0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
Z86E6116PSG

Z86E6116PSG

  • 厂商:

    ZILOG(齐洛格)

  • 封装:

    DIP40

  • 描述:

    IC MCU 8BIT 16KB OTP 40DIP

  • 数据手册
  • 价格&库存
Z86E6116PSG 数据手册
CMOS Z8 16K/32K EPROM MCUs Z86E61/Z86E63 Microcontrollers Product Specification PS014404-0212 Copyright ©2012 Zilog®, Inc. All rights reserved. www.zilog.com Z86E61/Z86E63 Microcontrollers Product Specification ii Warning: DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS. LIFE SUPPORT POLICY ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION. As used herein Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. Document Disclaimer ©2012 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. Zilog, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. Zilog ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering. Z8 is a registered trademark of Zilog, Inc. All other product or service names are the property of their respective owners. PS014404-0212 Z86E61/Z86E63 Microcontrollers Product Specification iii Revision History Each instance in the following revision history table reflects a change to this document from its previous version. For more details, refer to the corresponding pages or appropriate links provided in the table. Date Revision Level Description Page Feb 2012 04 Globally updated for style and content. All Oct 2008 03 Updated pin descriptions. 11 May 2008 02 Added LQFP pin diagram (Standard and Programming modes); replaced 44-pin QFP with 44-pin LQFP for CR #10886. 7, 8 Nov 2001 01 Original issue. All PS014404-0212 Revision History Z86E61/Z86E63 Microcontrollers Product Specification iv Table of Contents Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .viii Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Counter/Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Z86E61/Z86E63 User Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Z86E63 Signal Description for EPROM Program/Read . . . . . . . . . . . . . . . . . . . . . 30 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Standard Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Standby Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Z8 Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Instruction Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Instruction Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Op Code Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Part Number Suffix Designations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 PS014404-0212 Table of Contents Z86E61/Z86E63 Microcontrollers Product Specification v Customer Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 PS014404-0212 Table of Contents Z86E61/Z86E63 Microcontrollers Product Specification vi List of Figures Figure 1. Z86E61/Z86E63 MCU Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . 3 Figure 2. Z86E61/Z86E63 PDIP Pin Diagram, Standard Mode . . . . . . . . . . . . . . . . . . . . 4 Figure 3. Z86E61/Z86E63 PDIP Pin Diagram, EPROM Programming Mode . . . . . . . . . 6 Figure 4. Z86E61/Z86E63 LQFP Pin Diagram, Standard Mode . . . . . . . . . . . . . . . . . . . 7 Figure 5. Z86E61/Z86E63 LQFP Pin Diagram, EPROM Programming Mode . . . . . . . . 8 Figure 6. Z86E61/Z86E63 PLCC Pin Diagram, Standard Mode . . . . . . . . . . . . . . . . . . . 9 Figure 7. Z86E61/Z86E63 PLCC Pin Diagram, EPROM Programming Mode . . . . . . . 10 Figure 8. Port 0 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 9. Port 1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 10. Port 2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 11. Port 3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 12. Serial Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 13. Program Memory Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 14. Data Memory Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 15. Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 16. Register Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 17. Counter/Timers Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 18. Interrupt Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 19. Oscillator Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 20. EPROM Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 21. EPROM Program and Verify Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 22. Programming EPROM and RAM Protect . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 23. Intelligent Programming Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 24. Test Load Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 25. Typical ICC vs. Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 26. Typical ICC1 vs. Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 27. External I/O or Memory Read/Write Timing . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 28. Input Handshake Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 PS014404-0212 List of Figures Z86E61/Z86E63 Microcontrollers Product Specification vii Figure 29. Output Handshake Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 30. Additional Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 31. Serial I/O Register (F0H: Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 32. Timer Mode Register (F1H: Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 33. Counter/Timer 1 Register (F2H: Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 34. Prescaler 1 Register (F3H: Write Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 35. Counter/Timer 0 Register (F4H: Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 36. Prescaler 0 Register (F5H: Write Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Figure 37. Port 2 Mode Register (F6H: Write Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Figure 38. Port 3 Mode Register (F7H: Write Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Figure 39. Port 0 and 1 Mode Register (F8H: Write Only) . . . . . . . . . . . . . . . . . . . . . . . 47 Figure 40. Interrupt Priority Register (F9H: Write Only) . . . . . . . . . . . . . . . . . . . . . . . . 48 Figure 41. Interrupt Request Register (FAH: Read/Write) . . . . . . . . . . . . . . . . . . . . . . . 48 Figure 42. Interrupt Mask Register (FBH: Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . 49 Figure 43. Flag Register (FCH: Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Figure 44. Register Pointer Register (FDH: Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . 49 Figure 45. Stack Pointer Register (FEH: Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Figure 46. Stack Pointer Register (FFH: Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Figure 47. Instruction Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Figure 48. Op Code Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 PS014404-0212 List of Figures Z86E61/Z86E63 Microcontrollers Product Specification viii List of Tables Table 1. Power Connection Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Table 2. Z86E61/Z86E63 PDIP Pin Description, Standard Mode. . . . . . . . . . . . . . . . . . . 4 Table 3. Z86E61/Z86E63 PDIP Pin Description, EPROM Programming Mode . . . . . . . 6 Table 4. Z86E61/Z86E63 LQFP Pin Description, Standard Mode . . . . . . . . . . . . . . . . . . 7 Table 5. Z86E61/Z86E63 LQFP Pin Description, EPROM Programming Mode . . . . . . . 8 Table 6. Z86E61/Z86E63 PLCC Pin Description, Standard Mode . . . . . . . . . . . . . . . . . . 9 Table 7. Z86E61/Z86E63 PLCC Pin Description, EPROM Programming Mode . . . . . . 10 Table 8. Port 3 Pin Assignments* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 9. OTP Programming1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 10. Timing of Programming Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 11. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 12. Direct Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 13. External I/O or Memory Read and Write Timing . . . . . . . . . . . . . . . . . . . . . . 38 Table 14. Clock-Dependent Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 15. Handshake Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 16. Additional Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 17. Instruction Set Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Table 18. Instruction Set Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Table 19. R252 Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Table 20. R252 Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Table 21. Condition Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Table 22. Instruction Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 23. Z86E61/Z86E63 MCU Ordering Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 PS014404-0212 List of Tables Z86E61/Z86E63 Microcontrollers Product Specification 1 Overview The Z86E61/Z86E63 microcontrollers are members of the Z8® single-chip microcontroller family with 16K/32 KB of EPROM and 236 bytes of general-purpose RAM. Offered in 40-pin DIP, 44-pin PLCC or 44-pin LQFP package styles, these devices are pin-compatible EPROM versions of the Z86C61/ 63. The ROMless pin option is available on the 44-pin versions only. With 16 KB/32 KB of ROM and 236 bytes of general-purpose RAM, the Z86E61/Z86E63 MCU offers fast execution, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, and easy hardware/software system expansion. For applications demanding powerful I/O capabilities, the Z86E61/Z86E63 MCU offers 32 pins dedicated to input and output. These lines are grouped into four ports. Each port consists of eight lines, and is configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an address/data bus for interfacing external memory. The Z86E61/Z86E63 MCU can address both external memory and preprogrammed ROM, making it well suited for high-volume applications or where code flexibility is required. There are three basic address spaces available to support this configuration: • • • Program memory Data memory 236 General-purpose registers Features The Z86E61 and Z86E63 MCUs offer the following features: • • • • • • • • • PS014404-0212 8-Bit CMOS microcontroller 40-pin DIP, 44-pin PLCC and 44-pin LQFP packages 4.5 V to 5.5 V operating range Clock speeds: 16 MHz and 20 MHz Low power consumption: 275 mW (max) Two Standby modes: STOP and HALT 32 Input/Output lines Full-duplex UART All digital inputs are TTL levels Overview Z86E61/Z86E63 Microcontrollers Product Specification 2 • • • • Auto Latches • 256-byte Register File: – 236 bytes of General-Purpose RAM – 16 bytes of Control and Status registers – 4 bytes for ports • • • Two programmable 8-bit Counter/Timers, each with 6-bit programmable prescaler High-voltage protection on high-voltage inputs RAM and EPROM Protect EPROM: – 16 KB Z86E61 – 32 KB Z86E63 Six vectored priority interrupts from eight different sources On-chip oscillator that accepts a crystal ceramic resonator, LC or external clock drive To unburden the system from coping with real-time tasks such as counting/timing and serial data communication, the Z86E61/Z86E63 MCU offers two on-chip counter/timers with a large number of user selectable modes. See the block diagram in Figure 1. PS014404-0212 Overview Z86E61/Z86E63 Microcontrollers Product Specification 3 Output Input VCC GND DS XTAL AS R/W RESET Machine Timing and Instruction Control Port 3 UART ALU Counter/ Timers (2) FLAGS Prg. Memory 16K/32K Register Pointer Interrupt Control Program Counter Register File 256 x 8-Bit Port 0 Port 2 4 I/O (Bit Programmable) Port 1 4 8 Address or I/O (Nibble Programmable) Address/Data or I/O (Byte Programmable) Figure 1. Z86E61/Z86E63 MCU Functional Block Diagram Power connections follow the conventional descriptions listed in Table 24. Table 24. Power Connection Conventions Connection PS014404-0212 Circuit Device Power VCC VDD Ground GND VSS Overview Z86E61/Z86E63 Microcontrollers Product Specification 4 Pin Functions The Z86E61/Z86E63 MCU is available in variety of package styles, programming modes and pin configurations. This section describes the pin signals and configurations for each of the 40-pin PDIP, 44-pin PLCC and 44-pin LQFP packages in both Standard and EPROM Programming modes. Pin Signals Figure 2 shows the pin-outs for the 40-pin PDIP Standard Mode package; Table 25 describes each pin. VCC 40 1 P36 XTAL2 P31 XTAL1 P27 P37 P26 P30 P25 RESET R/W DS P24 P23 P22 Z86E61/E63 P21 AS P35 PDIP P20 GND Standard P33 P32 P34 Mode P00 P17 P01 P16 P02 P03 P15 P14 P04 P13 P05 P12 P11 P06 P07 20 21 P10 Figure 2. Z86E61/Z86E63 PDIP Pin Diagram, Standard Mode Table 25. Z86E61/Z86E63 PDIP Pin Description, Standard Mode PS014404-0212 Pin Signal Description I/O XTAL2 Crystal Oscillator Clock Output XTAL1 Crystal Oscillator Clock Input RESET Reset Input R/W Read/Write Output Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 5 Table 25. Z86E61/Z86E63 PDIP Pin Description, Standard Mode (Continued) PS014404-0212 Pin Signal Description I/O DS Data Strobe Output AS Address Strobe Output P00–P07 Port 0 8-bit General I/O Input/Output P10–P17 Port 1 8-bit General I/O Input/Output P20–P27 Port 2 8-bit General I/O Input/Output P30–P33 Port 3 4-bit Input Input P34–P37 Port 3 4-bit Output Output R/RL ROM/ROMless Control Input GND Ground Input VCC Power Supply Input Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 6 Figure 3 shows the pin-outs for the 40-pin PDIP EPROM Programming Mode package; Table 26 describes each pin. VCC 40 1 NC X TA L2 OE X TA L1 NC PGM A14 CE A13 RESET NC A12 A11 NC Z86E61/E63 A10 NC PDIP A9 NC A8 EPROM GND EPM VPP Programming NC Mode D7 A0 A1 D6 A2 A3 D5 D4 A4 D3 A5 D2 D1 A6 A7 20 21 D0 Figure 3. Z86E61/Z86E63 PDIP Pin Diagram, EPROM Programming Mode Table 26. Z86E61/Z86E63 PDIP Pin Description, EPROM Programming Mode PS014404-0212 Pin Signal Description I/O XTAL2 Crystal Oscillator Clock Output XTAL1 Crystal Oscillator Clock Input CE Chip Enable Input RESET Reset Input EPM EPROM Programming Mode Input A0–A14 15-bit Address Bus Input D7–D0 8-bit Data Bus Input/Output VPP Programming Voltage Input PGM Programming Mode Input OE Output Enable Input NC Not Connected Input GND Ground Input VCC Power Supply Input Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 7 RESET P27 P26 P25 NC P36 P31 XTAL1 XTAL2 VCC P30 33 P37 Figure 4 shows the pin-outs for the 44-pin LQFP Standard Mode package; Table 27 describes each pin. 23 22 34 R/W NC P24 DS P23 AS P35 GND Z86E61/E63 P22 LQFP P21 Standard P33 Mode P34 P32 P00 P01 P20 P17 P02 P16 R/RL P15 12 44 11 P14 P12 P13 P10 P11 P07 NC P05 P06 P03 P04 1 Figure 4. Z86E61/Z86E63 LQFP Pin Diagram, Standard Mode Table 27. Z86E61/Z86E63 LQFP Pin Description, Standard Mode PS014404-0212 Pin Signal Description I/O XTAL2 Crystal Oscillator Clock Output XTAL1 Crystal Oscillator Clock Input RESET Reset Input R/W Read/Write Output DS Data Strobe Output AS Address Strobe Output P00–P07 Port 0 8-bit General I/O Input/Output P10–P17 Port 1 8-bit General I/O Input/Output P20–P27 Port 2 8-bit General I/O Input/Output P30–P33 Port 3 4-bit Input Input P34–P37 Port 3 4-bit Output Output R/RL ROM/ROMless Control Input GND Ground Input VCC Power Supply Input Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 8 RESET A13 PGM A14 NC OE XTAL1 XTAL2 VCC NC CE 33 NC Figure 5 shows the pin-outs for the 44-pin LQFP EPROM Programming Mode package; Table 28 describes each pin. 23 22 34 NC NC A12 NC A11 NC Z86E61/E63 A10 GND LQFP A9 EPM EPROM Programming VPP Mode NC NC A0 A1 A8 D7 A2 D6 NC D5 12 44 11 D3 D4 D1 D2 D0 A6 A7 NC A5 A4 A3 1 Figure 5. Z86E61/Z86E63 LQFP Pin Diagram, EPROM Programming Mode Table 28. Z86E61/Z86E63 LQFP Pin Description, EPROM Programming Mode PS014404-0212 Pin Signal Description I/O XTAL2 Crystal Oscillator Clock Output XTAL1 Crystal Oscillator Clock Input CE Chip Enable Input RESET Reset Input EPM EPROM Programming Mode Input A0–A14 15-bit Address Bus Input D7–D0 8-bit Data Bus Input/Output VPP Programming Voltage Input PGM Programming Mode Input OE Output Enable Input NC Not Connected Input GND Ground Input VCC Power Supply Input Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 9 P27 P26 P25 VCC 1 6 RESET P36 P31 P37 XTAL1 XTAL2 NC P30 Figure 6 shows the pin-outs for the 44-pin PLCC Standard Mode package; Table 29 describes each pin. 40 39 7 NC P24 R/W P23 DS AS Z86E61/E63 P22 P35 PLCC P21 P32 Standard P33 P00 Mode P34 GND P20 P17 P01 P16 P02 29 P15 P13 P14 NC P11 P12 P07 P10 28 P06 P03 17 18 P04 P05 R/RL Figure 6. Z86E61/Z86E63 PLCC Pin Diagram, Standard Mode Table 29. Z86E61/Z86E63 PLCC Pin Description, Standard Mode PS014404-0212 Pin Signal Description I/O XTAL2 Crystal Oscillator Clock Output XTAL1 Crystal Oscillator Clock Input RESET Reset Input R/W Read/Write Output DS Data Strobe Output AS Address Strobe Output P00–P07 Port 0 8-bit General I/O Input/Output P10–P17 Port 1 8-bit General I/O Input/Output P20–P27 Port 2 8-bit General I/O Input/Output P30–P33 Port 3 4-bit Input Input P34–P37 Port 3 4-bit Output Output R/RL ROM/ROMless Control Input GND Ground Input VCC Power Supply Input Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 10 A14 A13 NC 1 6 RESET OE PGM X T AL 2 VC C NC X T AL 1 NC CE Figure 7 shows the pin-outs for the 44-pin PLCC EPROM Programming Mode package; Table 30 describes each pin. 40 39 7 NC A12 NC A11 NC NC Z86E61/E63 A10 NC PLCC A9 GND A8 EPROM Programming EPM VPP NC Mode A0 A1 D7 D6 A2 29 D5 NC D3 D4 D1 D2 A7 D0 28 A5 A6 A3 17 18 A4 NC Figure 7. Z86E61/Z86E63 PLCC Pin Diagram, EPROM Programming Mode Table 30. Z86E61/Z86E63 PLCC Pin Description, EPROM Programming Mode PS014404-0212 Pin Signal Description I/O XTAL2 Crystal Oscillator Clock Output XTAL1 Crystal Oscillator Clock Input CE Chip Enable Input RESET Reset Input EPM EPROM Programming Mode Input A0–A14 15-bit Address Bus Input D7–D0 8-bit Data Bus Input/Output VPP Programming Voltage Input PGM Programming Mode Input OE Output Enable Input NC Not Connected Input GND Ground Input VCC Power Supply Input Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 11 Pin Descriptions This section describes the major Z86E61/Z86E63 MCU pin signals and ports. ROMless (Input, Active Low) Connecting this pin to GND disables the internal ROM and forces the device to function as a Z86C91 ROMless Z8 (see the Z86C91 product specification for more information). When pulled High to VCC, the device functions as a normal Z86E61/Z86E63 EPROM version. This pin is only available on the 44-pin versions of the Z86E61/Z86E63 MCU. DS (Output, Active Low) Data Strobe is activated once for each external memory transfer. For a READ operation, data must be available prior to the trailing edge of DS. For WRITE operations, the falling edge of DS indicates that output data is valid. AS (Output, Active Low) Address Strobe is pulsed once at the beginning of each machine cycle. Address output is through Port 1 for all external programs. Memory address transfers are valid at the trailing edge of AS. Under program control, AS can be placed in the high-impedance state along with Ports 0 and 1, Data Strobe, and Read/Write. XTAL2, XTAL1 Crystal 2, Crystal 1 (time-based input and output, respectively). These pins connect a parallel-resonant crystal, ceramic resonator, LC, or any external single-phase clock to the onchip oscillator and buffer. R/W (Output, Write Low) The Read/Write signal is Low when the MCU is writing to the external program or data memory. RESET (Input, Active Low) To avoid asynchronous and noisy reset problems, the Z86E61/Z86E63 MCU is equipped with a reset filter of four external clocks (4TpC). If the external RESET signal is less than 4TpC in duration, no reset occurs. On the fifth clock after the RESET is detected, an internal RST signal is latched and held for an internal register count of 18 external clocks, or for the duration of the external RESET, whichever is longer. During the reset cycle, DS is held active Low while AS cycles at a rate of TpC/2. When RESET is deactivated, program execution begins at location 000Ch. Power-up reset time must be held low for 50 ms, or until VCC is stable, whichever is longer. PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 12 Port 0 (P07–P00) Port 0 is an 8-bit, nibble programmable, bidirectional, TTL compatible port. These eight I/ O lines can be configured under software control as a nibble I/O port, or as an address port for interfacing external memory. When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3, lines P32 and P35 are used as the handshake control DAV0 and RDY0 (Data Available and Ready). Handshake signal assignment is dictated by the I/O direction of the upper nibble P07–P04. The lower nibble must have the same direction as the upper nibble to be under handshake control. For external memory references, Port 0 can provide address bits A11–A8 (lower nibble) or A15–A8 (lower and upper nibbles) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 Mode Register. In ROMless Mode, after a hardware reset, the Port 0 lines are defined as address lines A15–A8, and extended timing is set to accommodate slow memory access. The initialization routine can include reconfiguration to eliminate this extended timing mode; see Figure 8. PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 13 4 Z86E61/ Z86E63 4 Port 0 (I/O) MCUs Handshake controls DAV0 and RDY0 (P32 and P35) OEN PAD Out TTL Level Shifter In Auto Latch R = 500 kΩ Figure 8. Port 0 Configuration Port 1 (P17–P10) Port 1 is an 8-bit, byte programmable, bidirectional, TTL compatible port. It has multiplexed Address (A7–A0) and Data (D7–D0) ports. For the Z86E61/Z86E63 MCU, these eight I/O lines can be programmed as input or output lines or are configured under software control as an address/data port for interfacing external memory. When used as an I/O port, Port 1 can be placed under handshake control. In this configuration, Port 3 lines, P33 and P34, are used as the handshake controls RDY1 and DAV1. Memory locations greater than 16384 (Z86E61) or 32768 (Z86E63) are referenced through Port 1. To interface external memory, Port 1 must be programmed for the multi- PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 14 plexed Address/ Data Mode. If more than 256 external locations are required, Port 0 must output the additional address lines. Port 1 can be placed in high-impedance state along with Port 0, AS, DS, and R/W, allowing the MCU to share common resources in multiprocessor and DMA applications. Data transfers are controlled by assigning P33 as a Bus Acknowledge input, and P34 as a Bus Request output; see Figure 9. 8 Port 1 (AD7-AD0) Z86E61 Z86E63 MCU Handshake controls DAV1 and RDY1 (P33 and P34) OEN PAD Out TTL Level Shifter In Auto Latch R = 500 kΩ Figure 9. Port 1 Configuration Port 2 (P27–P20) Port 2 is an 8-bit, bit programmable, bi-directional, CM0S compatible port. Each of these eight I/0 lines can be independently programmed as an input or output, or globally as an PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 15 open-drain output. Port 2 is always available for I/ 0 operation. When used as an I/0 port, Port 2 can be placed under handshake control. In this configuration, Port 3 lines P31 and P36 are used as the handshake control lines DAV2 and RDY2. The handshake signal assignment for Port 3 lines, P31 and P36, is dictated by the direction (input or output) assigned to P27; see Figure 10 and Table 31 on page 16). Z86E61 Z86E63 MCU Port 2 (I/O) Handshake controls DAV2 and RDY2 (P31 and P36) Open-Drain OEN PAD Out TTL Level Shifter In Auto Latch R = 500 kΩ Figure 10. Port 2 Configuration PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 16 Port 3 (P37–P30) Port 3 is an 8-bit, CMOS compatible four-fixed input and four-fixed output port. These eight I/O lines have four-fixed (P33–P30) input and four-fixed (P37–P34) output ports. Port 3, when used as serial I/O, is programmed as serial in and serial out, respectively; see Figure 11. Z86E61 Z86E63 MCU Port 3 (I/O or Control) Figure 11. Port 3 Configuration Port 3 is configured under software control to provide the following control functions: handshake for Ports 0 and 2 (DAV and RDY); four external interrupt request signals (IRQ3–IRQ0); timer input and output signals (TIN and TOUT) Data Memory Select (DM) and EPROM control signals (P30 = CE, P31 = OE, P32 = EPM and P33 = VPP). Table 31 lists the pin assignments for Port 3. Table 31. Port 3 Pin Assignments* Pin I/O CTCI Interrupt P30 In TIN IRQ3 P31 In TIN IRQ2 P32 In TIN IRQ0 P33 In TIN IRQ1 P34 Out TOUT P35 Out TOUT P36 Out TOUT P37 Out TOUT P0 HS P1 HS P2 HS UART Ext Serial In EPROM CE D/R OE D/R EPM D/R VPP R/D DM R/D R/D Serial Out T0 IRQ4 T1 IRQ5 Note: *HS = Handshake Signals; D = Data Available; R = Ready. PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 17 UART Operation. Port 3 lines, P37 and P30, are programmed as serial I/0 lines for fullduplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by Counter/ Timer0. The Z86E61/Z86E63 MCU automatically adds a start bit and two stop bits to transmitted data; see Figure 12. Odd parity is also available as an option. Eight data bits are always transmitted, regardless of parity selection. If parity is enabled, the eighth bit is the odd parity bit. An interrupt request (IRQ4) is generated on all transmitted characters. Received data must have a start bit, eight data bits, and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the IRQ3 interrupt request. Transmitted Data (No Parity) Received Data (No Parity) SP SP D7 D6 D5 D4 D3 D2 D1 D0 ST SP D7 D6 D5 D4 D3 D2 D1 D0 ST Start Bit Start Bit Eight Data Bits Eight Data Bits Two Stop Bits One Stop Bit Received Data (With Parity) Transmitted Data (With Parity) SP P D6 D5 D4 D3 D2 D1 D0 ST SP SP P D6 D5 D4 D3 D2 D1 D0 ST Start Bit Start Bit Seven Data Bits Seven Data Bits Odd Parity Parity Error Flag Two Stop Bits One Stop Bit Figure 12. Serial Data Formats Auto Latch. The Auto Latch puts valid CMOS levels on all CMOS inputs that are not externally driven. This reduces excessive supply current flow in the input buffer when it is not driven by any source. Note: P33–P30 inputs differ from the Z86C61/C63 in that there is no clamping diode to VCC because of the EPROM high voltage detection circuits. Exceeding the VIH maximum specification during standard operating mode may cause the device to enter EPROM Mode. PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 18 Address Space This section describes the memory and addressing functions of the Z86E61/Z86E63 MCU. Program Memory The Z86E61/Z86E63 MCU can address 48 KB (Z86E61) or 32 KB (Z86E63) of external program memory; see Figure 13. The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. For EPROM Mode, byte 13 to byte 16383 (Z86E61) or 32767 (Z86E63) consists of on-chip EPROM. At addresses 16384 (Z86E61) or 32768 (Z86E63) and above, the Z86E61/Z86E63 MCU executes external program memory fetches. In ROMless Mode, the Z86E61/Z86E63 MCU can address up to 64 KB of program memory. Program execution begins at external location 000C (HEX) after a reset. 65535 16384 (E61) 32768 (E63) 16383 (E61) 32767 (E63) Location of First Byte of Instruction Executed After RESET Interrupt Vector (Lower Byte) Interrupt Vector (Upper Byte) External ROM and RAM On-Chip PROM 12 11 IRQ5 10 IRQ5 9 IRQ4 8 IRQ4 7 IRQ3 6 IRQ3 5 IRQ2 4 IRQ2 3 IRQ1 2 IRQ1 1 IRQ0 0 IRQ0 Figure 13. Program Memory Configuration PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 19 Data Memory The EPROM version can address up to 48 KB (Z86E61) or 32 KB (Z86E63) of external data memory (DM) space beginning at location 16384 (Z86E61) or 32768 (Z86E63). The ROMless version can address up to 64 KB of external data memory. External data memory may be included with, or separated from, the external program memory space. DM, an optional I/0 function that can be programmed to appear on pin P34, is used to distinguish between data and program memory space; see Figure 14. The state of the DM signal is controlled by the type instruction being executed. An LDC opcode references PROGRAM (DM inactive) memory, and an LDE instruction references DATA (DM active Low) memory. 65535 External Data Memory 32768 (E63) 16384 (E61) 16383 (E61) 32767 (E63) Not Addressable 0 Figure 14. Data Memory Configuration PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 20 Register File The register file consists of four I/0 port registers, 236 general-purpose registers, and 16 control and status registers, as shown in Figure 15. The instructions can access registers directly or indirectly through an 8-bit address field. The Z86E61/Z86E63 MCU also allows short 4-bit register addressing using the Register Pointer, which is shown in Figure 16. In 4-bit mode, the Register File is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working register group. IDENTIFIERS LOCATION R255 Stack Pointer (Bits 7–0) SPL R254 Stack Pointer (Bits 15–8) SPH R253 Register Pointer R252 Program Control Flags R251 Interrupt Mask Register IMR R250 Interrupt Request Register IRQ R249 Interrupt Priority Register IPR RP FLAGS R248 Port 0–1 Mode P01M R247 Port 3 Mode P3M R246 Port 2 Mode P2M R245 T0 Prescaler PRE0 R244 Timer/Counter0 R243 T1 Prescaler R242 Timer/Counter1 R241 Timer Mode TMR R240 Serial I/O SIO T0 PRE1 T1 R239 General Purpose Registers R4 R3 Port 3 P3 R2 Port 2 P2 R1 Port 1 P1 R0 Port 0 P0 Figure 15. Register File PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 21 r7 r6 r5 r4 r3 r2 r1 r0 R253 (Register Pointer) The upper nibble of the register file address provided by the register pointer specifies the active working-register group. FF R15 to R0 F0 Specified Working Register Group 2F 20 1F 10 0F 00 The lower nibble of the register file address provided by the instruction points to the specified register. Register Group 1 R15 to R0 Register Group 0 R15 to R4 I/O Ports R3 to R0 Figure 16. Register Pointer Stack The Z86E61/Z86E63 MCU has a 16-bit Stack Pointer (R255–R254) used for external stacks that reside anywhere in the data memory for the ROMless Mode, but only from 16384 (Z86E61) or 32768 (Z86E63) to 65535 in the EPROM Mode. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 236 general-purpose registers (R239–R4). The high byte of the Stack Pointer (SPH Bits 15–8) can be use as a general-purpose register when using internal stack only. PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 22 Functional Description This section describes the counter/timer, interrupt, clock and timer mode functions of the Z86E61/Z86E63 MCU. Counter/Timers There are two 8-bit programmable counter/timers (T0–T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the T0 prescaler is driven by the internal clock only, as shown in Figure 17. Internal Data Bus Write Write OSC Read PRE0 Initial Value Register T0 Initial Value Register 6-Bit Down Counter 8-Bit Down Counter T0 Current Value Register +2 +4 Internal Clock IRQ4 Serial I/O Clock +2 External Clock T OUT P36 Clock Logic +4 Internal Clock Gated Clock Triggered Clock T IN P31 Write 6-Bit Down Counter 8-Bit Down Counter PRE1 Initial Value Register T1 Initial Value Register Write IRQ5 T1 Current Value Register Read Internal Data Bus Figure 17. Counter/Timers Block Diagram PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 23 The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When both the counters and prescalers reach the end of the count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated. The counter is programmed to start, stop, restart to continue, or restart from the initial value. The counters can also be programmed to stop upon reaching zero (Single Pass Mode) or to automatically reload the initial value and continue counting (Modulo-n Continuous Mode). The counter, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and is either the internal microprocessor clock divided-by-four, or an external signal input through Port 3. The Timer Mode Register configures the external timer input (P31) as an external clock, a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. Port 3 line P36 also serves as a timer output (TOUT) through which T0, T1, or the internal clock can be output. The counter/timers are cascaded by connecting the T0 output to the input of T1. Interrupts The Z86E61/Z86E63 MCU has six different interrupts from eight different sources. The interrupts are maskable and prioritized. The eight sources are divided as follows: four sources are claimed by Port 3 lines P33–P30, one in Serial Out, one in Serial In, and two in the counter/timers; see Figure 18. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority Register; see Figure 40 on page 48. All Z86E61/Z86E63 MCU interrupts are vectored through locations in the program memory. When an interrupt machine cycle is activated, an interrupt request is granted. Thus, this disables all of the subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked and the Interrupt Request Register is polled to determine which of the interrupt requests need service. Software initialized interrupts are supported by setting the appropriate bit in the Interrupt Request Register (IRQ). Internal interrupt requests are sampled on the falling edge of the last cycle of every instruction, and the interrupt request must be valid 5TpC before the falling edge of the last clock cycle of the currently executing instruction. PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 24 IRQ0–IRQ5 IRQ IMR 6 Global Interrupt Enable Interrupt Request IPR PRIORITY LOGIC Vector Select Figure 18. Interrupt Block Diagram For the ROMless Mode, when the device samples a valid interrupt request, the next 48 (external) clock cycles are used to prioritize the interrupt, and push the two PC bytes and the Flag Register on the stack. The following nine cycles are used to fetch the interrupt vector from external memory. The first byte of the interrupt service routine is fetched beginning on the 58th TpC cycle following the internal sample point, which corresponds to the 63rd TpC cycle following the external interrupt sample point. Clock The Z86E61/Z86E63 MCU’s on-chip oscillator features a high gain, parallel resonant amplifier for connection to a crystal, LC, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal should be AT cut, 1 MHz to 20 MHz max; series resistance (RS) is less than or equal to 100 Ohms. The crystal should be connected across XTAL1 and XTAL2 using the recommended capacitors (10 pF < CL < 100 pF) from each pin to ground; see Figure 19. PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 25 XTAL1 C1 C1 Pin 11 Pin 11 XTAL1 XTAL1 XTAL2 XTAL2 L XTAL2 C2 C2 Pin 11 Pin 11 Ceramic Resonator or Crystal LC Clock External Clock Figure 19. Oscillator Configuration Note: The actual capacitor value is specified by the crystal manufacturer. HALT Turns off the internal CPU clock but not the XTAL oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2, and IRQ3 remain active. The devices are recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT Mode. After the interrupt service routine, the program continues from the instruction after the HALT. STOP This instruction turns off the internal clock and external crystal oscillation, and reduces the standby current to 5 µA (typical) or less. The STOP Mode is terminated by a reset, which causes the processor to restart the application program at address 000Ch. To enter STOP (or HALT) Mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, the user must execute a NOP (opcode = 0FFH) immediately before the appropriate SLEEP instruction, as shown in the following code segment. FF 6F or FF 7F PS014404-0212 NOP STOP ; clear the pipeline ; enter STOP Mode NOP HALT ; clear the pipeline ; enter HALT Mode Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 26 Programming This section describes the five user program modes available for programming the Z86E61/Z86E63 MCU, including signal descriptions for programming or reading the Z86E63 device. Z86E61/Z86E63 User Modes The Z86E61/Z86E63 MCU uses separate AC timing cycles for the different user modes available. Table 32 shows the Z86E61/Z86E63 MCU’s user modes; Table 33 shows the timing of the programming waveforms. Table 32. OTP Programming1 Device Pins User/Test Mode Device Pin No. P33 P32 P30 P31 P20 User Modes VPP EPM CE OE PGM ADDR VCC Port 1 Config Data 3 4 VIL VIH Addr 5.0 V Out VIL Addr 6.0 V In VIH Addr EPROM Read Z 2 VH VIL VIH VIL VIH6 VIH VIL VIL EPROM Protect VPP5 VPP5 VPP5 VH VH VIH RAM Protect VPP VIH VH VIH Program Program Verify 6.0 V Out VIL X 7 6.0 V X VIL X 6.0 V X Notes: 1. IPP during programming = 40 mA maximum; ICC during programming, verify or read = 40 mA maximum. 2. Z = VIL or VIH. 3. VH = 12.0 ± 0.5 V. 4. VIL = 0 V. 5. VPP = 12.0 ± 0.5 V. 6. VIH = 5 V. 7. X = Not used in this mode. Table 33. Timing of Programming Waveforms Parameters Name 1 Address Setup Time 2 µs 2 Data Setup Time 2 µs 3 VPP Setup Time 2 µs 4 VCC Setup time 2 µs 5 Chip Enable Setup Time 2 µs 6 Program Pulse Width 0.95 µs PS014404-0212 Min Max Unit Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 27 Table 33. Timing of Programming Waveforms (Continued) Parameters Name Min Max Unit 7 Data Hold Time 2 µs 8 OE Setup Time 2 µs 9 Data Access Time 200 ns 10 Data Output Float Time 100 ns 11 Overprogram Pulse Width 12 2.85 ms EPM Setup Time 2 µs 13 PGM Setup Time 2 µs 14 Address to OE Setup Time 2 µs 15 Option Program Pulse Width 78 ms User MODE 1: EPROM Read The Z86E61/Z86E63 EPROM read cycle is provided so that the user may read the Z86E61/Z86E63 MCU as a standard 27128 (Z86E61) or 27256 (Z86E63) EPROM. This is accomplished by driving the EPM pin (P32) to VH and activating CE and OE. PGM remains inactive. This mode is not valid after execution of an EPROM protect cycle. Timing for the EPROM read cycle is shown in Figure 20. PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 28 VIH Address Address Stable Address Stable VIL 0 Min VIH Data VIL Invalid Valid Invalid Valid 9 VIH VPP VIL VH EPM VIL 12 VCC 5V VIH CE VIL 0 Min VIH OE VIL VIH PGM VIL 3 Figure 20. EPROM Read Timing User MODE 2: EPROM Program The Z86E61/Z86E63 MCU’s Program function conforms to the Intelligent programming algorithm. The device is programmed with VCC, at 6.0 V and VPP = 12.5 V. Programming pulses are applied in 1 ms increments to a maximum of 25 pulses before proper verification. After verification, a programming pulse of three times the duration of the cycles necessary to program the device is issued to ensure proper programming. After all addresses are programmed, a final data comparison is executed and the programming cycle is complete. Timing for the Z86E61/Z86E63 MCU programming cycle is shown in Figure 21. PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 29 VIH Address Address Stable VIL 1 VIH Data Data Out Valid Data Stable 9 VIL 10 2 VH VPP VIL 3 VIH EPM VIL 6V VCC 5V 7 4 VIH CE VIL 5 VIH OE VIL VIH PGM 8 VIL 6 11 Program Cycle Verify Cycle Figure 21. EPROM Program and Verify Timing User Mode 3: PROM Verify The Program Verify cycle is used as part of the intelligent programming algorithm to insure data integrity under worst-case conditions. It differs from the EPROM Read cycle in that VPP is active and VCC must be driven to 6.0 V. Timing is shown in Figure 21. User Modes 4 and 5: EPROM and RAM Protect To extend program security, EPROM and RAM protect cycles are provided for the Z86E61/Z86E63 MCU. Execution of the EPROM protect cycle prohibits proper execution of the EPROM Read, EPROM Verify, and EPROM programming cycles. Execution of the RAM protect cycle disables accesses to the upper 128 bytes of register memory (excluding PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 30 mode and configuration registers), but first the user’s program must set bit 6 of the IMR (R251). Timing is shown in Figure 22. VIH Address VIL VIH Data VIL VH VPP VIH VCC 3 6V 5V 4 VH CE VIH 5 VH OE VIH VH EPM VIH VIL VIH 12 12 VIH PGM VIL 15 ROM Protect Programming 15 RAM Protect Programming Figure 22. Programming EPROM and RAM Protect Z86E63 Signal Description for EPROM Program/Read The following signals are required to correctly program or read the Z86E63 device. ADDR The address must remain stable throughout the program read cycle. On both the Z86E61 and Z86E63 MCUs, all A0–A14 address lines must be driven at all times. PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 31 DATA The I/O data bus must be stable during programming (OE High, PGM Low, VPP High). During read the data bus outputs data. XCLK A clock is required to clock the RESET signal into the registers before programming. A constant clock can be applied, or the XCLK input can be toggled a minimum of 12 cycles before any programming or verify function begins. The maximum clock frequency to be applied when in the EPROM Mode is 12 MHz. RESET. The reset input can be held to a constant Low or High value throughout normal programming. It must be held High to program the EPROM protect option bit. Also, any time the RESET input changes state the XCLK must be clocked a minimum of 12 times to clock the RESET through the reset filter. OE. When the device is placed in EPROM Mode, the OE input also serves as the precharge for the sense amp. The precharge signal should be Low for the first half of the stable address and High for the second half. The PRECHG signal is inverted from the OE signal so the OE should be High on the first half and Low on the second half, or stable address. The EPROM output data should be sampled during the second half of stable address. The access time of the EPROM is defined in later sections. This two part calculation of access time is required because this is a precharged sense amp with a precharge clock. Programming Flow Figure 23 shows the steps for programming the Z86E61/Z86E63 MCU. PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 32 Start Addr = First Location VCC = 6.0 V VPP = 12.5 V N=0 Program 1 ms Pulse Increment N Yes N = 25? No Fail Verify One Byte Verify Byte Fail Pass Pass Prog. One Pulse 3xN ms Duration Increment Address No Last Addr? Yes VCC=VPP=4.5V Verify All Bytes Fail Device Failed VCC=VPP=5.5V Verify All Bytes Pass Fail Device Passed Figure 23. Intelligent Programming Flowchart PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 33 Absolute Maximum Ratings Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability. Table 34 lists the absolute maximum ratings of the Z86E61/Z86E63 MCU. Table 34. Absolute Maximum Ratings Symbol Description Voltage1 VCC Supply TSTG Storage Temperature TA Operating Ambient Temperature Min Max Unit –0.3 +7.0 V –65 +150 °C See Note 2 °C Notes: 1. Voltages on all pins with respect to GND. 2. See Ordering Information on page 60. Standard Test Conditions The characteristics described in this document apply to standard test conditions, as noted. All voltages are referenced to GND, and positive current flows into the referenced pin; see Figure 24. From Output Under Test I 150 pF Figure 24. Test Load Diagram PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 34 DC Characteristics Table 35 lists voltage and direct current characteristics for the Z86E61/Z86E63 MCU under differing conditions. Be advised that ICC2 requires loading TMR (F1Hh) with any value prior to STOP execution. Use the following sequence: LD TMR,#00 NOP STOP Table 35. Direct Current Characteristics Symbol Parameter Min Max Input Voltage Max Typical @ 25°C 7 Units Conditions V IIN < 250 µA. V P33–P30 Only. Max Input Voltage 13 VCH Clock Input High Voltage 3.8 VCC + 0.3 V Driven by External Clock Generator. VCL Clock Input Low Voltage –0.3 0.8 V Driven by External Clock Generator. VIH Input High Voltage 2.0 VCC + 0.3 V VIL Input Low Voltage –0.3 0.8 V VOH Output High Voltage 2.4 VOL Output Low Voltage VRH Reset Input High Voltage VRL V IOH = –2.0 mA. 0.4 V IOL = +2.0 mA. 3.8 VCC + 0.3 V Reset Input Low Voltage –0.3 0.8 V IIL Input Leakage –10 10 µA VIN = 0 V, 5.25 V. IOL Output Leakage –10 10 µA VIN = 0 V, 5.25 V. IIR Reset Input Current –50 µA VCC = +5.25 V; VRL = 0 V. ICC Supply Current 50 25 mA @ 16 MHz. 60 35 mA @ 20 MHz. 15 5 mA HALT Mode @ 16 MHz; VIN = 0 V, VCC 20 10 mA HALT Mode @ 20 MHz; VIN = 0 V, VCC 20 5 µA STOP Mode VIN = 0 V, VCC ICC1 ICC2 Standby Current Standby Current PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 35 Supply Current Figure 25 shows the typical supply current values (in milliamps), for the Z86E61/Z86E63 MCU as a function of frequency (in megahertz). ICC (mA) 40 A B 30 C 20 10 0 2 4 6 8 10 12 14 16 18 20 Frequency (MHz) Legend: A – VCC = 5.6V B – VCC = 5.0V C – VCC = 4.4V Figure 25. Typical ICC vs. Frequency PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 36 Standby Current Figure 26 shows the typical standby current values (in milliamps), for the Z86E61/ Z86E63 MCU as a function of frequency (in megahertz). I CC1 (mA) 12 A 10 B C 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20 Frequency (MHz) Legend: A – VCC = 5.6V B – VCC = 5.0V C – VCC = 4.4V Figure 26. Typical ICC1 vs. Frequency PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 37 AC Characteristics Figure 27 displays the timing characteristics for the Z86E61/Z86E63 MCU. The circled numbers in this figure reference a description in Table 36 of each symbol, its parameter and its frequency range for these 16 MHz and 20 MHz parts. R/W 13 12 Port 0, DM 16 18 3 Port 1 D7–D0 IN A7–A0 2 9 1 AS 8 11 4 6 DS (Read) 17 10 Port 1 A7–A0 D7–D0 OUT 14 15 7 DS (Write) 17 Figure 27. External I/O or Memory Read/Write Timing PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 38 Table 36 lists the alternating current characteristics for the Z86E61/Z86E63 MCU as they relate to Figure 27. Formulas for each parameter are listed in Table 37. Table 36. External I/O or Memory Read and Write Timing TA = 0°C to +70°C 16 MHz1 Min Max 20 MHz Min Max No. Symbol Parameter 1 TdA(AS) Address Valid to AS Rise Delay 20 26 ns 2,3 2 TdAS(A) AS Rise to Address Float Delay 30 28 ns 2,3 3 TdAS(DR) AS Rise to Read Data Req’d Valid ns 2,3,4 4 TwAS AS Low Width 35 36 ns 2,3 5 TdAZ(DS) Address Float to DS Fall 0 0 ns 6 TwDSR DS (Read) Low Width 135 130 ns 2,3,4 7 TwDSW DS (Write) Low Width 80 75 ns 2,3,4 8 TdDSR(DR) DS Fall to Read Data Req’d Valid ns 2,3,4 9 ThDR(DS) Read Data to DS Rise Hold Time 0 0 ns 2,3 10 TdDS(A) DS Rise to Address Active Delay 35 48 ns 2,3 11 TdDS(AS) DS Rise to AS Fall Delay 30 36 ns 2,3 12 TdR/W(AS) R/W Valid to AS Rise Delay 20 32 ns 2,3 13 TdDS(R/W) DS Rise to R//W Not Valid 30 36 ns 2,3 14 TdDW(DSW) Write Data Valid to DS Fall (Write) Delay TdDS(DW) DS Rise to Write Data Not Valid 25 40 ns 2,3 30 40 ns 2,3 ns 2,3,4 15 180 160 75 100 Units Notes Delay 16 TdA(DR) 17 18 200 200 TdAS(DS) Address Valid to Read Data Req’d Valid AS Rise to DS Fall Delay 40 48 ns 2,3 TdDM(AS) DM Valid to AS Fall Delay 30 36 ns 2,3 Notes: 1. All timing references use 2.0 V for a logic 1 and 0.8V for a logic 0. 2. Timing numbers given are for minimum TpC. 3. See Table 37. 4. When using extended memory timing, add 2 TpC. PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 39 Table 37. Clock-Dependent Formulas Number Symbol Formula 1 TdA(AS) 0.40 TpC + 0.32 2 TdAS(A) 0.59 TpC – 3.25 3 TdAS(DR) 2.83 TpC + 6.14 4 TwAS 0.66 TpC – 1.65 6 TwDSR 2.33 TpC – 10.56 7 TwDSW 1.27 TpC + 1.67 8 TdDSR(DR) 1.97 TpC – 42.5 10 TdDS(A) 0.8 TpC 11 TdDS(AS) 0.59 TpC – 3.14 12 TdR/W(AS) 0.4 TpC 13 TdDS(R/W) 0.8 TpC – 15 14 TdDW(DSW) 0.4 sTpC 15 TdDS(DW) 0.88 TpC – 19 16 TdA(DR) 4 TpC – 20 17 TdAS(DS) 0.91 TpC – 10.7 18 TdDM(AS) 0.9 TpC – 26.3 Input and output handshake timing characteristics are shown in Figures 28 and 29 and described in Table 38. Next Data In Valid Data In Valid Data In 2 1 DAV (Input) 3 Delayed DAV 5 6 4 RDY (Output) Delayed RDY Figure 28. Input Handshake Timing PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 40 Next Data Out Valid Data Out Valid Data Out 7 Delayed DAV DAV (Output) 8 9 11 10 RDY (Input) Delayed RDY Figure 29. Output Handshake Timing Table 38. Handshake Timing TA = 0°C to +70°C 16 MHz Max Symbol Parameter 1 TsDI(DAV) Data In Setup Time 0 0 IN 2 ThDI(DAV) Data In Hold Time 145 145 IN 3 TwDAV Data Available Width 110 110 IN 4 TdDAVI(RDY) DAV Fall to RDY Fall Delay 115 115 IN 5 TdDAVId(RDY) DAV Rise to RDY Rise Delay 115 115 IN 6 TdRDY0(DAV) RDY Rise to DAV Fall Delay 7 TdD0(DAV) Data Out to DAV Fall Delay 8 TdDAV0(RDY) DAV Fall to RDY Fall Delay 9 TdRDY0(DAV) RDY Fall to DAV Rise Delay 10 TwRDY RDY Width 11 TdRDY0d(DAV) RDY Rise to DAV Fall Delay 0 Min Max Data Direction No. PS014404-0212 Min 20 MHz 0 TpC 0 IN TpC 0 115 110 OUT 115 110 115 OUT OUT OUT 115 OUT Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 41 Additional timing characteristics are shown in Figure 30 and described in Table 39. 3 1 Clock 2 2 3 7 7 TIN 5 4 6 IRQN 9 8 Figure 30. Additional Timing Table 39. Additional Timing TA = 0°C to +70°C 16 MHz1 20 MHz No. Symbol Parameter Min Max Min Max 1 TpC Input Clock Period 62.5 1000 50 1000 ns 1 2 TrC,TfC Clock Input Rise & Fall Times 15 ns 1 3 TwC Input Clock Width 21 37 ns 1 4 TwTINL Timer Input Low Width 50 75 ns 2 5 TwTINH Timer Input High Width 5 TpC 5 TpC 2 6 TpTIN Timer Input Period 8 TpC 8 TpC 2 7 TrTIN,TfTIN Timer Input Rise & Fall times 100 100 10 Units Notes ns 2 Notes: 1. Clock timing references use 3.8 V for a logic 1 and 0.8 V for a logic 0. 2. Timing references use 2.0 V for a logic 1 and 0.8 V for a logic 0. 3. Interrupt request through Port 3 (P33–P31). 4. Interrupt request through Port 30. 5. Interrupt references request through Port 3. PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 42 Table 39. Additional Timing (Continued) TA = 0°C to +70°C 16 MHz1 20 MHz No. Symbol Parameter 8A TwIL Interrupt Request Input Low Times 70 50 8B TwIL Interrupt Request Input Low Times 5 TpC 5 TpC 2,4 9 TwIH Interrupt Request Input High Times 5 TpC 5 TpC 2,5 Min Max Min Max Units Notes ns 2,3 Notes: 1. Clock timing references use 3.8 V for a logic 1 and 0.8 V for a logic 0. 2. Timing references use 2.0 V for a logic 1 and 0.8 V for a logic 0. 3. Interrupt request through Port 3 (P33–P31). 4. Interrupt request through Port 30. 5. Interrupt references request through Port 3. PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 43 Control Registers Figures 31 through 46 provide brief bit descriptions of each of the Z86E61/Z86E63 MCU’s control registers. R240 SIO D7 D6 D5 D4 D3 D2 D1 D0 Serial Data (D0 = LSB) Figure 31. Serial I/O Register (F0H: Read/Write) R241 TMR D7 D6 D5 D4 D3 D2 D1 D0 0: No function 1: Load T0 0: Disable T0 count 1: Enable T0 count 0: No function 1: Load T1 0: Disable T1 count 1: Enable T1 count TIN Modes 00: External clock input 01: Gate input 10: Trigger input (nonretriggerable) 11: Trigger input (retriggerable) TOUT Modes 00: Not used 01: T0 Out 10: T1 Out 11: Internal clock out Figure 32. Timer Mode Register (F1H: Read/Write) PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 44 R242 T1 D7 D6 D5 D4 D3 D2 D1 D0 T1 Initial Value (when written) Range: 1–256 decimal, 01–00 hex Figure 33. Counter/Timer 1 Register (F2H: Read/Write) R243 PRE1 D7 D6 D5 D4 D3 D2 D1 D0 Count Mode 0: T1 Single pass 1: T1 Modulo N Clock Source 0: T1 Internal 1: T1 External timing input (TIN Mode) Prescaler Modulo Range: 1–64 decimal, 01–00 hex Figure 34. Prescaler 1 Register (F3H: Write Only) R244 T0 D7 D6 D5 D4 D3 D2 D1 D0 T0 Initial Value (when written) Range: 1–256 decimal, 01–00 hex T0 Current Value (when read) Figure 35. Counter/Timer 0 Register (F4H: Read/Write) PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 45 R245 PRE0 D7 D6 D5 D4 D3 D2 D1 D0 Count Mode 0: T0 Single pass 1: T0 Modulo N Reserved (must be 0) Prescaler Modulo Range: 1–64 decimal, 01–00 hex Figure 36. Prescaler 0 Register (F5H: Write Only) R246 P2M D7 D6 D5 D4 D3 D2 D1 D0 P20–P27 I/O Definition 0: Defines bit as output 1: Defines bit as input Figure 37. Port 2 Mode Register (F6H: Write Only) PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 46 R247 P3M D7 D6 D5 D4 D3 D2 D1 D0 0: Port 2 pull-ups open drain 1: Port 3 pull-ups active Reserved (must be 0) 0: P32 = Input; P35 = Output 1: P32 = DAV0/RDY0; P35 = RDY0/DAV0 00: P33 = Input; P34 = Output 01: P33 = Input 10: P34 = DM 11: P33 = DAV1/RDY1; P34 = RDY1/DAV1 0: P31 = Input (TIN); P36 = Output (TOUT ) 1: P31 = DAV2/RDY2; P36= RDY2/DAV2 0: P30 = Input; P37 = Output 1: P30 = Serial in; P37 = Serial out 0: Parity off 1: Parity on Figure 38. Port 3 Mode Register (F7H: Write Only) PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 47 R248 P01M D7 D6 D5 D4 D3 D2 D1 D0 P00–P00 Mode 00: Output 01: Input 1x: A11–A8 Stack Selection 0: External 1: Internal P17–P10 Mode 00: Byte output 01: Byte input 10: AD7–AD0 11: High-impedance AD7–DA0, AS, DS, R/W, A11–A8, A15–A12, if selected External Memory Timing 0: Normal 1: Extended P07–P04 Mode 00: Output 01: Input 1x: A15–A12 Figure 39. Port 0 and 1 Mode Register (F8H: Write Only) PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 48 R249 IPR D7 D6 D5 D4 D3 D2 D1 D0 Interrupt Group Priority 000 = Reserved 001 = C > A > B 010 = A > B > C 011 = A > C > B 100 = B > C > A 101 = C > B > A 110 = B > A > C 111 = Reserved IRQ1, IRQ4 Priority (Group C) 0: IRQ1 > IRQ4 1: IRQ4 > IRQ1 IRQ0, IRQ2 Priority (Group B) 0: IRQ2 > IRQ0 1: IRQ0 > IRQ2 IRQ3, IRQ5 Priority (Group A) 0: IRQ5 > IRQ3 1: IRQ3 > IRQ5 Reserved (must be 0) Figure 40. Interrupt Priority Register (F9H: Write Only) R250 IRQ D7 D6 D5 D4 D3 D2 D1 D0 IRQ0 = P32 input (D0 = IRQ0) IRQ1 = P33 input IRQ2 = P31 input IRQ3 = P30 input, serial input IRQ4 = T0 serial output IRQ5 = T1 Reserved (must be 0) Figure 41. Interrupt Request Register (FAH: Read/Write) PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 49 R251 IMR D7 D6 D5 D4 D3 D2 D1 D0 1: Enables IRQ5–IRQ0 (D0 = IRQ0) 1: Enables RAM protect 1: Enables interrupts Figure 42. Interrupt Mask Register (FBH: Read/Write) R252 SPL Flags D7 D6 D5 D4 D3 D2 D1 D0 User flag 1 User flag 2 Half Carry flag Decimal Adjust flag Overflow flag Sign flag Zero flag Carry flag Figure 43. Flag Register (FCH: Read/Write) R253 SPL D7 D6 D5 D4 D3 D2 D1 D0 0: Reserved (must be 0) f4 r5 r6 r7 Figure 44. Register Pointer Register (FDH: Read/Write) PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 50 R254 SPL D7 D6 D5 D4 D3 D2 D1 D0 Stack Pointer Low Byte Byte (SP15–SP8) Figure 45. Stack Pointer Register (FEH: Read/Write) R255 SPH D7 D6 D5 D4 D3 D2 D1 D0 Stack Pointer High Byte Byte (SP7–SP0) Figure 46. Stack Pointer Register (FFH: Read/Write) PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 51 Z8 Instruction Set This section discusses the addressing modes, symbols, flags, condition codes and instruction formats that apply to the Z8 instruction set. A summary of the Z8 instruction set follows on page 55. The notations listed in Table 40 are used to describe addressing modes and instruction operations. Table 40. Instruction Set Notation Notation Definition IRR Indirect register pair or indirect working register pair address. Irr Indirect working register pair only. X Indexed address. DA Direct address. RA Relative address. IM Immediate. R Register or working register address. r Working register address only. IR Indirect register or indirect working register address. Ir Indirect working register address only. RR Register pair or working register pair address. The symbols listed in Table 41are used to describe the Z8 instruction set. Table 41. Instruction Set Symbols PS014404-0212 Symbol Definition dst Destination location or contents. src Source location or contents. cc Condition code. @ Indirect address prefix. SP Stack Pointer. PC Program Counter. FLAGS Flag Register (Control Register 252). RP Register Pointer (R253). IMR Interrupt Mask Register (R251). Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 52 Control Register R252 contains the six flags shown in Table 42. Table 42. R252 Flags Symbol Definition C Carry flag. Z Zero flag. S Sign flag. V Overflow flag. D Decimal Adjust flag. H Half Carry flag. The flags in Table 42 can be affected by the symbols defined in Table 43. Table 43. R252 Flags Symbol Definition 0 Clear to zero. 1 Set to one. * Set to clear according to operation. – Unaffected. x Undefined. Table 44 defines the flags that are set for each condition code value. Table 44. Condition Codes Value Mnemonic Definition 0000 F Never True (Always False) 0001 LT Less Than (S XOR V) = 1 0010 LE Less Than Or Equal To [Z OR (S XOR V)] = 1 0011 ULE Unsigned Less Than Or Equal (C OR Z) = 1 0100 OV Overflow V=0 0101 MI Minus S=1 0110 EQ Equal Z=1 0110 Z Zero Z=1 0111 C Carry C=1 PS014404-0212 Flags Set Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 53 Table 44. Condition Codes (Continued) Value Mnemonic Definition Flags Set 0111 ULT Unsigned Less Than C=1 1000 Always True 1001 GE Greater Than Or Equal To (S XOR V) = 0 1010 GT Greater Than [Z OR (S XOR V)] = 0 1011 UGT Unsigned Greater Than (C = 0 AND Z = 0) = 1 1100 NOV No Overflow V=0 1101 PL Plus S=0 1110 NE Not Equal Z=0 1110 NZ Not Zero Z=0 1111 NC No Carry C=0 1111 UGE Unsigned Greater Than Or Equal To C = 0 PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 54 Instruction Formats Figure 47 shows the one-, two- and three-byte formats used in the Z8 instruction set. OPC dst CCF, DI, EI, IRET, NOP, RCF, RET, SCF OPC One-Byte Instructions OPC MODE dst/src OR 1110 dst/src OPC CLR, CPL, DA, DEC, DECW, INC, INCW, POP, PUSH, RL, RLC, RR, RRC, SRA, SWAP OPC MODE src OR 1110 src dst OR 1110 dst OR 1110 dst src OR 1110 src dst OR 1110 dst ADC, ADD, AND, CP LD, OR, SBC, SUB, TCM, TM, XOR JP, CALL (Indirect) dst OR 1110 OPC dst MODE dst OPC ADC, ADD, AND, CP LD, OR, SBC, SUB, TCM, TM, XOR VALUE SRP VALUE MODE OPC MODE dst src MODE OPC dst/src src/dst OPC ADC, ADD, AND, CP, OR, SBC, SUB, TCM, TM, XOR LD, LDE, LDEI, LDC, LDCI MODE OPC dst/src X LD LD ADDRESS OPC dst/src src/dst LD OR 1110 src OPC CC JP DAU dst DAL OPC LD OPC DJNZ, JR VALUE OPC dst/CC DAL RA FFH 6FH CALL DAU STOP/HALT 7FH Two-Byte Instructions Three-Byte Instructions Figure 47. Instruction Formats PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 55 Instruction Summary Table 45 summarizes each Z8 instruction by its operation, addressing mode, operation code, and the flag(s) each instruction affects. Table 45. Instruction Summary Address Mode Instruction and Operation dst src Flags Affected Op Code Byte (Hex) C Z S V D H ADC dst, src dst ← dst + src + C See Note 1 1[] * * * * 0 * ADD dst, src dst ← dst + src See Note 1 0[] * * * * 0 * AND dst, src dst ← dst AND src See Note 1 5[] – * * 0 – – DA IRR 06 D4 – – – – – – EF * – – – – – CALL dst SP ← SP – 2 @ SP ← PC, PC ← dst CCF C ← NOT C CLR dst dst ← 0 R IR B0 B11 – – – – – – COM dst dst ← NOT dst R IR 60 61 – * * 0 – – See Note 1 A[] * * * * – – DA dst dst ← DA dst R IR 40 41 * * * X – – DEC dst dst ← dst – 1 R IR 00 01 – * * * – – DECW dst dst ← dst – 1 R IR 80 81 – * * * – – 8F – – – – – – CP dst, src dst – src DI IMR(7) ← 0 Note: These instructions have an identical set of addressing modes, which are encoded for brevity. The first Op Code nibble is found in this instruction set table. The second nibble is expressed symbolically by a ’[ ]’ in this table, and its value is found on the left of the applicable addressing mode pair in the Op Code Map in Figure 48.  For example, the op code of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13. PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 56 Table 45. Instruction Summary (Continued) Address Mode Instruction and Operation dst DJNZ r, dst r ← r – 1 if r ≠ 0 PC ← PC + dst Range: +127, –128 RA Flags Affected C Z S V D H rA r=0–F – – – – – – EI IRM(7) ← 1 BF * * * * * * HALT 7F – – – – – – – * * * – – R IR rE r=0–F 20 21 RR IR A0 A1 – * * * – – BF * * * * * * cD c=0–F 30 – – – – – – cB c=0–F – – – – – – INC dst dst ← dst + 1 INCW dst dst ← dst + 1 r IRET FLAGS ← @SP; SP ← SP + 1 PC ← @SP; SP ← SP + 2; IMR(7) ← 1 JP cc, dst if cc is true, PC ← dst JR cc, dst if cc is true, PC ← PC + dst Range: +127, –128 DA IRR RA src Op Code Byte (Hex) Note: These instructions have an identical set of addressing modes, which are encoded for brevity. The first Op Code nibble is found in this instruction set table. The second nibble is expressed symbolically by a ’[ ]’ in this table, and its value is found on the left of the applicable addressing mode pair in the Op Code Map in Figure 48.  For example, the op code of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13. PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 57 Table 45. Instruction Summary (Continued) Address Mode Instruction and Operation dst src r r R Im R r r X r Ir R R R IR IR LDC dst, src dst ← src LDCI dst, src dst ← src r ← r + 1; rr ← rr + 1 Op Code Byte (Hex) Flags Affected C Z S V D H – – – – – – X r Ir r R IR IM IM R rC r8 r9 r=0–F C7 D7 E3 F3 E4 E5 E6 E7 F5 r Irr C2 – – – – – – Ir Irr C3 – – – – – – FF – – – – – – See Note 1 4[ 1 – * * 0 – – POP dst ← @SP; SP ← SP + 1 R IR 50 51 – – – – – – PUSH src SP ← SP – 1; @SP ← src R IR 70 71 – – – – – – RCF C←0 CF 0 – – – – – RET PC ← @SP; SP ← SP + 2 AF – – – – – – 90 91 * * * * – – LD dst, src dst ← src NOP OR dst, src dst ← dst OR src RL dst R IR Note: These instructions have an identical set of addressing modes, which are encoded for brevity. The first Op Code nibble is found in this instruction set table. The second nibble is expressed symbolically by a ’[ ]’ in this table, and its value is found on the left of the applicable addressing mode pair in the Op Code Map in Figure 48.  For example, the op code of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13. PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 58 Table 45. Instruction Summary (Continued) Address Mode Instruction and Operation dst RLC dst R IR RR dst RRC dst SBC dst, src dst ← dst ← src ← C Flags Affected C Z S V D H 10 11 * * * * – – R IR E0 E1 * * * * – – R IR C0 C1 * * * * – – See Note 1 3[] * * * * 1 * DF 1 – – – – – SCF C←1 src Op Code Byte (Hex) SRA dst R IR D0 D1 * * * 0 – – SRP dst RP ← src Im 31 – – – – – – 6F 1 – – – – – See Note 1 2[ ] [ [ [ [ 1 [ R IR F0 F1 X * * X – – TCM dst, src (NOT dst) AND src See Note 1 6[ ] – * * 0 – – TM dst, src dst AND src See Note 1 7[ ] – * * 0 – – XOR dst, src dst ← dst XOR src See Note 1 B[ ] – * * 0 – – STOP SUB dst, src dst ← dst ← src SWAP dst Note: These instructions have an identical set of addressing modes, which are encoded for brevity. The first Op Code nibble is found in this instruction set table. The second nibble is expressed symbolically by a ’[ ]’ in this table, and its value is found on the left of the applicable addressing mode pair in the Op Code Map in Figure 48.  For example, the op code of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13. PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 59 Op Code Map Figure 48 shows a map of the Z86E61/Z86E63 MCU’s operational codes. Lower Nibble (Hex) 0 0 1 2 3 4 Upper Nibble (Hex) 5 6 7 8 9 A B C D E F 1 6.6 6.5 DEC DEC R1 IR1 6.5 6.5 RLC RLC R1 IR1 6.5 6.6 INC WC R1 IR1 6.5 6.1 JP SRP IRR1 1M 8.5 8.5 DA DA R1 IR1 10.5 10.5 POP POP R1 IR1 6.5 6.5 COM COM R1 IR1 10/12.1 10/12.1 PUSH PUSH R2 IR2 10.5 10.5 DECW DECW RR1 IR1 6.5 6.5 RL RL R1 IR1 10.5 10.5 INCW INCW RR1 IR1 6.5 6.5 CLR CLR R1 IR1 6.5 6.5 RRC RRC R1 IR1 6.5 6.5 SRA SRA R1 IR1 6.5 6.5 RR RR R1 IR1 8.5 8.5 SWAP SWAP R1 IR1 2 3 4 5 6 7 8 9 A B C D E 6.5 ADD r1, r2 6.5 ADC r1, r2 6.5 SUB r1, r2 6.5 SBC r1, r2 6.5 OR r1, r2 6.5 AND r1, r2 6.5 TCM r1, r2 6.5 TM r1, r2 12.0 LDE r1, Irr2 12.0 LDE r1, Irr2 6.5 CP r1, r2 6.5 XOR r1, r2 12.0 LDC r1, Irr2 12.0 LDC r1, Irr2 8.5 ADD r1, Ir2 6.5 ADC r1, Ir2 0.5 SUB r1, Ir2 6.5 OR r1, Ir2 6.5 OR r1, Ir2 6.5 AND r1, Ir2 6.5 TCM r1, Ir2 6.5 TM r1, Ir2 18.0 LDEI r1, Irr2 18.0 LDEI r1, Irr2 6.5 CP r1, Ir2 6.5 XOR r1, Ir2 18.0 LDC Ir1, Irr2 18.0 LDCI Ir1, Irr2 6.5 LD r1, IR2 6.5 LD Ir1, r2 10.5 ADD R2,R1 10.5 ADC R2, R1 10.5 SUB R2, R1 10.5 SBC R2, R1 10.5 OR R2, R1 10.5 AND R2, R1 10.5 TCM R2, R1 10.5 TM R2, R1 10.5 ADD IR2, R1 10.5 ADC IR2, R1 10.5 SUB IR2, R1 10.5 SBC IR2, R1 10.5 OR IR2, R1 10.5 AND IR2, R1 10.5 TCM IR2, R1 10.5 TM IR2, R1 10.5 ADD R1, 1M 10.5 ADC R1, 1M 10.5 SUB R2, 1M 10.5 SBC R1, 1M 10.5 OR R1, 1M 10.5 AND R1, 1M 10.5 TCM R1, 1M 10.5 TM R1, 1M 10.5 ADD R1, 1M 10.5 ADC R1, 1M 10.5 BUB IR1, 1M 10.5 SBC IR1, 1M 6.5 LD r1, R2 6.5 LD r2, R1 12/10.5 DJNZ r1, RA 12/0.0 JA cc, RA 6.5 LD r1, 1M 12/10.0 JP cc, DA 6.5 INC r1 10.5 CP R2, R1 10.5 XOR R2, R1 20.0 CALL* IRR1 10.5 LD R2, R1 10.5 CP IR2, R1 10.5 XOR R2, R1 First Operand 10.5 CP R1, R2 7.0 HALT 10.5 10.5 CP CP R1, 1M IR1, 1M 10.5 10.5 XOR XOR R1, 1M IR1, 1M 10.5 LD r1, x, R2 20.0 10.5 CALL LD DA 42, x, R1 10.5 10.5 LD LD R1, 1M IR1, 1M 10.5 LD IR2, R1 10.5 LD R2, IR1 Lower Op Code Nibble A 6.0 STOP 6.1 EI Pipeline Cycles Mnemonic 14.0 RET 16.0 IRET 6.5 RCF 6.5 SCF 6.5 CCF 6.0 NOP 3 4 Upper Op Code Nibble 10.5 TCM IR1, 1M 10.5 TCM IR1, 1M 10.5 TM IR1, 1M 6.1 DI 2 Execution Cycles F 2 3 1 Bytes per instruction Legend: R = 8-bit address r = 4-bit address R1 or r1 = dst address R2 or r2 = src address  Sequence: Op code, first operand, second operand  Note: *The 2-byte instruction appears as a 3-byte instruction; blank areas are not defined. Second Operand Figure 48. Op Code Map PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 60 Packaging Zilog’s Z86E61 and Z86E63 MCUs are available in the following packages: • • • 40-pin Plastic Dual Inline Package (PDIP) 44-pin Low-Profile Quad Flat Package (LQFP) 44-pin Plastic Chip Carrier (PLCC) Current diagrams for each of these packages are published in Zilog’s Packaging Product Specification (PS0072), which is available free for download from the Zilog website. Ordering Information Order your Z86E61/Z86E63 MCU products from Zilog using the part numbers shown in Table 46. For more information about ordering, please consult your local Zilog sales office. The Sales Location page on the Zilog website lists all regional offices. Table 46. Z86E61/Z86E63 MCU Ordering Matrix Frequency Package Temperature Range Z86E6116PSG 16 MHz 40-pin PDIP 0°C to +70°C Z86E6116VSG 16 MHz 44-pin PLCC 0°C to +70°C Z86E6116ASG 16 MHz 44-pin LQFP 0°C to +70°C Z86E6120PSG 20 MHz 40-pin PDIP 0°C to +70°C Z86E6120VSG 20 MHz 44-pin PLCC 0°C to +70°C Z86E6120ASG 20 MHz 44-pin LQFP 0°C to +70°C Z86E6316PSG 16 MHz 40-pin PDIP 0°C to +70°C Z86E6316VSG 16 MHz 44-pin PLCC 0°C to +70°C Z86E6316ASG 16 MHz 44-pin LQFP 0°C to +70°C Z86E6320PSG 20 MHz 40-pin PDIP 0°C to +70°C Z86E6320VSG 20 MHz 44-pin PLCC 0°C to +70°C Z86E6320ASG 20 MHz 44-pin LQFP 0°C to +70°C Part Number Z86E61 MCU Z86E63 MCU PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 61 Part Number Suffix Designations Zilog part numbers consist of a number of components. For the Z86E61/Z86E63 MCU, these components are: Environmental Flow G = Lead-Free Packaging Temperature Range S = 0ºC to +70ºC Package P = 40-pin Plastic DIP (PDIP) V = 44-pin Plastic Chip Carrier (PLCC) A = 44-pin Low-Profile Quad Flat Package (LQFP) Frequency 16 = 16 MHz 20 = 20 MHz Memory Type E = One-Time-Programmable EPROM Example. Part number Z86E6116PSC is an 8-bit Z8-powered MCU operating at a 16 MHz frequency in a 40-pin PDIP package, operating within a 0ºC to +70ºC temperature range and built using lead-free solder. Z86 E 61 16 P S G Environmental Flow G = Lead-Free Packaging Temperature Range S = Standard, 0°C to +70°C Package P = 40-pin PDIP Frequency 16 = 16 MHz Unique Zilog Device Type Memory Type E = One-Time-Programmable EPROM Device Family Z86 = Zilog’s 8-bit Z8 MCU PS014404-0212 Pin Functions Z86E61/Z86E63 Microcontrollers Product Specification 62 Customer Support To share comments, get your technical questions answered, or report issues you may be experiencing with our products, please visit Zilog’s Technical Support page at  http://support.zilog.com. To learn more about this product, find additional documentation, or to discover other facets about Zilog product offerings, please visit the Zilog Knowledge Base at http:// zilog.com/kb or consider participating in the Zilog Forum at http://zilog.com/forum. This publication is subject to replacement by a later edition. To determine whether a later edition exists, please visit the Zilog website at http://www.zilog.com. PS014404-0212 Pin Functions
Z86E6116PSG 价格&库存

很抱歉,暂时无法提供与“Z86E6116PSG”相匹配的价格&库存,您可以联系我们找货

免费人工找货