0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
π120U31

π120U31

  • 厂商:

    2PAISEMI(荣湃)

  • 封装:

    SOIC8_150MIL

  • 描述:

    数字隔离器 3KVrms 150Kbps 3~5.5V SOIC8_150MIL

  • 数据手册
  • 价格&库存
π120U31 数据手册
2Pai Semi Enhanced ESD, 3.0 kV rms/6.0 kV rms 150Kbps Dual-Channel Digital Isolators π120U/π121U/π122U Data Sheet FEATURES Ultra low power consumption (150Kbps): 0.55mA/Channel High data rate: π12xAxx: 600Mbps π12xExx: 200Mbps π12xMxx: 10Mbps π12xUxx: 150kbps High common-mode transient immunity: 150 kV/µs typical High robustness to radiated and conducted noise Isolation voltages: π12xx3x: AC 3000Vrms π12xx6x: AC 6000Vrms High ESD rating: ESDA/JEDEC JS-001-2017 Human body model (HBM) ±8kV, all pins Safety and regulatory approvals (Pending): UL certificate number: E494497 3000Vrms/6000Vrms for 1 minute per UL 1577 CSA Component Acceptance Notice 5A VDE certificate number: 40047929 DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 VIORM = 707V peak/1200V peak CQC certification per GB4943.1-2011 3 V to 5.5 V level translation Wide temperature range: -40°C to 125°C 8/16-lead, RoHS-compliant, (W)SOIC package APPLICATIONS to 600Mbps (see the Ordering Guide). The devices operate with the supply voltage on either side ranging from 3.0 V to 5.5 V, providing compatibility with lower voltage systems as well as enabling voltage translation functionality across the isolation barrier. The fail-safe state is available in which the outputs transition to a preset state when the input power supply is not applied. FUNCTIONAL BLOCK DIAGRAMS π120X3X VDD1 1 8 VDD2 VIA 2 7 VOA VIB 3 6 VOB GND1 4 5 GND2 π121X3X VDD1 1 8 VDD2 VIA 2 7 VOA OB V 3 6 VIB GND1 4 5 GND2 VDD1 1 VOA 2 VIB GND 1 π122X3X 8 VDD2 7 VIA 3 6 VOB 4 5 GND2 General-purpose multichannel isolation Industrial field bus isolation GENERAL DESCRIPTION The π1xxxxx is a 2PaiSemi digital isolators product family that includes over hundreds of digital isolator products. By using maturated standard semiconductor CMOS technology and 2PaiSEMI iDivider technology, these isolation components provide outstanding performance characteristics and reliability superior to alternatives such as optocoupler devices and other integrated isolators. Intelligent voltage divider technology (iDivider technology) is a new generation digital isolator technology invented by 2PaiSEMI. It uses the principle of capacitor voltage divider to transmit voltage signal directly cross the isolator capacitor without signal modulation and demodulation. π120X6X GND 1 1 16 GND2 NC 2 15 NC VDD1 3 14 VDD2 VIA 4 13 VOA VIB 5 12 VOB NC 6 11 NC GND 1 7 10 NC GND 1 8 9 GND2 GND 1 1 16 GND2 NC 2 15 NC VDD1 3 14 VDD2 VIA 4 13 VOA VOB 5 12 VIB NC 6 11 NC GND 1 7 10 NC GND 1 8 9 GND2 GND1 1 16 GND2 NC 2 15 NC VDD1 3 14 VDD2 VOA 4 13 VIA VIB 5 12 VOB π121X6X π122X6X NC 6 11 NC GND 1 7 10 NC GND1 8 9 GND2 Figure1. π120xxx/π121xxx/π122xxx functional Block Diagram VDD1 VDD2 CIN COUT 0.1uF 0.1uF 1 2 3 4 VIN_A VIN_B GND1 VDD1 VIA VIB GND1 VDD2 VOA VOB GND 2 π120 8 7 6 5 VOUT_A VOUT_B GND2 Figure2. π120xxx Typical Application Circuit The π1xxxxx isolator data channels are independent and are available in a variety of configurations with a withstand voltage rating of 1.5 kV rms to 6.0 kV rms and the data rate from DC up Rev.1 Information furnished by 2Pai semi is believed to be accurate and reliable. However, no responsibility is assumed by 2Pai semi for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of 2Pai semi. Trademarks and registered trademarks are the property of their respective owners. Room 308-309, No.22, Boxia Road, Pudong New District, Shanghai, 201203, China 021-50850681 2Pai Semiconductor Co., Limited. All rights reserved. http://www.rpsemi.com/ π120U/π121U/π122U Data Sheet PIN CONFIGURATIONS AND FUNCTIONS π120U3x Pin Function Descriptions Pin No. Name Description 1 VDD1 Supply Voltage for Isolator Side 1. 2 VIA Logic Input A. 3 VIB Logic Input B. 4 GND1 Ground 1. This pin is the ground reference for Isolator Side 1. 5 GND2 Ground 2. This pin is the ground reference for Isolator Side 2. 6 VOB Logic Output B. 7 VOA Logic Output A. 8 VDD2 Supply Voltage for Isolator Side 2. Figure3. π120U3x Pin Configuration π121U3x Pin Function Descriptions Pin No. Name Description 1 VDD1 Supply Voltage for Isolator Side 1. VIA 2 2 VIA Logic Input A. VOB 3 3 VOB Logic Output B. GND1 4 4 GND1 Ground 1. This pin is the ground reference for Isolator Side 1. 5 GND2 Ground 2. This pin is the ground reference for Isolator Side 2. 6 VIB Logic Input B. 7 VOA Logic Output A. 8 VDD2 Supply Voltage for Isolator Side 2. VDD1 1 π121x4 8 VDD2 7 VOA TOP VIEW (Not to scale) 6 VIB 5 GND2 Figure4. π121U3x Pin Configuration π122U3x Pin Function Descriptions Pin No. Name Description 1 VDD1 Supply Voltage for Isolator Side 1. VOA 2 2 VOA Logic Output A. VIB 3 3 VIB Logic Input B. 4 GND1 Ground 1. This pin is the ground reference for Isolator Side 1. 5 GND2 Ground 2. This pin is the ground reference for Isolator Side 2. 6 VOB Logic Output B. 7 VIA Logic Input A. 8 VDD2 Supply Voltage for Isolator Side 2. VDD1 1 GND1 4 π120U6x Pin Function Descriptions π122x4 7 VIA TOP VIEW (Not to scale) 6 VOB 5 GND2 Figure5. π122U3x Pin Configuration 16 GND2 GND1 1 Pin No. Name Description 1 GND1 Ground 1. This pin is the ground reference for Isolator Side 1. 2 NC No connect. 3 VDD1 Supply Voltage for Isolator Side 1. 4 VIA Logic Input A. VIB 5 5 VIB Logic Input B. NC 6 6 NC No Connect. 7 GND1 Ground 1. This pin is the ground reference for Isolator Side 1. 8 GND1 Ground 1. This pin is the ground reference for Isolator Side 1. 9 GND2 Ground 2. This pin is the ground reference for Isolator Side 2. Rev. 1 | Page 2 of 15 8 VDD2 π120x6 NC 2 VDD1 3 14 VDD2 VIA 4 13 VOA TOP VIEW (Not to scale) 15 NC 12 VOB 11 NC GND1 7 10 NC GND1 8 9 GND2 Figure6. π120U6x Pin Configuration π120U/π121U/π122U Data Sheet 10 NC No Connect. 11 NC No Connect. 12 VOB Logic Output B. 13 VOA Logic Output A. 14 VDD2 Supply Voltage for Isolator Side 2. 15 NC No Connect. 16 GND2 Ground 2. This pin is the ground reference for Isolator Side 2. π121U6x Pin Function Descriptions Pin No. Name Description 1 GND1 Ground 1. This pin is the ground reference for Isolator Side 1. 2 NC No Connect. 3 VDD1 Supply Voltage for Isolator Side 1. 4 VIA Logic Input A. 5 VOB Logic Output B. 6 NC No Connect. 7 GND1 Ground 1. This pin is the ground reference for Isolator Side 1. 8 GND1 Ground 1. This pin is the ground reference for Isolator Side 1. 9 GND2 Ground 2. This pin is the ground reference for Isolator Side 2. 10 NC No Connect. 11 NC No Connect. 12 VIB Logic Input B. 13 VOA Logic Output A. 14 VDD2 Supply Voltage for Isolator Side 2. 15 NC No Connect. 16 GND2 Ground 2. This pin is the ground reference for Isolator Side 2. GND1 1 NC 2 16 GND2 π121x6 15 NC VDD1 3 14 VDD2 VIA 4 13 VOA VOB 5 NC 6 TOP VIEW (Not to scale) 12 VIB 11 NC GND1 7 10 NC GND1 8 9 GND2 Figure7. π121U6x Pin Configuration Figure8. π121x6 Pin Configuration π122U6x Pin Function Descriptions Pin No. Name Description 1 GND1 Ground 1. This pin is the ground reference for Isolator Side 1. 2 NC No Connect. 3 VDD1 Supply Voltage for Isolator Side 1. 4 VOA Logic Output A. 5 VIB Logic Input B. 6 NC No Connect. 7 GND1 Ground 1. This pin is the ground reference for Isolator Side 1. 8 GND1 Ground 1. This pin is the ground reference for Isolator Side 1. GND1 7 10 NC GND1 8 9 GND2 GND1 1 NC 2 9 GND2 Ground 2. This pin is the ground reference for Isolator Side 2. 10 NC No Connect. 11 NC No Connect. 12 VOB Logic Output B. 13 VIA Logic Input A. 14 VDD2 Supply Voltage for Isolator Side 2. 15 NC No Connect. 16 GND2 Ground 2. This pin is the ground reference for Isolator Side 2. 16 GND2 π122x6 15 NC VDD1 3 14 VDD2 VOA 4 13 VIA VIB 5 NC 6 TOP VIEW (Not to scale) 12 VOB 11 NC Figure8. π122U6x Pin Configuration Figure9. π122x6 Pin Configuration Rev. 1 | Page 3 of 15 π120U/π121U/π122U Data Sheet ABSOLUTE MAXIMUM RATINGS TA = 25°C, unless otherwise noted. Table 1. Absolute Maximum Ratings4 Parameter Rating Supply Voltages (VDD1-GND1, VDD2-GND2) Input Voltages −0.5 V to +7.0 V (VIA, VIB)1 Output Voltages −0.5 V to VDDx + 0.5 V (VOA, VOB)1 −0.5 V to VDDx + 0.5 V Average Output Current per Pin2 Side 1 Output Current (IO1) −10 mA to +10 mA Average Output Current per Pin2 Side 2 Output Current (IO2) −10 mA to +10 mA Common-Mode Transients Immunity 3 −150 kV/µs to +150 kV/µs Storage Temperature (TST) Range −65°C to +150°C Ambient Operating Temperature (TA) Range −40°C to +125°C Notes: 1 VDDx is the side voltage power supply VDD, where x = 1 or 2. 2 See Figure9 for the maximum rated current values for various temperatures. 3 See Figure18 for Common-mode transient immunity (CMTI) measurement. 4 Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. RECOMMENDED OPERATING CONDITIONS Table 2. Recommended Operating Conditions Parameter Supply Voltage High Level Input Signal Voltage Symbol Min VDDx 1 3 VIH 0.7*VDDx Low Level Input Signal Voltage VIL 0 High Level Output Current IOH -6 Low Level Output Current IOL Maximum Data Rate Typ 1 Max Unit 5.5 V VDDx 1 0.3*VDDx V 1 V mA 6 mA 0 150 Kbps Junction Temperature TJ -40 150 °C Ambient Operating Temperature TA -40 125 °C Notes: 1 VDDx is the side voltage power supply VDD, where x = 1 or 2. Truth Tables Table 3. π120xxx/π121xxx/π122xxx Truth Table Default Low Default High VOx Output1 VOx Output1 Test Conditions /Comments Powered2 Low Low Normal operation Powered2 High High Normal operation Open Powered2 Powered2 Low High Default output Don’t Care4 Unpowered3 Powered2 Low High Default output5 Don’t Care4 Powered2 Unpowered3 High Impedance High Impedance VIx Input1 VDDI State1 VDDO State1 Low Powered2 High Powered2 Notes: 1 VIx/VOx are the input/output signals of a given channel (A or B). VDDI/VDDO are the supply voltages on the input/output signal sides of this given channel. Rev. 1 | Page 4 of 15 π120U/π121U/π122U Data Sheet 2 Powered means VDDx≥ 2.9 V means VDDx < 2.3V 4 Input signal (VIx) must be in a low state to avoid powering the given VDDI1 through its ESD protection circuitry. 5 If the VDDI goes into unpowered status, the channel outputs the default logic signal after around 1us. If the VDDI goes into powered status, the channel outputs the input status logic signal after around 3us. 3 Unpowered SPECIFICATIONS ELECTRICAL CHARACTERISTICS Table 4. Switching Specifications VDD1 - VGND1 = VDD2 - VGND2 = 3.3VDC±10% or 5VDC±10%, TA=25°C, unless otherwise noted. Parameter Minimum Pulse Width Symbol Maximum Data Rate Propagation Delay Time1,4 Pulse Width Distortion4 Part to Part Propagation Delay Skew4 Channel to Channel Propagation Delay Skew4 Min Typ Max PW 6.5 150 Common-Mode Transient Immunity3 CMTI ESD(HBM - Human body model) ESD Within PWD limit us The different time between 50% input signal to 50% output signal 50% @ 5VDC supply 3.2 4.8 us @ 3.3VDC supply 0 0.02 0.2 us The max different time between tpHL and tpLH@ 5VDC supply. And The value is | tpHL - tpLH | 0 0.02 0.2 us @ 3.3VDC supply 0.3 us The max different propagation delay time between any two devices at the same temperature, load and voltage @ 5VDC supply 0.3 us 0 0.2 us 0 0.2 us tCSK tr/tf Kbps 4.5 tPSK Output Signal Rise/Fall Time4 Test Conditions/Comments Within pulse width distortion (PWD) limit 3.0 tpHL, tpLH PWD Unit us 100 @ 3.3VDC supply The max amount propagation delay time differs between any two output channels in the single device @ 5VDC supply. @ 3.3VDC supply 1.5 ns 10% to 90% signal terminated 50,See figure15. 150 kV/µs VIN = VDDx2 or 0V, VCM = 1000 V. ±8 kV All pins Notes: 1 tpLH = low-to-high propagation delay time, tpHL = high-to-low propagation delay time. See figure 16. 2V DDx is the side voltage power supply VDD, where x = 1 or 2. 3 See Figure18 for Common-mode transient immunity (CMTI) measurement. 4 Output Signal Terminated 50 Table 5. DC Specifications VDD1 - VGND1 = VDD2 - VGND2 = 3.3VDC±10% or 5VDC±10%, TA=25°C, unless otherwise noted. Parameter Rising Input Signal Voltage Threshold Falling Input Signal Voltage Threshold High Level Output Voltage Low Level Output Voltage Symbol Min VIT+ Typ Max 0.6*VDDx1 0.7*VDDx1 Unit Test Conditions/Comments V VIT- 0.3* VDDX1 0.4* VDDX1 V VOH 1 VDDx − 0.1 VDDx V −20 µA output current VDDx − 0.2 VDDx − 0.1 V −2 mA output current V 20 µA output current VOL 0 0.1 Rev. 1 | Page 5 of 15 π120U/π121U/π122U Data Sheet Input Current per Signal Channel VDDx1 Undervoltage Rising Threshold VDDx1 Undervoltage Falling Threshold VDDx1 Hysteresis 0.1 0.2 V 2 mA output current 0 V ≤ Signal voltage ≤ VDDX1 IIN −10 0.5 10 µA VDDxUV+ 2.45 2.65 2.9 V VDDxUV− 2.3 2.5 2.75 V VDDxUVH 0.15 V Notes: 1 VDDx is the side voltage power supply VDD, where x = 1 or 2. Table 6. Quiescent Supply Current VDD1 - VGND1 = VDD2 - VGND2 = 3.3VDC±10% or 5VDC±10%, TA=25°C, CL = 0 pF, unless otherwise noted. Parameter π120Uxx Quiescent Supply Current @ 5VDC Supply @ 3.3VDC Supply π121Uxx Quiescent Supply Current @ 5VDC Supply @ 3.3VDC Supply π122Uxx Quiescent Supply Current @ 5VDC Supply @ 3.3VDC Supply Symbol Min Typ Max Unit IDD1 (Q) 154 IDD2 (Q) 708 IDD1 (Q) Test Conditions 192 250 µA 0V Input signal 885 1151 µA 0V Input signal 61 76 99 µA 5V Input signal IDD2 (Q) 767 959 1247 µA 5V Input signal IDD1 (Q) 113 141 183 µA 0V Input signal IDD2 (Q) 696 870 1131 µA 0V Input signal IDD1 (Q) 60 75 98 µA 3.3V Input signal IDD2 (Q) 758 948 1232 µA 3.3V Input signal IDD1 (Q) 431 539 700 µA 0V Input signal IDD2 (Q) 431 539 701 µA 0V Input signal IDD1 (Q) 414 518 673 µA 5V Input signal IDD2 (Q) 414 518 673 µA 5V Input signal IDD1 (Q) 404 506 657 µA 0V Input signal IDD2 (Q) 405 506 658 µA 0V Input signal IDD1 (Q) 409 512 665 µA 3.3V Input signal IDD2 (Q) 410 512 666 µA 3.3V Input signal IDD1 (Q) 431 539 701 µA 0V Input signal IDD2 (Q) 431 539 701 µA 0V Input signal IDD1 (Q) 414 518 673 µA 5V Input signal IDD2 (Q) 414 518 673 µA 5V Input signal IDD1 (Q) 405 506 658 µA 0V Input signal IDD2 (Q) 405 506 658 µA 0V Input signal IDD1 (Q) 410 512 666 µA 3.3V Input signal IDD2 (Q) 410 512 666 µA 3.3V Input signal Table 7. Total Supply Current vs. Data Throughput (CL = 0 pF) VDD1 - VGND1 = VDD2 - VGND2 = 3.3VDC±10% or 5VDC±10%, TA=25°C, CL = 0 pF, unless otherwise noted. Parameter Symbol π120Uxx Supply Current @ 5VDC @ 3.3VDC 2 Kbps Min Typ Max IDD1 0.13 IDD2 0.92 IDD1 0.10 50Kbps Min Typ Max 0.20 0.13 1.38 0.93 0.15 0.10 Rev. 1 | Page 6 of 15 150Kbps Min Typ Max Unit 0.20 0.13 0.20 mA 1.40 0.94 1.41 mA 0.15 0.10 0.15 mA π120U/π121U/π122U Data Sheet π121Uxx Supply Current @ 5VDC @ 3.3VDC π122Uxx Supply Current @ 5VDC @ 3.3VDC IDD2 0.91 1.37 0.91 1.37 0.92 1.38 mA IDD1 0.53 0.79 0.53 0.80 0.54 0.80 mA IDD2 0.53 0.80 0.53 0.80 0.54 0.81 mA IDD1 0.51 0.76 0.51 0.77 0.51 0.77 mA IDD2 0.51 0.77 0.51 0.77 0.51 0.77 mA IDD1 0.53 0.80 0.53 0.80 0.54 0.81 mA IDD2 0.53 0.80 0.53 0.80 0.54 0.81 mA IDD1 0.51 0.77 0.51 0.77 0.51 0.77 mA IDD2 0.51 0.77 0.51 0.77 0.51 0.77 mA INSULATION AND SAFETY RELATED SPECIFICATIONS Table 8. Insulation Specifications Parameter Symbol Rated Dielectric Insulation Voltage Minimum External Air Gap (Clearance) Minimum External Tracking (Creepage) Minimum Internal Gap (Internal Clearance) Tracking Resistance (Comparative Tracking Index) Value Unit Test Conditions/Comments π12xU3x π12xU6x 3000 6000 L (CLR) 4 8 mm min L (CRP) 4 8 mm min 11 21 µm min Insulation distance through insulation >400 >400 V DIN IEC 112/VDE 0303 Part 1 II II CTI Material Group V rms 1-minute duration Measured from input terminals to output terminals, shortest distance through air Measured from input terminals to output terminals, shortest distance path along body Material Group (DIN VDE 0110, 1/89, Table 1) PACKAGE CHARACTERISTICS Table 9. Package Characteristics Parameter Symbol Resistance (Input to Output)1 Capacitance (Input to Output)1 Typical Value Unit π12xU3x π12xU6x RI-O 10 11 10 11 Ω Test Conditions/Comments CI-O 0.6 0.6 pF @1MHz Input Capacitance2 CI 3 3 pF @1MHz IC Junction to Ambient Thermal Resistance θJA 100 45 °C/W Thermocouple located at center of package underside Notes: 1The device is considered a 2-terminal device; SOIC-8 Pin 1 - Pin 4(WSOIC-16 Pin 1-Pin8) are shorted together as the one terminal, and SOIC-8 Pin 5 - Pin 8(WSOIC-16 Pin 9- Pin16) are shorted together as the other terminal. 2Testing from the input signal pin to ground. REGULATORY INFORMATION See Table 10 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross isolation waveforms and insulation levels. Table10. Regulatory π12xU3x Regulatory UL Recognized under UL 1577 Component Recognition Program1 Single Protection, 3000 V rms Isolation Voltage File (E494497) π12xU6x Recognized under UL 1577 Component Recognition Program1 Single Protection, 6000V rms Isolation Voltage File (pending) Rev. 1 | Page 7 of 15 π120U/π121U/π122U Data Sheet CSA Approved under CSA Component Acceptance Notice 5A Approved under CSA Component Acceptance Notice 5A CSA 60950-1-07+A1+A2 and CSA 60950-1-07+A1+A2 and IEC 60950-1, second edition, +A1+A2: IEC 60950-1, second edition, +A1+A2: Basic insulation at 500 V rms (707 V peak) Basic insulation at 845 V rms (1200 V peak) Reinforced insulation at 250 V rms Reinforced insulation at 422 V rms (353 V peak) (600 V peak) File (pending) VDE CQC DIN V VDE V 0884-10 (VDE V File (pending) 0884-10):2006-122 DIN V VDE V 0884-10 (VDE V 0884-10):2006-122 Basic insulation, VIORM = 707 V peak, VIOSM = 4615 V peak Basic insulation, VIORM = 1200 V peak, VIOSM = 7000 V peak File (40047929) File (pending) Certified under Certified under CQC11-471543-2012 CQC11-471543-2012 GB4943.1-2011 Basic insulation at 500 V rms (707 V peak) working voltage GB4943.1-2011 Basic insulation at 845 V rms (1200 V peak) working voltage Reinforced insulation at Reinforced insulation at 250 V rms (353 V peak) 422 V rms (600 V peak) File (pending) File (pending) Notes: 1 In accordance with UL 1577, each π120U3x/π121U3x/π122U3x is proof tested by applying an insulation test voltage ≥ 3600 V rms for 1 sec; each π120U6x/π121U6x/π122U6x is proof tested by applying an isulation test voltage ≥ 7200 V rms for 1 sec 2 In accordance with DIN V VDE V 0884-10, each π120U3x/π121U3x/π122U3x is proof tested by applying an insulation test voltage ≥ 1326 V peak for 1 sec (partial discharge detection limit = 5 pC); each π120U6x/π121U6x/π122U6x is proof tested by ≥ 2250V peak for 1 sec. The * marking branded on the component designates DIN V VDE V 0884-10 approval. DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS These isolators are suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure the maintenance of the safety data. The * marking on packages denotes DIN V VDE V 0884-10 approval. Table 11. VDE Insulation Characteristics Description Test Conditions/Comments Symbol Characteristic π12xU3x π12xU6x For Rated Mains Voltage ≤ 150 V rms I to IV I to IV For Rated Mains Voltage ≤ 300 V rms I to III I to III Unit Installation Classification per DIN VDE 0110 For Rated Mains Voltage ≤ 400 V rms Climatic Classification Pollution Degree per DIN VDE 0110, Table 1 Maximum Working Insulation Voltage Input to Output Test Voltage, Method B1 I to III I to III 40/105/21 40/105/21 2 1200 V peak VIORM 2 707 VIORM × 1.875 = Vpd (m), 100% production test, tini = tm = 1 sec, partial discharge < 5 pC Vpd (m) 1326 2250 V peak VIORM × 1.5 = Vpd (m), tini = 60 sec, tm = 10 sec, partial discharge < 5 pC Vpd (m) 1061 1800 V peak 849 1440 V peak 4200 8500 V peak Input to Output Test Voltage, Method A After Environmental Tests Subgroup 1 After Input and/or Safety Test Subgroup 2 and Subgroup 3 Highest Allowable Overvoltage VIORM × 1.2 = Vpd (m), tini = 60 sec, tm = 10 sec, partial discharge < 5 pC VIOTM Rev. 1 | Page 8 of 15 π120U/π121U/π122U Data Sheet Surge Isolation Voltage Basic Basic insulation, 1.2 µs rise time, 50 µs, 50% fall time VIOSM Surge Isolation Voltage Reinforced Reinforced insulation, 1.2 µs rise time, 50 µs, 50% fall time VIOSM Safety Limiting Values Maximum value allowed in the event of a failure (see Figure 9) 4615 7000 V peak V peak Maximum Junction Temperature TS 150 150 °C Total Power Dissipation at 25°C PS 1.56 2.78 W RS >109 >109 Ω Insulation Resistance at TS VIO = 800 V π12xU3x π12xU6x 3 Propagation Delay Time(uS) Power Supply Undervoltage Threshold Figure9. Thermal Derating Curve, Dependence of Safety Limiting Values with Ambient Temperature per VDE 2.9 2.8 2.7 2.6 2.5 2.4 VDDxUV+(V) VDDxUV−(V) 2.3 2.2 0 50 100 150 3.2 3 2.8 tpHL(uS)@3.3V tpLH(uS)@3.3V tpHL(uS)@5V tpLH(uS)@5V 2.6 2.4 2.2 0 100 150 Free-Air Temperature ( °C) Free-Air Temperature ( °C) Figure10. UVLO vs. Free-Air Temperature 50 Figure11. Propagation Delay Time vs. Free-Air Temperature Figure11. Transition time waveform measurement Figure12. Propagation delay time waveform measurement Rev. 1 | Page 9 of 15 π120U/π121U/π122U π120Uxx Quiescent Supply Current (mA) 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 @3.3V Supply with 0V Input @3.3V Supply with 3.3V Input @5V Supply with 0V Input @5V Supply with 5V Input 0 50 100 150 Free-Air Temperature ( °C) Figure12. π121Uxx/π122Uxx Quiescent Supply Current vs. Free-Air Temperature π120Uxx Quiescent Supply Current (mA) π122Uxx Quiescent Supply Current (mA) Data Sheet 0.8 0.7 0.6 IDD1@ 0V Input IDD2@ 0V Input IDD1@ 3.3V Input IDD2@ 3.3V Input 0.5 0.4 0.3 0.2 0.1 0 0 50 100 150 Free-Air Temperature ( °C) Figure13. π120Uxx Quiescent Supply Current with 3.3V Supply vs. Free-Air Temperature 0.8 0.7 Figure12. Propagation delay time waveform measurement 0.6 Figure11. Transition time waveform measurement 0.5 IDD1@ 0V Input IDD2@ 0V Input IDD1@ 5V Input IDD2@ 5V Input 0.4 0.3 0.2 0.1 0 0 50 100 150 Free-Air Temperature ( °C) Figure14. π120Uxx Quiescent Supply Current with 5V Supply vs. Free-Air Temperature VDDX VDDX Figure12. Propagation delay time waveform measurement Figure15. Transition time waveform measurement Figure16. Propagation delay time waveform measurement Rev. 1 | Page 10 of 15 π120U/π121U/π122U Data Sheet APPLICATIONS INFORMATION the user may also include resistors (50–300 Ω) in series with the inputs and outputs if the system is excessively noisy. OVERVIEW The π1xxxxx are 2PaiSemi digital isolators product family based on 2PaiSEMI unique iDivider technology. Intelligent voltage Divider technology (iDivider technology) is a new generation digital isolator technology invented by 2PaiSEMI. It uses the principle of capacitor voltage divider to transmit signal directly cross the isolator capacitor without signal modulation and demodulation. Compare to the traditional Opto-couple technology, icoupler technology, OOK technology, iDivider is a more essential and concise isolation signal transmit technology which leads to greatly simplification on circuit design and therefore significantly improves device performance, such as lower power consumption, faster speed, enhanced antiinterference ability, lower noise. By using maturated standard semiconductor CMOS technology and the innovative iDivider design, these isolation components provide outstanding performance characteristics and reliability superior to alternatives such as optocoupler devices and other integrated isolators. The π1xxxxx isolator data channels are independent and are available in a variety of configurations with a withstand voltage rating of 1.5 kV rms to 6.0 kV rms and the data rate from DC up to 600Mbps (see the Ordering Guide). The π120Uxx/π121Uxx/π122Uxx are the outstanding 150Kbps dual-channel digital isolators with the enhanced ESD capability. the devices transmit data across an isolation barrier by layers of silicon dioxide isolation. The devices operate with the supply voltage on either side ranging from 3.0 V to 5.5 V, offering voltage translation of 3.3 V and 5 V logic. The π120Uxx/π121Uxx/π122Uxx have very low propagation delay and high speed. The input/output design techniques allow logic and supply voltages over a wide range from 3.0 V to 5.5 V, offering voltage translation of 3.3 V and 5 V logic. The architecture is designed for high common-mode transient immunity and high immunity to electrical noise and magnetic interference. Avoid reducing the isolation capability, Keep the space underneath the isolator device free from metal such as planes, pads, traces and vias. To minimize the impedance of the signal return loop, keep the solid ground plane directly underneath the high-speed signal path, the closer the better. The return path will couple between the nearest ground plane to the signal path. Keep suitable trace width for controlled impedance transmission lines interconnect. To reduce the rise time degradation, keep the length of input/output signal traces as short as possible, and route low inductance loop for the signal path and It’s return path. VDD1 VIA/VOA VIB/VOB VDD2 VOA/VIA VOB/VIB GND1 GND2 Figure17.Recommended Printed Circuit Board Layout CMTI MEASUREMENT PAI12X系列 To measure the Common-Mode Transient Immunity (CMTI) of π1xxxxx isolator under specified common-mode pulse magnitude (VCM) and specified slew rate of the common-mode pulse (dVCM/dt) and other specified test or ambient conditions, The common-mode pulse generator (G1) will be capable of providing fast rising and falling pulses of specified magnitude and duration of the common-mode pulse (VCM) and the maximum commonmode slew rates (dVCM/dt) can be applied to π1xxxxx isolator coupler under measurement. The common-mode pulse is applied between one side ground GND1 and the other side ground GND2 of π1xxxxx isolator and shall be capable of providing positive transients as well as negative transients. See the Ordering Guide for the model numbers that have the failsafe output state of low or high. PCB LAYOUT The low-ESR ceramic bypass capacitors must be connected between VDD1 and GND1 and between VDD2 and GND2. The bypass capacitors are placed on the PCB as close to the isolator device as possible. The recommended bypass capacitor value is between 0.1 μF and 10 μF. To enhance the robustness of a design, Figure18. Common-mode transient immunity (CMTI) measurement Rev. 1 | Page 11 of 15 π120U/π121U/π122U Data Sheet OUTLINE DIMENSIONS Figure19. 8-Lead Standard Small Outline Package [8-Lead SOIC_N] Figure20. 16-Lead Wide Body Outline Package [16-Lead SOIC_W] Rev. 1 | Page 12 of 15 π120U/π121U/π122U Data Sheet REEL INFORMATION 8-Lead SOIC_N Figure16. Propagation delay time waveform measurement 16-Lead SOIC_W Rev. 1 | Page 13 of 15 π120U/π121U/π122U Data Sheet ORDERING GUIDE π120U31 Pai120U31 −40°C to +125°C No. of Inp uts, VDD1 Side 2 0 3 High 8-Lead SOIC_N S-8-N 4000 per reel π120U30 Pai120U30 −40°C to +125°C 2 0 3 Low 8-Lead SOIC_N S-8-N 4000 per reel π121U31 Pai121U31 −40°C to +125°C 1 1 3 High 8-Lead SOIC_N S-8-N 4000 per reel π121U30 Pai121U30 −40°C to +125°C 1 1 3 Low 8-Lead SOIC_N S-8-N 4000 per reel π122U31 Pai122U31 −40°C to +125°C 1 1 3 High 8-Lead SOIC_N S-8-N 4000 per reel π122U30 Pai122U30 −40°C to +125°C 1 1 3 Low 8-Lead SOIC_N S-8-N 4000 per reel π120U61 Pai120U61 −40°C to +125°C 2 0 6 High 16-Lead SOIC_W S-16-W 1500 per reel π120U60 Pai120U60 −40°C to +125°C 2 0 6 Low 16-Lead SOIC_W S-16-W 1500 per reel π121U61 Pai121U61 −40°C to +125°C 1 1 6 High 16-Lead SOIC_W S-16-W 1500 per reel π121U60 Pai121U60 −40°C to +125°C 1 1 6 Low 16-Lead SOIC_W S-16-W 1500 per reel π122U61 Pai122U61 −40°C to +125°C 1 1 6 High 16-Lead SOIC_W S-16-W 1500 per reel π122U60 Pai122U60 −40°C to +125°C 1 1 6 Low 16-Lead SOIC_W S-16-W 1500 per reel Model Name Temperature Range No. of Inputs, VDD2 Side Withstand Voltage Rating (kV rms) FailSafe Output State Package Description Package Option PART NUMBER NAMED RULE π(1)(2)(0)(A)(3)(0)(S) SeriesNumber: 1,2,3... Total Channel Am ount: N=N Channels N=1,2,3,4,5,6... Reverse Channel Amount: N=N Channels N=0,1,2,3... Data Rate:A=600Mbps E=200Mbps M=10Mbps U=150Kbps Isolation Voltag es: N=1 1.5KVrms AC N=3 3KVrms AC N=6 6KVrms AC Fail-Safe Output Stat e: 0=Logic Low 1=Logic High Optional: S=SSOP Package Q=AEC-Q100 Qualified Notes: Pai12xxxx is equals to π12xxxx in the customer BOM Rev. 1 | Page 14 of 15 Quantity π120U/π121U/π122U Data Sheet REVISION HISTORY Revision Updated Date Page Change Record 1 Jason 2018/09/17 All 2 Jason 2018/11/28 P11 3 Devin 2019/09/08 P1,P11,P13,P14 Initial version Changed the recommended bypass capacitor value from between 0.1 μF and 1 μF to between 0.1 μF and 10 μF. P1: Changed the address from ‘Room 19307, Building 8, No.498, GuoShouJing Road’ to ‘Room 308-309, No.22, Boxia Road’; Add iDivider technology description in General Description. Changed ESD(HBM) from 7KV to 8KV. P11: Add iDivider technology description in overview. P13: Updated 16-Lead SOIC_W reel drawing. P14: Add character ‘S’ and ‘Q’ in part number named rule; Changed the SOIC_W quantity from ‘1000 per reel’ to ‘1500 per reel’. Rev. 1 | Page 15 of 15
π120U31 价格&库存

很抱歉,暂时无法提供与“π120U31”相匹配的价格&库存,您可以联系我们找货

免费人工找货
π120U31
  •  国内价格
  • 1+0.95200
  • 30+0.91800
  • 100+0.88400
  • 500+0.81600
  • 1000+0.78200
  • 2000+0.76160

库存:1209