XC9265 Series
ETR05053-007b
Ultra Low Power Synchronous Step-Down PFM DC/DC Converter
☆Green Operation Compatible
■GENERAL DESCRIPTION
XC9265 series are Ultra Low Power synchronous-rectification type PFM step down DC/DC converters with a built-in 0.4Ω
(TYP.) Pch driver and 0.4Ω (TYP.) Nch synchronous switching transistor, designed to allow the use of ceramic capacitor.
PFM control enables a low quiescent current, making these products ideal for battery operated devices that require high
efficiency and long battery life.
Only inductor, CIN and CL capacitors are needed as external parts to make a step down DC/DC circuit.
Operation voltage range is from 2.0V to 6.0V. This product has fixed output voltage from 1.0V to 4.0V(accuracy: ±2.0%) in
increments of 0.05V.
During stand-by, all circuits are shutdown to reduce consumption to as low as 0.1μA(TYP.) or less.
With the built-in UVLO (Under Voltage Lock Out) function, the internal P-channel MOS driver transistor is forced OFF when
input voltage gets lower than UVLO detection voltage. Besides, XC9265 series has UVLO release voltage of 1.8V (Typ.).
The product with CL discharge function can discharge CL capacitor during stand-by mode due to the internal resistance by turning
on the internal switch between VOUT -GND. This enables output voltage restored to GND level fast.
■FEATURES
■APPLICATIONS
Input Voltage Range
:
2.0V ~ 6.0V
Output Voltage Setting
:
1.0V ~ 4.0V (±2.0%, 0.05V increments)
Output Current
:
200mA (XC9265A/C)
50mA (XC9265B/D)
Driver Transistor
:
0.4Ω (Pch Driver Tr)
Supply Current
:
0.50μA @ VOUT(T)=1.8V (TYP.)
Portable game consoles
Control Method
:
PFM control
Devices with 1 Lithium cell
High Speed Transient
PFM Switching Current
:
:
50mV (VIN=3.6V, VOUT=1.8V, IOUT=10μA→50mA)
330mA (XC9265A/C), 180mA (XC9265B/D)
Function
:
Short Protection
●
Wearable Devices
●
Smart meters
●
Bluetooth units
●
Energy Harvest devices
●
Backup power supply circuits
●
●
0.4Ω (Nch Synchronous rectifier Switch Tr)
CL Discharge (XC9265C/ D)
UVLO
Ceramic Capacitor Compatible
Operation Ambient Temperature
:
-40 ~ 85℃
Package
:
SOT-25, USP-6EL
Environmentally Friendly
:
EU RoHS compliant, Pb Free
■TYPICAL APPLICATION CIRCUIT
■ TYPICAL PERFORMANCE
CHARACTERISTICS
●Efficiency vs. Output Current
CIN
(Ceramic)
L
VIN
LX
CE
VOUT
GND
VOUT
CL
(Ceramic)
100
Efficiency : EFFI (%)
VIN
XC9265B181xR-G(VOUT=1.8V)
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L=22μF(JMK107BJ226MA)
80
VIN =4.2V
60
40
VIN =3.6V
VIN =2.7V
20
0
0.01
0.1
1
10
100
Output Current : I OUT (mA)
1/33
XC9265 Series
■BLOCK DIAGRAM
XC9265A / XC9265B Type
PFM Comparator Unit
VOUT
CFB
RFB1
Short
protection
RFB2
Current
Sense
PFM
Comparator
FB PFM
Controller
+
CE
CE Controller Logic
Synch
Buffer
Driver
VREF
LX
VDD
GND
UVLO
VIN start up
Controller
VIN
* Diodes inside the circuit are an ESD protection diode and a parasitic diode.
XC9265C / XC9265D Type
PFM Comparator Unit
VOUT
CFB
CL
Discharge
RFB1
Short
protection
RFB2
Current
Sense
PFM
Comparator
FB +
CE
CE Controller Logic
VREF
PFM
Controller
Synch
Buffer
Driver
LX
VDD
VIN
UVLO
VIN start up
Controller
* Diodes inside the circuit are an ESD protection diode and a parasitic diode.
2/33
GND
XC9265
Series
■PRODUCT CLASSIFICATION
●Ordering information
XC9265①②③④⑤⑥-⑦
DESIGNATOR
①
(*1)
ITEM
Product Type
②③
Output Voltage
④
Output Voltage Type
⑤⑥-⑦(*1)
Packages (Order Unit)
SYMBOL
DESCRIPTION
A
IOUT=200mA Without CL Discharge
B
IOUT=50mA Without CL Discharge
C
IOUT=200mA With CL Discharge
D
IOUT=50mA With CL Discharge
10 ~ 40
Output Voltage : e.g. VOUT=1.80V⇒②=1, ③=8
Output Voltage Range: 1.0V~4.0V (0.05V increments)
1
B
4R-G
Output Voltage {x.x0V} (the 2nd decimal place is “0”)
Output Voltage {x.x5V} (the 2nd decimal place is “5”)
USP-6EL (3,000pcs/Reel)
MR-G
SOT-25 (3,000pcs/Reel)
The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.
3/33
XC9265 Series
■PIN CONFIGURATION
LX
VOUT
5
4
1
2
3
VIN
GND
CE
VIN 6
1 LX
NC 5
2 GND
CE 4
3 VOUT
USP-6EL
(BOTTOM VIEW)
SOT-25
(TOP VIEW)
* The dissipation pad for the USP-6EL package should be solder-plated in recommended
mount pattern and metal masking so as to enhance mounting strength and heat release.
The mount pattern should be connected to GND pin (No.2).
■PIN ASSIGNMENT
PIN NUMBER
USP-6EL
SOT-25
1
2
3
4
5
6
PIN NAME
FUNCTIONS
LX
GND
VOUT
CE
NC
VIN
Switching
Ground
Output Voltage
Chip Enable
No Connection
Power Input
5
2
4
3
1
■ PIN FUNCTION ASSIGNMENT
PIN
NAME
SIGNAL
STATUS
CE
H
L
Operation (All Series)
Standby (All Series)
* Please do not leave the CE pin open.
■ABSOLUTE MAXIMUM RATINGS
Ta=25˚C
PARAMETER
SYMBOL
RATINGS
UNITS
VIN Pin Voltage
LX Pin Voltage
VIN
VLX
-0.3 ~ 7.0
-0.3 ~ VIN + 0.3 or 7.0 (*1)
V
V
VOUT Pin Voltage
CE Pin Voltage
VOUT
VCE
-0.3 ~ VIN + 0.3 or 7.0 (*1)
-0.3 ~ 7.0
V
V
LX Pin Current
ILX
1000
mA
SOT-25
Power Dissipation
USP-6EL
(DAF)
Operating Ambient Temperature
Storage Temperature
Pd
Topr
Tstg
250 (IC only)
600 (40mm x 40mm Standard board) (*2)
760 (JESD51-7 Board)
120 (IC only)
750 (40mm x 40mm Standard board) (*2)
-40 ~ 85
-55 ~ 125
* All voltages are described based on the GND.
(*1)
(*2)
The maximum value is the lower of either VIN + 0.3V or 7.0V.
The power dissipation figure shown is PCB mounted and is for reference only.
Please refer to PACKAGING INFORMATION for the mounting condition.
4/33
mW
˚C
˚C
XC9265
Series
■ELECTRICAL CHARACTERISTICS
●XC9265Axxx Type, without CL discharge function
PARAMETER
SYMBOL
Input Voltage
VIN
Output Voltage
VOUT(E) (*2)
Ta=25˚C
CONDITIONS
-
MIN.
TYP.
MAX.
UNITS
CIRCUIT
2.0
-
6.0
V
①
V
②
Resistor connected with LX pin.
Voltage which LX pin changes “L” to “H” level
E1
while VOUT is decreasing.
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
UVLO Release Voltage
VUVLO(E)
Voltage which LX pin changes “L” to “H” level
1.65
1.8
1.95
V
②
0.11
0.15
0.24
V
②
μA
③
while VIN is increasing.
UVLO Hysteresis
Voltage
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
VHYS(E)
VUVLO(E) - Voltage which LX pin changes “H” to “L”
level while VIN is decreasing.
VIN=VCE=VOUT(T)+0.5V (*1),
Supply Current
Iq
VIN=2.0V, if VOUT(T)≦1.5V (*1),
VOUT=VOUT(T)+0.5V
Standby Current
ISTB
LX SW “H” Leak Current
LX SW “L” Leak Current
-
0.1
1.0
μA
③
VIN=5.0V, VCE=VOUT=0V, VLX=0V.
-
0.1
1.0
μA
③
ILEAKL
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.
-
0.1
1.0
μA
③
260
330
400
mA
①
100
-
-
%
②
-
93
-
%
①
-
93
-
%
①
-
87
-
%
①
IPFM
MAXDTY
Efficiency (*4)
EFFI
Efficiency (*4)
EFFI
Efficiency (*4)
EFFI
LX SW “Pch”
ON Resistance (*5)
LX SW “Nch”
ON Resistance
Characteristics
, LX=Open.
ILEAKH
Maximum Duty Ratio (*3)
Temperature
E2
VIN=5.0V, VCE=VOUT=0V, LX=Open.
PFM Switching Current
Output Voltage
(*1)
VIN=VCE=VOUT(T)+2.0V
(*1)
, IOUT=10mA.
VIN=VOUT=VOUT(T)×0.95V(*1), VCE=1.2V
Resistor connected with LX pin.
VIN=VCE=5.0V,
VOUT(T)=4.0V (*1), IOUT=30mA.
VIN=VCE=3.6V,
VOUT(T)=3.3V (*1), IOUT=30mA.
VIN=VCE=3.6V,
VOUT(T)=1.8V (*1), IOUT=30mA.
RLXP
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.
-
0.4
0.65
Ω
④
RLXN
VIN=VCE=5.0V.
-
0.4 (*6)
-
Ω
-
-40℃≦Topr≦85℃.
-
±100
-
ppm/℃
②
1.2
-
6.0
V
⑤
GND
-
0.3
V
⑤
ΔVOUT/
(VOUT・ΔTopr)
VOUT=0V. Resistor connected with LX pin.
CE “High” Voltage
VCEH
Voltage which LX pin changes “L” to “H” level
while VCE=0.2→1.5V.
VOUT=0V. Resistor connected with LX pin.
CE “Low” Voltage
VCEL
Voltage which LX pin changes “H” to “L” level
CE “High” Current
ICEH
VIN=VCE=5.0V, VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
CE “Low” Current
ICEL
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
0.4
0.5
0.6
V
②
while VCE=1.5→0.2V.
Short Protection
Threshold Voltage
Resistor connected with LX pin.
VSHORT
Voltage which LX pin changes “H” to “L” level
while VOUT= VOUT(T)+0.1V→0V(*1).
Unless otherwise stated, VIN=VCE=5.0V
(*1)
VOUT(T)=Nominal Output Voltage
(*2)
VOUT(E)=Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.
Please refer to the characteristic example.
(*3)
(*4)
Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range.
EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100
(*5)
LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA
(*6)
Designed value
5/33
XC9265 Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XC9265Bxxx Type, without CL discharge function
PARAMETER
SYMBOL
Input Voltage
VIN
Ta=25˚C
CONDITIONS
-
MIN.
TYP.
MAX.
UNITS
CIRCUIT
2.0
-
6.0
V
①
V
②
Resistor connected with LX pin.
Output Voltage
VOUT(E) (*2)
Voltage which LX pin changes “L” to “H” level
E1
while VOUT is decreasing.
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
UVLO Release Voltage
VUVLO(E)
Voltage which LX pin changes “L” to “H” level
1.65
1.8
1.95
V
②
0.11
0.15
0.24
V
②
μA
③
while VIN is increasing.
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
UVLO Hysteresis Voltage
VHYS(E)
VUVLO(E) - Voltage which LX pin changes “H” to “L”
level while VIN is decreasing.
VIN=VCE=VOUT(T)+0.5V (*1),
Supply Current
Iq
VIN=2.0V, if VOUT(T)≦1.5V (*1),
E2
VOUT=VOUT(T)+0.5V (*1), LX=Open.
Standby Current
ISTB
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-
0.1
1.0
μA
③
LX SW “H” Leak Current
ILEAKH
VIN=5.0V, VCE=VOUT=0V, VLX=0V.
-
0.1
1.0
μA
③
LX SW “L” Leak Current
ILEAKL
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.
-
0.1
1.0
μA
③
115
180
250
mA
①
100
-
-
%
②
-
95
-
%
①
-
95
-
%
①
-
89
-
%
①
PFM Switching Current
IPFM
Maximum Duty Ratio (*3)
MAXDTY
Efficiency (*4)
EFFI
Efficiency (*4)
EFFI
Efficiency (*4)
EFFI
LX SW “Pch”
ON Resistance (*5)
LX SW “Nch”
ON Resistance
Output Voltage
Temperature
Characteristics
VIN=VCE=VOUT(T)+2.0V
(*1)
, IOUT=10mA.
VIN=VOUT=VOUT(T)×0.95V(*1), VCE=1.2V
Resistor connected with LX pin.
VIN=VCE=5.0V,
VOUT(T)=4.0V (*1), IOUT=30mA.
VIN=VCE=3.6V,
VOUT(T)=3.3V (*1), IOUT=30mA.
VIN=VCE=3.6V,
VOUT(T)=1.8V (*1), IOUT=30mA.
RLXP
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.
-
0.4
0.65
Ω
④
RLXN
VIN=VCE=5.0V.
-
0.4 (*6)
-
Ω
-
-40℃≦Topr≦85℃.
-
±100
-
ppm/℃
②
1.2
-
6.0
V
⑤
GND
-
0.3
V
⑤
ΔVOUT/
(VOUT・ΔTopr)
VOUT=0V. Resistor connected with LX pin.
CE “High” Voltage
VCEH
Voltage which LX pin changes “L” to “H” level while
VCE=0.2→1.5V.
VOUT=0V. Resistor connected with LX pin.
CE “Low” Voltage
VCEL
Voltage which LX pin changes “H” to “L” level while
VCE=1.5→0.2V.
CE “High” Current
ICEH
VIN=VCE=5.0V, VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
CE “Low” Current
ICEL
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
0.4
0.5
0.6
V
②
Short Protection
Threshold Voltage
Resistor connected with LX pin.
VSHORT
Voltage which LX pin changes “H” to “L” level while
VOUT= VOUT(T)+0.1V→0V(*1).
Unless otherwise stated, VIN=VCE=5.0V
(*1)
VOUT(T)=Nominal Output Voltage
(*2)
VOUT(E)=Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.
Please refer to the characteristic example.
(*3)
Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range.
(*4)
EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100
(*5)
LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA
(*6)
Designed value
6/33
XC9265
Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XC9265CxxxType、with CL Discharge Function
PARAMETER
SYMBOL
Input Voltage
VIN
Ta=25˚C
CONDITIONS
-
MIN.
TYP.
MAX.
UNITS
CIRCUIT
2.0
-
6.0
V
①
V
②
Resistor connected with LX pin.
Output Voltage
VOUT(E) (*2)
Voltage which LX pin changes “L” to “H” level
E1
while VOUT is decreasing.
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
UVLO Release Voltage
VUVLO(E)
Voltage which LX pin changes “L” to “H” level
1.65
1.8
1.95
V
②
0.11
0.15
0.24
V
②
μA
③
while VIN is increasing.
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
UVLO Hysteresis Voltage
VHYS(E)
VUVLO(E) - Voltage which LX pin changes “H” to “L”
level while VIN is decreasing.
VIN=VCE=VOUT(T)+0.5V (*1),
Supply Current
Iq
VIN=2.0V, if VOUT(T)≦1.5V (*1),
E2
VOUT=VOUT(T)+0.5V (*1), LX=Open.
Standby Current
ISTB
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-
0.1
1.0
μA
③
LX SW “H” Leak Current
ILEAKH
VIN=5.0V, VCE=VOUT=0V, VLX=0V.
-
0.1
1.0
μA
③
LX SW “L” Leak Current
ILEAKL
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.
-
0.1
1.0
μA
③
260
330
400
mA
①
100
-
-
%
②
-
93
-
%
①
-
93
-
%
①
-
87
-
%
①
PFM Switching Current
IPFM
Maximum Duty Ratio (*3)
MAXDTY
Efficiency (*4)
EFFI
Efficiency (*4)
EFFI
Efficiency (*4)
EFFI
LX SW “Pch”
ON Resistance (*5)
LX SW “Nch”
ON Resistance
Output Voltage
Temperature
Characteristics
VIN=VCE=VOUT(T)+2.0V
(*1)
, IOUT=10mA.
VIN=VOUT=VOUT(T)×0.95V(*1), VCE=1.2V
Resistor connected with LX pin.
VIN=VCE=5.0V,
VOUT(T)=4.0V (*1), IOUT=30mA.
VIN=VCE=3.6V,
VOUT(T)=3.3V (*1), IOUT=30mA.
VIN=VCE=3.6V,
VOUT(T)=1.8V (*1), IOUT=30mA.
RLXP
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.
-
0.4
0.65
Ω
④
RLXN
VIN=VCE=5.0V.
-
0.4 (*6)
-
Ω
-
-40℃≦Topr≦85℃.
-
±100
-
ppm/℃
②
1.2
-
6.0
V
⑤
GND
-
0.3
V
⑤
ΔVOUT/
(VOUT・ΔTopr)
VOUT=0V. Resistor connected with LX pin.
CE “High” Voltage
VCEH
Voltage which LX pin changes “L” to “H” level while
VCE=0.2→1.5V.
VOUT=0V. Resistor connected with LX pin.
CE “Low” Voltage
VCEL
Voltage which LX pin changes “H” to “L” level while
VCE=1.5→0.2V.
CE “High” Current
ICEH
VIN=VCE=5.0V, VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
CE “Low” Current
ICEL
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
0.4
0.5
0.6
V
②
Ω
③
Short Protection
Threshold Voltage
Resistor connected with LX pin.
VSHORT
Voltage which LX pin changes “H” to “L” level while
VOUT= VOUT(T)+0.1V→0V(*1).
CL Discharge
RDCHG
VIN=VOUT=5.0V, VCE=0V, LX=Open.
55
80
105
Unless otherwise stated, VIN=VCE=5.0V
(*1) VOUT(T)=Nominal Output Voltage
(*2) VOUT(E)=Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.
Please refer to the characteristic example.
(*3)
Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range.
(*4)
EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100
(*5) LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA
(*6)
Designed value
7/33
XC9265 Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XC9265Dxxx Type, with CL Discharge function
PARAMETER
SYMBOL
Input Voltage
VIN
Ta=25˚C
CONDITIONS
-
MIN.
TYP.
MAX.
UNITS
CIRCUIT
2.0
-
6.0
V
①
V
②
Resistor connected with LX pin.
Output Voltage
VOUT(E) (*2)
Voltage which LX pin changes “L” to “H” level
E1
while VOUT is decreasing.
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
UVLO Release Voltage
VUVLO(E)
Voltage which LX pin changes “L” to “H” level
1.65
1.8
1.95
V
②
0.11
0.15
0.24
V
②
μA
③
while VIN is increasing.
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
UVLO Hysteresis Voltage
VHYS(E)
VUVLO(E) - Voltage which LX pin changes “H” to “L”
level while VIN is decreasing.
VIN=VCE=VOUT(T)+0.5V (*1),
Supply Current
Iq
VIN=2.0V, if VOUT(T)≦1.5V (*1),
E2
VOUT=VOUT(T)+0.5V (*1), LX=Open.
Standby Current
ISTB
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-
0.1
1.0
μA
③
LX SW “H” Leak Current
ILEAKH
VIN=5.0V, VCE=VOUT=0V, VLX=0V.
-
0.1
1.0
μA
③
LX SW “L” Leak Current
ILEAKL
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.
-
0.1
1.0
μA
③
115
180
250
mA
①
100
-
-
%
②
-
95
-
%
①
-
95
-
%
①
-
89
-
%
①
PFM Switching Current
IPFM
Maximum Duty Ratio (*3)
MAXDTY
Efficiency (*4)
EFFI
Efficiency (*4)
EFFI
Efficiency (*4)
EFFI
LX SW “Pch”
ON Resistance (*5)
LX SW “Nch”
ON Resistance
Output Voltage
Temperature
Characteristics
VIN=VCE=VOUT(T)+2.0V
(*1)
, IOUT=10mA.
VIN=VOUT=VOUT(T)×0.95V(*1), VCE=1.2V
Resistor connected with LX pin.
VIN=VCE=5.0V,
VOUT(T)=4.0V (*1), IOUT=30mA.
VIN=VCE=3.6V,
VOUT(T)=3.3V (*1), IOUT=30mA.
VIN=VCE=3.6V,
VOUT(T)=1.8V (*1), IOUT=30mA.
RLXP
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.
-
0.4
0.65
Ω
④
RLXN
VIN=VCE=5.0V.
-
0.4 (*6)
-
Ω
-
-40℃≦Topr≦85℃.
-
±100
-
ppm/℃
②
1.2
-
6.0
V
⑤
GND
-
0.3
V
⑤
ΔVOUT/
(VOUT・ΔTopr)
VOUT=0V. Resistor connected with LX pin.
CE “High” Voltage
VCEH
Voltage which LX pin changes “L” to “H” level while
VCE=0.2→1.5V.
VOUT=0V. Resistor connected with LX pin.
CE “Low” Voltage
VCEL
Voltage which LX pin changes “H” to “L” level while
VCE=1.5→0.2V.
CE “High” Current
ICEH
VIN=VCE=5.0V, VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
CE “Low” Current
ICEL
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
0.4
0.5
0.6
V
②
Ω
③
Short Protection
Threshold Voltage
Resistor connected with LX pin.
VSHORT
Voltage which LX pin changes “H” to “L” level while
VOUT= VOUT(T)+0.1V→0V(*1).
CL Discharge
RDCHG
VIN=VOUT=5.0V, VCE=0V, LX=Open.
55
80
105
Unless otherwise stated, VIN=VCE=5.0V
(*1) VOUT(T)=Nominal Output Voltage
(*2) VOUT(E)=Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.
Please refer to the characteristic example.
(*3)
Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range.
(*4)
EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100
(*5) LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA
(*6)
Designed value
8/33
XC9265
Series
■ELECTRICAL CHARACTERISTICS (Continued)
XC9265 series voltage chart
SYMBOL
E1
E2
PARAMETER
Output Voltage
Supply Current
UNITS: V
UNITS: V
UNITS: μA
OUTPUT
VOLTAGE
MIN.
MAX.
1.00
0.980
1.020
1.05
1.029
1.071
1.10
1.078
1.122
1.15
1.127
1.173
1.20
1.176
1.224
1.25
1.225
1.275
1.30
1.274
1.326
1.35
1.323
1.377
1.40
1.372
1.428
1.45
1.421
1.479
1.50
1.470
1.530
1.55
1.519
1.581
1.60
1.568
1.632
1.65
1.617
1.683
1.70
1.666
1.734
1.75
1.715
1.785
1.80
1.764
1.836
1.85
1.813
1.887
1.90
1.862
1.938
1.95
1.911
1.989
2.00
1.960
2.040
2.05
2.009
2.091
2.10
2.058
2.142
2.15
2.107
2.193
2.20
2.156
2.244
2.25
2.205
2.295
2.30
2.254
2.346
2.35
2.303
2.397
2.40
2.352
2.448
2.45
2.401
2.499
2.50
2.450
2.550
2.55
2.499
2.601
2.60
2.548
2.652
2.65
2.597
2.703
2.70
2.646
2.754
2.75
2.695
2.805
2.80
2.744
2.856
2.85
2.793
2.907
TYP.
MAX.
0.5
0.8
0.5
0.9
0.6
1.1
0.7
1.5
9/33
XC9265 Series
■ELECTRICAL CHARACTERISTICS (Continued)
XC9265 series voltage chart
SYMBOL
E1
E2
PARAMETER
Output Voltage
Supply Current
UNITS: V
UNITS: V
UNITS: μA
OUTPUT
VOLTAGE
MIN.
MAX.
2.90
2.842
2.958
2.95
2.891
3.009
3.00
2.940
3.060
3.05
2.989
3.111
3.10
3.038
3.162
3.15
3.087
3.213
3.20
3.136
3.264
3.25
3.185
3.315
3.30
3.234
3.366
3.35
3.283
3.417
3.40
3.332
3.468
3.45
3.381
3.519
3.50
3.430
3.570
3.55
3.479
3.621
3.60
3.528
3.672
3.65
3.577
3.723
3.70
3.626
3.774
3.75
3.675
3.825
3.80
3.724
3.876
3.85
3.773
3.927
3.90
3.822
3.978
3.95
3.871
4.029
4.00
3.920
4.080
10/33
TYP.
MAX.
0.7
1.5
0.8
2.1
1.5
3.0
XC9265
Series
■TEST CIRCUITS
< Test Circuit No.1 >
< Test Circuit No.2 >
Wave Form Measure Point
Wave Form Measure Point
IOUT
L
A
CIN
VIN
LX
CE
VOUT
CIN
VIN
LX
CE
VOUT
Rpulldown
CL
GND
V
GND
V
※ External Components
※ External Components
L
: 10uH
CIN : 10uF (ceramic)
CL : 22uF (ceramic)
R
< Test Circuit No.3 >
< Test Circuit No.4 >
VIN
A
CIN
: 100Ω
CE
LX
GND
VOUT
CIN
A
A
VIN
CE
※ External Components
※ External Components
CIN : 10uF
CIN : 10uF
LX
GND
VOUT
V
IS
< Test Circuit No.5 >
Wave Form Measure Point
CIN
VIN
LX
ICEH
A
ICEL
CE
GND
VOUT
Rpulldown
※ External Components
CIN : 10uF
R : 100Ω
11/33
XC9265 Series
■TYPICAL APPLICATION CIRCUIT
L
VIN
CIN
(Ceramic)
VIN
LX
CE
VOUT
VOUT
CL
(Ceramic)
GND
【Typical Examples】
MANUFACTURE
PRODUCT NUMBER
VALUE
TDK
VLF302512M-100M
10μH
Coilcraft
LPS3015-103MRB
10μH
Murata
1239AS-H-100M
10μH
CIN
TAIYO YUDEN
LMK107BJ106MA
10μF/10V
CL
TAIYO YUDEN
JMK107BJ226MA
22μF/6.3V
L
* Take capacitance loss, withstand voltage, and other conditions into consideration when selecting components.
* Characteristics are dependent on deviations in the coil inductance value. Test fully using the actual device.
* A value of 10μH is recommended for the coil inductance.
* If a tantalum or electrolytic capacitor is used for the load capacitance CL, ripple voltage will increase, and there is a possibility that operation will
become unstable. Test fully using the actual device.
12/33
XC9265
Series
■ OPERATIONAL EXPLANATION
The XC9265 series consists of a reference voltage supply, PFM comparator, Pch driver Tr, Nch synchronous rectification switch
Tr, current sensing circuit, PFM control circuit, CE control circuit, and others. (Refer to the block diagram below.)
PFM Comparator Unit
PFM Comparator Unit
VOUT
VOUT
CFB
CFB
RFB1
Short
protection
RFB2
Current
Sense
CL
Discharge
PFM
Comparator
CE
CE Controller Logic
Short
protection
RFB2
Current
Sense
PFM
Comparator
FB -
FB +
RFB1
+
PFM
Controller
Synch
Buffer
Driver
VREF
LX
CE
CE Controller Logic
PFM
Controller
VREF
Synch
Buffer
Driver
LX
VDD
VDD
GND
UVLO
VIN start up
Controller
VIN
VIN
XC9265Axxx/XC9265Bxxx
GND
UVLO
VIN start up
Controller
XC9265Cxxx/XC9265xxx
An ultra-low quiescent current circuit and synchronous rectification enable a significant reduction of dissipation in the IC, and the
IC operates with high efficiency at both light loads and heavy loads. Current limit PFM is used for the control method, and even
when switching current superposition occurs, increases of output voltage ripple are suppressed, allowing use over a wide voltage
and current range. The IC is compatible with low-capacitance ceramic capacitors, and a small, high-performance step-down DCDC converter can be created.
The actual output voltage VOUT(E) in the electrical characteristics is the threshold voltage of the PFM comparator in the block
diagram. Therefore the average output voltage of the step-down circuit, including peripheral components, depends on the ripple
voltage. Before use, test fully using the actual device.
VIN =VCE=3.6V、VOUT=1.8V、IOUT=5mA、L=10μH、CL=22uF、Ta=25℃
VIN =VCE=3.6V、VOUT=1.8V、IOUT=30mA、L=10μH、CL=22uF、Ta=25℃
VLX
VLX
VOUT
VOUT
VLX : 2[V/div]
VOUT : 50[mV/div]
VOUT(E)
Voltage
ILX
ILX
IPFM
10[μs/div ]
ILX : 100[mA/div]
10[μs/div ]
Reference voltage for stabilization of the output voltage of the IC.
(1) The feedback voltage (FB voltage) is the voltage that results from dividing the output voltage with the IC internal dividing
resistors RFB1 and RFB2. The PFM comparator compares this FB voltage to VREF. When the FB voltage is lower than VREF, the PFM
comparator sends a signal to the buffer driver through the PFM control circuit to turn on the Pch driver Tr. When the FB voltage is
higher than VREF, the PFM comparator sends a signal to prevent the Pch driver Tr from turning on.
(2) When the Pch driver Tr is on, the current sense circuit monitors the current that flows through the Pch driver Tr connected to the
Lx pin. When the current reaches the set PFM switching current (IPFM), the current sense circuit sends a signal to the buffer driver
through the PFM control circuit. This signal turns off the Pch driver Tr and turns on the Nch synchronous rectification switch Tr.
(3) The on time (off time) of the Nch synchronous rectification switch Tr is dynamically optimized inside the IC. After the off time
elapses and the PFM comparator detects that the VOUT voltage is higher than the set voltage, the PFM comparator sends a signal
to the PFM control circuit that prevents the Pch driver Tr from turning on. However, if the VOUT voltage is lower than the set voltage,
the PFM comparator starts Pch driver Tr on.
By continuously adjusting the interval of the linked operation of (1), (2) and (3) above in response to the load current, the output
voltage is stabilized with high efficiency from light loads to heavy loads
13/33
XC9265 Series
■OPERATIONAL EXPLANATION (Continued)
.
The PFM switching current monitors the current that flows through the Pch driver Tr, and is a value that limits the Pch driver Tr
current.
The Pch driver Tr remains on until the coil current reaches the PFM switching current (IPFM). An approximate value for this ontime tON can be calculated using the following equation:
tON = L × IPFM / (VIN – VOUT)
To avoid excessive ripple voltage in the event that the coil current does not reach the PFM switching current within a certain
interval even though the Pch driver Tr has turned on and the FB voltage is above VREF, the Pch driver Tr can be turned off at any
timing using the maximum on-time function of the PFM control circuit. If the Pch driver Tr turns off by the maximum on-time function
instead of the current sense circuit, the Nch synchronous rectification switch Tr will not turn on and the coil current will flow to the
VOUT pin by means of the parasite diode of the Nch synchronous rectification switch Tr.
When the VIN voltage is lower than the output voltage, through mode automatically activates and the Pch driver Tr stays on
continuously.
(1) In through mode, when the load current is increased and the current that flows through the Pch driver Tr reaches a load current
that is several tens of mA lower than the set PFM switching current (IPFM), the current sense circuit sends a signal through the PFM
control circuit to the buffer driver. This signal turns off the Pch driver Tr and turns on the Nch synchronous rectification switch Tr.
(2) After the on-time (off-time) of the Nch synchronous rectification switch Tr, the Pch driver Tr turns on until the current reaches
the set PFM switching current (IPFM) again.
If the load current is large as described above, operations (1) and (2) above are repeated. If the load current is several tens of
mA lower than the PFM switching current (IPFM), the Pch driver Tr stays on continuously.
When the VIN voltage rises, VIN start mode stops the short-circuit protection function during the interval until the FB voltage
approaches VREF. After the VIN voltage rises and the FB voltage approaches VREF by step-down operation, VIN start mode is
released. In order to prevent an excessive rush current while VIN start mode is activated, the coil current flows to the VOUT pin by
means of the parasitic diode of the Nch synchronous rectification Tr. In VIN start mode as well, the coil current is limited by the
PFM switching current.
The short-circuit protection function monitors the VOUT pin voltage, and if the VOUT pin voltage drops below the Short Protection
Threshold Voltage (VSHORT) due to a short circuit or overcurrent, the short circuit protection function operates.
When the short-circuit protection function is activated, the Pch driver Tr and Nch Synchronous Switch Tr are held off. If the VOUT
pin voltage exceeds the Short Protection Threshold Voltage (VSHORT) after the short-circuit protection function is activated, normal
operation resumes.
To cancel the short-circuit protection function, it is necessary to start the IC after putting the IC in the standby state with the CE
function, or to raise the input voltage after setting the input voltage below the UVLO detection voltage (VUVLO(E)-VHYS(E)).
14/33
XC9265
Series
■OPERATIONAL EXPLANATION (Continued)
When the VIN pin voltage drops below the UVLO detection voltage, the IC stops switching operation at any selected timing, turns
off the Pch driver Tr and Nch synchronous rectification switch Tr (UVLO mode). When the VIN pin voltage recovers and rises above
the UVLO release voltage, the IC restarts operation.
On the XC9265 series, a CL discharge function is available as an option (XC9265C/XC9265D types). This function enables quick
discharging of the CL load capacitance when “L” voltage is input into the CE pin by the Nch Tr connected between the VOUT-GND
pins, or in UVLO mode. This prevents malfunctioning of the application in the event that a charge remains on CL when the IC is
stopped. The discharge time is determined by CL and the CL discharge resistance RDCHG, including the Nch Tr (refer to the diagram
below). Using this time constant τ= CL×RDCHG, the discharge time of the output voltage is calculated by means of the equation
below.
V = VOUT × e - t /τ, or in terms of t, t = τIn(VOUT / V)
V
VOUT
t
CL
RDCHG
τ
: Output voltage after discharge
: Set output voltage
: Discharge time
: Value of load capacitance (CL)
: Value of CL discharge resistance Varies by power supply voltage.
: CL × RDCHG
VOUT
R
RDCHG = R + RON
CE / UVLO
Signal
RON
The CL discharge function is not available on the XC9265A/XC9265B types.
15/33
XC9265 Series
■NOTE ON USE
1. Be careful not to exceed the absolute maximum ratings for externally connected components and this IC.
2. The DC/DC converter characteristics greatly depend not only on the characteristics of this IC but also on those of externally
connected components, so refer to the specifications of each component and be careful when selecting the components. Be
especially careful of the characteristics of the capacitor used for the load capacity CL and use a capacitor with B characteristics
(JIS Standard) or an X7R/X5R (EIA Standard) ceramic capacitor.
3. Use a ground wire of sufficient strength. Ground potential fluctuation caused by the ground current during switching could cause
the IC operation to become unstable, so reinforce the area around the GND pin of the IC in particular.
4. Mount the externally connected components in the vicinity of the IC. Also use short, thick wires to reduce the wire impedance.
5. When the voltage difference between VIN and VOUT is small, switching energy increases and there is a possibility that the ripple
voltage will be too large. Before use, test fully using the actual device.
6. The CE pin does not have an internal pull-up or pull-down, etc. Apply the prescribed voltage to the CE pin.
7. If other than the recommended inductance and capacitance values are used, excessive ripple voltage or a drop in efficiency
may result.
8. If other than the recommended inductance and capacitance values are used, a drop in output voltage when the load is excessive
may cause the short-circuit protection function to activate. Before use, test fully using the actual device.
9. At high temperature, excessive ripple voltage may occur and cause a drop in output voltage and efficiency. Before using at high
temperature, test fully using the actual device
10. At light loads or when IC operation is stopped, leakage current from the Pch driver Tr may cause the output voltage to rise.
11. The average output voltage may vary due to the effects of output voltage ripple caused by the load current. Before use, test
fully using the actual device.
12. If the CL capacitance or load current is large, the output voltage rise time will lengthen when the IC is started, and coil current
overlay may occur during the interval until the output voltage reaches the set voltage (refer to the diagram below).
XC9265Aシリーズ、V
IN=VCE=0→6.0V、VOUT =1.0V、I OUT =200mA、L=10μH、C L=22uF、Ta=25℃
XC9265A series
VLX
ILX
VLX : 10[V/div ]
IPFM
I L : 200[mA/div ]
VOUT
VOUT : 1[V/div ]
VIN
VIN : 5[V/div ]
Zoom
200[μs/div ]
VLX
VLX : 10[V/div ]
ILX
I L : 200[mA/div ]
VOUT
VIN
VOUT : 1[V/div ]
VIN : 5[V/div ]
5[μs/div ]
13. When the IC is started, the short-circuit protection function does not operate during the interval until the VOUT voltage reaches
a value near the set voltage.
14. If the IC is started at a VIN voltage that activates through mode, it is possible that the short-circuit protection function will not
operate. Before use, test fully using the actual device.
15. If the load current is excessively large when the IC is started, it is possible that the VOUT voltage will not rise to the set voltage.
Before use, test fully using the actual device.
16/33
XC9265
Series
■NOTE ON USE (Continued)
16. In actual operation, the maximum on-time depends on the peripheral components, input voltage, and load current. Before use,
test fully using the actual device.
17. When the VIN voltage is turned on and off continuously, excessive rush current may occur while the voltage is on. Before use,
test fully using the actual device.
18. When the VIN voltage is high, the Pch driver may change from on to off before the coil current reaches the PFM switching
current (IPFM), or before the maximum on-time elapses. Before use, test fully using the actual device.
19. When the IC change to the Through Mode at light load, the supply current of this IC can increase in some cases.
20. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be
exceeded.
21. Torex places an importance on improving our products and their reliability.
We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their
systems.
22. The UVLO function can be activated when the UVLO hysteresis width gets to about 0mV and after several tens ms elapses
at light loads. Before use, test fully using the actual device.
17/33
XC9265 Series
■NOTE ON USE (Continued)
●Instructions of pattern layouts
1. To suppress fluctuations in the VIN potential, connect a bypass capacitor (CIN) in the shortest path between the VIN pin and
ground pin.
2. Please mount each external component as close to the IC as possible.
3. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit
impedance.
4. Make sure that the ground traces are as thick as possible, as variations in ground potential caused by high ground currents
at the time of switching may result in instability of the IC.
5. Internal driver transistors bring on heat because of the transistor current and ON resistance of the driver transistors.
●Recommended Pattern Layout (USP-6EL)
Layer 1
Layer 3
18/33
Layer 2
Layer 4
XC9265
Series
●Recommended Pattern Layout (SOT-25)
Layer 1
Layer 3
Layer 2
Layer 4
19/33
XC9265 Series
■TYPICAL PERFORMANCE CHARACTERISTICS
(1) Efficiency vs. Output Current
XC9265A181
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L=44μF(JMK107BJ226MA×2)
100
80
40
VIN =2.7V
VIN =4.2V
60
Efficiency : EFFI (%)
Efficiency : EFFI (%)
100
XC9265A181
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
VIN =3.6V
80
VIN =2.7V
60
VIN =4.2V
VIN =3.6V
40
20
20
0
0
0.01
0.1
1
10
100
0.01
1000
0.1
XC9265B181
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L=44μF(JMK107BJ226MA×2)
Efficiency : EFFI (%)
Efficiency : EFFI (%)
VIN =3.6V
VIN =2.7V
20
80
VIN =4.2V
60
VIN =3.6V
VIN =2.7V
40
20
0
0
0.01
0.1
1
10
100
0.01
0.1
1
Output Current : I OUT (mA)
100
XC9265A301
XC9265A301
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L=44μF(JMK107BJ226MA×2)
100
100
80
80
VIN =4.2V
VIN =3.6V
40
20
VIN =4.2V
60
VIN =3.6V
40
20
0
0
0.1
1
10
Output Current : I OUT (mA)
20/33
10
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
Efficiency : EFFI (%)
Efficiency : EFFI (%)
Output Current : I OUT (mA)
0.01
1000
100
VIN =4.2V
60
100
XC9265B181
80
40
10
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
100
60
1
Output Current : I OUT (mA)
Output Current : I OUT (mA)
100
1000
0.01
0.1
1
10
Output Current : I OUT (mA)
100
1000
XC9265
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(1) Efficiency vs. Output Current
XC9265B301
XC9265B301
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L=44μF(JMK107BJ226MA×2)
100
80
Efficiency : EFFI (%)
Efficiency : EFFI (%)
100
VIN =4.2V
60
VIN =3.6V
40
20
80
VIN =4.2V
60
VIN =3.6V
40
20
0
0
0.01
0.1
1
10
100
0.01
0.1
Output Current : I OUT (mA)
1
10
100
Output Current : I OUT (mA)
(2) Output Voltage vs. Output Current
XC9265A181
XC9265A181
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=44μF(JMK107BJ226MA×2)
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
2.2
VIN =2.7V,3.6V,4.2V
VIN =2.7V,3.6V,4.2V
Output Voltage : VOUT (V)
Output Voltage : VOUT (V)
2.2
2.0
1.8
1.6
2.0
1.8
1.6
1.4
1.4
1.2
1.2
0.01
0.1
1
10
100
0.01
1000
Output Current : I OUT (mA)
1
10
100
1000
Output Current : I OUT (mA)
XC9265B181
XC9265B181
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=44μF(JMK107BJ226MA×2)
2.2
Output Voltage : VOUT (V)
2.2
Output Voltage : VOUT (V)
0.1
VIN =2.7V,3.6V,4.2V
2.0
1.8
1.6
1.4
VIN =2.7V,3.6V,4.2V
2.0
1.8
1.6
1.4
1.2
1.2
0.01
0.1
1
Output Current : I OUT (mA)
10
100
0.01
0.1
1
10
100
Output Current : I OUT (mA)
21/33
XC9265 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(2) Output Voltage vs. Output Current
XC9265A301
XC9265A301
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L=44μF(JMK107BJ226MA×2)
3.4
3.4
VIN =3.6V,4.2V
Output Voltage : VOUT (V)
Output Voltage : VOUT (V)
VIN =3.6V,4.2V
3.2
3.0
2.8
3.2
3.0
2.8
2.6
2.6
2.4
2.4
0.01
0.1
1
10
100
0.01
1000
0.1
Output Current : I OUT (mA)
XC9265B301
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L=44μF(JMK107BJ226MA×2)
1000
3.4
VIN =3.6V,4.2V
VIN =3.6V,4.2V
Output Voltage : VOUT (V)
Output Voltage : VOUT (V)
100
XC9265B301
3.2
3.0
2.8
2.6
3.2
3.0
2.8
2.6
2.4
2.4
0.01
0.1
1
10
100
0.01
0.1
Output Current : I OUT (mA)
10
100
XC9265A181
XC9265A181
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=44μF(JMK107BJ226MA×2)
300
300
250
250
VIN =2.7V
200
VIN =3.6V
150
VIN =4.2V
100
VIN =4.2V
200
VIN =3.6V
150
VIN =2.7V
100
50
50
0
0
0.01
1
Output Current : I OUT (mA)
Ripple Voltage : Vr (mV)
Ripple Voltage : Vr (mV)
10
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
3.4
0.1
1
10
Output Current : I OUT (mA)
22/33
1
Output Current : I OUT (mA)
100
1000
0.01
0.1
1
10
Output Current : I OUT (mA)
100
1000
XC9265
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(3) Ripple Voltage vs. Output Current
XC9265B181
XC9265B181
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L=44μF(JMK107BJ226MA×2)
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
300
Ripple Voltage : Vr (mV)
Ripple Voltage : Vr (mV)
300
250
200
150
VIN =4.2V
VIN =3.6V
100
VIN =2.7V,3.6V,4.2V
250
200
150
100
VIN =2.7V
50
50
0
0
0.01
0.1
1
10
100
0.01
0.1
Output Current : I OUT (mA)
XC9265A301
250
250
200
Ripple Voltage : Vr (mV)
Ripple Voltage : Vr (mV)
300
VIN =4.2V
VIN =3.6V
100
50
200
VIN =4.2V
150
VIN =3.6V
100
50
0
0
0.1
1
10
100
1000
0.01
0.1
1
10
100
1000
Output Current : I OUT (mA)
XC9265B301
XC9265B301
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L=44μF(JMK107BJ226MA×2)
300
300
250
250
Ripple Voltage : Vr (mV)
Ripple Voltage : Vr (mV)
Output Current : I OUT (mA)
200
VIN =3.6V
VIN =4.2V
150
100
200
150
VIN =4.2V
VIN =3.6V
100
50
50
0
0.01
100
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L=44μF(JMK107BJ226MA×2)
300
0.01
10
XC9265A301
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
150
1
Output Current : I OUT (mA)
0
0.1
1
Output Current : I OUT (mA)
10
100
0.01
0.1
1
10
100
Output Current : I OUT (mA)
23/33
XC9265 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(4) Output Voltage Vs. Ambient Temperature
XC9265x301
XC9265x181
3.3
VIN =5.0V
VIN =5.0V
2.0
Output Voltage : VOUT (V)
Output Voltage : VOUT (V)
2.1
1.9
1.8
1.7
3.2
3.1
3.0
2.9
2.8
1.6
2.7
1.5
-50
-25
0
25
50
75
-50
100
-25
Ambient Temperature: Ta(℃)
0
25
50
75
100
Ambient Temperature: Ta(℃)
(5) Supply Current vs. Ambient Temperature
XC9265x301
XC9265x181
3.0
3.0
VIN =2.3V
VIN =3.5V
2.5
Supply Current : Iq ( μA)
Supply Current : Iq ( μA)
2.5
2.0
1.5
1.0
2.0
1.5
1.0
0.5
0.5
0.0
0.0
-50
-25
0
25
50
75
-50
100
-25
Ambient Temperature: Ta(℃)
0
25
50
75
100
Ambient Temperature: Ta(℃)
(6) Stand-by Current vs. Ambient Temperature
XC9265x301
XC9265x181
3.0
3.0
Standby Current: I STB (μA)
Standby Current: I STB (μA)
VIN=5.0V,3.6V,2.3V
2.5
2.0
1.5
1.0
2.0
1.5
1.0
0.5
0.5
0.0
0.0
-50
-25
0
25
50
Ambient Temperature: Ta(℃)
24/33
VIN=5.0V,3.6V
2.5
75
100
-50
-25
0
25
50
Ambient Temperature: Ta(℃)
75
100
XC9265
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(7) UVLO Release Voltage vs. Ambient Temperature
XC9265x181
XC9265x301
2.00
UVLO Release Voltage: VRELEASE (V)
UVLO Release Voltage: VRELEASE (V)
2.00
VRELEASE (T) =1.8V
1.95
1.90
1.85
1.80
1.75
1.70
1.65
1.60
VRELEASE (T) =1.8V
1.95
1.90
1.85
1.80
1.75
1.70
1.65
1.60
-50
-25
0
25
50
75
100
-50
-25
0
25
50
75
100
Ambient Temperature: Ta(℃)
XC9265A181
XC9265A301
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L=22μF(JMK107BJ226MA)
600
600
VIN =5.0V,3.6V
500
PFM Switching Current: IPFM (mA)
PFM Switching Current: IPFM (mA)
Ambient Temperature: Ta(℃)
VIN =2.3V
400
300
200
100
0
VIN =5.0V,3.6V
500
400
300
200
100
0
-50
-25
0
25
50
75
100
-50
-25
Ambient Temperature: Ta (℃)
0
25
50
75
100
Ambient Temperature: Ta (℃)
XC9265B181
XC9265B301
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
500
500
400
PFM Switching Current: IPFM (mA)
PFM Switching Current: IPFM (mA)
(8) PFM Switching Current vs. Ambient Temperature
VIN =5.0V
VIN =3.6V
VIN =2.3V
300
200
100
0
400
VIN =5.0V
300
VIN =3.6V
200
100
0
-50
-25
0
25
50
Ambient Temperature: Ta (℃)
75
100
-50
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
25/33
XC9265 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(9) Maximum Frequency vs. Ambient Temperature
XC9265A101
XC9265A251
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),
CL=22μF(JMK107BJ226MA)
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),
CL=22μF(JMK107BJ226MA)
3,000
3,000
Maximum Frequency (kHz)
Maximum Frequency (kHz)
VIN =5.0V
2,500
VIN =5.0V
VIN =3.6V
2,000
VIN =2.7V
1,500
VIN =2.0V
1,000
500
VIN =4.2V
2,500
VIN =3.6V
2,000
1,500
1,000
500
0
0
-50
-25
0
25
50
75
100
-50
-25
Ambient Temperature: Ta(℃)
0
25
50
XC9265A401
XC9265B101
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BBJ106MA),
CL=22μF(JMK107BJ226MA)
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BBJ106MA),
CL=22μF(JMK107BJ226MA)
3,000
VIN =5.0V
2,500
VIN =5.5V
Maximum Frequency (kHz)
Maximum Frequency (kHz)
2,500
VIN =5.0V
2,000
1,500
1,000
500
VIN =3.6V
2,000
VIN =2.7V
VIN =2.0V
1,500
1,000
500
0
0
-50
-25
0
25
50
75
-50
100
-25
50
75
100
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BBJ106MA),
CL=22μF(JMK107BJ226MA)
VIN =4.2V
3,000
VIN =6.0V
VIN =5.0V
Maximum Frequency (kHz)
VIN =3.6V
2,500
25
XC9265B401
XC9265B251
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BBJ106MA),
CL=22μF(JMK107BJ226MA)
3,000
0
Ambient Temperature: Ta(℃)
Ambient Temperature: Ta(℃)
Maximum Frequency (kHz)
100
3,000
VIN =6.0V
2,000
1,500
1,000
500
0
VIN =5.5V
2,500
VIN =5.0V
2,000
1,500
1,000
500
0
-50
-25
0
25
50
Ambient Temperature: Ta(℃)
26/33
75
Ambient Temperature: Ta(℃)
75
100
-50
-25
0
25
50
Ambient Temperature: Ta(℃)
75
100
XC9265
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(10) Pch Driver ON Resistance vs. Ambient Temperature
(11) Nch Driver ON Resistance vs. Ambient Temperature
XC9265
VIN =VCE,VOUT=0V,ILX=100mA
1.2
1.0
Topr=85℃
Topr=25℃
0.8
Topr=-40℃
0.6
0.4
0.2
LX SW “Nch” ON Resistance: RLXN (Ω)
LX SW “Pch” ON Resistance: RLXP (Ω)
XC9265
0.0
VIN =VCE
1.2
1.0
Topr=85℃
Topr=25℃
0.8
Topr=-40℃
0.6
0.4
0.2
0.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
1.5
2.0
(12) Lx SW "H" Leakage Current vs. Ambient Temperature
XC9265
3.0
4.0
4.5
5.0
XC9265
VOUT=VCE=0V,VLX=0V
VOUT=VCE=0V,VLX=5.0V
LX Leak Current : ILXL (μA)
3.0
VIN =5.0V
2.5
2.0
1.5
1.0
0.5
VIN =5.0V
2.5
2.0
1.5
1.0
0.5
0.0
0.0
-50
-25
0
25
50
75
100
-50
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
Ambient Temperature: Ta (℃)
(14) CE "High" Voltage vs. Ambient Temperature
(15) CE "Low" Voltage vs. Ambient Temperature
XC9265
XC9265
1.0
CE “Low” Voltage: VCEL (V)
1.0
CE “High” Voltage: VCEH (V)
3.5
(13) Lx SW "L" Leakage Current vs. Ambient Temperature
3.0
LX Leak Current : ILXL (μA)
2.5
Input Voltage : VIN (V)
Input Voltage : VIN (V)
0.8
0.6
VIN =5.0V
VIN =3.6V
0.4
VIN =2.0V
0.2
0.0
0.8
0.6
VIN =5.0V
VIN =3.6V
0.4
VIN =2.0V
0.2
0.0
-50
-25
0
25
50
Ambient Temperature: Ta (℃)
75
100
-50
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
27/33
XC9265 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(16) CL Discharge vs. Ambient Temperature
(17) Short Protection Threshold vs. Ambient Temperature
XC9265C/D
XC9265
VIN =VOUT,VCE=0V
VIN =VCE
1.0
Short Protection Thrreshold Volage(V)
CL Discharge Resistance: (Ω)
600
500
400
VIN =6.0V
300
VIN =4.0V
VIN =2.0V
200
100
0
VIN =5.0V,3.6V,2.0V
0.8
0.6
0.4
0.2
0.0
-50
-25
0
25
50
Ambient Temperature: Ta (℃)
75
100
-50
-25
0
25
50
Ambient Temperature: Ta (℃)
75
100
(18) Rising Output Voltage
XC9265A181
XC9265A181
VIN =VCE=0→3.6V,IOUT=10uA
VIN =VCE=0→3.6V,IOUT=100mA
VOUT
VOUT
VIN
VIN
VLX
VLX
ILx
ILx
VOUT:1V/div,VIN :5V/div,VLX:2V/div,ILX:500mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BBJ106MA),
CL=22μF(JMK107BJ226MA)
VOUT:1V/div,VIN :5V/div,VLX:2V/div,ILX:500mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BBJ106MA),
CL=22μF(JMK107BJ226MA)
XC9265B181
XC9265B181x
XC9265B181
VIN =VCE=0→3.6V,IOUT=10uA
VIN =VCE=0→3.6V,IOUT=50mA
VOUT
VIN
VIN
VLX
VLX
ILx
ILx
VOUT:1V/div,VIN :5V/div,VLX:2V/div,ILX:500mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BBJ106MA),
CL=22μF(JMK107BJ226MA)
28/33
VOUT
VOUT:1V/div,VIN :5V/div,VLX:2V/div,ILX:500mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BBJ106MA),
CL=22μF(JMK107BJ226MA)
XC9265
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(19) Load Transient Response
XC9625A301
XC9265A301
VIN =3.6V, IOUT=10uA→100mA
VIN =3.6V IOUT=10uA→100mA
VOUT
VOUT
VLX
VLX
ILx
ILx
Iout
Iout
VOUT:200mV/div,IOUT:100mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
VOUT:200mV/div,IOUT:100mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L=44μF(JMK107BJ226MA×2)
XC9265B301
XC9265B301
VIN =3.6V, IOUT=10uA→50mA
VIN =3.6V, IOUT=10uA→50mA
VOUT
VOUT
VLX
VLX
ILx
ILx
Iout
Iout
VOUT:200mV/div,IOUT:50mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
VOUT:200mV/div,IOUT:50mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=44μF(JMK107BJ226MA×2)
XC9265A181
XC9265A181
VIN =3.6V, IOUT=10uA→100mA
VIN =3.6V IOUT=10uA→100mA
VOUT
VOUT
VLX
VLX
ILx
ILx
Iout
Iout
VOUT:100mV/div,IOUT:100mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
VOUT:100mV/div,IOUT:100mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=44μF(JMK107BJ226MA×2)
29/33
XC9265 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(19) Load Transient Response
XC9265B181
XC9265B181
VIN =3.6V IOUT=10uA→50mA
VIN =3.6V IOUT=10uA→50mA
VOUT
VOUT
VLX
VLX
ILx
ILx
Iout
Iout
VOUT:100mV/div,IOUT:50mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
30/33
VOUT:100mV/div,IOUT:50mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=44μF(JMK107BJ226MA×2)
XC9265
Series
■PACKAGING INFORMATION
For the latest package information go to, www.torexsemi.com/technical-support/packages
PACKAGE
OUTLINE / LAND PATTERN
THERMAL CHARACTERISTICS
SOT-25
SOT-25 PKG
SOT-25 Power Dissipiation
USP-6EL(DAF)
USP-6EL PKG
USP-6EL Power Dissipation
31/33
XC9265 Series
■MARKING RULE
SOT-25(Under
●SOT-25(Underdot仕様)
dot)
5
4
①
②
③
④
MARK① represents product series
MARK
PRODUCT SERIES
C
XC9265A/B/C/D*****-G
※SOT-25 Under dot
⑤
MARK② represents output voltage
1
2
MARK
3
拡大
Zoom
USP-6EL
●USP-6EL
③
⑤
3
②
④
2
①
1
6
5
4
PRODUCT SERIES
OUTPUT VOLTAGE
0
1
1.0
1.9
2.0
2.9
3.0
3.9
4.0
1.05
1.95
2.05
2.95
3.05
3.95
-
2
1.1
2.1
3.1
-
1.15
2.15
3.15
-
3
1.2
2.2
3.2
-
1.25
2.25
3.25
-
4
1.3
2.3
3.3
-
1.35
2.35
3.35
-
5
1.4
2.4
3.4
-
1.45
2.45
3.45
-
6
1.5
2.5
3.5
-
1.55
2.55
3.55
-
7
1.6
2.6
3.6
-
1.65
2.65
3.65
-
8
1.7
2.7
3.7
-
1.75
2.75
3.75
-
9
1.8
3.8
-
1.85
2.85
3.85
-
A
-
2.8
1.9
2.9
3.9
-
1.95
2.95
3.95
B
1.0
2.0
3.0
4.0
1.05
2.05
3.05
-
C
1.1
2.1
3.1
-
1.15
2.15
3.15
-
D
1.2
2.2
3.2
-
1.25
2.25
3.25
-
E
1.3
2.3
3.3
-
1.35
2.35
3.35
-
F
1.4
2.4
3.4
-
1.45
2.45
3.45
-
H
1.5
2.5
3.5
-
1.55
2.55
3.55
-
K
1.6
2.6
3.6
-
1.65
2.65
3.65
-
L
1.7
2.7
3.7
-
1.75
2.75
3.75
-
M
1.8
2.8
3.8
-
1.85
2.85
3.85
-
MARK③ represents output voltage range
MARK
OUTPUT
VOLTAGE
A
1.0~1.8V
B
1.9~2.8V
C
2.9~3.8V
D
3.9~4.0V
E
1.0~1.8V
F
1.9~2.8V
H
2.9~3.8V
K
3.9~4.0V
P
1.05~1.85V
R
1.95~2.85V
S
2.95~3.85V
T
3.95V
U
1.05~1.85V
V
1.95~2.85V
X
2.95~3.85V
Y
3.95V
PRODUCT SERIES
XC9265A/C**1**-G
XC9265B/D**1**-G
XC9265A/C**B**-G
XC9265B/D**B**-G
MARK④⑤ represents production lot number
01~09、0A~0Z、11~9Z、A1~A9、AA~AZ、B1~ZZ
(G, I, J, O, Q, W excluded and no character inversion used)
32/33
XC9265A/B*****-G
XC9265C/D*****-G
XC9265
Series
1.
The product and product specifications contained herein are subject to change without notice to
improve performance characteristics. Consult us, or our representatives before use, to confirm that
the information in this datasheet is up to date.
2.
The information in this datasheet is intended to illustrate the operation and characteristics of our
products. We neither make warranties or representations with respect to the accuracy or
completeness of the information contained in this datasheet nor grant any license to any intellectual
property rights of ours or any third party concerning with the information in this datasheet.
3.
Applicable export control laws and regulations should be complied and the procedures required by
such laws and regulations should also be followed, when the product or any information contained in
this datasheet is exported.
4.
The product is neither intended nor warranted for use in equipment of systems which require
extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss
of human life, bodily injury, serious property damage including but not limited to devices or equipment
used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and
other transportation industry and 5) safety devices and safety equipment to control combustions and
explosions. Do not use the product for the above use unless agreed by us in writing in advance.
5.
Although we make continuous efforts to improve the quality and reliability of our products;
nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal
injury and/or property damage resulting from such failure, customers are required to incorporate
adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention
features.
6.
Our products are not designed to be Radiation-resistant.
7.
Please use the product listed in this datasheet within the specified ranges.
8.
We assume no responsibility for damage or loss due to abnormal use.
9.
All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex
Semiconductor Ltd in writing in advance.
TOREX SEMICONDUCTOR LTD.
33/33