0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
XZ298N

XZ298N

  • 厂商:

    XINLUDA(信路达)

  • 封装:

    ZIP15_19.6X5MM

  • 描述:

    XZ298N是一款集成单片电路,采用15引脚多瓦和PowerZIP15封装。

  • 数据手册
  • 价格&库存
XZ298N 数据手册
XZ298N .. .. . nectionof an externalsensing resistor. Anadditional supply input is provided so that the logic works at a lower voltage. OPERATING SUPPLY VOLTAGE UP TO 46 V TOTAL DC CURRENT UP TO 4 A LOW SATURATION VOLTAGE OVERTEMPERATURE PROTECTION LOGICAL ”0” INPUT VOLTAGE UP TO 1.5 V (HIGH NOISE IMMUNITY) DESCRIPTION The XZ298N is an integrated monolithic circuit in a 15-lead Multiwatt and PowerZIP15 packages. It is ahigh voltage, high current dual full-bridge driver de-signed to accept standardTTL logic levels and driveinductive loads such as relays, solenoids, DC andstepping motors. Two enableinputs are provided toenableor disable the deviceindependentlyof the in-put signals. The emitters of the lower transistors ofeach bridge are connected together and the corre-sponding external terminal can be used for the conBLOCK DIAGRAM 1 XZ298N ZIP15 2 XZ298N PIN FUNCTIONS (refer to the block diagram) MW.15 Po werSO Name 1;15 2;19 Sense A; Sense B Between this pin and ground is connected the sense resistor to control the current of the load. Fun ction 2;3 4;5 Out 1; Out 2 Outputs of the Bridge A; the current that flows through the load connected between these two pins is monitored at pin 1. 4 6 VS Supply Voltage for the Power Output Stages. A non-inductive 100nF capacitor must be connected between this pin and ground. 5;7 7;9 Input 1; Input 2 6;11 8;14 Enable A; Enable B TTL Compatible Inputs of the Bridge A. 8 1,10,11,20 GND Ground. 9 12 VSS Supply Voltage for the Logic Blocks. A100nF capacitor must be connected between this pin and ground. 10; 12 13;15 Input 3; Input 4 13; 14 16;17 Out 3; Out 4 – 3;18 N.C. TTL Compatible Enable Input: the L state disables the bridge A (enable A) and/or the bridge B (enable B). TTL Compatible Inputs of the Bridge B. Outputs of the Bridge B. The current that flows through the load connected between these two pins is monitored at pin 15. Not Connected ELECTRICAL CHARACTERISTICS (VS = 42V; VSS = 5V, Tj = 25°C; unless otherwise specified) Symbol Parameter VS Supply Voltage (pin 4) VSS Logic Supply Voltage (pin 9) Test Co nditions Operative Condition Min . 4.5 Ven = H; IL = 0 Typ . VIH +2.5 Unit 46 V 5 7 V 13 50 22 70 mA mA 4 mA 24 7 36 12 mA mA 6 mA 1.5 V IS Quiescent Supply Current (pin 4) ISS Quiescent Current from VSS (pin 9) Ven = H; IL = 0 V iL Input Low Voltage (pins 5, 7, 10, 12) –0.3 ViH Input High Voltage (pins 5, 7, 10, 12) 2.3 VSS V IiL Low Voltage Input Current (pins 5, 7, 10, 12) Vi = L –10 µA IiH High Voltage Input Current (pins 5, 7, 10, 12) Vi = H ≤ VSS –0.6V 100 µA Ven = L Vi = L Vi = H Max. Vi = X Ven = L Vi = L Vi = H Vi = X 30 Ven = L Enable Low Voltage (pins 6, 11) –0.3 1.5 V Ven = H Enable High Voltage (pins 6, 11) 2.3 VSS V Ien = L Low Voltage Enable Current (pins 6, 11) Ven = L –10 µA Ien = H High Voltage Enable Current (pins 6, 11) Ven = H ≤ VSS –0.6V 30 100 µA 0.95 1.35 2 1.7 2.7 V V 1.2 1.7 1.6 2.3 V V VCEsat (H) Source Saturation Voltage IL = 1A IL = 2A VCEsat (L) Sink Saturation Voltage IL = 1A IL = 2A (5) (5) 0.85 IL = 1A IL = 2A (5) (5) 1.80 3.2 4.9 V V –1 (1) 2 V VCEsat Total Drop Vsens Sensing Voltage (pins 1, 15) 3 XZ298N ELECTRICAL CHARACTERISTICS (continued) Symbol Parameter Test Co nditions Min . Typ . Max. Unit T1 (Vi) Source Current Turn-off Delay 0.5 V i to 0.9 I L (2); (4) 1.5 µs T2 (Vi) Source Current Fall Time 0.9 IL to 0.1 IL (2); (4) 0.2 µs T3 (Vi) Source Current Turn-on Delay 0.5 V i to 0.1 I L (2); (4) 2 µs T4 (Vi) Source Current Rise Time 0.1 IL to 0.9 IL (2); (4) 0.7 µs T5 (Vi) Sink Current Turn-off Delay 0.5 V i to 0.9 I L (3); (4) 0.7 µs T6 (Vi) Sink Current Fall Time 0.9 IL to 0.1 IL (3); (4) 0.25 µs T7 (Vi) Sink Current Turn-on Delay 0.5 V i to 0.9 I L (3); (4) 1.6 µs T8 (Vi) Sink Current Rise Time 0.1 IL to 0.9 IL (3); (4) 0.2 µs fc (Vi) Commutation Frequency IL = 2A T1 (Ven) Source Current Turn-off Delay 0.5 V en to 0.9 IL 25 T2 (Ven) Source Current Fall Time 0.9 IL to 0.1 IL T3 (Ven) Source Current Turn-on Delay 0.5 V en to 0.1 IL T4 (Ven) Source Current Rise Time 0.1 IL to 0.9 IL T5 (Ven) Sink Current Turn-off Delay 0.5 V en to 0.9 IL (2); (4) (2); (4) (2); (4) (2); (4) T6 (Ven) Sink Current Fall Time 0.9 IL to 0.1 IL T7 (Ven) Sink Current Turn-on Delay 0.5 V en to 0.9 IL T8 (Ven) Sink Current Rise Time 0.1 IL to 0.9 IL (3); (4) (3); (4) (3); (4) (3); (4) 40 µs 1 µs 0.3 µs 0.4 µs 2.2 µs 0.35 µs 0.25 µs 0.1 µs 1) 1)Sensing voltage can be –1 V for t ≤ 50 µsec; in steady state V sens min ≥ – 0.5 V. 2) See fig. 2. 3) See fig. 4. 4) The load must be a pure resistor. Figure 1 : Typical Saturation Voltage vs. Output Current. Figure 2 : Switching Times Test Circuits. XZ298N Note : For INPUT Switching, set EN = H For ENABLESwitching, set IN = H 4 KHz 3 XZ298N Figure 3 : Source Current Delay Times vs. Input or Enable Switching. Figure 4 : Switching Times Test Circuits. XZ298N Note : For INPUT Switching, set EN = H For ENABLE Switching, set IN = L 5 XZ298N Figure 5 : Sink Current Delay Times vs. Input 0 V Enable Switching. Figure 6 : Bidirectional DC Motor Control. In pu ts Ven = H Ven = L L = Low XZ298N 6 Fu nctio n C=H;D=L Forward C =L; D= H Reverse C=D Fast Motor Stop C=X;D=X Free Running Motor Stop H = High X = Don’t care XZ298N Figure 7 : For higher currents, outputs can be paralleled. Take care to parallel channel 1 with channel 4 and channel 2 with channel 3. XZ298N APPLICATION INFORMATION (Refer to the block diagram) 1.1. POWER OUTPUT STAGE Each input must be connected to the source of the driving signals by means of a very short path. The XZ298N integratestwo poweroutputstages (A ;B).The power output stage is a bridge Turn-On and Turn-Off : Before to Turn-ON the Supconfigurationand its outputs can drive an ply Voltageand beforeto Turnit OFF, the Enableininductive load in com-mon or differenzialmode, put must be driven to the Low state. dependingon the state ofthe inputs. The current 3. APPLICATIONS that flows through the loadcomes out from the bridge at the sense output : anexternal resistor Fig 6 shows a bidirectional DC motor control Sche(RSA ; RSB.) allows to detect the in-tensity of this matic Diagram for which only one bridge is needed. The external bridge of diodes D1 to D4 is made by current. four fast recovery elements (trr ≤ 200 nsec) that 1.2. INPUT STAGE must be chosen of a VF as low as possible at the Each bridge is driven by means of four gates the inworst case of the load current. put of which are In1 ; In2 ; EnA and In3 ; In4 ; EnB. The sense outputvoltage can be used to control the The In inputs set the bridge state when The En input current amplitude by chopping the inputs, or to prois high ; a lowstate of the En inputinhibitsthe bridge. vide overcurrent protection by switching low the enAll the inputs are TTL compatible. able input. 2. SUGGESTIONS The brake function (Fast motor stop) requires that the Absolute Maximum Rating of 2 Amps must A non inductive capacitor, usually of 100 nF, must never be overcome. be foreseen between both Vs and Vss, to ground, as near as possible to GND pin. When the large caWhen the repetitive peak current needed from the pacitor of the power supply is too far from the IC, a load is higher than 2 Amps, a paralleled configurasecond smaller one must be foreseen near the tion can be chosen (See Fig.7). XZ298N. An external bridge of diodes are required when inThe sense resistor, not of a wire wound type, must ductive loads are driven and when the inputs of the be grounded near the negative pole of Vs that must IC are chopped; Shottkydiodeswould bepreferred. be near the GND pin of the I.C. 7 XZ298N This solution can drive until 3 Amps In DC operation and until 3.5 Amps of a repetitive peak current. OnFig 8 it is shownthe driving ofa twophasebipolar stepper motor ; the needed signals to drive the inputs of the XZ298N are generated, in this example,from the IC XD297. Fig 9 shows an example of P.C.B. designed for the application of Fig 8. Fig 10 shows a second two phase bipolar stepper motor control circuit where the current is controlled by the I.C. L6506. Figure 8 : Two Phase Bipolar Stepper Motor Circuit. This circuit drives bipolar stepper motors with winding currents up to 2 A. The diodes are fast 2 A types. XD297 XZ298N RS1 = RS2 = 0.5 Ω D1 to D8 = 2 A Fast diodes { VF ≤ 1.2 V @ I = 2 A trr ≤ 200 ns 8 XZ298N mm DIM. MIN. TYP. inch MAX. MIN. TYP. A 5 0.197 B 2.65 0.104 C 1.6 D OUTLINE AND MECHANICAL DATA MAX. 0.063 1 0.039 E 0.49 0.55 0.019 F 0.66 0.75 0.026 0.022 G 1.02 1.27 1.52 0.040 0.050 0.060 G1 17.53 17.78 18.03 0.690 0.700 0.710 H1 19.6 0.030 0.772 H2 20.2 0.795 L 21.9 22.2 22.5 0.862 0.874 0.886 L1 21.7 22.1 22.5 0.854 0.870 0.886 L2 17.65 18.1 0.695 L3 17.25 17.5 17.75 0.679 0.689 0.699 L4 10.3 10.7 10.9 0.406 0.421 0.429 L7 2.65 2.9 0.104 0.713 0.114 M 4.25 4.55 4.85 0.167 0.179 0.191 M1 4.63 5.08 5.53 0.182 0.200 0.218 S 1.9 2.6 0.075 S1 1.9 2.6 0.075 0.102 0.102 Dia1 3.65 3.85 0.144 0.152 Multiwatt15 V 9
XZ298N 价格&库存

很抱歉,暂时无法提供与“XZ298N”相匹配的价格&库存,您可以联系我们找货

免费人工找货
XZ298N
    •  国内价格
    • 500+4.89320

    库存:0