0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
XC9270A085QR-G

XC9270A085QR-G

  • 厂商:

    TOREX(特瑞仕)

  • 封装:

    SOIC8

  • 描述:

    IC REG BUCK ADJUSTABLE 2A 8SOPFD

  • 数据手册
  • 价格&库存
XC9270A085QR-G 数据手册
XC9270/XC9271 Series ETR05048-004a 30V Driver Transistor Built-In Step-Down DC/DC Converters ■GENERAL DESCRIPTION The XC9270/XC9271 series are 30V operation step-down DC/DC converter ICs with an internal driver transistor. The internal Nch driver transistor is driven by bootstrap to achieve a stable, high-efficiency power supply up to an output current of 2.0A. Low ESR capacitors such as ceramic capacitors can be used for the load capacitor (CL). A 0.8V reference voltage source is incorporated in the IC, and the output voltage can be set to a value from 1.2V to 12.0V using external resistors (RFB1, RFB2). 300kHz or 500kHz can be selected for the switching frequency. The generation of unneeded noise can be suppressed by synchronizing to an external CLK in a range of ±25% of the free running frequency using the SYNC pin. In automatic PWM/PFM control, the IC operates by PFM control when the load is light to achieve high efficiency over the full load range from light to heavy. The soft start time can be set as desired by adding an external capacitance to the SS pin. With the built-in UVLO function, the driver transistor is forced OFF when input voltage becomes 4.5V or lower. Internal protection circuits include over current protection, integral latch protection, short-circuit protection, and thermal shutdown circuits to enable safe use. ■FEATURES ■APPLICATIONS ● Car navigation systems ● Car audios ● Industrial equipment Input Voltage : 7V ~ 30V FB Voltage : 0.8V (±2%) Oscillation Frequency : 300kHz, 500kHz Maximum Output Current : 2.0A Control Method : PWM (XC9270) PWM/PFM (XC9271) Soft-start : External Capacitor (set by external capacitor C) Protection Circuit : Over Current Protection 3.2A (TYP.) Integral Latch Method (XC9270 / XC9271A) Automatic Recovery (XC9270 / XC9271B) Thermal Shutdown Low ESR Ceramic Capacitor Ceramic Capacitor : Operating Ambient Temperature : -40℃ ~ 105℃ Package : SOP-8FD Environmentally Friendly : EU RoHS Compliant, Pb Free *Performance depends on external components and wiring on the PCB. ■TYPICAL APPLICATION CIRCUIT ■TYPICAL PERFORMANCE CHARACTERISTICS XC9270x085/XC9271x085 (VIN=12V , VOUT=5V) CIN2 VIN GND L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) CIN1 CE 100 BST 90 L SS Lx SBD CSS CFB SYNC RFB1 FB CL RFB2 CSYNC Efficiency :EFFI[%] CBST 80 70 60 50 40 30 20 XC9271 10 XC9270 0 1 10 100 1000 10000 Output Current :IOUT[mA] 1/28 XC9270/XC9271 Series ■BLOCK DIAGRAM 1) XC9270 Series, Type A VIN BST LocalReg(=VL) Each Circuit CEH Under Voltage Lock Out SHP UVLO Buffer & CurrentSense OE SHP Latch delay TSD Short Circuit Protection Lx CurrentLimit FB Err Amp VREF PWM Comparator + CEH PWM ControlLOGIC + Soft Start SS Ramp Wave CE Chip Enable CEH Thermal Shutdown EXT CLK Control Logic OSC SYNC SHP TSD GND * Diodes inside the circuit are ESD protection diodes and parasitic diodes. 2) XC9270 Series, Type B VIN BST LocalReg(=VL) Each Circuit CEH Under Voltage Lock Out SHP UVLO Buffer & CurrentSense OE TSD SHP Short Circuit Protection Lx CurrentLimit FB - Err Amp PWM Comparator + VREF CEH PWM ControlLOGIC + Soft Start SS CE Ramp Wave Chip Enable CEH Thermal Shutdown OSC EXT CLK Control Logic SHP TSD * Diodes inside the circuit are ESD protection diodes and parasitic diodes. 2/28 SYNC GND XC9270/XC9271 Series ■BLOCK DIAGRAM (Continued) 3) XC9271 Series, Type A VIN BST LocalReg(=VL) Each Circuit CEH Under Voltage Lock Out SHP UVLO Buffer & CurrentSense OE SHP Latch delay TSD Short Circuit Protection Lx CurrentLimit FB Err Amp VREF PWM Comparator + CEH PWM/PFM ControlLOGIC CurrentLimit PFM OSC EXT CLK Control Logic + Soft Start SS Ramp Wave CE Chip Enable CEH Thermal Shutdown SYNC SHP TSD GND * Diodes inside the circuit are ESD protection diodes and parasitic diodes. 4) XC9271 Series, Type B VIN BST LocalReg(=VL) Each Circuit CEH Under Voltage Lock Out SHP UVLO Buffer & CurrentSense OE TSD SHP Short Circuit Protection Lx CurrentLimit FB - Err Amp PWM Comparator + VREF CEH PWM/PFM ControlLOGIC CurrentLimit PFM OSC EXT CLK Control Logic + Soft Start SS CE Ramp Wave Chip Enable CEH Thermal Shutdown SYNC SHP TSD GND * Diodes inside the circuit are ESD protection diodes and parasitic diodes. 3/28 XC9270/XC9271 Series ■PRODUCT CLASSIFICATION ●Ordering Information XC9270①②③④⑤⑥-⑦ PWM XC9271①②③④⑤⑥-⑦ PWM/PFM Auto DESIGNATOR ITEM ① Functional selection ②③ Adjustable Output Voltage ④ Oscillation Frequency ⑤⑥-⑦ (*1) Package (Order Unit) (*1) SYMBOL A DESCRIPTION Refer to Selection Guide B 08 Output voltage can be adjusted in 1.2V to 12V 3 300kHz 5 500kHz QR-G SOP-8FD (1,000pcs/Reel) The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant. ●Selection Guide (*1) TYPE CURRENT LIMITTER LATCH PROTECTION CHIP ENABLE UVLO A YES YES (*1) YES YES B YES NO YES YES TYPE THERMAL SHUTDOWN SOFT-START SYNCHRONIZED with EXTERNAL CLOCK A YES YES YES B YES YES YES The over-current protection latch is an integral latch type. ■PIN CONFIGURATION VIN 1 8 Lx CE 2 7 BST SYNC 3 6 GND FB 4 5 SS SOP-8FD (TOP VIEW) * The dissipation pad for this IC should be solder-plated for mounting strength and heat dissipation. Please refer to the reference mount pattern and metal masking. The dissipation pad should be connected to the GND (No. 6) pin. 4/28 XC9270/XC9271 Series ■PIN ASSIGNMENT PIN NUMBER PIN NAME FUNCTIONS 1 VIN Power Input 2 CE Chip Enable 3 SYNC External CLK Sync Pin 4 FB Output Voltage Sense 5 SS Soft-start Adjustment 6 GND Ground 7 BST Bootstrap 8 Lx Switching Output SIGNAL STATUS L Stand-by H Active OPEN Undefined State (*1) SOP-8FD ■FUNCTION PIN NAME CE L SYNC (*1) H Operates with internal clock frequency CLK Synchronizes with External Clock Signal OPEN Undefined State (*1) Please do not leave the CE and SYNC pin open. ■ABSOLUTE MAXIMUM RATINGS Ta=25℃ PARAMETER SYMBOL RATINGS VIN Pin Voltage VIN -0.3 ~ 36 BST Pin Voltage VBST FB Pin Voltage VFB -0.3 ~ 6.5 V SYNC Pin Voltage VSYNC -0.3 ~ 6.5 V CE Pin Voltage VCE -0.3 ~ 36 V SS Pin Voltage VCSS -0.3 ~ 6.5 Lx Pin Voltage VLx Lx Pin Current ILx -0.3 or VLX-0.3 (*1) UNITS V ~ VLX+6.5 or +36 -0.3 ~ VIN+0.3 or +36 (*2) V V (*3) 4.2 V A 300 Power Dissipation Pd 1500 (40mm x 40mm Standard board) (*5) 2500( JESD51-7 mW board) (*5) Surge Voltage VSURGE 46 (*4) V Operating Ambient Temperature Topr -40 ~ 105 ℃ Storage Temperature Tstg -55 ~ 125 ℃ * All voltages are described based on the GND pin. (*1) The minimum value should be either -0.3V or VLX-0.3V in the highest. (*2) The maximum value should be either VLX+6.5V or +36V in the lowest. The maximum value should be either VIN+0.3V or +36V in the lowest. Applied Time≦400ms (*5) The power dissipation figure shown is PCB mounted and is for reference only. Please refer to PACKAGING INFORMATION for the mounting condition. (*3) (*4) 5/28 XC9270/XC9271 Series ■ELECTRICAL CHARACTERISTICS Ta=25℃ ●XC9270A/B083 PARAMETER SYMBOL CONDITIONS VFB=0.816V→0.784V, VSS=6V, VFB Voltage when Lx pin oscillates MIN. TYP. MAX. UNITS CIRCUIT 0.784 0.8 0.816 V ③ - ±50 - ppm/℃ ③ FB Voltage VFB1 FB Voltage Temperature Characteristics ΔVFB/ (ΔTopr・VFB) Output Voltage Setting Range VOUTSET - 1.2 (*1) - 12 V - Operating Voltage Range VIN - -40℃≦Topr≦105℃ UVLO detect voltage VUVLO1 VIN=4.9V→4.3V, VFB=0.65V, VSS=6V VIN Voltage when Lx pin voltage changes from "H" level to "L" level UVLO release voltage VUVLO2 VIN=4.7V→5.3V, VFB=0.65V, VSS=6V VIN Voltage when Lx pin voltage changes from "L" level to "H" level 7 - 30 V - 4.3 4.6 4.9 V ③ 4.7 5.0 5.3 V ③ Quiescent Current Iq VIN=VCE=30V, VFB=0.95V - 200 310 μA ④ Stand-by Current ISTB VIN=30V, VCE=0V, VSS=0V, VSYNC=0V - 0.01 0.1 μA ④ Oscillation Frequency fOSC Connected to external components, IOUT=300mA 276 300 324 kHz ① External Clock Signal Synchronized Frequency SYNCOSC Connected to external components, IOUT=0mA fOSCx0.75 fOSC fOSCx1.25 kHz ② External Clock Signal Duty Cycle DSYNC Connected to external components, IOUT=0mA 25 - 75 % ② Maximum Duty Cycle DMAX VFB=0.65V 83 85 88 % ③ Minimum Duty Cycle DMIN VFB=0.95V - - 0 % ③ Lx SW On Resistance RLx VFB=0.65V, VSS=6V - 0.3 - Ω ③ Current Limit (*2) ILIM VFB=0.65V, VSS=6V 2.4 3.2 - A ③ Latch Time tLAT XC9270A series only Connected to external components, VFB=0.65V, VSS=6V 0.8 1.3 1.8 ms ⑤ Short Detect Voltage VSHORT XC9270B series only, Connected to external components, VFB=0.45V→0.35V, VSS=6V VFB Voltage when Oscillation Frequency is decreased 0.35 0.40 0.45 V ⑤ Internal Soft-start Time tSS1 VCE=0→12V, VSS=6V, VFB=VFB1×0.9V Time until Lx pin oscillates 0.8 1.3 2.0 ms ③ External Soft-start Time tSS2 VCE=0→12V, VSS=6V, VFB=VFB1×0.9V, CSS=0.01μF Time until Lx pin oscillates 9 15 24 ms ③ Efficiency (*3) EFFI Connected to external components, IOUT=1A - 91 - % ① SYNC ‘H’ Voltage VSYNCH Connected to external components, IOUT=0mA 1.5 - 6 V ② SYNC ‘L’ Voltage VSYNCL Connected to external components, IOUT=0mA - - 0.4 V ② SYNC ‘H’ Current ISYNCH VIN=VCE=30V, VSYNC=6V, VFB=0.95V -0.1 0 0.1 μA ④ SYNC ‘L’ Current ISYNCL VIN=VCE=30V, VSYNC=0V, VFB=0.95V -0.1 0 0.1 μA ④ FB ‘H’ Current IFBH VIN=VCE=30V, VFB=6V, VSS=6V -0.1 0 0.1 μA ④ FB ‘L’ Current IFBL VIN=VCE=30V, VFB=0V, VSS=6V -0.1 0 0.1 μA ④ CE ‘H’ Voltage VCEH VCE=1.0V→2.8V, VFB=0.65V, VSS=6V VCE Voltage when Lx pin voltage changes from "L" level to "H" 2.8 - 30 V ③ CE ‘L’ Voltage VCEL VCE=2.8V→1.0V, VFB=0.65V, VSS=6V VCE Voltage when Lx pin voltage changes from "H" level to "L" - - 1 V ③ CE ‘H’ Current ICEH VIN=VCE=30V, VFB=0.95V -0.1 0 0.1 μA ④ CE ‘L’ Current ICEL VIN=30V, VCE=0V, VFB=0.95V -0.1 0 0.1 μA ④ Thermal Shutdown Temperature TTSD Junction Temperature - 150 - ℃ - Hysteresis Width THYS Junction Temperature - 25 - ℃ - NOTE: Unless otherwise stated, VIN=VCE=12V, VSYNC=2V, VSS=2V External Components: Unless otherwise stated, L=22μH, CIN=10μF, CL=47μF, CBST=1μF, RFB1=2kΩ, RFB2=390Ω, CFB=10nF (*1) Limited by a minimum ON time of 0.22μs (TYP.). (*2) Current limit denotes the level of detection at peak of coil current. (*3) EFFI=[(output voltage × output current)÷(inputvoltage × input current)]×100 6/28 XC9270/XC9271 Series ■ ELECTRICAL CHARACTERISTICS (Continued) Ta=25℃ ●XC9271A/B083 PARAMETER SYMBOL FB Voltage VFB1 FB Voltage Temperature Characteristics ΔVFB/ (ΔTopr・VFB) Output Voltage Setting Range VOUTSET Operating Voltage Range VIN CONDITIONS MIN. TYP. MAX. UNITS CIRCUIT 0.784 0.8 0.816 V ③ - ±50 - ppm/℃ ③ - 1.2 (*1) - VIN-3 or 12 (*2) V - - VFB=0.816V→0.784V, VSS=6V VFB Voltage when Lx pin oscillates -40℃≦Topr≦105℃ UVLO detect voltage VUVLO1 VIN=4.9V→4.3V, VFB=0.65V, VSS=6V VIN Voltage when Lx pin voltage changes from "H" level to "L" level UVLO release voltage VUVLO2 VIN=4.7V→5.3V, VFB=0.65V, VSS=6V VIN Voltage when Lx pin voltage changes from "L" level to "H" level 7 - 30 V - 4.3 4.6 4.9 V ③ 4.7 5.0 5.3 V ③ Quiescent Current Iq VIN=VCE=30V, VFB=0.95V - 200 310 μA ④ Stand-by Current ISTB VIN=30V, VCE=0V, VSS=0V, VSYNC=0V - 0.01 0.1 μA ④ Oscillation Frequency fOSC Connected to external components, IOUT=300mA 276 300 324 kHz ① External Clock Signal Synchronized Frequency SYNCOSC Connected to external components, IOUT=0mA fOSCx0.75 fOSC fOSCx1.25 kHz ② External Clock Signal Duty Cycle DSYNC Connected to external components, IOUT=0mA 25 - 75 % ② Maximum Duty Cycle DMAX VFB=0.65V 83 85 88 % ③ Minimum Duty Cycle DMIN VFB=0.95V - - 0 % ③ Lx SW On Resistance RLx VFB=0.65V, VSS=6V - 0.3 - Ω ③ PFM Switch Current IPFM Connected to external components, IOUT=0mA 80 160 240 mA ① Current Limit (*3) ILIM VFB=0.65V, VSS=6V 2.4 3.2 - A ③ Latch Time tLAT XC9271A series only, Connected to external components, VFB=0.65V, VSS=6V 0.8 1.3 1.8 ms ⑤ Short Detect Voltage VSHORT XC9271B series only, Connected to external components, VFB=0.45V→0.35V, VSS=6V VFB Voltage when Oscillation Frequency is decreased 0.35 0.40 0.45 V ⑤ Internal Soft-start Time tSS1 VCE=0→12V, VSS=6V, VFB=VFB1×0.9V Time until Lx pin oscillates 0.8 1.3 2.0 ms ③ External Soft-start Time tSS2 VCE=0→12V, VSS=6V, VFB=VFB1×0.9V, CSS=0.01μF Time until Lx pin oscillates 9 15 24 ms ③ Efficiency (*4) EFFI Connected to external components, IOUT=1A - 91 - % ① SYNC ‘H’ Voltage VSYNCH Connected to external components, IOUT=0mA 1.5 - 6 V ② SYNC ‘L’ Voltage VSYNCL Connected to external components, IOUT=0mA - - 0.4 V ② SYNC ‘H’ Current ISYNCH VIN=VCE=30V, VSYNC=6V, VFB=0.95V -0.1 0 0.1 μA ④ SYNC ‘L’ Current ISYNCL VIN=VCE=30V, VSYNC=0V, VFB=0.95V -0.1 0 0.1 μA ④ FB ‘H’ Current IFBH VIN=VCE=30V, VFB=6V, VSS=6V -0.1 0 0.1 μA ④ FB ‘L’ Current IFBL VIN=VCE=30V, VFB=0V, VSS=6V -0.1 0 0.1 μA ④ CE ‘H’ Voltage VCEH VCE=1.0V→2.8V, VFB=0.65V, VSS=6V VCE Voltage when Lx pin voltage changes from "L" level to "H" 2.8 - 30 V ③ CE ‘L’ Voltage VCEL VCE=2.8V→1.0V, VFB=0.65V, VSS=6V VCE Voltage when Lx pin voltage changes from "H" level to "L" - - 1 V ③ CE ‘H’ Current ICEH VIN=VCE=30V, VFB=0.95V -0.1 0 0.1 μA ④ CE ‘L’ Current ICEL VIN=30V, VCE=0V, VFB=0.95V -0.1 0 0.1 μA ④ Thermal Shutdown Temperature TTSD Junction Temperature - 150 - ℃ - Hysteresis Width THYS Junction Temperature - 25 - ℃ - NOTE: Unless otherwise stated, VIN=VCE=12V, VSYNC=2V, VSS=2V External Components: Unless otherwise stated, L=22μH, CIN=10μF, CL=47μF, CBST=1μF, RFB1=2kΩ, RFB2=390Ω, CFB=10nF (*1) Limited by a minimum ON time of 0.22μs (TYP.). (*2) VIN-3V or 12V, whichever is lower. (*3) Current limit denotes the level of detection at peak of coil current. (*4) EFFI=[(output voltage × output current)÷(inputvoltage × input current)]×100 7/28 XC9270/XC9271 Series ■ELECTRICAL CHARACTERISTICS (Continued) Ta=25℃ ●XC9270A/B085 PARAMETER SYMBOL FB Voltage VFB1 FB Voltage Temperature Characteristics ΔVFB/ (ΔTopr・VFB) Output Voltage Setting Range VOUTSET Operating Voltage Range VIN CONDITIONS VFB=0.816V→0.784V, VSS=6V VFB Voltage when Lx pin oscillates -40℃≦Topr≦105℃ UVLO detect voltage VUVLO1 VIN=4.9V→4.3V, VFB=0.65V, VSS=6V VIN Voltage when Lx pin voltage changes from "H" level to "L" level UVLO release voltage VUVLO2 VIN=4.7V→5.3V, VFB=0.65V, VSS=6V VIN Voltage when Lx pin voltage changes from "L" level to "H" level Quiescent Current Iq VIN=VCE=30V, VFB=0.95V Stand-by Current ISTB VIN=30V, VCE=0V, VSS=0V, VSYNC=0V Oscillation Frequency fOSC Connected to external components, IOUT=300mA External Clock Signal Synchronized Frequency SYNCOSC External Clock Signal Duty Cycle MIN. TYP. MAX. UNITS CIRCUIT 0.784 0.8 0.816 V ③ - ±50 - ppm/℃ ③ 1.2 (*1) - 12 V - 7 - 30 V - 4.3 4.6 4.9 V ③ 4.7 5.0 5.3 V ③ - 250 360 μA ④ - 0.01 0.1 μA ④ 460 500 540 kHz ① Connected to external components, IOUT=0mA fOSCx0.75 fOSC fOSCx1.25 kHz ② DSYNC Connected to external components, IOUT=0mA 25 - 75 % ② Maximum Duty Cycle DMAX VFB=0.65V 83 85 88 % ③ Minimum Duty Cycle DMIN VFB=0.95V - - 0 % ③ Lx SW On Resistance RLx VFB=0.65V, VSS=6V - 0.3 - Ω ③ ILIM VFB=0.65V, VSS=6V 2.4 3.2 - A ③ Latch Time tLAT XC9270A series only, Connected to external components, VFB=0.65V, VSS=6V 0.4 0.7 1.0 ms ⑤ Short Detect Voltage VSHORT XC9270B series only, Connected to external components, VFB=0.45V→0.35V, VSS=6V VFB Voltage when Oscillation Frequency is decreased 0.35 0.40 0.45 V ⑤ Internal Soft-start Time tSS1 VCE=0→12V, VSS=6V, VFB=VFB1×0.9V Time until Lx pin oscillates 0.4 0.7 1.2 ms ③ External Soft-start Time tSS2 VCE=0→12V, VSS=6V, VFB=VFB1×0.9V, CSS=0.01μF Time until Lx pin oscillates 5 9 15 ms ③ EFFI Connected to external components, IOUT=1A Current Limit Efficiency (*2) - 91 - % ① SYNC ‘H’ Voltage VSYNCH Connected to external components, IOUT=0mA 1.5 - 6 V ② SYNC ‘L’ Voltage VSYNCL Connected to external components, IOUT=0mA - - 0.4 V ② SYNC ‘H’ Current ISYNCH VIN=VCE=30V, VSYNC=6V, VFB=0.95V -0.1 0 0.1 μA ④ SYNC ‘L’ Current ISYNCL VIN=VCE=30V, VSYNC=0V, VFB=0.95V -0.1 0 0.1 μA ④ FB ‘H’ Current IFBH VIN=VCE=30V, VFB=6V, VSS=6V -0.1 0 0.1 μA ④ FB ‘L’ Current IFBL VIN=VCE=30V, VFB=0V, VSS=6V -0.1 0 0.1 μA ④ CE ‘H’ Voltage VCEH VCE=1.0V→2.8V, VFB=0.65V, VSS=6V VCE Voltage when Lx pin voltage changes from "L" level to "H" 2.8 - 30 V ③ CE ‘L’ Voltage VCEL VCE=2.8V→1.0V, VFB=0.65V, VSS=6V VCE Voltage when Lx pin voltage changes from "H" level to "L" - - 1 V ③ CE ‘H’ Current ICEH VIN=VCE=30V, VFB=0.95V -0.1 0 0.1 μA ④ CE ‘L’ Current ICEL VIN=30V, VCE=0V, VFB=0.95V -0.1 0 0.1 μA ④ Thermal Shutdown Temperature TTSD Junction Temperature - 150 - ℃ - Hysteresis Width THYS Junction Temperature - 25 - ℃ - (*3) NOTE: Unless otherwise stated, VIN=VCE=12V, VSYNC=2V, VSS=2V External Components: Unless otherwise stated, L=22μH, CIN=10μF, CL=47μF, CBST=1μF, RFB1=2kΩ, RFB2=390Ω, CFB=10nF (*1) Limited by a minimum ON time of 0.15μs (TYP.). (*2) Current limit denotes the level of detection at peak of coil current. (*3) EFFI=[(output voltage × output current)÷(inputvoltage × input current)]×100 8/28 XC9270/XC9271 Series ■ ELECTRICAL CHARACTERISTICS (Continued) Ta=25℃ ●XC9271A/B085 PARAMETER SYMBOL FB Voltage VFB1 FB Voltage Temperature Characteristics ΔVFB/ (ΔTopr・VFB) Output Voltage Setting Range VOUTSET Operating Voltage Range VIN CONDITIONS VFB=0.816V→0.784V, VSS=6V VFB Voltage when Lx pin oscillates -40℃≦Topr≦105℃ VIN=4.9V→4.3V, VFB=0.65V, VSS=6V VIN Voltage when Lx pin voltage changes from "H" level to "L" level VIN=4.7V→5.3V, VFB=0.65V, VSS=6V VIN Voltage when Lx pin voltage changes from "L" level to "H" level VIN=VCE=30V, VFB=0.95V VIN=30V, VCE=0V, VSS=0V, VSYNC=0V Connected to external components, IOUT=300mA MIN. TYP. MAX. UNITS CIRCUIT 0.784 0.8 0.816 V ③ - ±50 - ppm/℃ ③ 1.2 (*1) - V - 7 - VIN-3 or 12 (*2) 30 V - 4.3 4.6 4.9 V ③ 4.7 5.0 5.3 V ③ 460 250 0.01 500 360 0.1 540 μA μA kHz ④ ④ ① UVLO detect voltage VUVLO1 UVLO release voltage VUVLO2 Quiescent Current Stand-by Current Oscillation Frequency Iq ISTB fOSC External Clock Signal Synchronized Frequency SYNCOSC Connected to external components, IOUT=0mA fOSCx0.75 fOSC fOSCx1.25 kHz ② DSYNC Connected to external components, IOUT=0mA 25 - 75 % ② DMAX DMIN RLx IPFM ILIM VFB=0.65V VFB=0.95V VFB=0.65V, VSS=6V Connected to external components, IOUT=0mA VFB=0.65V, VSS=6V XC9271A series only, Connected to external components, VFB=0.65V, VSS=6V XC9271B series only, Connected to external components, VFB=0.45V→0.35V, VSS=6V VFB Voltage when Oscillation Frequency is decreased VCE=0→12V, VSS=6V, VFB=VFB1×0.9V Time until Lx pin oscillates VCE=0→12V, VSS=6V, VFB=VFB1×0.9V, CSS=0.01μF Time until Lx pin oscillates Connected to external components, IOUT=1A Connected to external components, IOUT=0mA Connected to external components, IOUT=0mA VIN=VCE=30V, VSYNC=6V, VFB=0.95V VIN=VCE=30V, VSYNC=0V, VFB=0.95V 83 80 2.4 85 0.3 160 3.2 88 0 240 - % % Ω mA A ③ ③ ③ ① ③ 0.4 0.7 1.0 ms ⑤ 0.35 0.40 0.45 V ⑤ 0.4 0.7 1.2 ms ③ 5 9 15 ms ③ 1.5 -0.1 -0.1 91 0 0 6 0.4 0.1 0.1 % V V μA μA ① ② ② ④ ④ External Clock Signal Duty Cycle Maximum Duty Cycle Minimum Duty Cycle Lx SW On Resistance PFM Switch Current Current Limit (*3) Latch Time tLAT Short Detect Voltage VSHORT Internal Soft-Start Time tSS1 External Soft-Start Time tSS2 Efficiency (*4) SYNC ‘H’ Voltage SYNC ‘L’ Voltage SYNC ‘H’ Current SYNC ‘L’ Current EFFI VSYNCH VSYNCL ISYNCH ISYNCL FB ‘H’ Current IFBH VIN=VCE=30V, VFB=6V, VSS=6V -0.1 0 0.1 μA ④ FB ‘L’ Current IFBL -0.1 0 0.1 μA ④ CE ‘H’ Voltage VCEH 2.8 - 30 V ③ CE ‘L’ Voltage VCEL - - 1 V ③ CE ‘H’ Current CE ‘L’ Current Thermal Shutdown Temperature Hysteresis Width ICEH ICEL TTSD THYS VIN=VCE=30V, VFB=0V, VSS=6V VCE=0.8V→2.8V, VFB=0.65V, VSS=6V VCE Voltage when Lx pin voltage changes from "L" level to "H" VCE=2.8V→0.8V, VFB=0.65V, VSS=6V VCE Voltage when Lx pin voltage changes from "H" level to "L" VIN=VCE=30V, VFB=0.95V VIN=30V, VCE=0V, VFB=0.95V Junction Temperature Junction Temperature -0.1 -0.1 - 0 0 150 25 0.1 0.1 - μA μA ℃ ℃ ④ ④ - NOTE: Unless otherwise stated, VIN=VCE=12V, VSYNC=2V, VSS=2V External Components: Unless otherwise stated, L=22μH, CIN=10μF, CL=47μF, CBST=1μF, RFB1=2kΩ, RFB2=390Ω, CFB=10nF (*1) Limited by a minimum ON time of 0.15μs (TYP.). (*2) VIN-3V or 12V, whichever is lower. (*3) Current limit denotes the level of detection at peak of coil current. (*4) EFFI=[(output voltage × output current)÷(inputvoltage × input current)]×100 9/28 XC9270/XC9271 Series ■TEST CIRCUITS Circuit① A VIN BST SS Lx SYNC FB Probe 1μF 22μH V 10μF CE A CFB RFB1 RFB2 47μF SBD GND V Circuit② Probe VIN CE BST SS Lx Probe 1μF 22μH 10μF CFB SYNC V RFB1 FB RFB2 47μF SBD GND Circuit③ Probe A VIN CE BST 6V V 10μF 0.01μF 10/28 SS Lx SYNC FB V GND V V XC9270/XC9271 Series ■TEST CIRCUITS (Continued) Circuit④ A VIN A 10μF A CE BST SS Lx SYNC FB A GND Circuit⑤ VIN CE BST SS Lx SYNC FB Probe 6V 22μH 10μF GND SBD V 47μF V 11/28 XC9270/XC9271 Series ■TYPICAL APPLICATION CIRCUIT CIN2 VIN GND CE BST CIN1 CBST L SS Lx SBD CSS CFB SYNC RFB1 FB CL RFB2 CSYNC 【Typical Examples】 MANUFACTURER PRODUCT NUMBER VALUE CLF12555-150M 15μH CLF12555-220M 22μH CLF12555-330M 33μH Toho Zinc TCM-0840-200 20μH CIN1 Murata GRM32ER71H106K 10μF/50V CIN2 Murata GRM21BB31H105K 1μF/50V GRM32ER71A476K 47μF/10V GRM32ER71E226K 22μF/25V 2parallel Panasonic 25SVPD47M 47μF/25V, ESR=30mΩ TDK L Murata CL SBD (*1) (*2) TOREX XBS304S19R-G VF=0.51V (3A) TOSHIBA CMS15 VF=0.58V (3A) VISHAY SS5P5 VF=0.69V (5A) CSS 0.01μF/10V (*1) CSYNC 1000pF/10V (*2) CBST 1μF/10V Can also be used without CSS (SS pin OPEN). When used without CSS, the IC starts at the soft start time set internally. Can be used without CSYNC if the external CLK synchronization function is not used. In this case, connect the SYNC pin to GND in close proximity to the IC. The output voltage can be set by adding an external dividing resistor. The output voltage is determined by the equation below based on the values of RFB1 and RFB2. VOUT=0.8 × (RFB1+RFB2)/RFB2 with RFB2≦15kΩ Adjust the value of the phase compensation speed-up capacitor. Adjust the CFB value so that fzfb = 1/(2×π×CFB×RFB1) is about 10kHz. 【Setting Example】 When RFB1=68kΩ, RFB2=13kΩ, VOUT=0.8×(68kΩ+13kΩ) / 13kΩ≒4.98V When fzfb is set to a target of 10.64kHz using the above equation, CFB=1/(2×π×10.64kHz×68kΩ)≒220pF If the dropout voltage is too large and the minimum Lx ON time is not attained, pulse skipping will occur and the output voltage will not be stable. Use with an Lx ON time longer than the minimum. The minimum ON time is 0.22μs (TYP.) at a set frequency of 300kHz, or 0.15μs (TYP.) at a set frequency of 500kHz. 12/28 XC9270/XC9271 Series ■TYPICAL APPLICATION CIRCUIT (Continued) In the XC9270 and XC9271 series, it is optimum to set an inductance value within the range below based on the set frequency and setting output voltage. fOSCSET: Set frequency VOUTSET: Setting output voltage fOSCSET 1.2V≦VOUTSET≦6V 6V<VOUTSET≦12V 300kHz 20μH 22μH 33μH 500kHz 15μH 20μH 22μH The soft start time of the XC9270 and XC9271 series can be adjusted externally (SS pin). The soft start time is the time from the start of VCE until the output voltage reaches 90% of the set voltage. The soft start time depends on the external capacitance CSS, and is determined by the equation below. tSS2 = 1.08 × CSS / ISS [ms] CSS: External capacitance [nF] ISS: When fOSCSET=300kHz, 0.72 [μA (TYP.)] When fOSCSET=500kHz, 1.2 [μA(TYP.)] fOSCSET: Set frequency [kHz] * Note that the value of the soft start time tSS2 varies depending on the effective capacitance value of the delay capacitance CSS. 【Calculation Example】 When fOSCSET=300kHz and CSS=10nF, tss2=1.08×10/0.72=15ms When fOSCSET=500kHz and CSS=10nF, tss2=1.08×10/1.2=9ms The minimum value tSS2 of the soft-start time is set internally. The internal soft-start time tSS1 is determined by the equation below. When fOSCSET=300kHz, tss1=1.3ms (TYP.) When fOSCSET=500kHz, tss1=0.7ms (TYP.) VCE 90% of setting voltage VOUT tSS1 tSS2 13/28 XC9270/XC9271 Series ■OPERATIONAL EXPLANATION The XC9270/XC9271 series consists internally of a reference voltage supply, ramp wave circuit, error amp, PWM comparator, phase compensation circuit, N-ch MOS driver transistor, current limiting circuit, under-voltage lockout (UVLO) circuit, internal power supply (VL) circuit, thermal shutdown (TSD) circuit, oscillator (OSC) circuit, soft-start circuit, control block and other elements. The voltage feed back from the FB pin is compared to the internal reference voltage by the error amp, the output from the error amp is phase compensated, and the signal is input to the PWM comparator to determine the ON time of switching during PWM operation. The output signal from the error amp is compared to the ramp wave by the PWM comparator, and the output is sent to the buffer drive circuit and output from the Lx pin as the duty width of switching. This operation is performed continuously to stabilize the output voltage. The driver transistor current is monitored at each switching by the output signal from the error amp is modulated as a multi-feedback signal. This allows a stable feedback system to be obtained even when a low ESR capacitor such as a ceramic capacitor is used, and this stabilizes the output voltage. Because the IC uses an N-ch MOS transistor for the Hi side driver, a voltage higher than the VIN voltage is required to turn on the driver. To generate a voltage higher than the VIN voltage, the bootstrap method is used. VIN BST LocalReg(=VL) Each Circuit CEH Under Voltage Lock Out SHP UVLO Buffer & CurrentSense OE TSD SHP Short Circuit Protection Lx CurrentLimit FB Err Amp VREF PWM Comparator + CEH PWM/PFM ControlLOGIC CurrentLimit PFM OSC EXT CLK Control Logic + Soft Start SS CE Ramp Wave Chip Enable CEH Thermal Shutdown SYNC SHP TSD GND XC9271 Series, Type B The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter. The ramp wave circuit determines switching frequency. The frequency is fixed internally and can be selected from 300kHz, 500 kHz. Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation. The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback voltage divided by the internal split resistors, RFB1 and RFB2. When a voltage is lower than the reference voltage, then the voltage is fed back, the output voltage of the error amplifier increases. The error amplifier output is fixed internally to deliver an optimized signal to the mixer which is a part of a PWM comparator. The XC9270/XC9271 series can be put in the standby state by inputting L level into the CE pin. In the standby state, the quiescent current of the IC is 0.01μA (TYP.). When H level is input into CE pin, operation starts. The input of the CE pin is CMOS input and the sink current is 0μA (TYP.). 14/28 XC9270/XC9271 Series ■OPERATIONAL EXPLANATION (Continued) The current limiting circuits of type B combine both current limiting and short-circuit protection. (1) The current in the N-ch MOS driver transistor connected to the Lx pin is monitored, and when the load current attains the limiting current, the current limiting circuit activates and the output voltage drops. (2) As the current limiting state continues, the switching frequency drops to prevent coil current (IL) overlay. When the current limiting state is released, the switching frequency returns to the set frequency. (3) If the output voltage drops further from states (2), the output current is limited, the switching frequency is lowered further, and the short-circuit state is entered. When the load becomes lighter than the short-circuit state, restart takes place automatically. To prevent overshoot during restart, restart takes place by soft-start. ILIM IL Lx ①電流制限動作 VOUT ② If the current limiting state ③ If VOUT drops to 50% (TYP.) or less of the regular level in the state continues, the ②電流制限動作状態が続くとスイ ①、②の状態で、V of③ ① or ②, the output current is reduced, the switching frequency is OUTが定常状態から50%(TYP.)以下に低下した場合、出力 switching frequency is further ッチング周波数を低下させる 電流を絞り更にスイッチング周波数を低下させ、短絡状態となる lowered, and the IC enters the short-circuit state lowered VOUT×0.50 When the current limiting state continues for a certain time, the correct limiting circuit of type A latches and stops the Lx pin in the "H" level state (turning off the driver Tr). To restart operation by soft-start once in the latch stop state, "L" level must be input into the CE pin followed by "H" level, or briefly lowering the VIN voltage below the UVLO detection voltage must be performed. 1.3ms(TYP.fOSCSET=300kHz) 0.7ms(TYP.fOSCSET=500kHz) ILIM IL Lx ①電流制限動作 VOUT ② ② ①の状態が1.3ms(TYP.f When the state of ① OSCSET continues for 1.3ms =300kHz)あるいは0.7ms(TYP.f OSCSET=500kHz) (TYP. fOSCSET=300kHz) or 0.7ms (TYP., fOSCSET=500kHz), the Lx pin  続くと、Lx端子は"L"レベルの状態でラッチ停止する is latched to “L” level and operation stops ③ Operation restarts by soft start ③ CE="L"→"H"とすることでソ when CE=“L”→“H” フトスタートにて動作を再開 CE The thermal shutdown (TSD) as an over current limit is built in the XC9270/XC9271 series. When the junction temperature reaches the detection temperature, the driver transistor is forcibly turned off. When the junction temperature falls to the release temperature while in the output stop state, restart takes place by soft-start. When the VIN pin voltage falls below 4.6V (TYP.), EXTB becomes "H" level and forcibly stops output to prevent false pulse output due to instable operation of the internal circuits. When the VIN pin voltage rises above 5.0V (TYP.), the UVLO function is released, the soft-start function activates, and output start operation begins. Stopping by UVLO is not shutdown; only pulse output is stopped and the internal circuits continue to operate. 15/28 XC9270/XC9271 Series ■OPERATIONAL EXPLANATION (Continued) When an external CLK (±25% of free running frequency, on duty 25% to 75%) is input into the SYNC pin, operation is synchronized to the falling edge of the external CLK (external CLK synchronization function). When synchronized to the external CLK, the control mode is automatically PWM control. When the external CLK is fixed at "H" voltage or "L" voltage for about 3 cycles of the free running frequency, external CLK synchronization stops and operation at the free running frequency takes place. (1) Switching from free running frequency ⇒ external CLK synchronization 外部CLKに同期 自走周波数で動作 Lx 外部CLKの立下りEdge に対して同期する SYNC 自走周波数→外部CLK同期切り替えDelay(5周期程度) (2) Switching from external CLK synchronization ⇒ free running frequency Synchronized to external CLK 外部CLKに同期 Synchronized to external CLK 自走周波数で動作 Lx SYNC When there is no pulse for about 3 cycles, switches to free running frequency 3周期程度パルスが抜けると自走周波数に切り替わる 16/28 XC9270/XC9271 Series ■NOTE ON USE 1. For the phenomenon of temporal and transitional voltage decrease or voltage increase, the IC may be damaged or deteriorated if IC is used beyond the absolute MAX. specifications. 2. Make sure that the absolute maximum ratings of the external components and of this IC are not exceeded. 3. The DC/DC converter characteristics depend greatly on the externally connected components as well as on the characteristics of this IC, so refer to the specifications and standard circuit examples of each component when carefully considering which components to select. Be especially careful of the capacitor characteristics and use B characteristics (JIS standard) or X7R, X5R (EIA standard) ceramic capacitors. 4. The DC/DC converter of this IC uses a current-limiting circuit to monitor the coil peak current. If the potential dropout voltage is large or the load current is large, the peak current will increase, which makes it easier for current limitation to be applied which in turn could cause the operation to become unstable. When the peak current becomes large, adjust the coil inductance and sufficiently check the operation. The following formula is used to show the peak current. Peak Current: Ipk = ( VIN – VOUT ) × OnDuty / ( 2 × L × fOSC ) + IOUT L: Coil Inductance [H] fOSC: Oscillation Frequency [Hz] IOUT: Load Current [A] 5. If the difference between input voltage and output voltage is large, when the current limit circuit activates, the switching current might overlap and exceed the current limit spec. due to the circuit delay time. 6. The ripple voltage could be increased when switching from discontinuous conduction mode to Continuous conduction mode. Please apply the ICs only after careful examination by the customer. 7. In some cases, ripple voltage may increase in the XC9271 series when the load is light. This is for the purpose of charging the CBST, and is normal operation. 8. The IC enters test mode when a 6V external power supply is applied to the SS pin. Do not apply an external power supply to the SS pin during use. 9. The operation of the IC becomes unstable below the minimum operating voltage. 10. The effects of ambient noise and the state of the circuit board may cause release from the current limiting state, and the latch time may lengthen or latch operation may not take place. Test sufficiently using the actual equipment. 11. When operation changes from free running frequency to external CLK synchronization, the output voltage may fluctuate. Please apply the ICs only after careful examination by the customer. 17/28 XC9270/XC9271 Series ■NOTE ON USE (Continued) 12. Instructions of pattern layouts The operation may become unstable due to noise and/or phase lag from the output current when the wire impedance is high, please place the input capacitor(CIN1, CIN2) and the output capacitor (CL) as close to the IC as possible. (1) In order to stabilize VIN voltage level, we recommend that a by-pass capacitor (CIN1) be connected as close as possible to the VIN pin. (2) In order to stabilize GND voltage level, we recommend that a by-pass capacitor (CIN2) be connected as close as possible to the GND pin. (3) Please mount each external component as close to the IC as possible. (4) Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance. (5) Make sure that the GND traces are as thick as possible, as variations in ground potential caused by high ground currents at the time of switching may result in instability of the IC. (6) Because this product contains an internal driver, heat is generated due to the IOUT current and ON resistance of the N-ch MOS driver transistor. Layer 1 Layer 2 Layer 3 Layer 4 13. In general, semiconductor components have a possibility to have variation of electrical specifications due to the (cosmic) radiation exposure. Therefore this product has the same possibility. Please inform us in advance if your system might have a possibility to be exposed to the (cosmic) radiation in the production process (assembly, test, etc.). 14. Torex places an importance on improving our products and their reliability. We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems. 18/28 XC9270/XC9271 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (1) Efficiency vs. Output current XC9270x083/XC9271x083 (VIN=12V , VOUT=1.8V) XC9270x083/XC9271x083 (VIN=12V , VOUT=5V) L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 100 100 90 90 80 80 Efficiency :EFFI[%] Efficiency :EFFI[%] L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 70 60 50 40 30 20 XC9271 10 XC9270 0 70 60 50 40 30 20 XC9271 10 XC9270 0 1 10 100 1000 10000 1 XC9270x083/XC9271x083 (VIN=24V , VOUT=12V) 90 80 80 Efficiency :EFFI[%] Efficiency :EFFI[%] 90 70 60 50 40 30 XC9271 20 XC9270 70 60 50 40 30 XC9271 20 XC9270 10 0 0 1 10 100 1000 10000 1 10 100 1000 Output Current :IOUT[mA] Output Current :IOUT[mA] XC9270x085/XC9271x085 (VIN=12V , VOUT=1.8V) XC9270x085/XC9271x085 (VIN=12V , VOUT=5V) L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 100 90 90 80 80 Efficiency :EFFI[%] Efficiency :EFFI[%] 10000 L=30μH(CLF12555-300M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 100 10 70 60 50 40 30 20 XC9271 10 XC9270 0 10000 L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 70 60 50 40 30 20 XC9271 10 XC9270 0 1 10 100 1000 10000 1 Output Current :IOUT[mA] 10 100 1000 10000 Output Current :IOUT[mA] XC9270x085/XC9271x085 (VIN=24V , VOUT=5V) XC9270x085/XC9271x085 (VIN=24V , VOUT=12V) L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 100 90 90 80 80 Efficiency :EFFI[%] Efficiency :EFFI[%] 1000 XC9270x083/XC9271x083 (VIN=24V , VOUT=5V) L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 100 100 Output Current :IOUT[mA] 100 100 10 Output Current :IOUT[mA] 70 60 50 40 30 20 XC9271 10 XC9270 0 L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 70 60 50 40 30 20 XC9271 10 XC9270 0 1 10 100 1000 Output Current :IOUT[mA] 10000 1 10 100 1000 10000 Output Current :IOUT[mA] 19/28 XC9270/XC9271 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (2) Output Voltage vs. Output Currnt XC9270x083/XC9271x083 (VIN=12V , VOUT=1.8V) XC9270x083/XC9271x083 (VIN=12V , VOUT=5V) L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 5.60 XC9271 2.10 Output Voltage : VOUT[V] Output Voltage : VOUT[V] 2.20 XC9270 2.00 1.90 1.80 1.70 1.60 1.50 1.40 XC9271 5.40 XC9270 5.20 5.00 4.80 4.60 4.40 1 10 100 1000 10000 1 10 Output Current :IOUT[mA] XC9270x083/XC9271x083 (VIN=24V , VOUT=5V) L=30μH(CLF12555-300M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) XC9270 5.20 5.00 4.80 4.60 Output Voltage : VOUT[V] Output Voltage : VOUT[V] XC9271 12.80 XC9271 12.60 XC9270 12.40 12.20 12.00 11.80 11.60 11.40 11.20 11.00 1 10 100 1000 10000 1 10 Output Current :IOUT[mA] 100 1000 10000 Output Current :IOUT[mA] XC9270x085/XC9271x085 (VIN=12V , VOUT=1.8V) XC9270x085/XC971x085 (VIN=12V , VOUT=5V) L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 5.60 2.10 XC9271 2.00 XC9270 1.90 1.80 1.70 1.60 1.50 Output Voltage : VOUT[V] L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 2.20 Output Voltage : VOUT[V] 10000 13.00 4.40 1.40 XC9271 5.40 XC9270 5.20 5.00 4.80 4.60 4.40 1 10 100 1000 10000 1 10 Output Current :IOUT[mA] 100 1000 10000 Output Current :IOUT[mA] XC9270x085/XC9271x085 (VIN=24V , VOUT=5V) XC9270x085/XC9271x085 (VIN=24V , VOUT=12V) L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 6.00 L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 13.00 5.80 XC9271 12.80 XC9271 5.60 XC9270 12.60 XC9270 5.40 5.20 5.00 4.80 4.60 4.40 4.20 4.00 12.40 12.20 12.00 11.80 11.60 11.40 11.20 11.00 1 10 100 1000 Output Current :IOUT[mA] 20/28 Output Voltage : VOUT[V] Output Voltage : VOUT[V] 1000 XC9270x083/XC9271x083 (VIN=24V , VOUT=12V) L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 5.60 5.40 100 Output Current :IOUT[mA] 10000 1 10 100 1000 Output Current :IOUT[mA] 10000 XC9270/XC9271 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (3) Ripple Voltage vs. Output Current XC9270x083/XC9271x083 (VIN=12V , VOUT=5V) L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 45 XC9271 40 XC9270 50 Ripple Voltage :Vr[mV] 50 Ripple Voltage :Vr[mV] XC9270x085/XC9271x085 (VIN=12V , VOUT=5V) 35 30 25 20 15 10 5 45 XC9271 40 XC9270 35 30 25 20 15 10 5 0 0.1 10 1 100 1000 0 10000 0.1 1 Output Current :IOUT[mA] 10 (4) FB Voltage vs. Ambient Temperature VIN =12V 0.808 FB Voltage :VFB[V] 5.6 UVLO Voltage :VUVLO1 ,VUVLO2 [V] 0.810 0.806 0.804 0.802 0.800 0.798 0.796 0.794 0.792 0.790 0.788 0 25 50 10000 XC9270/XC9271 0.812 -25 1000 (5) UVLO Voltage vs. Ambient Temperature XC9270/XC9271 -50 100 Output Current :IOUT[mA] 75 100 Detection 5.4 Release 5.2 5.0 4.8 4.6 4.4 4.2 125 -50 -25 Ambient Temperature :Ta[℃] 0 25 50 75 100 125 Ambient Temperature :Ta[℃] (6) Oscillation Frequency vs. Ambient Temperature XC9270x083/XC9271x083 XC9270x085/XC9271x085 VIN =12V 340 330 320 310 300 290 280 270 260 VIN =12V 550 Oscillation Frequency :fosc[kHz] Oscillation Frequency :fosc[kHz] 350 250 540 530 520 510 500 490 480 470 460 450 -50 -25 0 25 50 75 100 125 -50 -25 Ambient Temperature :Ta[℃] 0 25 50 75 100 125 Ambient Temperature :Ta[℃] (7) Supply Current vs. Ambient Temperature XC9270x083/XC9271x083 XC9270x085/XC9271x085 VIN =30V 600 500 Supply Current :Iq[μA] 500 Supply Current :Iq[μA] VIN =30V 600 400 300 200 100 400 300 200 100 0 0 -50 -25 0 25 50 75 Ambient Temperature :Ta[℃] 100 125 -50 -25 0 25 50 75 100 125 Ambient Temperature :Ta[℃] 21/28 XC9270/XC9271 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (8) Stand-by Current vs. Ambient Temperature (9) Lx SW ON Resistance vs. Ambient Temperature XC9270/XC9271 XC9270/XC9271 VIN =30V 0.70 Lx SW ON Resistance :RLX[Ω] Stand-by Current :ISTB[μA] 5 4 3 2 1 0.60 0.50 0.40 0.30 0.20 0.10 0.00 0 -50 0 -25 25 50 75 100 -50 125 -25 Ambient Temperature :Ta[℃] 0 (10) Max Duty vs. Ambient Temperature 50 75 100 XC9271 VIN =12V 350 PFM Switch Current :IPFM[mA] 92.0 90.0 88.0 86.0 84.0 82.0 80.0 300 250 200 150 100 50 0 78.0 -50 -25 0 25 50 75 100 -50 125 -25 Ambient Temperature :Ta[℃] 0 25 50 75 100 125 Ambient Temperature :Ta[℃] (13) CE "L" Voltage vs. Ambient Temperature (12) CE "H" Voltage vs. Ambient Temperature XC9270/XC9271 XC9270/XC9271 3.0 3.0 VIN=30V VIN=30V VIN=12V 2.5 CE "L" Voltage :VCEL[V] CE "H" Voltage :VCEH[V] 125 (11) PFM Switch Current vs. Ambient Temperature XC9270/XC9271 Max Duty :DMAX [%] 25 Ambient Temperature :Ta[℃] VIN=7V 2.0 1.5 1.0 0.5 -50 -25 0 25 50 75 100 VIN=12V 2.5 VIN=7V 2.0 1.5 1.0 0.5 125 -50 -25 Ambient Temperature :Ta[℃] 0 25 50 75 100 125 Ambient Temperature :Ta[℃] (14)Internal Soft-Start Time vs. Ambient Temperature XC9270x085/XC9271x085 VIN =12V 3.0 Internal Soft-Start Time :tSS1 [ms] Internal Soft-Start Time :tSS1 [ms] XC9270x083/XC9271x083 2.5 2.0 1.5 1.0 0.5 0.0 -50 -25 0 25 50 75 Ambient Temperature :Ta[℃] 22/28 100 125 VIN =12V 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -50 -25 0 25 50 75 Ambient Temperature :Ta[℃] 100 125 XC9270/XC9271 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (15) External Soft-Start Time vs. Ambient Temperature XC9270x085/XC9271x085 VIN =12V 35 External Soft-Start Time :tSS2 [ms] External Soft-Start Time :tSS2 [ms] XC9270x083/XC9271x083 30 25 20 15 10 5 0 -50 -25 0 25 50 75 Ambient Temperature :Ta[℃] 100 125 VIN =12V 20 18 16 14 12 10 8 6 4 2 0 -50 -25 0 25 50 75 100 125 Ambient Temperature :Ta[℃] 23/28 XC9270/XC9271 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (16) Load Transient Response XC9270x083/XC9271x083 XC9270x083/XC9271x083 VIN =12V, VOUT=5V, IOUT=1A→300mA VIN =12V, VOUT=5V, IOUT=300mA→1A L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 1ms/div 1ms/div V OUT : 500mV/div V OUT : 500mV/div IOUT =300mA→1A IOUT =1A→300mA XC9270x083/XC9271x083 XC9270x083/XC9271x083 VIN =12V, VOUT=5V, IOUT=2A→1A VIN =12V, VOUT=5V, IOUT=1A→2A L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 1ms/div 1ms/div V OUT : 500mV/div V OUT : 500mV/div IOUT =1A→2A IOUT =2A→1A XC9270x085/XC9271x085 XC9270x085/XC9271x085 VIN =12V, VOUT=5V, IOUT=1A→300mA VIN =12V, VOUT=5V, IOUT=300mA→1A L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 1ms/div 1ms/div V OUT : 500mV/div V OUT : 500mV/div IOUT =300mA→1A IOUT =1A→300mA XC9270x085/XC9271x085 XC9270x085/XC9271x085 VIN =12V, VOUT=5V, IOUT=1A→2A VIN =12V, VOUT=5V, IOUT=2A→1A L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 1ms/div V OUT : 500mV/div 1ms/div V OUT : 500mV/div IOUT =1A→2A IOUT =2A→1A 24/28 XC9270/XC9271 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (17) Rising Response Time XC9270x083/XC9271x083 XC9270x083/XC9271x083 VIN =0→24V, VOUT=5V, IOUT=1mA VIN =0→12V, VOUT=5V, IOUT=1mA L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 1ms/div V IN: 0→12V 1ms/div V IN: 0→24V V OUT : 2V/div V OUT : 2V/div XC9270x085/XC9271x085 XC9270x085/XC9271x085 VIN =0→24V, VOUT=5V, IOUT=1mA VIN =0→12V, VOUT=5V, IOUT=1mA L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) V IN: 0→12V L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 1ms/div 1ms/div V IN: 0→24V V OUT : 2V/div V OUT : 2V/div (18) Input Transient Response XC9270x083/XC9271x083 XC9270x083/XC9271x083 VIN =30V→12V, VOUT=5V, IOUT=1A VIN =12V→30V, VOUT=5V, IOUT=1A L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 1ms/div V OUT : 200mV/div L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) V OUT : 200mV/div 1ms/div V IN=12V→30V V IN=30V→12V XC9270x085/XC9271x085 XC9270x085/XC9271x085 VIN =30V→12V, VOUT=5V, IOUT=1A VIN =12V→30V, VOUT=5V, IOUT=1A L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 1ms/div V OUT : 200mV/div L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) V OUT : 200mV/div 1ms/div V IN=12V→30V V IN=30V→12V 25/28 XC9270/XC9271 Series ■PACKAGING INFORMATION For the latest package information go to, www.torexsemi.com/technical-support/packages PACKAGE OUTLINE / LAND PATTERN THERMAL CHARACTERISTICS SOP-8FD SOP-8FD PKG SOP-8FD Power Dissipation 26/28 XC9270/XC9271 Series ■MARKING RULE ① SOP-8FD 8 7 6 5 ① ② ③ ② ④ ⑤ represents products series MARK PRODUCT SERIES C XC9270******-G D XC9271******-G represents products type MARK A 1 2 3 4 B ③ PRODUCT SERIES XC9270A*****-G XC9271A*****-G XC9270B*****-G XC9271B*****-G represents FB voltage and oscillation frequency MARK 3 5 3 5 VOLTAGE (V) 0.8 0.8 OSCILLATION FREQUENCY PRODUCT SERIES 300kHz 500kHz 300kHz 500kHz XC9270*083**-G XC9270*085**-G XC9271*083**-G XC9271*085**-G ④⑤ represents production lot number 01~09、0A~0Z、11~9Z、A1~A9、AA~AZ、B1~ZZ in order. (G, I, J, O, Q, W excluded) * No character inversion used. 27/28 XC9270/XC9271 Series 1. The product and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date. 2. The information in this datasheet is intended to illustrate the operation and characteristics of our products. We neither make warranties or representations with respect to the accuracy or completeness of the information contained in this datasheet nor grant any license to any intellectual property rights of ours or any third party concerning with the information in this datasheet. 3. Applicable export control laws and regulations should be complied and the procedures required by such laws and regulations should also be followed, when the product or any information contained in this datasheet is exported. 4. The product is neither intended nor warranted for use in equipment of systems which require extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human life, bodily injury, serious property damage including but not limited to devices or equipment used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other transportation industry and 5) safety devices and safety equipment to control combustions and explosions. Do not use the product for the above use unless agreed by us in writing in advance. 5. Although we make continuous efforts to improve the quality and reliability of our products; nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or property damage resulting from such failure, customers are required to incorporate adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention features. 6. Our products are not designed to be Radiation-resistant. 7. Please use the product listed in this datasheet within the specified ranges. 8. We assume no responsibility for damage or loss due to abnormal use. 9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex Semiconductor Ltd in writing in advance. TOREX SEMICONDUCTOR LTD. 28/28
XC9270A085QR-G 价格&库存

很抱歉,暂时无法提供与“XC9270A085QR-G”相匹配的价格&库存,您可以联系我们找货

免费人工找货