0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TC59LM836DKB-40

TC59LM836DKB-40

  • 厂商:

    TOSHIBA(东芝)

  • 封装:

  • 描述:

    TC59LM836DKB-40 - MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC 288Mbits Network FCRAM2 - Toshib...

  • 数据手册
  • 价格&库存
TC59LM836DKB-40 数据手册
TC59LM836DKB-30,-33,-40 TENTATIVE TOSHIBA MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC 288Mbits Network FCRAM2 − 2,097,152-WORDS × 4 BANKS × 36-BITS DESCRIPTION Network FCRAMTM is Double Data Rate Fast Cycle Random Access Memory. TC59LM836DKB is Network FCRAMTM containing 301,989,888 memory cells. TC59LM836DKB is organized as 2,097,152-words × 4 banks × 36 bits. TC59LM836DKB feature a fully synchronous operation referenced to clock edge whereby all operations are synchronized at a clock input which enables high performance and simple user interface coexistence. TC59LM836DKB can operate fast core cycle compared with regular DDR SDRAM. TC59LM836DKB is suitable for Network and other applications where large memory density and low power consumption are required. The Output Driver for Network FCRAMTM is capable of high quality fast data transfer under light loading condition. FEATURES PARAMETER -30 CL = 4 tCK tRC tRAC Clock Cycle Time (min) CL = 5 CL = 6 Random Read/Write Cycle Time (min) Random Access Time (max) 4.0 ns 3.5 ns 3.0 ns 20.0 ns 20.0 ns 380 mA 100 mA 15 mA TC59LM836DKB -33 4.5 ns 3.75 ns 3.33 ns 22.5 ns 22.5 ns 360 mA 95 mA 15 mA -40 5.0 ns 4.5 ns 4.0 ns 25 ns 25 ns 340 mA 90 mA 15 mA IDD1S Operating Current (single bank) (max) lDD2P Power Down Current (max) lDD6 Self-Refresh Current (max) • • • • • • • • • • • • • • • • Fully Synchronous Operation • Double Data Rate (DDR) Data input/output are synchronized with both edges of DS / QS. • Differential Clock (CLK and CLK ) inputs CS , FN and all address input signals are sampled on the positive edge of CLK. Output data (DQs and QS) is aligned to the crossings of CLK and CLK . Fast clock cycle time of 3.0 ns minimum Clock: 333 MHz maximum Data: 666 Mbps/pin maximum Quad Independent Banks operation Fast cycle and Short Latency Selectable Data Strobe Distributed Auto-Refresh cycle in 3.9 µs Self-Refresh Power Down Mode Variable Write Length Control Write Latency = CAS Latency-1 Programable CAS Latency and Burst Length CAS Latency = 4, 5, 6 Burst Length = 2, 4 Organization: 2,097,152 words × 4 banks × 36 bits Power Supply Voltage VDD: 2.5 V ± 0.125V VDDQ: 1.4 V ~ 1.9 V Low voltage CMOS I/O covered with SSTL_18 (Half strength driver) and HSTL. JTAG boundary scan Package: 144Ball BGA, 1mm × 0.8mm Ball pitch (P-TFBGA144-1119-0.80BZ) Notice: FCRAM is trademark of Fujitsu limited, Japan. Rev 1.3 2005-03-07 1/65 TC59LM836DKB-30,-33,-40 PIN NAMES PIN A0~A13 BA0, BA1 DQ0~DQ35 CS NAME Address Input Bank Address Data Input/Output Chip Select Function Control Power Down Control Clock Input Write Data Strobe Read Data Strobe Power (+2.5 V) Ground Power (+1.5V / +1.8 V) (for DQ buffer) Ground (for DQ buffer) Reference Voltage Not Connected FN PD CLK, CLK LDS, UDS LQS, UQS VDD VSS VDDQ VSSQ VREF NC TMS, TDI, TCK, TDO Boundary Scan Test Access Ports Rev 1.3 2005-03-07 2/65 TC59LM836DKB-30,-33,-40 PIN ASSIGNMENT (TOP VIEW) ball pitch=1.0 x 0.8mm 1 2 3 4 5 6 7 8 9 10 11 12 Index A VDD VSS VSS VDD VDD VSS 0.8mm VSS VDD 1mm B VDDQ DQ16 DQ17 VDDQ VDDQ DQ0 DQ1 VDDQ C VSSQ DQ14 DQ15 VSSQ VSSQ DQ2 DQ3 VSSQ D VDDQ DQ12 DQ13 VDDQ VDDQ DQ4 DQ5 VDDQ E VSSQ DQ10 DQ11 VSSQ VSSQ DQ6 DQ7 VSSQ F VDDQ LDS DQ9 VDDQ VDDQ DQ8 LQS VDDQ G VSSQ VREF CLK VSSQ VSSQ A13 FN VSSQ H VSS PD CLK VSS VSS CS NC VSS J VDD A12 A11 VDD VDD BA1 BA0 VDD K VSS A9 A8 VSS VSS A0 A10 VSS L VDD A7 A6 VDD VDD A2 A1 VDD M VDDQ A5 A4 VDDQ VDDQ NC A3 VDDQ N VSSQ UDS DQ26 VSSQ VSSQ DQ27 UQS VSSQ P VDDQ DQ25 DQ24 VDDQ VDDQ DQ29 DQ28 VDDQ R VSSQ DQ23 DQ22 VSSQ VSSQ DQ31 DQ30 VSSQ T VDDQ DQ21 DQ20 VDDQ VDDQ DQ33 DQ32 VDDQ U VSSQ DQ19 DQ18 VSSQ VSSQ DQ35 DQ34 VSSQ V TMS TCK VSS VDD VDD VSS TDO TDI : Depopulated ball Rev 1.3 2005-03-07 3/65 TC59LM836DKB-30,-33,-40 BLOCK DIAGRAM CLK CLK PD DLL CLOCK BUFFER To each block CS FN COMMAND DECODER CONTROL SIGNAL GENERATOR BANK #3 BANK #2 BANK #1 DATA CONTROL and LATCH CIRCUIT READ DATA BUFFER WRITE DATA BUFFER LDS LQS DQ BUFFER UDS UQS DQ0~DQ17 DQ18~DQ35 BANK #0 ROW DECODER MODE REGISTER A0~A13 ADDRESS BUFFER UPPER ADDRESS LATCH LOWER ADDRESS LATCH MEMORY CELL ARRAY BA0, BA1 COLUMN DECODER REFRESH COUNTER BURST COUNTER WRITE ADDRESS LATCH/ ADDRESS COMPARATOR Note: The TC59LM836DKB configuration is 4 Bank of 16384 × 128 × 36 of cell array with the DQ pins numbered DQ0~DQ35. Rev 1.3 2005-03-07 4/65 TC59LM836DKB-30,-33,-40 ABSOLUTE MAXIMUM RATINGS SYMBOL VDD VDDQ VIN VOUT VREF Topr Tstg Tsolder PD IOUT PARAMETER Power Supply Voltage Power Supply Voltage (for DQ buffer) Input Voltage Output and DQ pin Voltage Input Reference Voltage Operating Temperature (case) Storage Temperature Soldering Temperature (10 s) Power Dissipation Short Circuit Output Current RATING −0.3~ 3.3 −0.3~VDD+ 0.3 −0.3~VDD+ 0.3 −0.3~VDDQ + 0.3 −0.3~VDD+ 0.3 0~85 −55~150 260 2.5 ±50 UNIT V V V V V °C °C °C W mA NOTES Caution: Conditions outside the limits listed under “ABSOLUTE MAXIMUM RATINGS” may cause permanent damage to the device. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to “ABSOLUTE MAXIMUM RATINGS” conditions for extended periods may affect device reliability. RECOMMENDED DC, AC OPERATING CONDITIONS (Notes: 1)(TCASE = 0~85°C) SYMBOL VDD VDDQ VREF VIH (DC) VIL (DC) VICK (DC) VID (DC) VIH (AC) VIL (AC) VID (AC) VX (AC) VISO (AC) PARAMETER Power Supply Voltage Power Supply Voltage (for DQ buffer) Reference Voltage Input DC High Voltage Input DC Low Voltage Differential Clock DC Input Voltage Differential Input Voltage. CLK and CLK inputs (DC) Input AC High Voltage Input AC Low Voltage Differential Input Voltage. CLK and CLK inputs (AC) Differential AC Input Cross Point Voltage Differential Clock AC Middle Level MIN 2.375 1.4 VDDQ/2 × 95% VREF + 0.125 −0.1 −0.1 0.4 VREF + 0.2 −0.1 0.55 VDDQ/2 − 0.125 VDDQ/2 − 0.125 TYP. 2.5  VDDQ/2          MAX 2.625 1.9 VDDQ/2 × 105% VDDQ + 0.2 VREF − 0.125 VDDQ + 0.1 VDDQ + 0.2 VDDQ + 0.2 VREF − 0.2 VDDQ + 0.2 VDDQ/2 + 0.125 VDDQ/2 + 0.125 UNIT V V V V V V V V V V V V 2 5 5 10 7, 10 3, 6 4, 6 7, 10 8, 10 9, 10 NOTES Rev 1.3 2005-03-07 5/65 TC59LM836DKB-30,-33,-40 NOTES: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) All voltages referenced to VSS, VSSQ. VREF is expected to track variations in VDDQ DC level of the transmitting device. Peak to peak AC noise on VREF may not exceed ±2% VREF (DC). Overshoot limit: VIH (max) = VDDQ + 0.7 V with a pulse width ≤ 5 ns. Undershoot limit: VIL (min) = −0.7 V with a pulse width ≤ 5 ns. VIH (DC) and VIL (DC) are levels to maintain the current logic state. VIH (AC) and VIL (AC) are levels to change to the new logic state. VID is differential voltage of CLK input level and CLK input level. The value of VX (AC) is expected to equal VDDQ/2 of the transmitting device. VISO means {VICK (CLK) + VICK ( CLK )} /2 Refer to the figure below. CLK Vx CLK Vx VICK Vx Vx VICK Vx VICK VID (AC) VICK VSS |VID (AC)| 0 V Differential VISO VISO (min) VSS VISO (max) (11) In the case of external termination, VTT (termination voltage) should be gone in the range of VREF (DC) ± 0.04 V. CAPACITANCE (VDD = 2.5V, VDDQ = 1.8 V, f = 1 MHz, Ta = 25°C) SYMBOL CIN CINC CI/O CNC Input pin Capacitance Clock pin (CLK, CLK ) Capacitance DQ, LDS, UDS, LQS, UQS Capacitance NC pin Capacitance PARAMETER MIN 1.5 1.5 2.5  MAX 3.0 3.0 3.5 1.5 Delta 0.25 0.25 0.5  UNIT pF pF pF pF Note: These parameters are periodically sampled and not 100% tested. Rev 1.3 2005-03-07 6/65 TC59LM836DKB-30,-33,-40 RECOMMENDED DC OPERATING CONDITIONS (VDD = 2.5 V ± 0.125 V, VDDQ = 1.4 V ~ 1.9 V, TCASE = 0 ~ 85°C) SYMBOL PARAMETER -30 Operating Current One bank read or write operation ; tCK = min; IRC = min, IOUT = 0mA ; Burst Length = 4, CAS Latency = 6, Free running QS mode ; 0 V ≤ VIN ≤ VIL (AC) (max), VIH (AC) (min) ≤ VIN ≤ VDDQ, Address inputs change up to 2 times during minimum IRC, Read data change twice per clock cycle Standby Current All banks: inactive state ; tCK = min, CS = VIH, PD = VIH ; 0 V ≤ VIN ≤ VIL (AC) (max), VIH (AC) (min) ≤ VIN ≤ VDDQ ; Other input signals change one time during 4 × tCK, DQ and DS inputs change twice per clock cycle Standby (power down) Current All banks: inactive state ; tCK = min, PD = VIL (power down) ; CAS Latency = 6, Free running QS mode ; 0 V ≤ VIN ≤ VIL (AC) (max), VIH (AC) (min) ≤ VIN ≤ VDDQ ; Other input signals change one time during 4 × tCK, DQ and DS inputs are floating (VDDQ/2) Write Operating Current (4Banks) 4 Bank interleaved continuous burst write operation ; tCK = min, IRC = min ; Burst Length = 4, CAS Latency = 6, Free running QS mode ; 0 V ≤ VIN ≤ VIL (AC) (max), VIH (AC) (min) ≤ VIN ≤ VDDQ ; Address inputs change once per clock cycle, DQ and DS inputs change twice per clock cycle Read Operating Current (4Banks) 4 Bank interleaved continuous burst read operation ; tCK = min, IRC = min, IOUT = 0mA ; Burst Length = 4, CAS Latency = 6, Free running QS mode ; 0 V ≤ VIN ≤ VIL (AC) (max), VIH (AC) (min) ≤ VIN ≤ VDDQ ; Address inputs change once per clock cycle, Read data change twice per clock cycle Burst Auto Refresh Current Refresh command at every IREFC interval ; tCK = min; IREFC = min ; CAS Latency = 6, Free running QS mode ; 0 V ≤ VIN ≤ VIL (AC) (max), VIH (AC) (min) ≤ VIN ≤ VDDQ, Address inputs change up to 2 times during minimum IREFC, DQ and DS inputs change twice per clock cycle Self-Refresh Current PD = 0.2 V ; Other input signals are floating (VDDQ/2), DQ and DS inputs are floating (VDDQ/2) MAX -33 -40 UNIT NOTES IDD1S 380 360 340 1, 2 IDD2N 120 110 100 1, 2 IDD2P 100 95 90 1, 2 mA 850 800 750 1, 2 IDD4W IDD4R 850 800 750 1, 2 IDD5B 380 360 340 1, 2, 3 IDD6 15 15 15 2 Notes: 1. These parameters depend on the cycle rate and these values are measured at a cycle rate with the minimum values of tCK, tRC and IRC. 2. These parameters define the current between VDD and VSS. 3. IDD5B is specified under burst refresh condition. Actual system should use distributed refresh that meet to tREFI specification. Rev 1.3 2005-03-07 7/65 TC59LM836DKB-30,-33,-40 RECOMMENDED DC OPERATING CONDITIONS (continued) (VDD = 2.5 V ± 0.125 V, VDDQ = 1.4 V ~ 1.9 V, TCASE = 0 ~ 85°C) SYMBOL ILI ILO IREF IOH (DC) IOL (DC) IOH (DC) IOL (DC) IOH (DC) IOL (DC) IOH (DC) IOL (DC) IOH (DC) IOL (DC) IOH (DC) IOL (DC) PARAMETER Input Leakage Current ( 0 V ≤ VIN ≤ VDDQ, all other pins not under test = 0 V) Output Leakage Current (Output disabled, 0 V ≤ VOUT ≤ VDDQ) VREF Current Normal Output Driver VOH = 1.420 V VOL = 0.280 V VOH = 1.420 V VOL = 0.280 V VOH = 1.420 V VOL = 0.280 V VOH = VDDQ – 0.4V VOL = 0.4V VOH = VDDQ – 0.4V VOL= 0.4V Not defined Not defined MIN −5 −5 −5 −5.6 5.6 −9.8 9.8 −2.8 2.8 −4 4 −8 8      mA    1 MAX 5 UNIT µA µA µA NOTES 5 5    Output DC Current Strong Output Driver (V DDQ = 1.7V~1.9V) Weak Output Driver mA   1 Normal Output Driver Output DC Current Strong Output Driver (V DDQ = 1.4V~1.6V) Weak Output Driver Notes: 1. Refer to output driver characteristics for the detail. Output Driver Strength is selected by Extended Mode Register. Rev 1.3 2005-03-07 8/65 TC59LM836DKB-30,-33,-40 AC CHARACTERISTICS AND OPERATING CONDITIONS (Notes: 1, 2) (VDD = 2.5 ± 0.125V, VDDQ = 1.4 ∼ 1.9V, TCASE = 0 ∼ 85°C) -30 SYMBOL tRC PARAMETER MIN Random Cycle Time CL = 4 tCK Clock Cycle Time CL = 5 CL = 6 tRAC tCH tCL tCKQS tQSQ tQSQA tAC tOH tHP tQSP tQSQV tQHS tDQSS tDSPRE tDSPRES tDSPREH tDSP Random Access Time Clock High Time Clock Low Time QS Access Time from CLK Data Output Skew from QS Data Output Skew from QS to All DQ Data Access Time from CLK Data Output Hold Time from CLK CLK half period (minimum of Actual tCH, tCL) QS (read) Pulse Width Data Output Valid Time from QS DQ, QS Hold Skew factor DS (write) Low to High Setup Time DS (write) Preamble Pulse Width DS First Input Setup Time DS First Low Input Hold Time DS High or Low Input Pulse Width DS Input Falling Edge to Clock Setup Time CL = 4 CL = 5 CL = 6 20.0 4.0 3.5 3.0  0.45 × tCK 0.45 × tCK −0.45   −0.5 −0.5 min(tCH, tCL) tHP− tQHS tHP− tQHS  0.8×tCK 0.4×tCK 0 0.3×tCK 0.45×tCK 0.75 0.75 0.75 MAX  5.0 5.0 5.0 20.0   0.45 0.2 0.3 0.5 0.5    0.055 × tCK + 0.17 1.2×tCK    0.55×tCK        0.4 × tCK     MIN 22.5 4.5 3.75 3.33  0.45 × tCK 0.45 × tCK −0.45   −0.5 −0.5 min(tCH, tCL) tHP− tQHS tHP− tQHS  0.8×tCK 0.4×tCK 0 0.3×tCK 0.45×tCK 0.8 0.8 0.8 0.45 × tCK 0.8 0.8 0.8 −0.4 × tCK 0.35 0.35 0.6 0.6 MAX  7.5 7.5 7.5 22.5   0.45 0.25 0.35 0. 5 0.5    0.055 × tCK + 0.17 1.2×tCK    0.55×tCK        0.4 × tCK     MIN 25 5.0 4.5 4.0  0.45 × tCK 0.45 × tCK −0.5   −0.6 −0.6 min(tCH, tCL) tHP− tQHS tHP− tQHS  0.8×tCK 0.4×tCK 0 0.3×tCK 0.45×tCK 1.0 1.0 1.0 0.45 × tCK 1.0 1.0 1.0 −0.4 × tCK 0.4 0.4 0.7 0.7 MAX  7.5 7.5 7.5 25   0.5 0.3 0.4 0.6 0.6    0.055 × tCK + 0.17 1.2×tCK    0.55×tCK        0.4 × tCK     4, 11 4, 11 3 3 3, 8,10 3, 8 3 4, 8 4, 8 3 3 3 3 3 3 3 3, 8,10 -33 -40 UNIT NOTES ns 3 4 3 3 4 3, 4 3, 4 3, 4 4 3, 4 3, 4 3, 4 tDSS tDSPST DS (write) Postamble Pulse Width 0.45 × tCK CL = 4 0.75 0.75 0.75 −0.4 × tCK 0.3 0.3 0.6 0.6 DS (write) Postamble CL = 5 Hold Time CL = 6 UDS – LDS Skew Data Input Setup Time from DS Data Input Hold Time from DS Command/Address Input Setup Time Command/Address Input Hold Time tDSPSTH tDSSK tDS tDH tIS tIH Rev 1.3 2005-03-07 9/65 TC59LM836DKB-30,-33,-40 AC CHARACTERISTICS AND OPERATING CONDITIONS (Notes: 1, 2) (continued) -30 SYMBOL PARAMETER MIN tLZ tHZ tQPDH tPDEX tT tFPDL tREFI tPAUSE Data-out Low Impedance Time from CLK Data-out High Impedance Time from CLK Last output to PD High Hold Time Power Down Exit Time Input Transition Time PD Low Input Window for Self-Refresh Entry -33 MAX  0.5   1 5 3.9     1           2          MIN −0.5  0 0.6 0.1 −0.5 × tCK 0.4 200 5 6 7 1 4 5 6 2 2 3 1 7 7 7  1 19 23 25 19 23 25 IREFC 200 MAX  0.5   1 5 3.9     1           2          MIN −0.6  0 0.7 0.1 -40 UNIT NOTES MAX  0.6   1 5 3.9     1           2          cycle µs 3 5 ns 3 3, 6, 8 3, 7, 8 −0.5  0 0.6 0.1 −0.5 × tCK 0.4 200 5 6 7 1 4 5 6 2 2 3 1 7 7 7  1 19 23 25 19 23 25 IREFC 200 −0.5 × tCK 0.4 200 5 6 7 1 4 5 6 2 2 3 1 7 7 7  1 19 23 25 19 23 25 IREFC 200 Auto-Refresh Average Interval Pause Time after Power-up CL = 4 Random Read/Write Cycle Time CL = 5 (applicable to same bank) CL = 6 RDA/WRA to LAL Command Input Delay (applicable to same bank) LAL to RDA/WRA Command Input Delay (applicable to same bank) CL = 4 CL = 5 CL = 6 IRC IRCD IRAS IRBD Random Bank Access Delay (applicable to other bank) LAL following RDA to WRA Delay (applicable to other bank) BL = 2 BL = 4 IRWD IWRD LAL following WRA to RDA Delay (applicable to other bank) CL = 4 Mode Register Set Cycle Time IRSC CL = 5 CL = 6 IPD IPDA PD Low to Inactive State of Input Buffer PD High to Active State of Input Buffer CL = 4 IPDV Power down mode valid from REF command CL = 5 CL = 6 CL = 4 IREFC Auto-Refresh Cycle Time CL = 5 CL = 6 ICKD ILOCK REF Command to Clock Input Disable at Self-Refresh Entry DLL Lock-on Time (applicable to RDA command) Rev 1.3 2005-03-07 10/65 TC59LM836DKB-30,-33,-40 AC TEST CONDITIONS SYMBOL VIH (min) VIL (max) VREF VTT VSWING Vr VID (AC) SLEW VOTR PARAMETER Input High Voltage (minimum) Input Low Voltage (maximum) Input Reference Voltage Termination Voltage Input Signal Peak to Peak Swing Differential Clock Input Reference Level Input Differential Voltage Input Signal Minimum Slew Rate Output Timing Measurement Reference Voltage VALUE VREF + 0.2 VREF − 0.2 VDDQ/2 VREF 0.8 VX (AC) 1.0 2.5 VDDQ/2 UNIT V V V V V V V V/ns V 9 NOTES VDDQ VIH min (AC) VSWING VREF VIL max (AC) VSS ∆T ∆T SLEW = (VIH min (AC) − VIL max (AC))/∆T Measurement point 25 Ω Output VTT AC Test Load NOTES: (1) Transition times are measured between VIH min (DC) and VIL max (DC). Transition (rise and fall) of input signals have a fixed slope. (2) If the result of nominal calculation with regard to tCK contains more than one decimal place, the result is rounded up to the nearest decimal place. (i.e., tDQSS = 0.8 × tCK, tCK = 3.3 ns, 0.8 × 3.3 ns = 2.64 ns is rounded up to 2.7 ns.) (3) These parameters are measured from the differential clock (CLK and CLK ) AC cross point. (4) These parameters are measured from signal transition point of DS crossing VREF level. (5) The tREFI (max) applies to equally distributed refresh method. The tREFI (min) applies to both burst refresh method and distributed refresh method. In such case, the average interval of eight consecutive Auto-Refresh commands has to be more than 400 ns always. In other words, the number of Auto-Refresh cycles which can be performed within 3.2 µs (8 × 400 ns) is to 8 times in the maximum. (6) Low Impedance State is specified at VDDQ/2 ± 0.1 V from steady state. (7) High Impedance State is specified where output buffer is no longer driven. (8) These parameters depend on the clock jitter. These parameters are measured at stable clock. (9) Output timing is measured by using Normal driver strength at VDDQ = 1.7 V ∼ 1.9 V. Output timing is measured by using Strong driver strength at VDDQ = 1.4 V~1.6 V. (10) These parameters are measured at tCK = minimum ∼ 6.0ns. When tCK is longer than 6.0ns, these parameters are specified as below for all speed version. tCKQS (MIN/MAX) = −0.6ns / 0.6ns, tAC (MIN/MAX) = −0.65ns / 0.65ns (11) These parameters are measured at VDDQ = 1.7 V∼1.9 V. Both tDS and tDH at VDDQ = 1.4 V∼1.6 V are specified as below for all speed version. tDS (MIN) = 0.4 ns , tDH (MIN) = 0.4 ns Rev 1.3 2005-03-07 11/65 TC59LM836DKB-30,-33,-40 POWER UP SEQUENCE (1) (2) (3) (4) (5) (6) (7) (8) (9) As for PD , being maintained by the low state (≤ 0.2 V) is desirable before a power-supply injection. Apply VDD before or at the same time as VDDQ. Apply VDDQ before or at the same time as VREF. Start clock (CLK, CLK ) and maintain stable condition for 200 µs (min). After stable power and clock, apply DESL and take PD =H. Issue EMRS to enable DLL and to define driver strength and data strobe type. (Note: 1) Issue MRS for set CAS latency (CL), Burst Type (BT), and Burst Length (BL). (Note: 1) Issue two or more Auto-Refresh commands (Note: 1). Ready for normal operation after 200 clocks from Extended Mode Register programming. NOTES: (1) Sequence 6, 7 and 8 can be issued in random order. (2) (3) L = Logic Low, H = Logic High DQ output is Hi-Z state during power upsequence. 2.5V(TYP) VDD 1.5V or 1.8V(TYP) VDDQ 1/2 VDDQ (TYP) VREF CLK CLK tPDEX 200us(min) PD lPDA Command lRSC lRSC lREFC lLOCK = 200clock cycle(min) lREFC DESL RDA MRS DESL op-code RDA MRS DESL WRA REF DESL WRA REF DESL op-code Address EMRS DQ (Input) MRS DS L/UQS (Uni-QS mode) Low L/UQS (Free Running mode) EMRS MRS Auto Refresh cycle Normal Operation Rev 1.3 2005-03-07 12/65 TC59LM836DKB-30,-33,-40 TIMING DIAGRAMS Input Timing Command and Address tCK CLK CLK tCK tCH tCL tIS CS tIH 1st tIS 2nd tIH tIS FN tIS A0~A13 BA0, BA1 1st tIH tIS 2nd tIH tIH UA, BA tIS LA tIH Data L/UDS tDS DQn (input) tDS DQm (input) tDH tDS tDH tDH tDS tDH Refer to the Command Truth Table. Timing of the CLK, CLK tCH CLK tCL VIH VIH (AC) VIL (AC) VIL tCK tT tT CLK CLK VIH VID (AC) VIL CLK VX VX VX Rev 1.3 2005-03-07 13/65 TC59LM836DKB-30,-33,-40 Read Timing (Burst Length = 4) Unidirectional DS/QS mode tCH CLK CLK tCL tCK tIS tIH Input (control & addresses) DS (Input) LAL (after RDA) DESL tCKQS CAS latency = 4 tCKQS tQSP tQSP Low tCKQS Low tQSQA tLZ tQSQ tQSQ Q0 tAC tQSQA tCKQS LQS (output) tQSQA tQSQV tQSQV Q1 tAC tQSQA tCKQS tQSP tQSP Low Q2 tAC Q3 tOH tQSQ tHZ LDQ (output) Hi-Z UQS (output) Low tQSQA tQSQA tQSQV Q2 tAC tCKQS tQSQ tHZ Q3 tOH tCKQS tQSP tQSP UDQ (output) Hi-Z tLZ tAC Q0 Q1 tAC CAS latency = 5 tCKQS Low tQSQA tLZ tQSQ tQSQ Q0 tAC tQSQA tCKQS LQS (output) Low tQSQA tQSQV tQSQV Q1 tAC tQSQA tCKQS tQSP tQSP Low tQSQA tQSQ tQSQA tHZ tQSQV Q0 tLZ tAC Q1 tAC Q2 tAC Q3 tOH Q2 tAC Q3 tOH tQSQ tHZ LDQ (output) Hi-Z UQS (output) Low UDQ (output) Hi-Z Rev 1.3 2005-03-07 14/65 TC59LM836DKB-30,-33,-40 Read Timing (Burst Length = 4) Unidirectional DS/QS mode tCH CLK CLK tCL tCK tIS tIH Input (control & addresses) DS (Input) LAL (after RDA) DESL tCKQS CAS latency = 6 tCKQS tQSP tQSP Low tCKQS Low tQSQA tLZ tQSQ tQSQ Q0 tAC tQSQA tCKQS LQS (output) tQSQA tQSQV tQSQV Q1 tAC tQSQA tCKQS tQSP tQSP Low Q2 tAC Q3 tOH tQSQ tHZ LDQ (output) Hi-Z UQS (output) Low tQSQA tQSQ tQSQA tQSQV tHZ Q0 Q1 tAC Q2 tAC Q3 tOH UDQ (output) Hi-Z tLZ tAC Note: DQ0 to DQ35 are aligned with QS. The correspondence of LQS, UQS to DQ. LQS UQS DQ0~DQ17 DQ18~DQ35 Rev 1.3 2005-03-07 15/65 TC59LM836DKB-30,-33,-40 Read Timing (Burst Length = 4) Unidirectional DS/Free Running QS mode tCH CLK CLK tCL tCK tIS tIH LAL (after RDA) DESL Input (control & addresses) DS (Input) tCKQS CAS latency = 4 tCKQS tQSP tQSP tCKQS LQS (output) tQSQA tLZ tQSQ LDQ (output) Hi-Z tAC tQSQA tCKQS UQS (output) tQSQA UDQ (output) Hi-Z tLZ tAC Q0 tQSQA tQSQV Q2 tAC tQSQ tHZ Q3 tOH tCKQS tQSP tQSP tQSQ Q0 Q1 tAC tQSQA tQSP tQSP tQSQA tQSQV tQSQV Q2 tAC Q3 tOH tCKQS tQSQ tHZ Q1 tAC tCKQS CAS latency = 5 tCKQS LQS (output) tQSQA tLZ tQSQ LDQ (output) Hi-Z tAC tQSQA tCKQS UQS (output) tQSQA UDQ (output) Hi-Z tLZ tAC Q0 tQSQA tQSQV Q2 tAC tQSQ tHZ Q3 tOH tQSQ Q0 Q1 tAC tQSQA tCKQS tQSP tQSP tQSQA tQSQV tQSQV Q2 tAC Q3 tOH tQSQ tHZ Q1 tAC Rev 1.3 2005-03-07 16/65 TC59LM836DKB-30,-33,-40 Read Timing (Burst Length = 4) Unidirectional DS/Free Running QS mode tCH CLK CLK tCL tCK tIS tIH LAL (after RDA) DESL Input (control & addresses) DS (Input) tCKQS CAS latency = 6 tCKQS tQSP tQSP tCKQS LQS (output) tQSQA tLZ tQSQ LDQ (output) Hi-Z tAC tQSQA tCKQS UQS (output) tQSQA UDQ (output) Hi-Z tLZ tAC Q0 tQSQA tQSQV Q2 tAC tQSQ tHZ Q3 tOH tQSQ Q0 Q1 tAC tQSQA tCKQS tQSP tQSP tQSQA tQSQV tQSQV Q2 tAC Q3 tOH tQSQ tHZ Q1 tAC Note: DQ0 to DQ35 are aligned with QS. The correspondence of LQS, UQS to DQ. LQS UQS DQ0~DQ17 DQ18~DQ35 Rev 1.3 2005-03-07 17/65 TC59LM836DKB-30,-33,-40 Write Timing (Burst Length = 4) Unidirectional DS/QS mode, Unidirectional DS/Free Running QS mode tCH CLK CLK tCL tCK tIS tIH LAL (after WRA) DESL tDQSS tDSPRES tDSPSTH tDSS Input (control & addresses) CAS latency = 4 tDSPREH tDSP tDSP tDSP tDSPST L/UDS (input) Preamble tDSPRE tDH DQ (input) D0 D1 tDQSS tDSPRES tDSS tDSPSTH tDSS tDSP tDSP tDSPST tDS tDSS tDS tDH D2 Postamble tDS tDH D3 CAS latency = 5 t tDSPREH DSP L/UDS (input) Preamble tDSPRE Postamble tDS tDH D1 tDQSS tDSPRES tDSPREH tDSS tDS tDS tDH D2 D3 tDSS tDSPSTH tDH DQ (input) tDQSS D0 CAS latency = 6 tDSP tDSP tDSP tDSPST L/UDS (input) Preamble tDSPRE tDS tDH DQ (input) tDQSS L/UQS (Uni-QS) Low D0 D1 tDQSS tDS tDS tDH D2 D3 tDH Postamble L/UQS (Free Runninig) Note: DQ0 to DQ35 are sampled at both edges of DS. The correspondence of LDS, UDS to DQ. LDS UDS DQ0~DQ17 DQ18~DQ35 Rev 1.3 2005-03-07 18/65 TC59LM836DKB-30,-33,-40 tREFI, tPAUSE, IXXXX Timing CLK CLK tREFI, tPAUSE, IXXXX tIS tIH tIS tIH Input (control & addresses) Command Note: “IXXXX” means “IRC”, “IRCD”, “IRAS”, etc. Command Rev 1.3 2005-03-07 19/65 TC59LM836DKB-30,-33,-40 FUNCTION TRUTH TABLE (Notes: 1, 2, 3) Command Truth Table (Notes: 4) • The First Command SYMBOL DESL RDA WRA FUNCTION Device Deselect Read with Auto-close Write with Auto-close CS FN × H L BA1~BA0 × BA BA A13~A10 × UA UA A9~A8 × UA UA A7 × UA UA A6~A0 × UA UA H L L • The Second Command (The next clock of RDA or WRA command) SYMBOL LAL REF MRS FUNCTION Lower Address Latch Auto-Refresh Mode Register Set CS FN × × × BA1~ BA0 × × V A13~ A12 V × L A11~ A10 × × L A9 × × L A8 × × L A7 × × V A6~A0 LA × V H L L Notes: 1. L = Logic Low, H = Logic High, × = either L or H, V = Valid (specified value), BA = Bank Address, UA = Upper Address, LA = Lower Address 2. All commands are assumed to issue at a valid state. 3. All inputs for command (excluding SELFX and PDEX) are latched on the crossing point of differential clock input where CLK goes to High. 4. Operation mode is decided by the combination of 1st command and 2nd command. Refer to “STATE DIAGRAM” and the command table below. Read Command Table COMMAND (SYMBOL) RDA (1st) LAL (2nd) CS FN H × BA1~BA0 BA × A13~A10 UA × A9~A8 UA × A7 UA × A6~A0 UA LA NOTES L H Write Command Table COMMAND(SYMBOL) WRA (1st) LAL (2nd) CS FN L × BA1~BA0 BA × A13 UA VW0 A12 UA VW1 A11 UA × A10 UA × A9~A8 UA × A7 UA × A6~A0 UA LA L H Notes: 5. A13~ A12 are used for Variable Write Length (VW) control at Write Operation. VW Truth Table Burst Length Function Write All Words BL=2 Write First One Word Reserved Write All Words BL=4 Write First Two Words Write First One Word L H H H H L H VW0 L VW1 × × L L Rev 1.3 2005-03-07 20/65 TC59LM836DKB-30,-33,-40 FUNCTION TRUTH TABLE (continued) Mode Register Set Command Table COMMAND (SYMBOL) RDA (1st) MRS (2nd) CS FN H × BA1~BA0 × V A13~A9 × V A8 × V A7 × V A6~A0 × V NOTES L L 6 Notes: 6. Refer to “MODE REGISTER TABLE”. Auto-Refresh Command Table FUNCTION COMMAND (SYMBOL) WRA (1st) REF (2nd) CURRENT STATE Standby Active PD n−1 H H CS FN BA1~BA0 × × A13~A9 × × A8 × × A7 × × A6~A0 NOTES × × n H H L L L × Active Auto-Refresh Self-Refresh Command Table FUNCTION COMMAND (SYMBOL) WRA (1st) REF (2nd)  SELFX CURRENT STATE Standby Active Self-Refresh Self-Refresh PD n−1 H H L L CS FN BA1~BA0 × × × × A13~A9 × × × × A8 × × × × A7 × × × × A6~A0 NOTES × × × × 9 7, 8 n H L L H L L × H L × × × Active Self-Refresh Entry Self-Refresh Continue Self-Refresh Exit Power Down Table FUNCTION COMMAND (SYMBOL) PDEN  PDEX CURRENT STATE Standby Power Down Power Down PD n−1 H L L CS FN × × × BA1~BA0 × × × A13~A9 × × × A8 × × × A7 × × × A6~A0 NOTES × × × 9 n L L H H × H 8 Power Down Entry Power Down Continue Power Down Exit Notes: 7. 8. PD has to be brought to Low within tFPDL from REF command. PD should be brought to Low after DQ’s state turned high impedance. 9. When PD is brought to High from Low, this function is executed asynchronously. Rev 1.3 2005-03-07 21/65 TC59LM836DKB-30,-33,-40 FUNCTION TRUTH TABLE (continued) CURRENT STATE PD n−1 H H H H H L H H H H L H H H H L H H H H H L H H H H H L H H H H H L H H H H H L H L CS FN × H L × × × × × × × × × × × × × × H L × × × × H L × × × × H L × × × × H L × × × × × × × × × × × ADDRESS × BA, UA BA, UA × × × LA Op-code × × × LA × × × × × BA, UA BA, UA × × × × BA, UA BA, UA × × × × BA, UA BA, UA × × × × BA, UA BA, UA × × × × × × × × × × × COMMAND DESL RDA WRA PDEN   LAL MRS/EMRS PDEN MRS/EMRS  LAL REF PDEN REF (self)  DESL RDA WRA PDEN   DESL RDA WRA PDEN   DESL RDA WRA PDEN   DESL RDA WRA PDEN     PDEX    SELFX  ACTION NOP Row activate for Read Row activate for Write Power Down Entry Illegal Refer to Power Down State Begin Read Access to Mode Register Illegal Illegal Invalid Begin Write Auto-Refresh Illegal Self-Refresh Entry Invalid Continue Burst Read to End Illegal Illegal Illegal Illegal Invalid Data Write&Continue Burst Write to End Illegal Illegal Illegal Illegal Invalid NOP → Idle after IREFC Illegal Illegal Self-Refresh Entry Illegal Refer to Self-Refreshing State NOP → Idle after IRSC Illegal Illegal Illegal Illegal Invalid Invalid Maintain Power Down Mode Exit Power Down Mode → Idle after tPDEX Illegal Invalid Maintain Self-Refresh Exit Self-Refresh → Idle after IREFC Illegal NOTES n H H H L L × H H L L × H H L L × H H H L L × H H H L L × H H H L L × H H H L L × × L H H × L H H H L L H L × H L H L × H L H L × H L L H L × H L L H L × H L L H L × H L L H L × × × H L × × H L Idle 10 Row Active for Read Row Active for Write Read 11 11 Write 11 11 Auto-Refreshing 12 Mode Register Accessing Power Down L L H L L L Self-Refreshing Notes: 10. Illegal if any bank is not idle. 11. Illegal to bank in specified states; Function may be legal in the bank inidicated by Bank Address (BA). 12. Illegal if tFPDL is not satisfied. Rev 1.3 2005-03-07 22/65 TC59LM836DKB-30,-33,-40 MODE REGISTER TABLE Regular Mode Register (Notes: 1) ADDRESS Register BA1 0 *1 BA0 0 *1 A13~A8 0 A7 *3 A6~A4 CL A3 BT A2~A0 BL TE A7 0 1 TEST MODE (TE) Regular (default) Test Mode Entry A3 0 1 BURST TYPE (BT) Sequential Interleave A6 0 0 0 1 1 1 1 A5 0 1 1 0 0 1 1 A4 × 0 1 0 1 0 1 CAS LATENCY (CL) A2 0 0 0 0 1 A1 0 0 1 1 × A0 0 1 0 1 × BURST LENGTH (BL) Reserved 2 4 Reserved *2 *2 Reserved Reserved Reserved 4 5 6 Reserved *2 *2 *2 *2 Extended Mode Register (Notes: 4) ADDRESS Register BA1 0 *4 BA0 1 *4 A13~A7 0 A6~A5 SS A4~A3 DIC (QS) A2~A1 DIC (DQ) A0 *5 DS QS A6 0 0 1 1 A5 0 1 0 1 STROBE SELECT A4 Reserved Reserved *2 *2 DQ A2 0 0 1 1 A1 0 1 0 1 A3 0 1 0 1 OUTPUT DRIVE IMPEDANCE CONTROL (DIC) Normal Output Driver Strong Output Driver Weak Output Driver Reserved 0 0 1 1 Unidirectional DS/QS Unidirectional DS/Free Running QS A0 0 1 Notes: 1. Regular Mode Register is chosen using the combination of BA0 = 0 and BA1 = 0. 2. “Reserved” places in Regular Mode Register should not be set. 3. A7 in Regular Mode Register must be set to “0” (low state). Because Test Mode is specific mode for supplier. 4. Extended Mode Register is chosen using the combination of BA0 = 1 and BA1 = 0. 5. A0 in Extended Mode Register must be set to "0" to enable DLL for normal operation. DLL SWITCH (DS) DLL Enable DLL Disable Rev 1.3 2005-03-07 23/65 TC59LM836DKB-30,-33,-40 STATE DIAGRAM SELFREFRESH SELFX ( PD = H) PD = L POWER DOWN PDEX ( PD = H) PDEN ( PD = L) STANDBY (IDLE) MODE REGISTER WRA RDA MRS PD = H AUTOREFRESH REF ACTIVE (RESTORE) ACTIVE LAL LAL WRITE (BUFFER) READ Command input Automatic return The second command at Active state must be issued 1 clock after RDA or WRA command input. Rev 1.3 2005-03-07 24/65 TC59LM836DKB-30,-33,-40 TIMING DIAGRAMS SINGLE BANK READ TIMING (CL = 4) 0 CLK CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IRC = 5 cycles Command RDA LAL DESL IRAS = 4 cycles RDA LAL IRC = 5 cycles DESL IRAS = 4 cycles RDA LAL IRC = 5 cycles DESL IRAS = 4 cycles UA RDA IRCD=1 cycle Address UA LA IRCD=1 cycle UA LA IRCD=1 cycle UA LA Bank Add. #0 #0 #0 #0 Unidirectional DS/QS mode BL = 2 DS (input) QS (output) Low CL = 4 DQ (output) BL = 4 DS (input) QS (output) Low CL = 4 DQ (output) Hi-Z Q0 Q1 Q2 Q3 CL = 4 Q0 Q1 Q2 Q3 CL = 4 Q0 Hi-Z Q0 Q1 CL = 4 Q0 Q1 CL = 4 Q0 Unidirectional DS/Free Running QS mode BL = 2 DS (input) QS (output) CL = 4 DQ (output) BL = 4 DS (input) QS (output) CL = 4 DQ (output) Hi-Z Q0 Q1 Q2 Q3 CL = 4 Q0 Q1 Q2 Q3 CL = 4 Q0 Hi-Z Q0 Q1 CL = 4 Q0 Q1 CL = 4 Q0 Rev 1.3 2005-03-07 25/65 TC59LM836DKB-30,-33,-40 SINGLE BANK READ TIMING (CL = 5) 0 CLK CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IRC = 6 cycles Command RDA LAL DESL IRAS = 5 cycles RDA LAL IRC = 6 cycles DESL IRAS = 5 cycles RDA LAL DESL IRCD=1 cycle Address UA LA IRCD=1 cycle UA LA IRCD=1 cycle UA LA Bank Add. #0 #0 #0 Unidirectional DS/QS mode BL = 2 DS (input) QS (output) Low CL = 5 DQ (output) BL = 4 DS (input) QS (output) Low CL = 5 DQ (output) Hi-Z Q0 Q1 Q2 Q3 CL = 5 Q0 Q1 Q2 Q3 Hi-Z Q0 Q1 CL = 5 Q0 Q1 Unidirectional DS/Free Running QS mode BL = 2 DS (input) QS (output) CL = 5 DQ (output) BL = 4 DS (input) QS (output) CL = 5 DQ (output) Hi-Z Q0 Q1 Q2 Q3 CL = 5 Q0 Q1 Q2 Q3 Hi-Z Q0 Q1 CL = 5 Q0 Q1 Rev 1.3 2005-03-07 26/65 TC59LM836DKB-30,-33,-40 SINGLE BANK READ TIMING (CL = 6) 0 CLK CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IRC = 7 cycles Command RDA LAL DESL IRAS = 6 cycles RDA LAL IRC = 7 cycles DESL IRAS = 6 cycles RDA LAL IRCD=1 cycle Address UA LA IRCD=1 cycle UA LA IRCD=1 cycle UA LA Bank Add. #0 #0 #0 Unidirectional DS/QS mode BL = 2 DS (input) QS (output) Low CL = 6 DQ (output) BL = 4 DS (input) QS (output) Low CL = 6 DQ (output) Hi-Z Q0 Q1 Q2 Q3 CL = 6 Q0 Q1 Q2 Hi-Z Q0 Q1 CL = 6 Q0 Q1 Unidirectional DS/Free Running QS mode BL = 2 DS (input) QS (output) CL = 6 DQ (output) BL = 4 DS (input) QS (output) CL = 6 DQ (output) Hi-Z Q0 Q1 Q2 Q3 CL = 6 Q0 Q1 Q2 Hi-Z Q0 Q1 CL = 6 Q0 Q1 Rev 1.3 2005-03-07 27/65 TC59LM836DKB-30,-33,-40 SINGLE BANK WRITE TIMING (CL = 4) 0 CLK CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IRC = 5 cycles Command WRA LAL DESL IRAS = 4 cycles WRA LAL IRC = 5 cycles DESL IRAS = 4 cycles WRA LAL IRC = 5 cycles DESL IRAS = 4 cycles UA WRA IRCD=1 cycle Address UA LA IRCD=1 cycle UA LA IRCD=1 cycle UA LA Bank Add. #0 #0 #0 #0 Unidirectional DS/QS mode BL = 2 DS (input) QS (output) Low WL = 3 DQ (input) BL = 4 DS (input) QS (output) Low WL = 3 DQ (input) D0 D1 D2 D3 WL = 3 D0 D1 D2 D3 WL = 3 D0 D1 D2 D3 D0 D1 WL = 3 D0 D1 WL = 3 D0 D1 Unidirectional DS/Free Running QS mode BL = 2 DS (input) QS (output) WL = 3 DQ (input) BL = 4 DS (input) QS (output) WL = 3 DQ (input) D0 D1 D2 D3 WL = 3 D0 D1 D2 D3 WL = 3 D0 D1 D2 D3 D0 D1 WL = 3 D0 D1 WL = 3 D0 D1 Rev 1.3 2005-03-07 28/65 TC59LM836DKB-30,-33,-40 SINGLE BANK WRITE TIMING (CL = 5) 0 CLK CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IRC = 6 cycles Command WRA LAL DESL IRAS = 5 cycles WRA LAL IRC = 6 cycles DESL IRAS = 5 cycles WRA LAL DESL IRCD=1 cycle Address UA LA IRCD=1 cycle UA LA IRCD=1 cycle UA LA Bank Add. #0 #0 #0 Unidirectional DS/QS mode BL = 2 DS (input) QS (output) Low WL = 4 DQ (input) BL = 4 DS (input) QS (output) Low WL = 4 DQ (input) D0 D1 D2 D3 WL = 4 D0 D1 D2 D3 D0 D1 WL = 4 D0 D1 Unidirectional DS/Free Running QS mode BL = 2 DS (input) QS (output) WL = 4 DQ (input) BL = 4 DS (input) QS (output) WL = 4 DQ (input) D0 D1 D2 D3 WL = 4 D0 D1 D2 D3 D0 D1 WL = 4 D0 D1 Rev 1.3 2005-03-07 29/65 TC59LM836DKB-30,-33,-40 SINGLE BANK WRITE TIMING (CL = 6) 0 CLK CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IRC = 7 cycles Command WRA LAL DESL IRAS = 6 cycles WRA LAL IRC = 7 cycles DESL IRAS = 6 cycles WRA LAL IRCD=1 cycle Address UA LA IRCD=1 cycle UA LA IRCD=1 cycle UA LA Bank Add. #0 #0 #0 Unidirectional DS/QS mode BL = 2 DS (input) QS (output) Low WL = 5 DQ (input) BL = 4 DS (input) QS (output) Low WL = 5 DQ (input) D0 D1 D2 D3 WL = 5 D0 D1 D2 D3 D0 D1 WL = 5 D0 D1 Unidirectional DS/Free Running QS mode BL = 2 DS (input) QS (output) WL = 5 DQ (input) BL = 4 DS (input) QS (output) WL = 5 DQ (input) D0 D1 D2 D3 WL = 5 D0 D1 D2 D3 D0 D1 WL = 5 D0 D1 Rev 1.3 2005-03-07 30/65 TC59LM836DKB-30,-33,-40 SINGLE BANK READ-WRITE TIMING (CL = 4) 0 CLK CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IRC = 5 cycles Command RDA LAL DESL WRA LAL IRC = 5 cycles DESL RDA LAL IRC = 5 cycles DESL WRA Address UA LA UA LA UA LA UA Bank Add. #0 #0 #0 #0 Unidirectional DS/QS mode BL = 2 DS (input) QS (output) Low CL = 4 DQ BL = 4 DS (input) QS (output) Low CL = 4 DQ Hi-Z Q0 Q1 Q2 Q3 WL = 3 D0 D1 D2 D3 CL = 4 Q0 Hi-Z Q0 Q1 WL = 3 D0 D1 CL = 4 Q0 Unidirectional DS/Free Running QS mode BL = 2 DS (input) QS (output) CL = 4 DQ BL = 4 DS (input) QS (output) CL = 4 DQ Hi-Z Q0 Q1 Q2 Q3 Read data WL = 3 D0 D1 D2 D3 Write data CL = 4 Q0 Hi-Z Q0 Q1 WL = 3 D0 D1 CL = 4 Q0 Rev 1.3 2005-03-07 31/65 TC59LM836DKB-30,-33,-40 SINGLE BANK READ-WRITE TIMING (CL = 5) 0 CLK CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IRC = 6 cycles Command RDA LAL DESL WRA LAL IRC = 6 cycles DESL RDA LAL DESL Address UA LA UA LA UA LA Bank Add. #0 #0 #0 Unidirectional DS/QS mode BL = 2 DS (input) QS (output) Low CL = 5 DQ BL = 4 DS (input) QS (output) Low CL = 5 DQ Hi-Z Q0 Q1 Q2 Q3 WL = 4 D0 D1 D2 D3 Hi-Z Q0 Q1 WL = 4 D0 D1 Unidirectional DS/Free Running QS mode BL = 2 DS (input) QS (output) CL = 5 DQ BL = 4 DS (input) QS (output) CL = 5 DQ Hi-Z Q0 Q1 Q2 Q3 Read data WL = 4 D0 D1 D2 D3 Write data Hi-Z Q0 Q1 WL = 4 D0 D1 Rev 1.3 2005-03-07 32/65 TC59LM836DKB-30,-33,-40 SINGLE BANK READ-WRITE TIMING (CL = 6) 0 CLK CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IRC = 7 cycles Command RDA LAL DESL WRA LAL IRC = 7 cycles DESL RDA LAL Address UA LA UA LA UA LA Bank Add. #0 #0 #0 Unidirectional DS/QS mode BL = 2 DS (input) QS (output) Low CL = 6 DQ BL = 4 DS (input) QS (output) Low CL = 6 DQ Hi-Z Q0 Q1 Q2 Q3 WL = 5 D0 D1 D2 D3 Hi-Z Q0 Q1 WL = 5 D0 D1 Unidirectional DS/Free Running QS mode BL = 2 DS (input) QS (output) CL = 6 DQ BL = 4 DS (input) QS (output) CL = 6 DQ (output) Hi-Z Q0 Q1 Q2 Q3 Read data WL = 5 D0 D1 D2 D3 Write data Hi-Z Q0 Q1 WL = 5 D0 D1 Rev 1.3 2005-03-07 33/65 TC59LM836DKB-30,-33,-40 MULTIPLE BANK READ TIMING (CL = 4) 0 CLK CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IRBD = 2 cycles RDA LAL RDA LAL IRBD = 2 cycles IRBD = 2 cycles IRBD = 2 cycles IRBD = 2 cycles DESL RDA LAL RDA LAL RDA LAL RDA LAL RDA LAL RDA Command Address UA LA UA LA UA LA UA LA UA LA UA LA UA LA UA Bank Add. Bank "a" Bank "b" IRC (Bank"a") = 5 cycles Bank "a" Bank "b" Bank "c" Bank "d" Bank "a" Bank "b" IRC (Bank"b") = 5 cycles Unidirectional DS/QS mode BL = 2 DS (input) QS (output) Low CL = 4 CL = 4 DQ (output) BL = 4 DS (input) QS (output) Low CL = 4 CL = 4 DQ (output) Hi-Z Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3 Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3Qc0 Qc1 Qc2 Hi-Z Qa0Qa1 Qb0Qb1 Qa0Qa1 Qb0Qb1 Qc0 Qc1 Unidirectional DS/Free Running QS mode BL = 2 DS (input) QS (output) CL = 4 DQ (output) BL = 4 DS (input) QS (output) CL = 4 DQ (output) Hi-Z Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3 Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3Qc0 Qc1 Qc2 CL = 4 Hi-Z Qa0Qa1 Qb0Qb1 Qa0Qa1 Qb0Qb1 Qc0 Qc1 CL = 4 Note: lRC to the same bank must be satisfied. Rev 1.3 2005-03-07 34/65 TC59LM836DKB-30,-33,-40 MULTIPLE BANK READ TIMING (CL = 5) 0 CLK CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IRBD = 2 cycles RDA UA Bank "a" LAL LA RDA UA Bank "b" IRC (Bank"a") = 6 cycles LAL LA DESL IRBD = 2 cycles IRBD = 2 cycles IRBD = 2 cycles IRBD = 2 cycles RDA UA Bank "a" LAL LA RDA UA Bank "b" LAL LA RDA UA Bank "c" LAL LA RDA UA Bank "d" LAL LA RDA UA Bank "a" LAL LA Command Address Bank Add. IRC (Bank"b") = 6 cycles Unidirectional DS/QS mode BL = 2 DS (input) QS (output) Low CL = 5 CL = 5 DQ (output) BL = 4 DS (input) QS (output) Low CL = 5 CL = 5 DQ (output) Hi-Z Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3 Qa0Qa1Qa2Qa3Qb0Qb1Qb2 Hi-Z Qa0Qa1 Qb0Qb1 Qa0Qa1 Qb0Qb1 Unidirectional DS/Free Running QS mode BL = 2 DS (input) QS (output) CL = 5 CL = 5 DQ (output) BL = 4 DS (input) Hi-Z Qa0Qa1 Qb0Qb1 Qa0Qa1 Qb0Qb1 QS (output) CL = 5 CL = 5 DQ (output) Hi-Z Note: lRC to the same bank must be satisfied. Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3 Qa0Qa1Qa2Qa3Qb0Qb1Qb2 Rev 1.3 2005-03-07 35/65 TC59LM836DKB-30,-33,-40 MULTIPLE BANK READ TIMING (CL = 6) 0 CLK CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IRBD = 2 cycles RDA UA Bank "a" LAL LA RDA UA Bank "b" IRC (Bank"a") = 7 cycles LAL LA DESL IRBD = 2 cycles IRBD = 2 cycles IRBD = 2 cycles IRBD = 2 cycles RDA UA Bank "a" IRC (Bank"b") = 7 cycles LAL LA RDA UA Bank "b" LAL LA RDA UA Bank "c" LAL LA RDA UA Bank "d" LAL LA RDA UA Bank "a" Command Address Bank Add. Unidirectional DS/QS mode BL = 2 DS (input) QS (output) Low CL = 6 CL = 6 DQ (output) BL = 4 DS (input) QS (output) Low CL = 6 CL = 6 DQ (output) Hi-Z Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3 Qa0Qa1Qa2 Hi-Z Qa0Qa1 Qb0Qb1 Qa0Qa1 Unidirectional DS/Free Running QS mode BL = 2 DS (input) QS (output) CL = 6 CL = 6 DQ (output) BL = 4 DS (input) QS (output) CL = 6 CL = 6 DQ (output) Hi-Z Note: lRC to the same bank must be satisfied. Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3 Qa0Qa1Qa2 Hi-Z Qa0Qa1 Qb0Qb1 Qa0Qa1 Rev 1.3 2005-03-07 36/65 TC59LM836DKB-30,-33,-40 MULTIPLE BANK WRITE TIMING (CL = 4) 0 CLK CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IRBD = 2 cycles WRA LAL WRA LAL IRBD = 2 cycles IRBD = 2 cycles IRBD = 2 cycles IRBD = 2 cycles DESL WRA LAL WRA LAL WRA LAL WRA LAL WRA LAL WRA Command Address UA Bank "a" LA UA Bank "b" LA UA Bank "a" LA UA Bank "b" LA UA Bank "c" LA UA Bank "d" LA UA Bank "a" LA UA Bank "b" Bank Add. IRC (Bank"a") = 5 cycles IRC (Bank"b") = 5 cycles Unidirectional DS/QS mode BL = 2 DS (input) QS (output) Low WL = 3 WL = 3 DQ (input) BL = 4 DS (input) QS (output) Low WL = 3 WL = 3 DQ (input) Da0 Da1 Da2 Da3 Db0 Db1 Db2 Db3 Da0 Da1 Da2 Da3 Db0 Db1 Db2 Db3 Dc0 Dc1 Dc2 Dc3 Dd0 Dd1 Da0 Da1 Db0 Db1 Da0 Da1 Db0 Db1 Dc0 Dc1 Dd0 Dd1 Unidirectional DS/Free Running QS mode BL = 2 DS (input) QS (output) WL = 3 WL = 3 DQ (input) BL = 4 DS (input) QS (output) WL = 3 WL = 3 DQ (input) Da0 Da1 Da2 Da3 Db0 Db1 Db2 Db3 Da0 Da1 Da2 Da3 Db0 Db1 Db2 Db3 Dc0 Dc1 Dc2 Dc3 Dd0 Dd1 Da0 Da1 Db0 Db1 Da0 Da1 Db0 Db1 Dc0 Dc1 Dd0 Dd1 Note: lRC to the same bank must be satisfied. Rev 1.3 2005-03-07 37/65 TC59LM836DKB-30,-33,-40 MULTIPLE BANK WRITE TIMING (CL = 5) 0 CLK CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IRBD = 2 cycles WRA UA Bank "a" LAL LA WRA UA Bank "b" IRC (Bank"a") = 6 cycles LAL LA DESL IRBD = 2 cycles IRBD = 2 cycles IRBD = 2 cycles IRBD = 2 cycles WRA UA Bank "a" IRC (Bank"b") = 6 cycles LAL LA WRA UA Bank "b" LAL LA WRA UA Bank "c" LAL LA WRA UA Bank "d" LAL LA WRA UA Bank "a" LAL LA Command Address Bank Add. Unidirectional DS/QS mode BL = 2 DS (input) QS (output) Low WL = 4 WL = 4 DQ (input) BL = 4 DS (input) QS (output) Low WL = 4 WL = 4 DQ (input) Da0 Da1 Da2 Da3 Db0 Db1 Db2 Db3 Da0 Da1 Da2 Da3 Db0 Db1 Db2 Db3 Dc0 Dc1 Da0 Da1 Db0 Db1 Da0 Da1 Db0 Db1 Dc0 Dc1 Unidirectional DS/Free Running QS mode BL = 2 DS (input) QS (output) WL = 4 WL = 4 DQ (input) BL = 4 DS (input) QS (output) WL = 4 DQ (input) Da0 Da1 Da2 Da3 Db0 Db1 Db2 Db3 Da0 Da1 Da2 Da3 Db0 Db1 Db2 Db3 Dc0 Dc1 Da0 Da1 Db0 Db1 Da0 Da1 Db0 Db1 Dc0 Dc1 WL = 4 Note: lRC to the same bank must be satisfied. Rev 1.3 2005-03-07 38/65 TC59LM836DKB-30,-33,-40 MULTIPLE BANK WRITE TIMING (CL = 6) 0 CLK CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IRBD = 2 cycles WRA LAL WRA LAL DESL IRBD = 2 cycles IRBD = 2 cycles IRBD = 2 cycles IRBD = 2 cycles WRA LAL WRA LAL WRA LAL WRA LAL WRA Command Address UA Bank "a" LA UA Bank "b" LA UA Bank "a" LA UA Bank "b" LA UA Bank "c" LA UA Bank "d" LA UA Bank "a" Bank Add. IRC (Bank"a") = 7 cycles IRC (Bank"b") = 7 cycles Unidirectional DS/QS mode BL = 2 DS (input) QS (output) Low WL = 5 WL = 5 DQ (input) BL = 4 DS (input) QS (output) Low WL = 5 WL = 5 DQ (input) Da0 Da1 Da2 Da3 Db0 Db1Db2 Db3 Da0 Da1 Da2 Da3 Db0 Db1 Da0 Da1 Db0 Db1 Da0 Da1 Db0 Db1 Unidirectional DS/Free Running QS mode BL = 2 DS (input) QS (output) WL = 5 WL = 5 DQ (input) BL = 4 DS (input) QS (output) WL = 5 WL = 5 DQ (input) Note: lRC to the same bank must be satisfied. Da0 Da1 Da2 Da3 Db0 Db1 Db2 Db3 Da0 Da1 Da2 Da3 Db0 Db1 Da0 Da1 Db0 Db1 Da0 Da1 Db0 Db1 Rev 1.3 2005-03-07 39/65 TC59LM836DKB-30,-33,-40 MULTIPLE BANK READ-WRITE TIMING (BL = 2) CLK CLK 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IRBD = 2 cycles WRA LAL RDA LAL DESL WRA LAL RDA LAL DESL WRA LAL RDA LAL DESL WRA Command IWRD = 1 cycle Address Bank Add. UA Bank "a" LA UA Bank "b" IRWD = 2 cycles IWRD = 1 cycle LA UA Bank "c" IRC (Bank"a") LA UA Bank "d" IRC (Bank"b") IRWD = 2 cycles LA UA Bank "a" LA UA Bank "b" LA UA Bank "c" Unidirectional DS/QS mode CL = 4 DS (input) QS (output) Low WL = 3 CL = 4 Da0 Da1 Qb0 Qb1 Dc0 Dc1 Qd0 Qd1 Da0 Da1 DQ CL = 5 DS (input) QS (output) Hi-Z Low WL = 4 CL = 5 Da0 Da1 Qb0 Qb1 Dc0 Dc1 Qd0 Qd1 Da0 Da1 DQ CL = 6 DS (input) QS (output) Hi-Z Low WL = 5 CL = 6 Da0 Da1 Qb0 Qb1 Dc0 Dc1 Qd0 Qd1 DQ CL = 4 DS (input) QS (output) Hi-Z Unidirectional DS/Free Running QS mode CL = 4 WL = 3 DQ CL = 5 DS (input) QS (output) WL = 4 DQ CL = 6 DS (input) QS (output) WL = 5 DQ Hi-Z Note: lRC to the same bank must be satisfied. Hi-Z CL = 5 Da0 Da1 Qb0 Qb1 Dc0 Dc1 Qd0 Qd1 Da0 Da1 Hi-Z Da0 Da1 Qb0 Qb1 Dc0 Dc1 Qd0 Qd1 Da0 Da1 CL = 6 Da0 Da1 Qb0 Qb1 Dc0 Dc1 Qd0 Qd1 Rev 1.3 2005-03-07 40/65 TC59LM836DKB-30,-33,-40 MULTIPLE BANK READ-WRITE TIMING (BL = 4) CLK CLK 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IRBD = 2 cycles WRA LAL RDA LAL DESL IRWD = 3 cycles LA UA WRA LAL RDA LAL DESL IRWD = 3 cycles LA UA Bank "a" WRA LAL RDA LAL Command IWRD = 1 cycle Address Bank Add. UA Bank "a" LA UA Bank "b" IWRD = 1 cycle LA UA Bank "d" IRC (Bank"b") IWRD = 1 cycle LA UA Bank "b" LA Bank "c" IRC (Bank"a") Unidirectional DS/QS mode CL = 4 DS (input) QS (output) Low WL = 3 CL = 4 Da0 Da1 Da2 Da3 Qb0 Qb1 Qb2 Qb3 Dc0 Dc1 Dc2 Dc3 Qd0 Qd1 Qd2 Qd3 DQ CL = 5 DS (input) Hi-Z QS (output) Low CL = 5 WL = 4 DQ CL = 6 DS (input) QS (output) Hi-Z Da0 Da1 Da2 Da3 Qb0 Qb1 Qb2 Qb3 Dc0 Dc1 Dc2 Dc3 Qd0 Qd1 Qd2 Qd3 Low WL = 5 CL = 6 Da0 Da1 Da2 Da3 Qb0 Qb1 Qb2 Qb3 Dc0 Dc1 Dc2 Dc3 Qd0 Qd1 DQ CL = 4 Hi-Z Unidirectional DS/Free Running QS mode DS (input) QS (output) WL = 3 DQ CL = 5 DS (input) QS (output) WL = 4 DQ CL = 6 DS (input) CL = 6 WL = 5 DQ Hi-Z Note: lRC to the same bank must be satisfied. Da0 Da1 Da2 Da3 Qb0 Qb1 Qb2 Qb3 Dc0 Dc1 Dc2 Dc3 Qd0 Qd1 CL = 4 Da0 Da1 Da2 Da3 Qb0 Qb1 Qb2 Qb3 Dc0 Dc1 Dc2 Dc3 Qd0 Qd1 Qd2 Qd3 Hi-Z CL = 5 Da0 Da1 Da2 Da3 Qb0 Qb1 Qb2 Qb3 Dc0 Dc1 Dc2 Dc3 Qd0 Qd1 Qd2 Qd3 Hi-Z QS (output) Rev 1.3 2005-03-07 41/65 TC59LM836DKB-30,-33,-40 WRITE with VARIABLE WRITE LENGTH (VW) CONTROL (CL = 4) 0 CLK CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 BL = 2, SEQUENTIAL MODE Command WRA LAL DESL WRA LAL DESL Address UA LA=#3 VW=All UA LA=#1 VW=1 VW0 = Low VW1 = don't care VW0 = High VW1 = don't care Bank Add. Bank "a" Bank "a" DS (input) DQ (input) Lower Address BL = 4, SEQUENTIAL MODE Command WRA LAL DESL WRA LAL DESL WRA LAL DESL D0 D1 D0 #3 #2 #1 (#0) Last one data is masked. Address UA LA=#3 VW=All UA LA=#1 VW=1 UA LA=#2 VW=2 VW0 = High VW1 = Low VW0 = High VW1 = High VW0 = Low VW1 = High Bank Add. Bank "a" Bank "a" Bank "a" DS (input) DQ (input) Lower Address D0 D1 D2 D3 D0 D0 D1 #3 #0 #1 #2 #1 (#2)(#3)(#0) Last three data are masked. #2 #3 (#0)(#1) Last two data are masked. Note: DS input must be continued till end of burst count even if some of laster data is masked. Rev 1.3 2005-03-07 42/65 TC59LM836DKB-30,-33,-40 POWER DOWN TIMING (CL = 4, BL = 4) Read cycle to Power Down Mode 0 CLK CLK 1 2 3 4 5 6 7 8 9 10 n-2 n-1 n n+1 n+2 IPDA Command RDA LAL DESL DESL RDA or WRA Address UA LA tIS tIH IPD = 2 cycle UA PD tQPDH Unidirectional DS/QS mode DS (input) QS (output) lRC(min) , tREFI(max) tPDEX Low CL = 4 DQ (output) Hi-Z Q0 Q1 Q2 Q3 Hi-Z Unidirectional DS/Free Running QS mode DS (input) QS (output) CL = 4 DQ (output) Hi-Z Q0 Q1 Q2 Q3 Hi-Z Power Down Entry Power Down Exit Note: PD must be kept "High" level until end of Burst data output. PD should be brought to "High" within tREFI(max.) to maintain the data written into cell. In Power Down Mode, PD "Low" and a stable clock signal must be maintained. When PD is brought to "High", a valid executable command may be applied lPDA cycles later. Rev 1.3 2005-03-07 43/65 TC59LM836DKB-30,-33,-40 POWER DOWN TIMING (CL = 4, BL = 4) Write cycle to Power Down Mode 0 CLK CLK 1 2 3 4 5 6 7 8 9 10 n-2 n-1 n n+1 n+2 IPDA Command WRA LAL DESL DESL RDA or WRA Address UA LA tIS tIH IPD = 2 cycle UA PD WL = 3 2 clock cycles lRC(min) , tREFI(max) tPDEX Unidirectional DS/QS mode DS (input) QS (output) Low WL = 3 DQ (input) D0 D1 D2 D3 Unidirectional DS/Free Running QS mode DS (input) QS (output) WL = 3 DQ (input) D0 D1 D2 D3 Note: PD must be kept "High" level until WL+2 clock cycles from LAL command. PD should be brought to "High" within tREFI(max.) to maintain the data written into cell. In Power Down Mode, PD "Low" and a stable clock signal must be maintained. When PD is brought to "High", a valid executable command may be applied lPDA cycles later. Rev 1.3 2005-03-07 44/65 TC59LM836DKB-30,-33,-40 MODE REGISTER SET TIMING (CL = 4, BL = 2) From Read operation to Mode Register Set operation. 0 CLK CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IRSC = 7 cycles Command RDA LAL DESL RDA MRS DESL RDA or WRA LAL Address UA LA Valid (opcode) UA LA Bank Add. BA CL + BL/2 BA0="0" BA1="0" BA Unidirectional DS/QS mode DS (input) QS (output) Low DQ (output) Q0 Q1 Unidirectional DS/Free Running QS mode DS (input) QS (output) DQ (output) Q0 Q1 Note: Minimum delay from LAL following RDA to RDA of MRS operation is CL+BL/2 clock cycles. Rev 1.3 2005-03-07 45/65 TC59LM836DKB-30,-33,-40 MODE REGISTER SET TIMING (CL = 4, BL = 4) From Write operation to Mode Register Set operation. 0 CLK CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IRSC = 7 cycles Command WRA LAL DESL RDA MRS DESL RDA or WRA LAL Address UA LA Valid (opcode) UA LA Bank Add. BA WL+BL/2 BA0="0" BA1="0" BA Unidirectional DS/QS mode DS (input) QS (output) Low DQ (input) D0 D1 D2 D3 Unidirectional DS/Free Running QS mode DS (input) QS (output) DQ (input) D0 D1 D2 D3 Note: Minimum delay from LAL following WRA to RDA of MRS operation is WL+BL/2 clock cycles. Rev 1.3 2005-03-07 46/65 TC59LM836DKB-30,-33,-40 EXTENDED MODE REGISTER SET TIMING (CL = 4, BL = 2) From Read operation to Extended Mode Register Set operation. 0 CLK CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IRSC = 7 cycles Command RDA LAL DESL RDA MRS Valid (opcode) DESL RDA or WRA LAL Address UA LA UA LA Bank Add. BA CL + BL/2 BA0="1" BA1="0" BA Unidirectional DS/QS mode DS (input) QS (output) Low DQ (output) Q0 Q1 Unidirectional DS/Free Running QS mode DS (input) QS (output) DQ (output) Note: Q0 Q1 Minimum delay from LAL following RDA to RDA of EMRS operation is CL+BL/2 clock cycles. When DQ strobe mode is changed by EMRS, QS output is invalid for lRSC period. DLL switch in Extended Mode Register must be set to enable mode for normal operation. DLL lock-on time is needed after initial EMRS operation. See Power Up Sequence. Rev 1.3 2005-03-07 47/65 TC59LM836DKB-30,-33,-40 EXTENDED MODE REGISTER SET TIMING (CL = 4, BL = 4) From Write operation to Extended Mode Register Set operation. 0 CLK CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IRSC = 7 cycles Command WRA LAL DESL RDA MRS DESL RDA or WRA LAL Address UA LA Valid (opcode) UA LA Bank Add. BA WL+BL/2 BA0="1" BA1="0" BA Unidirectional DS/QS mode DS (input) QS (output) Low DQ (input) D0 D1 D2 D3 Unidirectional DS/Free Running QS mode DS (input) QS (output) DQ (input) D0 D1 D2 D3 Note: When DQ strobe mode is changed by EMRS, QS output is invalid for lRSC period. DLL switch in Extended Mode Register must be set to enable mode for normal operation. DLL lock-on time is needed after initial EMRS operation. See Power Up Sequence. Minimum delay from LAL following WRA to RDA of EMRS operation is WL+BL/2 clock cycles. Rev 1.3 2005-03-07 48/65 TC59LM836DKB-30,-33,-40 AUTO-REFRESH TIMING (CL = 4, BL = 4) Unidirectional DS/QS mode 0 CLK CLK 1 2 3 4 5 6 7 n−1 n n+1 n+2 IRC = 5 cycles Command RDA LAL DESL WRA REF IREFC = 19 cycles DESL RDA or WRA LAL or MRS or REF Bank,Address Bank, UA LA IRAS = 4 cycles IRCD = 1 cycle Low CL = 4 IRCD = 1 cycle QS (output) DQ (output) Low Hi-Z Q0 Q1 Q2 Q3 Hi-Z Unidirectional DS/Free Running QS mode CLK CLK IRC = 5 cycles Command RDA LAL DESL WRA REF IREFC = 19 cycles DESL RDA or WRA LAL or MRS or REF Bank,Address Bank, UA LA IRAS = 4 cycles IRCD = 1 cycle IRCD = 1 cycle QS (output) CL = 4 DQ (output) Hi-Z Q0 Q1 Q2 Q3 Hi-Z Note: In case of CL = 4, IREFC must be meet 19 clock cycles. When the Auto-Refresh operation is performed, the synthetic average interval of Auto-Refresh command specified by tREFI must be satisfied. tREFI is average interval time in 8 Refresh cycles that is sampled randomly. t1 CLK t2 t3 t7 t8 W RA REF W RA REF W RA REF WRA REF WRA REF 8 Refresh cycle tREFI = Total time of 8 Refresh cycle 8 = t1 + t2 + t3 + t4 + t5 + t6 + t7 + t8 8 tREFI is specified to avoid partly concentrated current of Refresh operation that is activated larger area than Read / Write operation. Rev 1.3 2005-03-07 49/65 TC59LM836DKB-30,-33,-40 SELF-REFRESH ENTRY TIMING Unidirectional DS/QS mode 0 CLK CLK 1 2 3 4 5 m−1 m m+1 IRCD = 1 cycle WRA REF IREFC DESL Auto Refresh Self Refresh Entry Command tFPDL (min) tFPDL (max) PD tQPDH QS (output) DQ (output) Qx Notes: 1. 2. Low Hi-Z is don’t care. IPDV *2 ICKD Hi-Z PD must be brought to "Low" within the timing between tFPDL(min) and tFPDL(max) to Self Refresh mode. When PD is brought to "Low" after lPDV, TC59LM836DKB perform Auto Refresh and enter Power down mode. In case of PD fall between tFPDL(max) and lPDV, TC59LM836DKB will either entry Self-Refresh mode or Power down mode after Auto-Refresh operation. 3. It is desirable that clock input is continued at least lCKD from REF command even though PD is brought to “Low” for Self-Refresh Entry. 4. In case of Self-Refresh entry after Write Operation, the delay time from the LAL command following WRA to the REF command is Write latency (WL)+2 clock cycles minimum. SELF-REFRESH EXIT TIMING Unidirectional DS/QS mode 0 CLK CLK *2 1 2 m−1 m m+1 m+2 n−1 n n+1 p−1 p IREFC Command DESL *3 IREFC WRA *4 Command (1st)*5 Command (2nd)*5 RDA IRCD = 1 cycle *6 REF *4 DESL LAL *6 IRCD = 1 cycle PD tPDEX ILOCK QS (output) DQ (output) Hi-Z Low Hi-Z Self-Refresh Exit Notes: 1. is don’t care. 2. Clock should be stable prior to PD = “High” if clock input is suspended in Self-Refresh mode. 3. DESL command must be asserted during IREFC after PD is brought to “High”. 4. It is desirable that one Auto-Refresh command is issued just after Self-Refresh Exit before any other operation. 5. Any command (except Read command) can be issued after IREFC. 6. Read command (RDA + LAL) can be issued after ILOCK. Rev 1.3 2005-03-07 50/65 TC59LM836DKB-30,-33,-40 SELF-REFRESH ENTRY TIMING Unidirectional DS/Free Running QS mode 0 CLK CLK 1 2 3 4 5 m−1 m m+1 IRCD = 1 cycle WRA REF IREFC DESL Auto Refresh Self Refresh Entry Command tFPDL (min) tFPDL (max) PD tQPDH QS (output) DQ (output) Qx Notes: 1. 2. is don’t care. IPDV *2 ICKD Hi-Z Hi-Z PD must be brought to "Low" within the timing between tFPDL(min) and tFPDL(max) to Self Refresh mode. When PD is brought to "Low" after lPDV, TC59LM836DKB perform Auto Refresh and enter Power down mode. In case of PD fall between tFPDL(max) and lPDV, TC59LM836DKB will either entry Self-Refresh mode or Power down mode after Auto-Refresh operation. 3. It is desirable that clock input is continued at least lCKD from REF command even though PD is brought to “Low” for Self-Refresh Entry. SELF-REFRESH EXIT TIMING Unidirectional DS/Free Running QS mode 0 CLK CLK *2 1 2 m−1 m m+1 m+2 n−1 n n+1 p−1 p IREFC Command DESL *3 IREFC WRA *4 Command (1st)*5 Command (2nd)*5 RDA IRCD = 1 cycle *6 REF *4 DESL LAL *6 IRCD = 1 cycle PD tPDEX QS (output) DQ (output) Hi-Z Self-Refresh Exit Notes: 1. is don’t care. ILOCK 2. Clock should be stable prior to PD = “High” if clock input is suspended in Self-Refresh mode. 3. DESL command must be asserted during IREFC after PD is brought to “High”. 4. It is desirable that one Auto-Refresh command is issued just after Self-Refresh Exit before any other operation. 5. Any command (except Read command) can be issued after IREFC. 6. Read command (RDA + LAL) can be issued after ILOCK. 7. QS output is invalid until DLL lock from Self-Refresh exit. Rev 1.3 2005-03-07 51/65 TC59LM836DKB-30,-33,-40 FUNCTIONAL DESCRIPTION Network FCRAM TM The FCRAMTM is an acronym of Fast Cycle Random Access Memory. The Network FCRAMTM is competent to perform fast random core access, low latency and high-speed data transfer. PIN FUNCTIONS CLOCK INPUTS: CLK & CLK The CLK and CLK inputs are used as the reference for synchronous operation. CLK is master clock input. The CS , FN and all address input signals are sampled on the crossing of the positive edge of CLK and the negative edge of CLK . The QS and DQ output data are aligned to the crossing point of CLK and CLK . The timing reference point for the differential clock is when the CLK and CLK signals cross during a transition. POWER DOWN: PD The PD input controls the entry to the Power Down or Self-Refresh modes. The PD input does not have a Clock Suspend function like a CKE input of a standard SDRAMs, therefore it is illegal to bring PD pin into low state if any Read or Write operation is being performed. CHIP SELECT & FUNCTION CONTROL: CS & FN The CS and FN inputs are a control signal for forming the operation commands on FCRAMTM. Each operation mode is decided by the combination of the two consecutive operation commands using the CS and FN inputs. BANK ADDRESSES: BA0 & BA1 The BA0 and BA1 inputs are latched at the time of assertion of the RDA or WRA command and are selected the bank to be used for the operation. BA0 and BA1 also define which mode register is loaded during the Mode Register Set command (MRS or EMRS). BA0 Bank #0 Bank #1 Bank #2 Bank #3 0 1 0 1 BA1 0 0 1 1 ADDRESS INPUTS: A0~A13 Address inputs are used to access the arbitrary address of the memory cell array within each bank. The Upper Addresses with Bank addresses are latched at the RDA or WRA command and the Lower Addresses are latched at the LAL command. The A0 to A13 inputs are also used for setting the data in the Regular or Extended Mode Register set cycle. I/O Organization 36 bits UPPER ADDRESS A0~A13 LOWER ADDRESS A0~A6 Rev 1.3 2005-03-07 52/65 TC59LM836DKB-30,-33,-40 DATA INPUT/OUTPUT: DQ0~DQ35 The input data of DQ0 to DQ35 are taken in synchronizing with the both edges of DS input signal. The output data of DQ0 to DQ35 are outputted synchronizing with the both edges of QS output signal. DATA STROBE: LDS, UDS, LQS, UQS Method of data strobe is chosen by Extended mode register. LDS and LQS are for DQ0 to DQ17. UDS and UQS are for DQ18 to DQ35. (1) Unidirectional DS / QS mode DS is input signal and QS is output signal. Both edges of DS are used to sample all DQs at Write operation. Both edges of QS are used for trigger signal of all DQs at Read operation. During Write, Auto-Refresh and NOP cycle, QS assert always “Low” level. QS is Hi-Z in Self-Refresh mode. (2) Unidirectional DS / Free running QS mode DS is input signal and QS is output signal. Both edge of DS are used to sample all DQs at Write operation. Both edges of QS are used for trigger signal of all DQs at Read operation. QS assert always toggle signal except Self-Refresh mode. This strobe type is easy to use for pin to pin connect application. POWER SUPPLY: VDD, VDDQ, VSS, VSSQ VDD and VSS are power supply pins for memory core and peripheral circuits. VDDQ and VSSQ are power supply pins for the output buffer. REFERENCE VOLTAGE: VREF VREF is reference voltage for all input signals. Rev 1.3 2005-03-07 53/65 TC59LM836DKB-30,-33,-40 COMMAND FUNCTIONS and OPERATIONS TC59LM836DKB are introduced the two consecutive command input method. Therefore, except for Power Down mode, each operation mode decided by the combination of the first command and the second command from stand-by states of the bank to be accessed. Read Operation (1st command + 2nd command = RDA + LAL) Issuing the RDA command with Bank Addresses and Upper Addresses to the idle bank puts the bank designated by Bank Address in a read mode. When the LAL command with Lower Addresses is issued at the next clock of the RDA command, the data is read out sequentially synchronizing with the both edges of QS output signal (Burst Read Operation). The initial valid read data appears after CAS latency from the issuing of the LAL command. The valid data is outputted for a burst length. The CAS latency, the burst length of read data and the burst type must be set in the Mode Register beforehand. The read operated bank goes back automatically to the idle state after lRC. Write Operation (1st command + 2nd command = WRA + LAL) Issuing the WRA command with Bank Addresses and Upper Addresses to the idle bank puts the bank designated by Bank Address in a write mode. When the LAL command with Lower Addresses is issued at the next clock of the WRA command, the input data is latched sequentially synchronizing with the both edges of DS input signal (Burst Write Operation). The data and DS inputs have to be asserted in keeping with clock input after CAS latency-1 from the issuing of the LAL command. The DS has to be provided for a burst length. The CAS latency and the burst type must be set in the Mode Register beforehand. The write operated bank goes back automatically to the idle state after lRC. Write Burst Length is controlled by VW0 and VW1 inputs with LAL command. See VW truth table. Auto-Refresh Operation (1st command + 2nd command = W RA + REF) TC59LM836DKB are required to refresh like a standard SDRAM. The Auto-Refresh operation is begun with the REF command following to the WRA command. The Auto-Refresh mode can be effective only when all banks are in the idle state. In a point to notice, the write mode started with the WRA command is canceled by the REF command having gone into the next clock of the WRA command instead of the LAL command. The minimum period between the Auto-Refresh command and the next command is specified by lREFC. However, about a synthetic average interval of Auto-Refresh command, it must be careful. In case of equally distributed refresh, Auto-Refresh command has to be issued within once for every 3.9 µs by the maximum. In case of burst refresh or random distributed refresh, the average interval of eight consecutive Auto-Refresh commands has to be more than 400 ns always. In other words, the number of Auto-Refresh cycles that can be performed within 3.2 µs (8 × 400 ns) is to 8 times in the maximum. Self-Refresh Operation (1st command + 2nd command = W RA + REF with PD = “L”) In case of Self-Refresh operation, refresh operation can be performed automatically by using an internal timer. When all banks are in the idle state and all outputs are in Hi-Z states, the TC59LM836DKB become Self-Refresh mode by issuing the Self-Refresh command. PD has to be brought to “Low” within tFPDL from the REF command following to the WRA command for a Self-Refresh mode entry. In order to satisfy the refresh period, the Self-Refresh entry command should be asserted within 3.9 µs after the latest Auto-Refresh command. Once the device enters Self-Refresh mode, the DESL command must be continued for lREFC period. In addition, it is desirable that clock input is kept in lCKD period. The device is in Self-Refresh mode as long as PD held “Low”. During Self-Refresh mode, all input and output buffers are disabled except for PD , therefore the power dissipation lowers. Regarding a Self-Refresh mode exit, PD has to be changed over from “Low” to “High” along with the DESL command, and the DESL command has to be continuously issued in the number of clocks specified by lREFC. The Self-Refresh exit function is asynchronous operation. It is required that one Auto-Refresh command is issued to avoid the violation of the refresh period just after lREFC from Self-Refresh exit. Power Down Mode ( PD = “L”) When all banks are in the idle state and DQ outputs are in Hi-Z states, the TC59LM836DKB become Power Down Mode by asserting PD is “Low”. When the device enters the Power Down Mode, all input and output buffers are disabled after specified time except for PD , CLK, CLK and QS. Therefore, the power dissipation lowers. To exit the Power Down Mode, PD has to be brought to “High” and the DESL command has to be issued for lPDA cycle after PD goes high. The Power Down exit function is asynchronous operation. Rev 1.3 2005-03-07 54/65 TC59LM836DKB-30,-33,-40 Mode Register Set (1st command + 2nd command = RDA + MRS) When all banks are in the idle state, issuing the MRS command following to the RDA command can program the Mode Register. In a point to notice, the read mode started with the RDA command is canceled by the MRS command having gone into the next clock of the RDA command instead of the LAL command. The data to be set in the Mode Register is transferred using A0 to A13, BA0 and BA1 address inputs. The TC59LM836DKB have two mode registers. These are Regular and Extended Mode Register. The Regular or Extended Mode Register is chosen by BA0 and BA1 in the MRS command. The Regular Mode Register designates the operation mode for a read or write cycle. The Regular Mode Register has four function fields. The four fields are as follows: (R-1) Burst Length field to set the length of burst data (R-2) Burst Type field to designate the lower address access sequence in a burst cycle (R-3) CAS Latency field to set the access time in clock cycle (R-4) Test Mode field to use for supplier only. The Extended Mode Register has three function fields. The three fields are as follows: (E-1) DLL Switch field to choose either DLL enable or DLL disable (E-2) Output Driver Impedance Control field. (E-3) Data Strobe Select Once those fields in the Mode Register are set up, the register contents are maintained until the Mode Register is set up again by another MRS command or power supply is lost. The initial value of the Regular or Extended Mode Register after power-up is undefined, therefore the Mode Register Set command must be issued before proper operation. • Regular Mode Register/Extended Mode Register change bits (BA0, BA1) These bits are used to choose either Regular MRS or Extended MRS BA1 0 0 1 BA0 0 1 × Mode Register Set Regular MRS Extended MRS Reserved Regular Mode Register Fields (R-1) Burst Length field (A2 to A0) This field specifies the data length for column access using the A2 to A0 pins and sets the Burst Length to be 2 or 4 words. A2 0 0 0 0 1 A1 0 0 1 1 × A0 0 1 0 1 × BURST LENGTH Reserved 2 words 4 words Reserved Reserved (R-2) Burst Type field (A3) The Burst Type can be chosen Interleave mode or Sequential mode. When the A3 bit is “0”, Sequential mode is selected. When the A3 bit is “1”, Interleave mode is selected. Both burst types support burst length of 2 and 4 words. A3 0 1 BURST TYPE Sequential Interleave Rev 1.3 2005-03-07 55/65 TC59LM836DKB-30,-33,-40 • Addressing sequence of Sequential mode (A3) A column access is started from the inputted lower address and is performed by incrementing the lower address input to the device CAS Latency = 4 (Free Running QS mode) CLK CLK Command QS DQ RDA LAL Data Data Data Data 0 1 2 3 Addressing sequence for Sequential mode DATA Data 0 Data 1 Data 2 Data 3 ACCESS ADDRESS n n+1 n+2 n+3 BURST LENGTH 2 words (address bits is LA0) not carried from LA0~LA1 4 words (address bits is LA1, LA0) not carried from LA1~LA2 • Addressing sequence of Interleave mode A column access is started from the inputted lower address and is performed by interleaving the address bits in the sequence shown as the following. Addressing sequence for Interleave mode DATA Data 0 Data 1 Data 2 Data 3 ACCESS ADDRESS ּּּA8 A7 A6 A5 A4 A3 A2 A1 A0 ּּּA8 A7 A6 A5 A4 A3 A2 A1 ּּּA8 A7 A6 A5 A4 A3 A2 ּּּA8 A7 A6 A5 A4 A3 A2 A1 A1 A0 BURST LENGTH 2 words 4 words A0 A0 (R-3) CAS Latency field (A6 to A4) This field specifies the number of clock cycles from the assertion of the LAL command following the RDA command to the first data read. The minimum value of CAS Latency depends on the frequency of CLK. In a write mode, the place of clock that should input write data is CAS Latency cycles − 1. A6 0 0 0 0 1 1 1 1 A5 0 0 1 1 0 0 1 1 A4 0 1 0 1 0 1 0 1 CAS LATENCY Reserved Reserved Reserved Reserved 4 5 6 Reserved (R-4) Test Mode field (A7) This bit is used to enter Test Mode for supplier only and must be set to “0” for normal operation. (R-5) Reserved field in the Regular Mode Register • Reserved bits (A8 to A13) These bits are reserved for future operations. They must be set to “0” for normal operation. Rev 1.3 2005-03-07 56/65 TC59LM836DKB-30,-33,-40 Extended Mode Register fields (E-1) DLL Switch field (A0) This bit is used to enable DLL. When the A0 bit is set “0”, DLL is enabled. This bit must be set to “0” for normal operation. (E-2) Output Driver Impedance Control field (A1 to A4) This field is used to choose Output Driver Strength. Three types of Driver Strength are supported. QS and DQ Driver Strength can be chosen separately. A2-A1 specified the DQ Driver Strength. A4-A3 specified the QS Driver Strength. QS A4 0 0 1 1 A3 0 1 0 1 A2 0 0 1 1 DQ A1 0 1 0 1 Normal Output Driver Strong Output Driver Weak Output Driver Reserved OUTPUT DRIVER IMPEDANCE CONTROL (E-3) Strobe Select (A6 / A5) Two types of data strobe are supported. This field is used to choose the type of data strobe. (1) Unidirectional DS/QS mode Data strobe is separated DS for write strobe and QS for read strobe. DS is used to sample write data at write operation. QS is aligned with read data at Read operation. (2) Unidirectional DS/Free running QS mode Data strobe is separated DS for write strobe and QS for read strobe. DS is used to sample write data at write operation. QS is aligned with read data and always clocking. A6 0 0 1 1 A5 0 1 0 1 Reserved Reserved Unidirectional DS/QS mode Unidirectional DS/Free running QS mode STROBE SELECT (E-4) Reserved field (A7 to A13) These bits are reserved for future operations and must be set to “0” for normal operation. Rev 1.3 2005-03-07 57/65 TC59LM836DKB-30,-33,-40 BOUNDARY SCAN TEST ACCESS PORT OPERATIONS The TC59LM836DKB has a serial boundary scan test access port (TAP) which is compatible with IEEE Standard 1149.1 – 1990, but which does not implement all the functions required for 1149.1 – 1990. TCK must be tied to VSS or VDD to disable the TAP when TAP operation is not required. Test Access Port Signals SYMBOL TCK Test Clock Input DESCRIPTION All Test Access Port inputs are sampled on the rising edge of TCK. To disable the TAP, TCK must be tied to VSS or VDD. The signal presented at TMS is sampled on the rising edge of TCK. This input is internally pulled up so as to recognize a floating input as a logical High (Test-Logic-Reset). Values presented at TDI are clocked into the selected register on the rising edge of TCK. This input is internally pulled up. This enables detection of when the TDI input to the board is open-circuit. TDO is the serial output for test instructions and data from the test logic. This output is controlled by the falling edge of TCK. TMS Test Mode Select Input TDI Test Data Input TDO Test Data Output Test Access Port Registers REGISTER Instruction Register Test Data Register ID Register Bypass Register Boundary Scan Register IDR [ 31 : 0 ] BR BSR [ 62 : 0 ] 32 1 63 The register includes information on revision number, organization and TOSHIBA ID number. The register connects TDI and TDO. The Boundary Scan register is comprised of boundary scan cells at each input and I/O pin. The BSCs are serially connected between TDI and TDO. SYMBOL IR [ 2 : 0 ] LENGTH (bits) 3 DESCRIPTION The Instruction register controls five states (EXTEST, Sample-Z, Sample, Bypass, ID code). TAP Controller Instruction Set IR2 0 0 0 0 1 1 1 1 IR1 0 0 1 1 0 0 1 1 IR0 0 1 0 1 0 1 0 1 INSTRUCTION EXTEST ID CODE SAMPLE – Z RESERVED SAMPLE RESERVED RESERVED BYPASS DESCRIPTION Moves the Preloaded data on to the output pins. Samples the inputs connected to the BSCs. Access ID code. Tristates the RAM outputs and samples the inputs connected to the BSCs. This instruction is reserved for future use. Samples the inputs connected to the BSCs. Load the sampled data at I/Os to the parallel output of the BSCs. Does not affect RAM operation. This instruction is reserved for future use. This instruction is reserved for future use. Bypasses TDI and TDO using the Bypass register. Note: The first bit to be scanned into TDI is taken to be the least significant bit (IR0). Rev 1.3 2005-03-07 58/65 TC59LM836DKB-30,-33,-40 ID Register BIT # Value 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 9 0 8 1 7 0 6 0 5 1 4 1 3 0 2 0 1 0 0 1 Fi Content Memory Type TOSHIBA ID number xe d Boundary Scan Order BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 BALL LAYOUT U10 U11 T10 T11 R10 R11 P10 P11 N10 N11 M3 M11 L10 L11 K10 K11 J10 J11 G10 G11 H10 F11 F10 E11 E10 D11 D10 C11 C10 B11 BALL NAME DQ35 DQ34 DQ33 DQ32 DQ31 DQ30 DQ29 DQ28 DQ27 UQS A4 A3 A2 A1 A0 A10 BA1 BA0 A13 FN /CS LQS DQ8 DQ7 DQ6 DQ5 DQ4 DQ3 DQ2 DQ1 BIT 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 R3 T2 T3 U2 U3 DQ22 DQ21 DQ20 DQ19 DQ18 D2 E3 E2 F3 F2 G3 H3 H2 J2 J3 K2 K3 L2 L3 M2 N2 N3 P2 P3 R2 DQ12 DQ11 DQ10 DQ9 LDS /CLK CLK /PD A12 A11 A9 A8 A7 A6 A5 UDS DQ26 DQ25 DQ24 DQ23 BALL LAYOUT B10 B3 B2 C3 C2 D3 BALL NAME DQ0 DQ17 DQ16 DQ15 DQ14 DQ13 Rev 1.3 2005-03-07 59/65 TC59LM836DKB-30,-33,-40 TAP CONTROLLER STATE DIAGRAM TMS = 1 Test – Logic - Reset TMS = 0 TMS = 0 Run – Test / Idle TMS = 1 Select – DR - Scan TMS = 0 Capture - DR TMS = 0 TMS = 1 Select – IR - Scan TMS = 0 TMS = 1 TMS = 1 Capture - IR TMS = 1 TMS = 0 Shift - IR TMS = 1 Exit1 - IR TMS = 0 Pause - IR TMS = 1 TMS = 0 Exit2 - IR TMS = 1 Update - IR TMS = 0 TMS = 0 TMS = 1 TMS = 0 TMS = 0 Shift - DR TMS = 1 TMS = 1 Exit1 - DR TMS = 0 TMS = 0 Pause - DR TMS = 1 Exit2 - DR TMS = 1 Update - DR TMS = 0 TMS = 1 TMS = 0 Notes: 1. 2. TMS = 1 To enter the Test-Logic-Reset state in order to initialize the device, keep TMS High for at least five rising edges of the TCK. The TDO output buffer is active only during shift operations (the Shift-DR and Shift-IR states) and is inactive (High-Z) during other states. Rev 1.3 2005-03-07 60/65 TC59LM836DKB-30,-33,-40 TAP DC OPERATING CHARACTERISTICS SYMBOL ILO PARAMETER Output Leakage Current (TDO pin) Input Leakage Current (TCK, TMS, TDI pins) Input High Voltage (TCK, TMS, TDI pins) Input Low Voltage (TCK, TMS, TDI pins) Output High Voltage (TDO pin) Output Low Voltage (TDO pin) TEST CONDITION Output Deselected VOUT=0 to VDD VIN = 1.7V to VDD VIN = 0 to 0.7V   IOH = −2 mA IOL = 2 mA MIN −10 −20 −100 VREF+0.4 −0.1 1.5  TYP        MAX 10 10 10 VDD+0.2 VREF−0.4 VDD 0.45 UNIT µA µA µA V II VIH VIL VOH VOL V V V AC CHARACTERISTICS ( VDD = 2.5V ± 0.125V, VDDQ = 1.4V ~ 1.9V, TCASE = 0 ~ 85°C ) TC59LM836DKB SYMBOL PARAMETER MIN tTHTH tTHTL tTLTH tMVTH tTHMX tCS tCH tDVTH tTHDX tTLQV tTLQX tTLQLZ tTLQHZ TCK Cycle Time TCK High Pulse Width TCK Low Pulse Width TMS Setup Time to TCK TMS Hold Time to TCK Capture Setup time to TCK Capture Hold time to TCK TDI Setup Time to TCK TDI Hold Time to TCK Output Valid Time from TCK Low Output Hold Time from TCK Low Output Low-Z Time from TCK Low Output High-Z Time from TCK Low 50 20 20 10 10 10 10 10 10  0 5  MAX          20   5 ns UNIT Rev 1.3 2005-03-07 61/65 TC59LM836DKB-30,-33,-40 TAP AC TEST CONDITIONS PARAMETER Input Pulse Level Input Pulse Rise and Fall Time Input Timing Measurement Reference Level Output Timing Measurement Reference Level CONDITION TDO 1.8V / 0.0V 2ns 0.9V 0.9V Output Load RL = 50 Ω VL = 0.9V Z = 50 Ω TAP TIMING DIAGRAMS tTHTH TCK tMVTH tTHMX TMS tDVTH tTHDX TDI tTHTL tTLTH tCS tCH Capture Data tTLQLZ TDO tTLQV tTLQX tTLQHZ Rev 1.3 2005-03-07 62/65 TC59LM836DKB-30,-33,-40 PACKAGE DIMENSIONS P-TFBGA144-1119-0.80BZ 18.5 0.2 S B 0.2 S A 4 0.15 11.0 0.2 S S 1.2MAX 0.4 0.05 0.15MIN 0.1 S 0.5 0.05 A A B C D E F G H J K L M N P R T U INDEX 1 2 3 4 5 6 7 8 9 10 11 12 0.08 0.75 V S AB 0.8 B Weight: 0.30g (typ.) 2.0 2.0 1.1 0.5 1.0 Rev 1.3 2005-03-07 63/65 TC59LM836DKB-30,-33,-40 REVISION HISTORY − Rev.1.0 (Feb. 26 ’2004) − Rev.1.1 (May. 25 ‘2004) • IDD6 spec changed from 10mA to 15mA (page 1, 7) • VSWING in AC Test conditions changed from 0.7 V to 0.8 V (page 11) • Corrected typo (page 54) − Rev.1.2 (Aug. 27 ‘2004) • Some notes in the page 8 moved to page 7 (page 7, 8). • Note 2 changed as below (page 7). Before: These parameters depend on the output loading. The specified values are obtained with the output open After: These parameters define the current between VDD and VSS. • • • • Corrected TYPO (page 9, 14~18, 61, 62). tCK,MAX for “-30” changed from 7.5 ns to 5.0 ns (page 9) Package drawing minor change (page 63). Package weight (0.30g) added (page 63) − Rev.1.3 (Mar.7 ‘2005) • Corrected figure of lPDA based AC timing spec table (page 12, 43, 44, 50, 51). Rev 1.3 2005-03-07 64/65 TC59LM836DKB-30,-33,-40 RESTRICTIONS ON PRODUCT USE • The information contained herein is subject to change without notice. 030619EBA • The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. • TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc.. • The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer’s own risk. • The products described in this document are subject to the foreign exchange and foreign trade laws. • TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations. Rev 1.3 2005-03-07 65/65
TC59LM836DKB-40 价格&库存

很抱歉,暂时无法提供与“TC59LM836DKB-40”相匹配的价格&库存,您可以联系我们找货

免费人工找货