAIYO YUDEN LMK107BJ106MA 10μF/10V * When selecting components, take into consideration capacitance reduction, voltage, etc. * The characteristics are dependent on the variation in the coil inductance value, so check these carefully in the actual product. * A coil inductance value of 4.7μH to 10μH can be used, but using 4.7μH is recommended. * The ripple voltage will increase if tantalum or electrolytic capacitors are used for the load capacitor CL. The operation could also become unstable, so carefully check this in the actual product. 11/28 XC9140 Series ■OPERATIONAL EXPLANATION The XC9140 Series consists of a standard voltage source, a PFM comparator, a Nch driver Tr, a Pch synchronous rectifier switch Tr, a current sense circuit, a PFM control circuit and a CE control Lcircuit, etc. (refer to the block diagram below.) X PFM Comparator Unit CFB RFB1 Parasitic Diode Controller VOUT Current Sense RFB2 VOUT PFM Comparator FB - PFM Controller + CL Discharge Buffer Driver and Inrush Currrent Protection GND VOUT VREF CE VDD CE and Bypass Controller Logic Hysteresis UVLO Comparator VBAT–VOUT Detector VBAT + - Current limit PFM control is used for the control method to make it difficult for the output voltage ripple to increase even when the switching current is superimposed, so the product can be used within a wide voltage and current range. Further, because PFM control is used, it has excellent transient response to support low capacity ceramic capacitors to realize a compact, highperformance boost DC/DC converter. The synchronous driver and rectifier switch Tr efficiently sends the coil energy to the capacitor connected to the VOUT pin to achieve highly efficient operation from low to high loads. The electrical characteristics actual output voltage VOUT(E) is the PFM comparator threshold voltage shown in the block diagram. Therefore, the booster circuit output voltage average value, including the peripheral components, depends on the ripple voltage, so this must be carefully evaluated before being used in the actual product. VBAT=VCE=2.0V、VOUT=3.3V、IOUT=20mA、L=4.7μH、CL=10μF、Ta=25℃ VOUT Voltage Average VBAT=VCE=2.0V、VOUT=3.3V、IOUT=70mA、L=4.7μH、CL=10μF、Ta=25℃ VLX VLX VOUT VOUT VLX:2V/div VOUT Voltage VOUT:50mV/div Average ILX:200mA/div VOUT(E) VOUT(E) IPFM ILX 2[μs/div] ILX 2[μs/div] < Reference Voltage Source (VREF)> The reference voltage source (VREF voltage) provides the reference voltage to ensure stable output voltage of the DC/DC converter. < PFM Control > ①The voltage from the output voltage divided by the division resistors RFB1 and RFB2 in the IC is used as feedback voltage (FB voltage), and the PFM comparator is compared with the FB voltage and VREF. If the FB voltage is lower than VREF, the signal is sent to the buffer driver via the PFM control circuit and the Nch driver Tr is turned ON. If the FB voltage is higher than VREF, the PFM comparator sends a signal that does not turn ON the Nch driver Tr. ②The current sense circuit monitors the current flowing in the Nch driver Tr connected to the Lx pin when the Nch driver Tr is ON. When the prescribed PFM switching current (IPFM) is reached, the signal is sent to the buffer driver via the PFM control circuit to turn OFF the Nch driver Tr and turn ON the Pch synchronous rectifier switch Tr. ③The Pch synchronous rectifier switch Tr ON time (off time) is dynamically optimized internally. After the off time has passed, when the PFM comparator confirms the VOUT voltage has exceeded the set voltage, a signal that does not allow the Nch driver Tr to be turned on is sent from the PFM comparator to the PFM control circuit, but if the VOUT voltage remains lower than the set voltage, then Nch driver Tr ON is started. The intervals of the above ①②③ linked operations are continuously adjusted in response to the load current to ensure the output voltage is kept stable from low to high loads and that it is done with good efficiency. 12/28 XC9140 (Design Target) XC9140 Series ■OPERATIONAL EXPLANATION (Continued) The PFM switching current unit monitors the current flowing in the Nch driver Tr and functions to limit the current flowing in the Nch driver Tr, but if the load current becomes much larger than the PFM switching energy, the VOUT voltage becomes lower and prevents the coil current in the Nch driver Tr OFF period from lowering, which affects the internal circuit delay time and results in an excessive current that is larger than the PFM switching current flowing in the Nch driver Tr and Pch synchronous rectifier switch Tr. When a "L" voltage is input to the CE pin, the XC9140A type enters into standby mode and the XC9140C type enters into bypass mode to stop the circuit required for the boost operation. In the standby mode the load cut-off function operates and both the Nch driver Tr and Pch synchronous rectifier switch Tr are turned OFF, which cuts off the current to the LX pin and VOUT pin and the parasitic diode control circuit connects the parasitic diode cathode of the Pch synchronous rectifier switch Tr to the LX pin ①. In the bypass mode the Nch driver Tr is OFF, the Pch synchronous rectifier switch Tr is ON when VLX > VOUT, and the parasitic diode control circuit connects the parasitic diode cathode of the Pch synchronous rectifier switch Tr to the VOUT pin ②. Also, when VLX < VOUT, the Pch synchronous rectifier switch Tr is turned OFF and the parasitic diode cathode is connected to the VOUT pin ②. Note: Except for the moment when the VBAT voltage is input. Parasitic Diode Controller ① ② VOUT Pin Side LX Pin Side Parasitic Diode Controller LX Pin Side VOUT Pin Side Buffer Driver Buffer Driver < VBAT-VOUT Voltage Detection Circuit> The VBAT-VOUT voltage detection circuit compares the VBAT pin voltage with the VOUT pin voltage, and whichever is the highest is operated to become the IC power supply (VDD). In addition, if, during normal operation, the input voltage becomes higher than the output voltage, the Nch driver Tr is turned OFF and the Pch synchronous rectifier switch Tr is kept ON so that the input voltage pass through to the output voltage (through mode). When the input voltage becomes lower than the output voltage, the circuit automatically returns to the normal boost operation. This detection circuit does not operate when in the standby mode. When the VBAT or VCE power supply is input, CL is charged via the stable current that results from the inrush current protection function (refer to graphs below). Therefore, this function minimizes potential over current from the VBAT pin to the VOUT pin. Also, this current value depends on the VBAT voltage. After CL is charged by the aforementioned stable current and VOUT reaches around the VBAT voltage level, the inrush current protection function will be released after several hundred μs ~ several ms and the IC will then move to step-up mode, by pass mode or through mode. Inrush Current Protection (mA) Inrush Current Protection Characteristics L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA),IOUT =1mA,Ta=25℃ 600 300 550 250 500 200 450 150 400 350 100 300 50 0 0.5 250 1.0 1.5 2.0 2.5 200 3.0 3.0 Input Voltage: V BAT (V) 3.5 4.0 4.5 5.0 5.5 13/28 XC9140 Series ■OPERATIONAL EXPLANATION (Continued) The UVLO function is selectable on the XC9140 series as an option. When the VBAT pin voltage falls below the UVLO detect voltage, the IC stops switching or BYPASS operation and cuts off the current to the LX pin and VOUT pin (UVLO mode). In addition, when the VBAT pin voltage recovers to above the UVLO release voltage, the IC begins operating again. With the XC9140 Series an optional CL discharge function (under development) can be selected. This function uses the Nch Tr connected between VOUT and GND to discharge, at high speed, the load capacity CL charge when the "L" voltage is input to the CE pin (when in the IC standby mode). This is done to prevent malfunction of the application caused by a residual charge in CL when the IC is stopped. The discharge time is determined by the CL discharge resistance RDCHG, including the Nch Tr, and CL. The constant τ=CL×RDCHG is determined at this time, and the following formula is used to find the output voltage discharge time. However, the CL discharge resistance RDCHG varies depending on the VBAT or VOUT voltage, so the discharge time cannot be determined easily. Therefore, carefully check this in the actual product. V=VOUT × e - t /τ or t=τIn(VOUT / V) V: Output voltage after discharge VOUT: Output voltage t: Discharge time τ: CL × RDCHG CL: Capacity value of the load capacitor (CL) RDCHG: Low resistance value of the CL discharge resistance. However, this changes depending on the voltage. The XC9140A/ XC9140C series do not have a CL discharge function as standard. 14/28 VOUT R RDCHG=R+RON CE/Signal RON XC9140 (Design Target) XC9140 Series ■NOTE ON USE 1. Be careful not to exceed the absolute maximum ratings for externally connected components and this IC. 2. The DC/DC converter characteristics greatly depend not only on the characteristics of this IC but also on those of externally connected components, so refer to the specifications of each component and be careful when selecting the components. Be especially careful of the characteristics of the capacitor used for the load capacity CL and use a capacitor with B characteristics (JIS Standard) or an X7R/X5R (EIA Standard) ceramic capacitor. 3. Use a ground wire of sufficient strength. Ground potential fluctuation caused by the ground current during switching could cause the IC operation to become unstable, so reinforce the area around the GND pin of the IC in particular. 4. Mount the externally connected components in the vicinity of the IC. Also use short, thick wires to reduce the wire impedance. 5. An excessive current that is larger than the PFM switching current flowing in the Nch driver Tr and Pch synchronous rectifier switch Tr, which could destroy the IC. 6. When in the bypass mode, the internal Pch synchronous rectifier switch Tr turns ON to allow current to flow to the Lx pin and VOUT pin. When an excessive current comes from the VOUT pin when this bypass operates, it could destroy the Pch synchronous rectifier switch Tr. 7. The CE pin does not have an internal pull-up or pull-down, etc. Apply the prescribed voltage to the CE pin. 8. The coil inductance value applicable range is 4.7μH to 10μH, but 4.7μH is recommended because at this value the coil size and DC/DC performance are optimized. If you want to use another inductance value other than 4.7μH but which is in the above applicable range, be sure to carefully evaluate it first before use. 9. At high temperatures, the product performance could vary causing the efficiency to decline. Evaluate this carefully before use if the product will be used at high temperatures. 10. Please note that the leak current of the Pch synchronous rectifier switch Tr during high-temperature standby operation could cause the output voltage to increase. 11. The output voltage ripple effect from the load current causes the output voltage average value to fluctuate, so carefully evaluate this in the actual product before use. 12. When the booster circuit is activated by a low input voltage, during the time until the output voltage reaches about 1.7V, the PFM switching current function might not operate causing the coil current to be superimposed. (See the figure below.) VBAT=VCE=0→0.9V、VOUT=1.8V、IOUT=1mA、L=4.7μH、CL=10μF、Ta=25℃ V OUT V BAT =V CE VBAT=VCE:1.0V/div V LX VOUT:1.0V/div VLX:2.0V/div ILX:200mA/div ILX 200[μs/div] V OUT V BAT =V CE VBAT=VCE:1.0V/div V LX Zoom VOUT:1.0V/div VLX:2.0V/div ILX:200mA/div ILX 50[μs/div] VBAT=VCE=0→1.7V、VOUT=1.8V、IOUT=1mA、L=4.7μH、CL=10μF、Ta=25℃ V BAT =V CE V LX VBAT=VCE:1.0V/div V OUT VOUT:1.0V/div VLX:2.0V/div ILX ILX:200mA/div 200[μs/div] V BAT =V CE V LX V OUT VBAT=VCE:1.0V/div VOUT:1.0V/div Zoom VLX:2.0V/div ILX ILX:200mA/div 50[μs/div] 15/28 XC9140 Series ■NOTE ON USE (Continued) 13. If the CL capacity or load current becomes excessively large, the output voltage start-up time, when the power is turned on, will increase, so the coil current might be superimposed during the time it takes for the output voltage to become sufficiently higher than the VBAT voltage. 14. If the input voltage is higher than the output voltage, then the circuit automatically enters the through mode. When the input voltage becomes close to the output voltage, there could be repeated switching between the boost mode and through mode causing the ripple voltage to fluctuate. (Refer to the graphic below) VBAT=VCE=3.316V,VOUT=3.412V,IOUT=3mA,L=4.7μH,CL=10μF,Ta=25℃ VOUT VOUT:100mV/div VBAT VBAT:100mV/div VLX VLX:2.0V/div 200[μs/div] 15. If a different power supply is connected from an external source to the XC9140A/XC9140C, the IC could be destroyed. 16. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded. 17. Torex places an importance on improving our products and their reliability. We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems. 18. With the XC9140A, when the VBAT or VCE power supply is input, if the VOUT pin voltage does not exceed VBAT -0.35V, which can happen due to the load current being more than the inrush protection current, step-up mode or through mode operations won’t function correctly. 19. With the XC9140C, when the VBAT power supply is input, if the VOUT pin voltage does not exceed VBAT -0.35V, which can happen due to the load current being more than the inrush protection current, by pass mode operations won’t function correctly. 20. In the case of products with the UVLO function that do not have CL discharge, the output voltage may occasionally rise due to leakage current from the Pch synchronous switch Tr when high-temperature UVLO mode operates. 16/28 XC9140 (Design Target) XC9140 Series ■NOTE ON USE (Continued) ●Instructions of pattern layouts 1. In order to stabilize VBAT voltage level, we recommend that a by-pass capacitor (CIN) be connected as close as possible to the VBAT and ground pins. 2. Please mount each external component as close to the IC as possible. 3. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance. 4. Make sure that the ground traces are as thick as possible, as variations in ground potential caused by high ground currents at the time of switching may result in instability of the IC. 5. Internal driver transistors bring on heat because of the transistor current and ON resistance of the driver transistors. ●Recommended Pattern Layout (SOT-25) FRONT BACK ●Recommended Pattern Layout (USP-6EL) FRONT BACK 17/28 XC9140 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (1) 効率 - 出力電流特性例 (1) Efficiency vs. Output Current 100 XC9140A331MR-G(VOUT=3.3V) L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) XC9140A331MR-G(VOUT=3.3V) L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) 100 80 3.0V 60 Efficiency : EFFI (%) Efficiency : EFFI (%) 2.5V VBAT=1.8V 40 20 80 40 20 0.1 1 10 100 Output Current : IOUT (mA) 0 0.01 1000 XC9140A501MR-G(VOUT=5.0V) L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) 100 4.2V 80 3.7V 60 VBAT=3.0V 40 20 0 0.01 0.1 10 1 100 1000 Output Current : IOUT (mA) Efficiency : EFFI (%) Efficiency : EFFI (%) 100 3.0V VBAT=1.8V 60 0 0.01 2.5V XC9140A501MR-G(VOUT=5.0V) L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) 4.2V 80 VBAT=3.0V 3.7V 60 40 20 0.1 10 1 Output Current : IOUT (mA) (2) Output Voltage vs. Output Current - 出力電流特性例 (2) 出力電圧 XC9140A331MR-G(V 100 0 0.01 1000 0.1 1 10 Output Current : IOUT (mA) 100 1000 =3.3V) OUT L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) XC9140A331MR-G(VOUT=3.3V) L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) XC9140A331MR-G(VOUT=3.3V) L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) 3.7 2.5V 3.9 Output Voltage : VOUT (V) Output Voltage : VOUT (V) 3.9 3.0V 3.5 3.3 VBAT=1.8V 3.1 2.5V 3.5 3.0V 3.3 VBAT=1.8V 3.1 2.9 2.9 0.01 0.1 1 10 Output Current : IOUT (mA) 18/28 3.7 100 1000 0.01 0.1 1 10 Output Current : IOUT (mA) 100 1000 XC9140 (Design Target) XC9140 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (2) Output Voltage vs. Output Current (Continued) XC9140A501MR-G(VOUT=5.0V) L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) 5.6 Output Voltage : VOUT (V) Output Voltage : VOUT (V) 5.6 5.4 4.2V 5.2 5.0 3.7V VBAT=3.0V 4.8 XC9140A501MR-G(VOUT=5.0V) L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) 5.4 4.2V 5.2 5.0 VBAT=3.0V 3.7V 4.8 4.6 4.6 0.01 1 0.1 10 100 0.01 1000 0.1 1 Output Current : IOUT (mA) 10 100 1000 Output Current : IOUT (mA) (3) Ripple Voltage vs. Output Current (3) 出力リップル電圧 - 出力電流特性例 XC9140A331MR-G(VOUT=3.3V) L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) 300 250 Ripple Voltage : Vr (mV) Ripple Voltage : Vr (mV) 300 200 150 2.5V VBAT=1.8V 3.0V 100 50 0 0.01 XC9140A331MR-G(VOUT=3.3V) L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) 250 200 100 50 VBAT=1.8V 0 1 0.1 10 100 0.01 1000 0.1 200 3.7V VBAT=3.0V 300 Ripple Voltage : Vr (mV) Ripple Voltage : Vr (mV) XC9140A501MR-G(VOUT=5.0V) L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) 250 150 1 10 100 1000 Output Current : IOUT (mA) Output Current : IOUT (mA) 300 3.0V 2.5V 150 4.2V 100 50 XC9140A501MR-G(VOUT=5.0V) L=10μH(VLF302512M-100M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) 250 3.7V 4.2V 200 150 100 50 VBAT=3.0V 0 0.01 0.1 1 10 Output Current : IOUT (mA) 100 1000 0 0.01 0.1 1 10 100 1000 Output Current : IOUT (mA) 19/28 XC9140 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (4) Output Voltage vs. Ambient Temperature (4) 出力電圧 - 周囲温度特性例 XC9140x50x(VOUT=5.0V) 5.3 3.5 5.2 Output Voltage : VOUT (V) Output Voltage : VOUT (V) XC9140x33x(VOUT=3.3V) 3.6 3.4 3.3 3.2 3.1 3.0 -25 25 50 0 Ambient Temperature: Ta(℃) 75 4.8 -50 -25 0 25 50 75 100 Ambient Temperature: Ta(℃) (6) 入力端子電流 Input Pin Current vs. Ambient Temperature (6) - 周囲温度特性例 XC9140xxx1 20 XC9140xxx1 2.0 18 1.8 VOUT=5.0V 3.0V 16 Input Pin Current: IBAT (μA) Supply Current: Iq (μA) 4.9 100 (5) Supply Current vs. Ambient Temperature (5) 消費電流 - 周囲温度特性例 14 12 10 8 6 4 VOUT=5.0V 3.0V 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 2 0.0 0 -50 -25 0 25 50 75 100 Ambient Temperature: Ta (℃) (7) Stand-by Current -vs. Ambient Temperature (7) スタンバイ電流 周囲温度特性例 XC9140A 3.0 Stand-by Current: ISTB (μA) 5.0 4.7 -50 VOUT=5.0V 3.0V 1.8V 2.5 2.0 1.5 1.0 0.5 0.0 -50 -25 0 25 50 Ambient Temperature: Ta (℃) 20/28 5.1 75 100 -50 -25 0 25 50 Ambient Temperature: Ta (℃) 75 100 XC9140 (Design Target) XC9140 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (8) PFMスイッチング電流 周囲温度特性例 (8) PFM Switching Current -vs. Ambient Temperature (9) - 入力電圧特性例 (9)PFMスイッチング電流 PFM Switching Current vs. Input Voltage XC9140 XC9140 XC9140x50x L=4.7μH(VLF302512M-4R7M),C =4.7μF(LMK107BJ475MA), L=4.7μH(VLF302512M-4R7M),CININ =4.7μF(LMK107BJ475MA), L=10μF(LMK107BJ106MA) =10μF(LMK107BJ106MA) CLC 500 VOUT=5.0V 3.0V 1.8V 450 400 PFM Switching Current: IPFM (mA) PFM Switching Current: IPFM (mA) 500 L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) 350 300 250 200 150 100 50 0 450 400 350 300 250 200 150 100 50 0 -50 -25 0 25 50 75 100 0 1 2 Ambient Temperature: Ta (℃) (10)(10) MAX. ON Time -vs. Ambient Temperature 最大ON時間 周囲温度特性例 5 6 XC9140 XC9140 LX SW “Nch” ON Resistance: RLXN (Ω) MAX ON Time: tONMAX (us) 4 (11) LxSW"Nch"ON抵抗 Lx SW “Nch” ON Resistance vs. Output Voltage (11) - 出力電圧特性例 10.0 VOUT=3.0V 5.0V 1.8V 8.0 6.0 4.0 2.0 1.2 Ta=85℃ 25℃ -40℃ 1.0 0.8 0.6 0.4 0.2 0.0 0.0 -50 -25 0 25 50 75 1.5 100 2.0 Ambient Temperature: Ta (℃) 3.0 3.5 4.0 4.5 5.0 (13) - 周囲温度特性例 (13) Lxリーク電流 Lx Leak Current vs. Ambient Temperature XC9140Axx1 XC9140xxx1 VBAT=VLX=VCE=VOUT(E)+0.5V,IOUT=200mA 1.2 2.5 Output Voltage : VOUT (V) - 出力電圧特性例 (12)(12) Lx LxSW"Pch"ON抵抗 SW “Pch” ON Resistance vs. Output Voltage Ta=85℃ 25℃ -40℃ 1.0 0.8 0.6 0.4 VBAT=VLX=VOUT(E), VOUT=VCE=0V 3.0 LX Leak Current : ILXL (μA) LX SW “Pch” ON Resistance: RLXP (Ω) 3 Input Voltage: VBAT (V) VLX=5.0V 3.3V 1.8V 2.5 2.0 1.5 1.0 0.5 0.2 0.0 0.0 1.5 2.0 2.5 3.0 3.5 4.0 Output Voltage : VOUT (V) 4.5 5.0 -50 -25 0 25 50 75 100 Ambient Temperature: Ta (℃) 21/28 XC9140 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (14) CE “H” Voltage vs. Output Voltage (15) CE “L” Voltage vs. Output Voltage (14) CE"H"電圧 - 出力電圧特性例 (15) CE"L"電圧 - 出力電圧特性例 XC9140 XC9140 0.8 Ta=-40℃ 0.7 CE “Low” Voltage: VCEL (V) CE “High” Voltage: VCEH (V) 0.8 25℃ 85℃ 0.6 0.5 0.4 0.3 Ta=-40℃ 0.7 25℃ 85℃ 0.6 0.5 0.4 0.3 0.2 0.2 0 1 2 3 4 5 0 6 1 Output Voltage : VOUT (V) (16) Operation Start Voltage vs. Ambient Temperature (16) 動作開始電圧 - 周囲温度特性例 5 6 XC9140xxx1 VOUT=1.8V 3.3V 5.0V 0.8 0.7 0.6 0.5 L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA),RL=1kΩ 1.0 Operation Hold Voltage : VHLD (V) Operation Start Voltage : VST1 (V) 4 (17) Operation Hold Voltage vs. Ambient Temperature XC9140xxx1 0.9 3 (17) 動作保持電圧 - 周囲温度特性例 L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA),RL=VOUT(E)/1mA 1.0 2 Output Voltage : VOUT (V) VOUT=5.0V 3.3V 1.8V 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.4 -50 -25 0 25 50 75 -50 100 -25 0 25 50 75 100 Ambient Temperature: Ta (℃) Ambient Temperature: Ta (℃) (18) UVLO Release Voltage vs. Ambient Temperature (18) UVLO解除電圧 - 周囲温度特性例 XC9140x18x(VOUT=1.8V) UVLO Release Voltage: VRELEASE (V) 1.80 VRELEASE(T)= 1.65V 1.75 1.70 1.65 1.60 1.55 1.50 1.45 1.40 -50 -25 0 25 50 Ambient Temperature: Ta (℃) 22/28 75 100 UVLO VRELEASE (V) (V) UVLO Release Release Voltage: Voltage: V RELEASE XC9140x50x(VOUT =5.0V) OUT XC9140x50x(V =5.0V) 2.35 2.35 = 2.2V VRELEASE(T) VRELEASE(T) = 2 2V 2.30 2.30 2.25 2.25 2.20 2.20 2.15 2.15 2.10 2.10 2.05 2.05 2.00 2.00 1.95 1.95 -50 -50 -25 -25 0 0 25 25 50 50 Ambient Temperature: Temperature: Ta Ambient Ta (℃) (℃) 75 75 100 100 XC9140 (Design Target) XC9140 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (19) UVLO Detect Voltage vs. Ambient Temperature (19) UVLO検出電圧 - 周囲温度特性例 XC9140x18x(VOUT=1.8V) XC9140x50x(VOUT=5.0V) UVLO Detect Voltage: VDETECT (V) UVLO Detect Voltage: VDETECT (V) 1.80 VRELEASE(T)= 1.65V 1.75 1.70 1.65 1.60 1.55 1.50 1.45 1.40 2.35 VRELEASE(T)= 2.2V 2.30 2.25 2.20 2.15 2.10 2.05 2.00 1.95 -50 -25 0 25 50 75 100 -50 0 -25 25 50 75 100 Ambient Temperature: Ta (℃) Ambient Temperature: Ta (℃) (20) UVLOヒステリシス電圧 - 周囲温度特性例 (20) UVLO Hysteresis Voltage vs. Ambient Temperature XC9140x50x(VOUT=5.0V) XC9140x18x(VOUT=1.8V) 0.30 VRELEASE(T)= 1.65V 0.25 UVLO Hysteresis Voltage: VHYS (V) UVLO Hysteresis Voltage: VHYS (V) 0.30 0.20 0.15 0.10 0.05 0.00 -50 -25 0 50 25 75 VRELEASE(T)= 2.2V 0.25 0.20 0.15 0.10 0.05 0.00 -50 100 Ambient Temperature: Ta (℃) -25 0 25 50 75 100 Ambient Temperature: Ta (℃) (21) No Load Input Current vs. Input Voltage XC9140x50x(VOUT=5.0V) L= 4.7μH(VLF302512M-4R7M),CIN= 4.7μF(LMK107BJ475MA), CL= 10μF(LMK107BJ106MA),VBAT= VCE,IOUT=0mA XC9140x18x(VOUT=1.8V) L= 4.7μH(VLF302512M-4R7M),CIN= 4.7μF(LMK107BJ475MA), CL= 10μF(LMK107BJ106MA),VBAT= VCE,IOUT=0mA 30 30 VRELEASE(T)= 2.2V Ta=25℃ 25 No load Input Current: I IN (μA) No Load Input Current: I IN (μA) VRELEASE(T)= 1.65V 20 15 10 Ta=25℃ 25 20 15 10 5 5 0 0 0.95 1.15 1.35 Input Voltage: VBAT (V) 1.55 1.75 1.0 2.0 3.0 4.0 5.0 Input Voltage: VBAT (V) 23/28 XC9140 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (22) UVLO Bypass Current vs. Input Voltage (22) UVLO解除動作時のバイパス消費電流遷移状態特性例 XC9140C18x(VOUT=1.8V) UVLO Bypass Current: IDBYP (μA) 25 VRELEASE(T)= 1.65V Ta=25℃ 20 15 10 5 0 1.0 1.5 2.0 2.5 3.0 UVLO Bypass Current: IDBYP (μA) XC9140C50x(VOUT=5.0V) 25 VRELEASE(T)= 2.2V Ta=25℃ 20 15 10 5 0 1.0 1.5 2.0 Input Voltage: VBAT (V) 2.5 3.0 Input Voltage: VBAT (V) (23) 出力電圧立ち上がり特性例 (23) Rising Output Voltage XC9140x331 XC9140x331 VOUT=3.3V,VBAT=VCE=0→1.8V,RL=330Ω VOUT=3.3V,VBAT=VCE=0→0.9V,RL=3300Ω VOUT VOUT VBAT=VCE VBAT=VCE VLX VLX ILX ILX VOUT:2V/div,VBAT:2V/div,VLX:5V/div,ILX:500mA/div,Time:500μs/div L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) VOUT:2V/div,VBAT:2V/div,VLX:5V/div,ILX:500mA/div,Time:500μs/div L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) XC9140x501 XC9140x501 VOUT=5.0V,VBAT=VCE=0→3.3V,RL=500Ω VOUT=5.0V,VBAT=VCE=0→5.5V,RL=500Ω VOUT VBAT=VCE VLX ILX VOUT:2V/div,VBAT:2V/div,VLX:5V/div,ILX:500mA/div,Time:500μs/div L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) 24/28 VBAT=VCE VOUT VLX ILX VOUT:2V/div,VBAT:2V/div,VLX:5V/div,ILX:500mA/div,Time:500μs/div L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) XC9140 (Design Target) XC9140 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (24)(24) Load Transient Response 負荷過渡応答特性例 XC9140x181 VOUT=1.8V,VBAT=VCE=0.9V,IOUT=1mA→25mA XC9140x181 VOUT=1.8V,VBAT=VCE=0.9V,IOUT=25mA→1mA VOUT VOUT VLX VLX ILX ILX IOUT IOUT VOUT:100mV/div,VLX:5V/div,ILX:500mA/div,IOUT:25mA/div,Time:50s/div L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) XC9140x331 VOUT=3.3V,VBAT=VCE=1.8V,IOUT=1mA→50mA VOUT:100mV/div,VLX:5V/div,ILX:500mA/div,IOUT:25mA/div,Time:50μs/div L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) XC9140x331 VOUT=3.3V,VBAT=VCE=1.8V,IOUT=50mA→1mA VOUT VOUT VLX VLX ILX ILX IOUT IOUT VOUT:100mV/div,VLX:5V/div,ILX:500mA/div,IOUT:50mA/div,Time:50μs/div L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) VOUT:100mV/div,VLX:5V/div,ILX:500mA/div,IOUT:50mA/div,Time:50μs/div L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) XC9140x501 XC9140x501 VOUT=5.0V,VBAT=VCE=3.7V,IOUT=1mA→100mA VOUT=5.0V,VBAT=VCE=3.7V,IOUT=100mA→1mA VOUT VLX ILX IOUT VOUT:100mV/div,VLX:5V/div,ILX:500mA/div,IOUT:100mA/div,Time:50μs/div L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) VOUT VLX ILX IOUT VOUT:100mV/div,VLX:5V/div,ILX:500mA/div,IOUT:100mA/div,Time:50μs/div L=4.7μH(VLF302512M-4R7M),CIN=4.7μF(LMK107BJ475MA), CL=10μF(LMK107BJ106MA) 25/28 XC9140 Series ■PACKAGING INFORMATION For the latest package information go to, www.torexsemi.com/technical-support/packages PACKAGE OUTLINE / LAND PATTERN SOT-25 SOT-25 PKG USP-6EL USP-6EL PKG 26/28 THERMAL CHARACTERISTICS Standard Board JESD51-7 Board Standard Board SOT-25 Power Dissipation USP-6EL Power Dissipation XC9140 (Design Target) XC9140 Series ■MARKING RULE ① represents product series MARK SOT-25 ●SOT-25 ② 1 ③ ④ ② represents output voltage ⑤ 2 3 ① 1 OUTPUT VOLTAGE MARK OUTPUT VOLTAGE 0 1.8 3.5 9 2.7 4.4 1 1.9 3.6 A 2.8 4.5 2 2.0 3.7 B 2.9 4.6 3 2.1 3.8 C 3.0 4.7 6 4 2.2 3.9 D 3.1 4.8 5 5 2.3 4.0 E 3.2 4.9 6 2.4 4.1 F 3.3 5.0 7 2.5 4.2 H 3.4 - 8 2.6 4.3 USP-6EL ●USP-6EL ④ ② ⑤ ③ 3 XC9140C**1/2**-G 4 MARK 2 XC9140A**1/2**-G 4 5 ① PRODUCT SERIES 4 ③ represents product function MARK OUTPUT VOLTAGE N 1.8~3.4V P 3.5~5.0V R 1.8~3.4V S T U V X 3.5~5.0V 1.8~3.4V 3.5~5.0V 1.8~3.4V 3.5~5.0V UVLO Release Voltage PRODUCT SERIES No UVLO XC9140A**1**-G 2.15 XC9140A**2**-G No UVLO XC9140C**1**-G 2.15 XC9140C**2**-G ④⑤ represents production lot number 01~09, 0A~0Z, 11~9Z, A1~A9, AA~AZ, B1~ZZ in order. (G, I, J, O, Q, W excluded) *No character inversion used. 27/28 XC9140 Series 1. The product and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date. 2. The information in this datasheet is intended to illustrate the operation and characteristics of our products. We neither make warranties or representations with respect to the accuracy or completeness of the information contained in this datasheet nor grant any license to any intellectual property rights of ours or any third party concerning with the information in this datasheet. 3. Applicable export control laws and regulations should be complied and the procedures required by such laws and regulations should also be followed, when the product or any information contained in this datasheet is exported. 4. The product is neither intended nor warranted for use in equipment of systems which require extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human life, bodily injury, serious property damage including but not limited to devices or equipment used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other transportation industry and 5) safety devices and safety equipment to control combustions and explosions. Do not use the product for the above use unless agreed by us in writing in advance. 5. Although we make continuous efforts to improve the quality and reliability of our products; nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or property damage resulting from such failure, customers are required to incorporate adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention features. 6. Our products are not designed to be Radiation-resistant. 7. Please use the product listed in this datasheet within the specified ranges. 8. We assume no responsibility for damage or loss due to abnormal use. 9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex Semiconductor Ltd in writing in advance. TOREX SEMICONDUCTOR LTD. 28/28
XC9140C411MR-G 价格&库存

很抱歉,暂时无法提供与“XC9140C411MR-G”相匹配的价格&库存,您可以联系我们找货

免费人工找货