0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
P4KE47A

P4KE47A

  • 厂商:

    TSC

  • 封装:

  • 描述:

    P4KE47A - Transient Voltage Suppressor Diodes - Taiwan Semiconductor Company, Ltd

  • 数据手册
  • 价格&库存
P4KE47A 数据手册
P4KE SERIES Transient Voltage Suppressor Diodes Voltage Range 6.8 to 440 Volts 400 Watts Peak Power Features UL Recognized File # E-96005 Plastic package has Underwriters Laboratory Flammability Classification 94V-0 400W surge capability at 10 x 100us waveform, duty cycle: 0.01% Excellent clamping capability Low zener impedance Fast response time: Typically less than 1.0ps from 0 volts to VBR for unidirectional and 5.0 ns for bidirectional Typical IR less than 1 uA above 10V High temperature soldering guaranteed: 260°C / 10 seconds / .375”,(9.5mm) lead length / 5lbs.,(2.3kg) tension DO-41 Mechanical Data Case: Molded plastic Lead: Axial leads, solderable per MIL-STD202, Method 208 Polarity: Color band denotes cathode except bipolar Weight: 0.012 ounce,0.3 gram Dimensions in inches and (millimeters) Maximum Ratings and Electrical Characteristics Rating at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20% Type Number Peak Power Dissipation at TA=25°C, Tp=1ms (Note 1) Steady State Power Dissipation at TL=75°C Lead Lengths .375”, 9.5mm (Note 2) Peak Forward Surge Current, 8.3 ms Single Half Sine-wave Superimposed on Rated Load (JEDEC method) (Note 3) Maximum Instantaneous Forward Voltage at 25.0A for Unidirectional Only (Note 4) Operating and Storage Temperature Range Symbol PPK PD IFSM VF TJ, TSTG Value Minimum 400 1.0 40.0 3.5 / 6.5 -55 to + 175 O Units Watts Watts Amps Volts °C Notes: 1. Non-repetitive Current Pulse Per Fig. 3 and Derated above TA=25 C Per Fig. 2. Notes: 2. Mounted on Copper Pad Area of 1.6 x 1.6” (40 x 40 mm) Per Fig. 4. Notes: 3. 8.3ms Single Half Sine-wave or Equivalent Square Wave, Duty Cycle=4 Pulses Per Minutes Notes: 3. Maximum. Notes: 4. VF=3.5V for Devices of VBR ≤ 200V and VF=6.5V Max. for Devices VBR>200V. Devices for Bipolar Applications Notes: 1. For Bidirectional Use C or CA Suffix for Types P4KE6.8 thru Types P4KE440. Notes: 2. Electrical Characteristics Apply in Both Directions. - 628 - RATINGS AND CHARACTERISTIC CURVES (P4KE SERIES) PEAK PULSE POWER (Ppp) or CURRENT (IPPM) DERATING IN PERCENTAGE, % FIG.1- PEAK PULSE POWER RATING CURVE PPPM, PEAK PULSE POWER, KW 100 NON-REPETITIVE PULSE WAVEFORM SHOWN in FIG.3 TJ=250C FIG.2- PULSE DERATING CURVE 100 10 75 50 1 25 0.1 0.1ms 1.0ms 10ms 100ms 1.0ms 10ms 0 0 25 50 75 100 125 o 150 175 200 tp, PULSE WIDTH, sec. TA, AMBIENT TEMPERATURE, C 150 PEAK PULSE CURRENT - % tr=10msec. PEAK VALUE lPPM PULSE WIDTH (td) is DEFINED as the POINT WHERE the PEAK CURRENT DECAYS to 50% of lPPM PM(AV), STEADY STATE POWER DISSIPATION, WATTS FIG.3- PULSE WAVEFORM FIG.4- STEADY STATE POWER DERATING CURVE L=0.375"(9.5mm) LEAD LENGTHS 60Hz RESISTIVE OR INDUCTIVE LOAD 1.00 0.75 100 50 HALF VALUE- lPPM 2 10/1000 sec. WAVEFORM as DEFINED by R.E.A. 0.50 1.6 X 1.6 X .040" (40 X 40 X 1mm.) COPPER HEAT SINKS 0.25 0 0 td 1.0 2.0 t, TIME, ms 3.0 4.0 0 0 25 50 75 100 125 o 150 175 200 TL, LEAD TEMPERATURE, C lFSM, PEAK FORWARD SURGE CURRENT, AMPERES FIG.5- MAXIMUM NON-REPETITIVE FORWARD SURGE CURRENT UNIDIRECTIONAL ONLY 50 Tj=Tj max. 8.3ms Single Half Sine Wave JEDEC Method 100,000 FIG.7- TYPICAL JUNCTION CAPACITANCE UNIDIRECTIONAL 40 30 20 10 CJ, JUNCTION CAPACITANCE.(pF) Tj=25 0C f=1.0MHz Vsig=50mVp-p 10,000 MEASURED at ZERO BIAS 0 1 2 4 6 8 10 20 40 60 80 100 NUMBER OF CYCLES AT 60Hz 1,000 lD, INSTANTANEOUS REVERSE LEAKAGE CURRENT, MICROAMPERES FIG.6- TYPICAL REVERSE LEAKAGE CHARACTERASTICS 100 MEASURED at STAND-OFF VOLTAGE, VWM 10 MEASURED AT DEVICES STAND-OFF VOLTAGE, VWM 100 1 10 100 200 V(BR), BREAKDOWN VOLTAGE. VOLTS 1 0.1 TJ=25 0C 0.01 0 100 200 300 400 500 V(BR), BREAKDOWN VOLTAGE. VOLTS - 629 - ELECTRICAL CHARACTERISTICS (TA=25OC unless otherwise noted) Device Nominal Voltage (Volts) 6.8 6.8 7.5 7.5 8.2 8.2 9.1 9.1 10 10 11 11 12 12 13 13 15 15 16 16 18 18 20 20 22 22 24 24 27 27 30 30 33 33 36 36 39 39 43 43 47 47 51 51 56 56 62 62 68 68 75 75 82 82 91 91 100 100 110 110 120 120 130 130 150 150 160 160 170 170 180 180 200 200 220 220 250 250 300 300 350 350 400 400 440 440 Breakdown Voltage VBR (Volts) (Note 1) Min Max 6.12 6.46 6.75 7.13 7.38 7.79 8.19 8.65 9.00 9.50 9.90 10.5 10.8 11.4 11.7 12.4 13.5 14.3 14.4 15.2 16.2 17.1 18.0 19.0 19.8 20.9 21.6 22.8 24.3 25.7 27.0 28.5 29.7 31.4 32.4 34.2 35.1 37.1 38.7 40.9 42.3 44.7 45.9 48.5 50.4 53.2 55.8 58.9 61.2 64.6 67.5 71.3 73.8 77.9 81.9 86.5 90.0 95.0 99.0 105.0 108.0 114.0 117.0 124.0 135.0 143.0 144.0 152.0 153.0 162.0 162.0 171.0 180.0 190.0 198.0 209.0 225.0 237.0 270.0 285.0 315.0 332.0 360.0 380.0 396.0 418.0 7.48 7.14 8.25 7.88 9.02 8.61 10.0 9.55 11.0 10.5 12.1 11.6 13.2 12.6 14.3 13.7 16.5 15.8 17.6 16.8 19.8 18.9 22.0 21.0 24.2 23.1 26.4 25.2 29.7 28.4 33.0 31.5 36.3 34.7 39.6 37.8 42.9 41.0 47.3 45.2 51.7 49.4 56.1 53.6 61.6 58.8 68.2 65.1 74.8 71.4 82.5 78.8 90.2 86.1 100.0 95.5 110.0 105.0 121.0 116.0 132.0 126.0 143.0 137.0 165.0 158.0 176.0 168.0 187.0 179.0 198.0 189.0 220.0 210.0 242.0 231.0 275.0 263.0 330.0 315.0 385.0 368.0 440.0 420.0 484.0 462.0 Test Current @IT (mA) 10 10 10 10 10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Stand-Off Voltage VWM (Volts) 5.50 5.80 6.05 6.40 6.63 7.02 7.37 7.78 8.10 8.55 8.92 9.40 9.72 10.2 10.5 11.1 12.1 12.8 12.9 13.6 14.5 15.3 16.2 17.1 17.8 18.8 19.4 20.5 21.8 23.1 24.3 25.6 26.8 28.2 29.1 30.8 31.6 33.3 34.8 36.8 38.1 40.2 41.3 43.6 45.4 47.8 50.2 53.0 55.1 58.1 60.7 64.1 66.4 70.1 73.7 77.8 81.0 85.5 89.2 94.0 97.2 102.0 105.0 111.0 121.0 128.0 130.0 136.0 138.0 145.0 146.0 154.0 162.0 171.0 175.0 185.0 202.0 214.0 243.0 256.0 284.0 300.0 324.0 342.0 356.0 376.0 Maximum Reverse Leakage at VWM ID (uA) 1000 1000 500 500 200 200 50 50 10 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Maximum Peak Pulse Current IPPM (Note 2)(Amps) 38 40 35 37 33 34 30 31 28 29 26 27 24 25 22 23 19 20 17.8 18.6 16 16.5 14 15 13 13.7 12 12.6 10.7 11.0 9.6 10 8.8 9.0 8.0 8.4 7.4 7.7 6.7 7.0 6.2 6.4 5.7 6.0 5.2 5.4 4.7 5.0 4.2 4.5 3.8 4.0 3.5 3.7 3.2 3.3 2.9 3.0 2.6 2.7 2.4 2.5 2.2 2.3 1.9 2.0 1.8 1.9 1.7 1.8 1.6 1.7 1.4 1.51 1.2 1.3 1.1 1.2 0.97 1.0 0.83 0.87 0.73 0.76 0.66 0.69 Maximum Clamping Voltage at IPPM VC(Volts) 10.8 10.5 11.7 11.3 12.5 12.1 13.8 13.4 15.0 14.5 16.2 15.6 17.3 16.7 19.0 18.2 22.0 21.2 23.5 22.5 26.5 25.5 29.1 27.7 31.9 30.6 34.7 33.2 39.1 37.5 43.5 41.4 47.7 45.7 52.0 49.9 56.4 53.9 61.9 59.3 67.8 64.8 73.5 70.1 80.5 77.0 89.0 85.0 98.0 92.0 108.0 103.0 118.0 113.0 131.0 125.0 144.0 137.0 158.0 152.0 173.0 165.0 187.0 179.0 215.0 207.0 230.0 219.0 244.0 234.0 258.0 246.0 287.0 274.0 344.0 328.0 360.0 344.0 430.0 414.0 504.0 482.0 574.0 548.0 631.0 600.0 Maximum Temperature Coefficient O of VBR(% / C) 0.057 0.057 0.061 0.061 0.065 0.065 0.068 0.068 0.073 0.073 0.075 0.075 0.078 0.078 0.081 0.081 0.084 0.084 0.086 0.086 0.088 0.088 0.090 0.090 0.092 0.092 0.094 0.094 0.096 0.096 0.097 0.097 0.098 0.098 0.099 0.099 0.100 0.100 0.101 0.101 0.101 0.101 0.102 0.102 0.103 0.103 0.104 0.104 0.104 0.104 0.105 0.105 0.105 0.105 0.106 0.106 0.106 0.106 0.107 0.107 0.107 0.107 0.107 0.107 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 P4KE6.8 P4KE6.8A P4KE7.5 P4KE7.5A P4KE8.2 P4KE8.2A P4KE9.1 P4KE9.1A P4KE10 P4KE10A P4KE11 P4KE11A P4KE12 P4KE12A P4KE13 P4KE13A P4KE15 P4KE15A P4KE16 P4KE16A P4KE18 P4KE18A P4KE20 P4KE20A P4KE22 P4KE22A P4KE24 P4KE24A P4KE27 P4KE27A P4KE30 P4KE30A P4KE33 P4KE33A P4KE36 P4KE36A P4KE39 P4KE39A P4KE43 P4KE43A P4KE47 P4KE47A P4KE51 P4KE51A P4KE56 P4KE56A P4KE62 P4KE62A P4KE68 K4PE68A P4KE75 P4KE75A P4KE82 P4KE82A P4KE91 P4KE91A P4KE100 P4KE100A P4KE110 P4KE110A P4KE120 P4KE120A P4KE130 P4KE130A P4KE150 P4KE150A P4KE160 P4KE160A P4KE170 P4KE170A P4KE180 P4KE180A P4KE200 P4KE200A P4KE220 P4KE220A P4KE250 P4KE250A P4KE300 P4KE300A P4KE350 P4KE350A P4KE400 P4KE400A P4KE440 P4KE440A Notes: 1. VBR measured after IT applied for 300us, IT=square wave pulse or equivalent. 2. Surge current waveform per Figure 3 and derate per Figure 2. 3. For bipolar types having VWM of 10 volts and under, the ID limit is doubled. 4. All terms and symbols are consistent with ANSI/IEEE C62.35. - 630 - TVS APPLICATION NOTES: Transient Voltage Suppressors may be used at various points in a circuit to provide various degrees of protection. The following is a typical linear power supply with transient voltage suppressor units placed at different points. All provide protection of the load. FIGURE 1 Transient Voltage Suppressors 1 provides maximum protection. However, the system will probably require replacement of the line fuse(F) since it provides a dominant portion of the series impedance when a surge is encountered. However, we do not recommend to use the TVS diode here, unless we can know the electric circuit impedance and the magnitude of surge rushed into the circuit. Otherwise the TVS diode is easy to be destroyed by voltage surge. Transient Voltage Suppressor 2 provides execllent protection of circuitry excluding the transformer(T). However, since the transformer is a large part of the series impedance, the chance of the line fuse opening during the surge condition is reduced. Transient Voltage Suppressor 3 provides the load with complete protection. It uses a unidirectional Transient Voltage Suppressor, which is a cost advantage. The series impedance now includes the line fuse, transformer, and bridge rectifier(B) so failure of the line fuse is further reduced. If only Transient Voltage Suppressor 3 is in use, then the bridge rectifier is unprotected and would require a higher voltage and current rating to prevent failure by transients. Any combination of these three, or any one of these applications, will prevent damage to the load. This would require varying trade-offs in power supply protection versus maintenance(changing the time fuse). An additional method is to utilize the Transient Voltage Suppressor units as a controlled avalanche bridge. This reduces the parts count and incorporates the protection within the bridge rectifier. FIGURE 2 - 631 -
P4KE47A 价格&库存

很抱歉,暂时无法提供与“P4KE47A”相匹配的价格&库存,您可以联系我们找货

免费人工找货