0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NRF24LE1-O17Q32-R

NRF24LE1-O17Q32-R

  • 厂商:

    NORDIC(北欧)

  • 封装:

    VFQFN32_EP

  • 描述:

    IC WIRELESS SOC SOLUTION 32QFN

  • 数据手册
  • 价格&库存
NRF24LE1-O17Q32-R 数据手册
nRF24LE1 OTP Ultra-low Power Wireless System On-Chip Solution Product Specification v1.2 Key Features • • • • • • • • • • • nRF24L01+ 2.4 GHz transceiver (250 kbps, 1 Mbps and 2 Mbps air data rates) Fast microcontroller (8051 compatible) 16 kB program memory (on-chip OTP) 1 kB data memory (on-chip RAM) 1 kB OTP data memory AES encryption HW accelerator 16-32 bit multiplication/division co-processor (MDU) 6–12 bit ADC High flexibility IOs Serves a set of power modes from ultra low power to a power efficient active mode Several versions in various QFN packages:  4×4 mm QFN24  5×5 mm QFN32  7×7 mm QFN48 Applications • • • • • • Computer peripherals  Mouse  Keyboard  Remote control  Gaming Advanced remote controls  Audio/Video  Entertainment centers  Home appliances Goods tracking and monitoring:  Active RFID  Sensor networks Security systems  Payment  Alarm  Access control Health, wellness and sports  Watches  Mini computers  Sensors Remote control toys All rights reserved. Reproduction in whole or in part is prohibited without the prior written permission of the copyright holder. September 2010 nRF24LE1 OTP Product Specification Liability disclaimer Nordic Semiconductor ASA reserves the right to make changes without further notice to the product to improve reliability, function or design. Nordic Semiconductor ASA does not assume any liability arising out of the application or use of any product or circuits described herein. All application information is advisory and does not form part of the specification. Limiting values Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the specifications are not implied. Exposure to limiting values for extended periods may affect device reliability. Life support applications Nordic Semiconductor’s products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Nordic Semiconductor ASA customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Nordic Semiconductor ASA for any damages resulting from such improper use or sale. Data sheet status Objective product specification This product specification contains target specifications for product development. Preliminary product specification This product specification contains preliminary data; supplementary data may be published from Nordic Semiconductor ASA later. Product specification This product specification contains final product specifications. Nordic Semiconductor ASA reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. Contact details For your nearest dealer, please see www.nordicsemi.com Main office: Otto Nielsens veg 12 7004 Trondheim Phone: +47 72 89 89 00 Fax: +47 72 89 89 89 www.nordicsemi.com Revision 1.2 Page 2 of 190 nRF24LE1 OTP Product Specification Revision History Date October 2009 May 2010 Version 1.0 1.1 September 2010 1.2 Description Product specification Updated section 2.1 on page 12, Table 14. on page 58, Table 15. on page 59, Figure 34. on page 77, Table 34. on page 77, Table 57. on page 106, Table 113. on page 177, chapter 12 on page 112, chapter 24 on page 171. Updated sections 2.4 on page 16, 6.3.6.1 and 6.3.6.2 on page 75, Table 56. on page 104, Table 57. on page 106, Table 87. on page 146 , chapter 24 on page 171 and chapter 28 on page 182. RoHS statement Nordic Semiconductor’s products meet the requirements of Directive 2002/95/EC of the European Parliament and of the Council on the Restriction of Hazardous Substances (RoHS). Complete hazardous substance reports as well as material composition reports for all active Nordic products can be found on our web site www.nordicsemi.com. Revision 1.2 Page 3 of 190 nRF24LE1 OTP Product Specification Contents 1 Introduction ............................................................................................... 1.1 Prerequisites ........................................................................................ 1.2 Writing conventions .............................................................................. 2 Product overview ...................................................................................... 2.1 Features ............................................................................................... 2.2 Block diagram ...................................................................................... 2.3 Pin assignments ................................................................................... 2.3.1 24-pin 4×4 QFN-package variant .................................................... 2.3.2 32-pin 5×5 QFN-package variant .................................................... 2.3.3 48-pin 7×7 QFN-package variant .................................................... 2.4 Pin functions......................................................................................... 3 RF transceiver ........................................................................................... 3.1 Features ............................................................................................... 3.2 Block diagram ...................................................................................... 3.3 Functional description .......................................................................... 3.3.1 Operational Modes .......................................................................... 3.3.1.1 State diagram ............................................................................... 3.3.1.2 Power down mode........................................................................ 3.3.1.3 Standby modes ............................................................................ 3.3.1.4 RX mode ...................................................................................... 3.3.1.5 TX mode....................................................................................... 3.3.1.6 Operational modes configuration ................................................. 3.3.1.7 Timing information........................................................................ 3.3.2 Air data rate ..................................................................................... 3.3.3 RF channel frequency ..................................................................... 3.3.4 Received Power Detector measurements ....................................... 3.3.5 PA control ........................................................................................ 3.3.6 RX/TX control .................................................................................. 3.4 Enhanced ShockBurst™ ...................................................................... 3.4.1 Features .......................................................................................... 3.4.2 Enhanced ShockBurst™ overview .................................................. 3.4.3 Enhanced Shockburst™ packet format ........................................... 3.4.3.1 Preamble ...................................................................................... 3.4.3.2 Address ........................................................................................ 3.4.3.3 Packet Control Field (PCF) .......................................................... 3.4.3.4 Payload ........................................................................................ 3.4.3.5 CRC (Cyclic Redundancy Check) ................................................ 3.4.4 Automatic packet assembly ............................................................. 3.4.5 Automatic packet disassembly ........................................................ 3.4.6 Automatic packet transaction handling ............................................ 3.4.6.1 Auto Acknowledgement................................................................ 3.4.6.2 Auto Retransmission (ART).......................................................... 3.4.7 Enhanced ShockBurst™ flowcharts ................................................ Revision 1.2 Page 4 of 190 11 11 11 12 12 14 15 15 15 16 16 17 17 18 18 18 18 19 19 20 20 21 21 22 22 22 22 23 23 23 23 24 24 24 25 25 26 27 28 29 29 29 31 nRF24LE1 OTP Product Specification 3.4.7.1 3.4.7.2 3.4.8 3.4.9 3.4.10 3.4.10.1 3.4.10.2 3.4.10.3 3.4.10.4 3.4.10.5 3.4.10.6 PTX operation .............................................................................. 31 PRX operation .............................................................................. 33 MultiCeiver™ ................................................................................... 34 Enhanced ShockBurst™ timing ....................................................... 36 Enhanced ShockBurst™ transaction diagram ................................. 39 Single transaction with ACK packet and interrupts ...................... 40 Single transaction with a lost packet ............................................ 40 Single transaction with a lost ACK packet.................................... 41 Single transaction with ACK payload packet................................ 41 Single transaction with ACK payload packet and lost packet....... 42 Two transactions with ACK payload packet and the first ACK packet lost ................................................................................... .42 3.4.10.7 Two transactions where max retransmissions is reached............ 43 3.4.11 Compatibility with ShockBurst™...................................................... 43 3.4.11.1 ShockBurst™ packet format......................................................... 43 3.5 Data and control interface .................................................................... 44 3.5.1 SFR registers................................................................................... 44 3.5.2 SPI operation ................................................................................... 45 3.5.2.1 SPI commands ............................................................................. 45 3.5.3 Data FIFO ........................................................................................ 47 3.5.4 Interrupt ........................................................................................... 48 3.6 Register map ........................................................................................ 49 3.6.1 Register map table .......................................................................... 49 4 MCU ............................................................................................................ 55 4.1 Block diagram ...................................................................................... 56 4.2 Features ............................................................................................... 56 4.3 Functional description .......................................................................... 57 4.3.1 Arithmetic Logic Unit (ALU) ............................................................. 57 4.3.2 Instruction set summary .................................................................. 57 4.3.3 Opcode map .................................................................................... 61 5 Memory and I/O organization ................................................................... 63 5.1 PDATA memory addressing................................................................. 64 5.2 MCU Special Function Registers ......................................................... 64 5.2.1 Accumulator - ACC .......................................................................... 64 5.2.2 B Register – B ................................................................................. 64 5.2.3 Program Status Word Register - PSW ............................................ 65 5.2.4 Stack Pointer – SP .......................................................................... 65 5.2.5 Data Pointer – DPH, DPL ................................................................ 65 5.2.6 Data Pointer 1 – DPH1, DPL1 ......................................................... 66 5.2.7 Data Pointer Select Register – DPS ................................................ 66 5.2.8 PCON register ................................................................................. 66 5.2.9 Special Function Register Map........................................................ 67 5.2.10 Special Function Registers reset values.......................................... 68 6 OTP memory.............................................................................................. 71 6.1 Features ............................................................................................... 71 6.2 Block diagram ...................................................................................... 71 Revision 1.2 Page 5 of 190 nRF24LE1 OTP Product Specification 6.3 Functional description .......................................................................... 6.3.1 Using the NV data memory ............................................................. 6.3.2 OTP memory configuration.............................................................. 6.3.2.1 InfoPage content .......................................................................... 6.3.2.2 Memory configuration SFR........................................................... 6.3.3 Brown-out ........................................................................................ 6.3.4 Temperature restriction for OTP programming................................ 6.3.5 OTP programming from the MCU.................................................... 6.3.5.1 MCU operations in the main block ............................................... 6.3.6 OTP programming through SPI ....................................................... 6.3.6.1 PROG pin requirements ............................................................... 6.3.6.2 SPI slave interface ....................................................................... 7 Random Access memory (RAM).............................................................. 7.1 SRAM configuration ............................................................................. 8 Timers/counters ........................................................................................ 8.1 Features ............................................................................................... 8.2 Block diagram ...................................................................................... 8.3 Functional description .......................................................................... 8.3.1 Timer 0 and Timer 1 ........................................................................ 8.3.1.1 Mode 0 and Mode 1 ..................................................................... 8.3.1.2 Mode 2 ......................................................................................... 8.3.1.3 Mode 3 ......................................................................................... 8.3.2 Timer 2 ............................................................................................ 8.3.2.1 Timer 2 description....................................................................... 8.3.2.2 Timer mode .................................................................................. 8.3.2.3 Event counter mode ..................................................................... 8.3.2.4 Gated timer mode......................................................................... 8.3.2.5 Timer 2 reload .............................................................................. 8.4 SFR registers ....................................................................................... 8.4.1 Timer/Counter control register – TCON........................................... 8.4.2 Timer mode register - TMOD........................................................... 8.4.3 Timer 0 – TH0, TL0 ......................................................................... 8.4.4 Timer 1 – TH1, TL1 ......................................................................... 8.4.5 Timer 2 control register – T2CON.................................................... 8.4.6 Timer 2 – TH2, TL2 ......................................................................... 8.4.7 Compare/Capture enable register – CCEN ..................................... 8.4.8 Capture registers – CC1, CC2, CC3................................................ 8.4.9 Compare/Reload/Capture register – CRCH, CRCL......................... 8.5 Real Time Clock - RTC ........................................................................ 8.5.1 Features .......................................................................................... 8.5.2 Functional description of SFR registers........................................... 9 Interrupts ................................................................................................... 9.1 Features ............................................................................................... 9.2 Block diagram ...................................................................................... 9.3 Functional description .......................................................................... 9.4 SFR registers ....................................................................................... Revision 1.2 Page 6 of 190 71 72 72 72 73 73 74 74 74 74 75 75 79 79 81 81 81 82 82 82 83 84 84 85 85 85 85 86 86 86 87 87 87 88 88 89 89 90 90 90 90 94 94 94 95 95 nRF24LE1 OTP Product Specification 9.4.1 Interrupt Enable 0 Register – IEN0.................................................. 96 9.4.2 Interrupt Enable 1 Register – IEN1.................................................. 96 9.4.3 Interrupt Priority Registers – IP0, IP1 .............................................. 96 9.4.4 Interrupt Request Control Registers – IRCON................................. 97 10 Watchdog ................................................................................................... 98 10.1 Features ............................................................................................... 98 10.2 Block diagram ...................................................................................... 98 10.3 Functional description .......................................................................... 98 11 Power and clock management ................................................................ 100 11.1 Block diagram ..................................................................................... 100 11.2 Modes of operation ............................................................................. 100 11.3 Functional description ......................................................................... 105 11.3.1 Clock control ................................................................................... 105 11.3.2 Power down control – PWRDWN ................................................... 107 11.3.3 Operational mode control - OPMCON ............................................ 109 11.3.4 Reset result – RSTREAS ............................................................... 109 11.3.5 Wakeup configuration register – WUCON ...................................... 110 11.3.6 Pin wakeup configuration ............................................................... 110 12 Power supply supervisor ........................................................................ 112 12.1 Features .............................................................................................. 112 12.2 Block diagram ..................................................................................... 112 12.3 Functional description ......................................................................... 112 12.3.1 Power-on reset ............................................................................... 112 12.3.2 Brown-out reset .............................................................................. 113 12.3.3 Power-fail comparator .................................................................... 113 12.4 SFR registers ...................................................................................... 114 13 On-chip oscillators ................................................................................... 115 13.1 Features .............................................................................................. 115 13.2 Block diagrams .................................................................................... 115 13.3 Functional description ......................................................................... 116 13.3.1 16 MHz crystal oscillator ................................................................. 116 13.3.2 16 MHz RC oscillator ...................................................................... 117 13.3.3 External 16 MHz clock .................................................................... 117 13.3.4 32.768 kHz crystal oscillator ........................................................... 117 13.3.5 32.768 kHz RC oscillator ................................................................ 118 13.3.6 Synthesized 32.768 kHz clock ........................................................ 118 13.3.7 External 32.768 kHz clock .............................................................. 118 14 MDU – Multiply Divide Unit ...................................................................... 119 14.1 Features .............................................................................................. 119 14.2 Block diagram ..................................................................................... 119 14.3 Functional description ......................................................................... 119 14.4 SFR registers ...................................................................................... 119 14.4.1 Loading the MDx registers .............................................................. 120 14.4.2 Executing calculation ...................................................................... 121 14.4.3 Reading the result from the MDx registers ..................................... 121 14.4.4 Normalizing ..................................................................................... 121 Revision 1.2 Page 7 of 190 nRF24LE1 OTP Product Specification 14.4.5 Shifting ............................................................................................ 121 14.4.6 The mdef flag .................................................................................. 121 14.4.7 The mdov flag ................................................................................. 122 15 Encryption/decryption accelerator ......................................................... 123 15.1 Features .............................................................................................. 123 15.2 Block diagram ..................................................................................... 123 15.3 Functional description ......................................................................... 123 16 Random number generator ..................................................................... 125 16.1 Features .............................................................................................. 125 16.2 Block diagram ..................................................................................... 125 16.3 Functional description ......................................................................... 125 16.4 SFR registers ...................................................................................... 126 17 General purpose IO port and pin assignments ..................................... 127 17.1 Block diagram ..................................................................................... 127 17.2 Functional description ......................................................................... 128 17.2.1 General purpose IO pin functionality .............................................. 128 17.2.2 PortCrossbar functionality .............................................................. 129 17.2.2.1 Dynamic allocation of pins ........................................................... 129 17.2.2.2 Dynamic pin allocation for digital blocks ...................................... 129 17.2.2.3 Dynamic pin allocation for analog blocks .................................... 129 17.2.2.4 Default pin allocation ................................................................... 129 17.3 IO pin maps ......................................................................................... 130 17.3.1 Pin assignments in package 24 pin 4×4 mm .................................. 131 17.3.2 Pin assignments in package 32 pin 5×5 mm .................................. 132 17.3.3 Pin assignments in package 48 pin 7×7 mm .................................. 133 17.3.4 Programmable registers ................................................................. 135 18 SPI ............................................................................................................. 143 18.1 Features .............................................................................................. 143 18.2 Block diagram ..................................................................................... 143 18.3 Functional description ......................................................................... 144 18.3.1 SPI master ...................................................................................... 144 18.3.2 SPI slave ........................................................................................ 146 18.3.3 Slave SPI timing ............................................................................ 147 19 Serial port (UART) .................................................................................... 150 19.1 Features .............................................................................................. 150 19.2 Block diagram ..................................................................................... 150 19.3 Functional description ......................................................................... 150 19.3.1 Serial port 0 control register – S0CON ........................................... 151 19.3.2 Serial port 0 data buffer – S0BUF .................................................. 152 19.3.3 Serial port 0 reload register – S0RELH, S0RELL ........................... 152 19.3.4 Serial port 0 baud rate select register - ADCON ............................. 153 20 2-Wire ........................................................................................................ 154 20.1 Features .............................................................................................. 154 20.2 Functional description ......................................................................... 154 20.2.1 Recommended use ........................................................................ 154 20.2.2 Master transmitter/receiver ............................................................. 154 Revision 1.2 Page 8 of 190 nRF24LE1 OTP Product Specification 20.2.2.1 TX mode ...................................................................................... 154 20.2.2.2 RX mode ..................................................................................... 155 20.2.3 Slave transmitter/receiver ............................................................... 155 20.2.3.1 2-Wire timing ............................................................................... 156 20.3 SFR registers ...................................................................................... 157 21 ADC ........................................................................................................... 160 21.1 Features .............................................................................................. 160 21.2 Block diagram ..................................................................................... 160 21.3 Functional description ......................................................................... 160 21.3.1 Activation ........................................................................................ 160 21.3.2 Input selection ................................................................................ 161 21.3.3 Reference selection ........................................................................ 161 21.3.4 Resolution ....................................................................................... 161 21.3.5 Conversion modes .......................................................................... 161 21.3.6 Output data coding ......................................................................... 162 21.3.7 Driving the analog input .................................................................. 163 21.3.8 SFR registers .................................................................................. 164 22 Analog comparator .................................................................................. 166 22.1 Features .............................................................................................. 166 22.2 Block diagram ..................................................................................... 166 22.3 Functional description ......................................................................... 166 22.3.1 Activation ........................................................................................ 166 22.3.2 Input selection ................................................................................ 166 22.3.3 Reference selection ........................................................................ 167 22.3.4 Output polarity ................................................................................ 167 22.3.5 Input voltage range ......................................................................... 167 22.3.6 Configuration examples .................................................................. 167 22.3.7 Driving the analog input .................................................................. 167 22.3.8 SFR registers .................................................................................. 168 23 PWM .......................................................................................................... 169 23.1 Features .............................................................................................. 169 23.2 Block diagram ..................................................................................... 169 23.3 Functional description ......................................................................... 169 24 Absolute maximum ratings ..................................................................... 171 25 Operating condition ................................................................................. 172 26 Electrical specifications .......................................................................... 173 26.1 Power consumption ............................................................................. 178 27 Mechanical specifications ....................................................................... 180 28 Reference circuits .................................................................................... 182 28.1 nRF24LE1 OTP, 7×7 mm QFN48 ....................................................... 182 28.1.1 Schematics ..................................................................................... 182 28.1.2 Layout ............................................................................................. 183 28.1.3 Bill of Materials (BOM) .................................................................... 183 28.2 nRF24LE1 OTP, 5×5 mm QFN32 ....................................................... 184 28.2.1 Schematics ..................................................................................... 184 28.2.2 Layout ............................................................................................. 185 Revision 1.2 Page 9 of 190 nRF24LE1 OTP Product Specification 28.2.3 Bill Of Materials (BOM) ................................................................... 185 28.3 nRF24LE1 OTP, 4×4 mm QFN24 ....................................................... 186 28.3.1 Schematics ..................................................................................... 186 28.3.2 Layout ............................................................................................. 187 28.3.3 Bill Of Materials (BOM) ................................................................... 187 29 Ordering information ............................................................................... 188 29.1 Package marking ................................................................................ 188 29.1.1 Abbreviations .................................................................................. 188 29.2 Product options ................................................................................... 188 29.2.1 RF silicon ........................................................................................ 188 29.2.2 Development tools .......................................................................... 189 30 Glossary..................................................................................................... 190 Revision 1.2 Page 10 of 190 nRF24LE1 OTP Product Specification 1 Introduction The nRF24LE1 OTP is a member of the low-cost, high-performance family of intelligent 2.4 GHz RF transceivers with embedded microcontrollers. The nRF24LE1 OTP is optimized to provide a single chip solution for ULP wireless applications. The combination of processing power, memory, low power oscillators, real-time counter, AES encryption accelerator, random generator and a range of power saving modes provides an ideal platform for implementation of RF protocols. Benefits of using nRF24LE1 OTP include tighter protocol timing, security, lower power consumption and improved co-existence performance. For the application layer the nRF24LE1 OTP offers a rich set of peripherals including: SPI, 2-wire, UART, 6 to 12 bit ADC, PWM and an ultra low power analog comparator for voltage level system wake-up. The nRF24LE1 OTP comes in different package variants: • • • nRF24LE1: An ultra compact 4×4mm 24 pin QFN (7 generic I/O pins) nRF24LE1: A compact 5×5mm 32 pin QFN (15 generic I/O pins) nRF24LE1: A 7×7mm 48 pin QFN (31 generic I/O pins) The 4×4mm 24 pin QFN is ideal for low I/O count applications where small size is key. Examples include wearable sports sensors and watches. The 5×5mm 32 pin QFN is ideal for medium I/O count applications such as wireless mouse, remote controls and toys. The 7×7mm 48 pin QFN is designed for high I/O count products like wireless keyboards. 1.1 Prerequisites In order to fully understand the product specification, a good knowledge of electronic and software engineering is necessary. 1.2 Writing conventions This product specification follows a set of typographic rules to make the document consistent and easy to read. The following writing conventions are used: • Commands, bit state conditions, and register names are written in Courier New. • Pin names and pin signal conditions are written in Courier New bold. • Cross references are underlined and highlighted in blue. Revision 1.2 Page 11 of 190 nRF24LE1 OTP Product Specification 2 Product overview 2.1 Features Features of the nRF24LE1 OTP include: • • • • • Fast 8-bit microcontroller:  Intel MCS 51 compliant instruction set  Reduced instruction cycle time, up to 12 times compared to legacy 8051  32 bit multiplication – division unit Memory:  Program memory: 16 kB of OTP memory with security features  Data memory: 1 kB of on-chip RAM memory  Non-volatile data memory: 1 kB A number of on-chip hardware resources are available through programmable multi purpose input/ output pins (7–31 pins dependent on package variant):  GPIO  SPI master  SPI slave  2-Wire master/ slave  Full duplex serial port  PWM  ADC  Analog comparator  External interrupts  Timer inputs  32.768 kHz crystal oscillator High performance 2.4 GHz RF transceiver  True single chip GFSK transceiver  Enhanced ShockBurst™ link layer support in HW:  Packet assembly/disassembly  Address and CRC computation  Auto ACK and retransmit  On the air data rate 250 kbps, 1 Mbps or 2 Mbps  Digital interface (SPI) speed 0–8 Mbps  125 RF channels operation, with 79 (2.402 GHz –2.480 GHz) channels within 2.400–2.4835 GHz  Short switching time enable frequency hopping  Fully RF compatible with nRF24LXX  RF compatible with nRF2401A, nRF2402, nRF24E1, nRF24E2 in 250 kbps and 1 Mbps mode A/D converter:  6, 8, 10 or 12 bit resolution  14 input channels  Single ended or differential input  Full-scale range set by internal reference, external reference or VDD  Single step mode with conversion time down to 3 μs  Continuous mode with 2, 4, 8 or 16 kbps sampling rate  Low current consumption; only 0.1mA at 2 ksps  Mode for measuring supply voltage Revision 1.2 Page 12 of 190 nRF24LE1 OTP Product Specification • • • • • • • • Analog comparator:  Used as wakeup source  Low current consumption (0.75μA typical)  Differential or single-ended input  Single-ended threshold programmable to 25%, 50%, 75% or 100% of VDD or an arbitrary reference voltage from pin  14-channel input multiplexer  Rail-to-rail input voltage range  Programmable output polarity Encryption/decryption accelerator  Utilize time and power effective AES firmware Random number generator:  Non-deterministic architecture based on thermal noise  No seed value required  Non-repeating sequence  Corrector algorithm ensures uniform statistical distribution  Data rate up to 10 kB per second  Operational while the processor is in standby System reset and power supply monitoring:  On-chip power-on and brown-out reset  Watchdog timer reset  Reset from pin  Power-fail comparator with programmable threshold and interrupt to MCU On-chip timers:  Three16-bit timers/counters operating at the system clock (sources from the 16 MHz on-chip oscillators)  One 16-bit timer/counter operating at the low frequency clock (32.768 kHz) On-chip oscillators:  16 MHz crystal oscillator XOSC16M  16 MHz RC-oscillator RCOSC16M  32.768 kHz crystal oscillator XOSC32K  32.768 kHz RC-oscillator RCOSC32K Power management function:  Low power design supporting fully static stop/ standby  Programmable MCU clock frequency from 125 kHz to 16 MHz  On chip voltage regulators supporting low power mode  Watchdog and wakeup functionality running in low power mode Complete firmware platform available:  Hardware abstraction layer (HAL) Functions  Library functions  Gazell Wireless protocol  Application examples Revision 1.2 Page 13 of 190 nRF24LE1 OTP Product Specification 2.2 Block diagram Figure 1. nRF24LE1 OTP block diagram To find more information on the blocks shown in Figure 1, see Table 1. below: Name Reference Memory (Program, Data, NVMEM) Chapter 5 on page 63 Power management Chapter 11 on page 100 RF transceiver Chapter 3 on page 17 2-Wire Chapter 20 on page 154 SPI (Master and Slave) Chapter 18 on page 143 GPIO Chapter 17 on page 127 PWM Chapter 23 on page 169 Watchdog Chapter 10 on page 98 Table 1. Block diagram cross references Revision 1.2 Page 14 of 190 nRF24LE1 OTP Product Specification 2.3 Pin assignments 2.3.1 24-pin 4×4 QFN-package variant Figure 2. nRF24LE1 OTP pin assignment (top view) for a QFN24 4×4 mm package 2.3.2 32-pin 5×5 QFN-package variant Figure 3. nRF24LE1 OTP pin assignment (top view) for a QFN32 5×5 mm package Revision 1.2 Page 15 of 190 nRF24LE1 OTP Product Specification 2.3.3 48-pin 7×7 QFN-package variant Figure 4. nRF24LE1 OTP pin assignment (top view) for a QFN48 7×7 mm package 2.4 Pin functions Name VDD VSS DEC1 DEC2 P0.0 – P3.6 PROG/VPP Type Power Power Power Digital or analog I/O Digital Input,High Voltage RESET IREF Digital Input Analog Input VDD_PA Power Output ANT1, ANT2 RF XC1, XC2 Analog Input Exposed die Power/heat relief pad Description Power supply (+1.9V to +3.6V DC) Ground (0V) Power supply outputs for de-coupling purposes (100nF for DEC1, 33nF for DEC2) General purpose I/O pins. Number of I/O available depends on package type. Input to enable OTP programming. This pin requires an external pull-down resistor, or must be connected to ground if external programming is not needed. Reset for microcontroller, active low Device reference current output. To be connected to reference resistor on PCB. Power supply output (+1.8V) for on-chip RF Power amplifier Differential antenna connection (TX and RX) Crystal connection for 16 MHz crystal For the nRF24LE1 OTP QFN48 7×7mm and QFN32 5×5mm connect the die pad to GND. For nRF24LE1 OTP QFN24 4×4mm do not connect the die pad to GND. Table 2. nRF24LE1 OTP pin functions Revision 1.2 Page 16 of 190 nRF24LE1 OTP Product Specification 3 RF transceiver The nRF24LE1 OTP uses the same 2.4 GHz GFSK RF transceiver with embedded protocol engine (Enhanced ShockBurst™) that is found in the nRF24L01+ single chip RF transceiver. The RF transceiver is designed for operation in the world wide ISM frequency band at 2.400–2.4835 GHz and is very well suited for ultra low power wireless applications. The RF transceiver module is configured and operated through the RF transceiver map. This register map is accessed by the MCU through a dedicated on-chip Serial Peripheral interface (SPI) and is available in all power modes of the RF transceiver module. The embedded protocol engine (Enhanced ShockBurst™) enables data packet communication and supports various modes from manual operation to advanced autonomous protocol operation. Data FIFOs in the RF transceiver module ensure a smooth data flow between the RF transceiver module and the nRF24LE1 OTP MCU. The rest of this chapter is written in the context of the RF transceiver module as the core and the rest of the nRF24LE1 OTP as external circuitry to this module. 3.1 Features Features of the RF transceiver include: • • • • • • General  Worldwide 2.4 GHz ISM band operation  Common antenna interface in transmit and receive  GFSK modulation  250 kbps, 1 and 2 Mbps on air data rate Transmitter  Programmable output power: 0, -6, -12 or -18dBm  11.1mA at 0dBm output power Receiver  Integrated channel filters  13.3mA at 2 Mbps  -82 dBm sensitivity at 2 Mbps  -85 dBm sensitivity at 1 Mbps  -94 dBm sensitivity at 250 kbps RF Synthesizer  Fully integrated synthesizer  1 MHz frequency programming resolution  Accepts low cost ±60ppm 16 MHz crystal  1 MHz non-overlapping channel spacing at 1 Mbps  2 MHz non-overlapping channel spacing at 2 Mbps Enhanced ShockBurst™  1 to 32 bytes dynamic payload length  Automatic packet handling (assembly/disassembly)  Automatic packet transaction handling (auto ACK, auto retransmit) 6 data pipe MultiCeiver™ for 6:1 star networks Revision 1.2 Page 17 of 190 nRF24LE1 OTP Product Specification 3.2 Block diagram Figure 5. RF transceiver block diagram 3.3 Functional description This section describes the different operating modes of the RF transceiver and the parameters used to control it. The RF transceiver module has a built-in state machine that controls the transitions between the different operating modes. The state machine is controlled by SFR register RFCON and RF transceiver register CONFIG, see section 3.5 for details. 3.3.1 Operational Modes You can configure the RF transceiver to power down, standby, RX and TX mode. This section describes these modes in detail. 3.3.1.1 State diagram The state diagram (Figure 6.) shows the operating modes of the RF transceiver and how they function. At the end of the reset sequence the RF transceiver enters Power Down mode. When the RF transceiver enters Power Down mode the MCU can still control the module through the SPI and the rfcsn bit in the RFCON register. There are three types of distinct states highlighted in the state diagram: • • • Recommended operating mode: is a recommended state used during normal operation. Possible operating mode: is a possible operating state, but is not used during normal operation. Transition state: is a time limited state used during start up of the oscillator and settling of the PLL. Revision 1.2 Page 18 of 190 nRF24LE1 OTP Product Specification . Figure 6. Radio control state diagram 3.3.1.2 Power down mode In power down mode the RF transceiver is disabled with minimal current consumption. All the register values available from the SPI are maintained and the SPI can be activated. For start up times see Table 5. on page 23. Power down mode is entered by setting the PWR_UP bit in the CONFIG register low. 3.3.1.3 Standby modes Standby-I mode By setting the PWR_UP bit in the CONFIG register to 1, the RF transceiver enters standby-I mode. StandbyI mode is used to minimize average current consumption while maintaining short start up times. Change to the active mode only happens if the rfce bit is enabled and when it is not enabled, the RF transceiver returns to standby-I mode from both the TX and RX modes. Revision 1.2 Page 19 of 190 nRF24LE1 OTP Product Specification Standby-II mode In standby-II mode extra clock buffers are active and more current is used compared to standby-I mode. The RF transceiver enters standby-II mode if the rfce bit is held high on a PTX operation with an empty TX FIFO. If a new packet is downloaded to the TX FIFO, the PLL immediately starts and the packet is transmitted after the normal PLL settling delay (130 μs). The register values are maintained and the SPI can be activated during both standby modes. For start up times see Table 5. on page 23. 3.3.1.4 RX mode The RX mode is an active mode where the RF transceiver is used as a receiver. To enter this mode, the RF transceiver must have the PWR_UP bit, PRIM_RX bit and the rfce bit is set high. In RX mode the receiver demodulates the signals from the RF channel, constantly presenting the demodulated data to the baseband protocol engine. The baseband protocol engine constantly searches for a valid packet. If a valid packet is found (by a matching address and a valid CRC) the payload of the packet is presented in a vacant slot in the RX FIFOs. If the RX FIFOs are full, the received packet is discarded. The RF transceiver remains in RX mode until the MCU configures it to standby-I mode or power down mode. However, if the automatic protocol features (Enhanced ShockBurst™) in the baseband protocol engine are enabled, the RF transceiver can enter other modes in order to execute the protocol. In RX mode a Received Power Detector (RPD) signal is available. The RPD is a signal that is set high when a RF signal higher than -64 dBm is detected inside the receiving frequency channel. The internal RPD signal is filtered before presented to the RPD register. The RF signal must be present for at least 40μs before the RPD is set high. How to use the RPD is described in Section 3.3.4 on page 22. 3.3.1.5 TX mode The TX mode is an active mode for transmitting packets. To enter this mode, the RF transceiver must have the PWR_UP bit set high, PRIM_RX bit set low, a payload in the TX FIFO and a high pulse on the rfce bit for more than 10 μs. The RF transceiver stays in TX mode until it finishes transmitting a packet. If rfce = 0, RF transceiver returns to standby-I mode. If rfce = 1, the status of the TX FIFO determines the next action. If the TX FIFO is not empty the RF transceiver remains in TX mode and transmits the next packet. If the TX FIFO is empty the RF transceiver goes into standby-II mode. The RF transceiver transmitter PLL operates in open loop when in TX mode. It is important never to keep the RF transceiver in TX mode for more than 4 ms at a time. If the Enhanced ShockBurst™ features are enabled, RF transceiver is never in TX mode longer than 4 ms. Revision 1.2 Page 20 of 190 nRF24LE1 OTP Product Specification 3.3.1.6 Operational modes configuration The following table (Table 3.) describes how to configure the operational modes. RX mode TX mode PWR_UP register 1 1 PRIM_RX register 1 0 TX mode 1 0 Standby-II Standby-I Power Down 1 1 0 0 - Mode FIFO state rfce 1 1 Data in TX FIFO. Will empty all levels in TX FIFOa. Minimum 10 μs Data in TX FIFO.Will empty one high pulse level in TX FIFOb. 1 TX FIFO empty 0 No ongoing packet transmission - a. If the rfce bit is held high the TX FIFO is emptied and all necessary ACK and possible retransmits are carried out. The transmission continues as long as the TX FIFO is refilled. If the TX FIFO is empty when the rfce bit is still high, the RF transceiver enters standby-II mode. In this mode the transmission of a packet is started as soon as the rfcsn is set high after an upload (UL) of a packet to TX FIFO. b. This operating mode pulses the rfce bit high for at least 10 μs. This allows one packet to transmit. This is the normal operating mode. After the packet is transmitted, the RF transceiver enters standbyI mode. Table 3. RF transceiver main modes 3.3.1.7 Timing information The timing information in this section relates to the transitions between modes and the timing for the rfce bit. The transition from TX mode to RX mode or vice versa is the same as the transition from the standby modes to TX mode or RX mode (130 μs), as described in Table 4. Name Tpd2stby Tstby2a Thce Tpece2csn RF transceiver Power Down  Standby mode Standby modes  TX/RX mode Minimum rfce high Delay from rfce pos. edge to rfcsn low Max. Min. Comments μsa 1 130 μs 10 μs 4 μs a. This presupposes that the XO is running. Please refer to CLKLFCTRL for bit 3 in Table 58. on page 107. Table 4. Operational timing of RF transceiver Note: If VDD is turned off, or if the nRF24LE1 OTP enters Deep Sleep or Memory Retention mode, the register values are lost and you must configure the RF transceiver before entering the TX or RX modes. Revision 1.2 Page 21 of 190 nRF24LE1 OTP Product Specification 3.3.2 Air data rate The air data rate is the modulated signaling rate the RF transceiver uses when transmitting and receiving data. It can be 250 kbps, 1 Mbps or 2 Mbps. Using lower air data rate gives better receiver sensitivity than higher air data rate. But, high air data rate gives lower average current consumption and reduced probability of on-air collisions. The air data rate is set by the RF_DR bit in the RF_SETUP register. A transmitter and a receiver must be programmed with the same air data rate to communicate with each other. The RF transceiver is fully compatible with nRF24L01. For compatibility with nRF2401A, nRF2402, nRF24E1, and nRF24E2 the air data rate must be set to 250 kbps or 1 Mbps. 3.3.3 RF channel frequency The RF channel frequency determines the center of the channel used by the RF transceiver. The channel occupies a bandwidth of less than 1 MHz at 250 kbps and 1 Mbps and a bandwidth of less than 2 MHz at 2 Mbps. The RF transceiver can operate on frequencies from 2.400 GHz to 2.525 GHz. The programming resolution of the RF channel frequency setting is 1 MHz. At 2 Mbps the channel occupies a bandwidth wider than the resolution of the RF channel frequency setting. To ensure non-overlapping channels in 2 Mbps mode, the channel spacing must be 2 MHz or more. At 1 Mbps and 250 kbps the channel bandwidth is the same or lower than the resolution of the RF frequency. The RF channel frequency is set by the RF_CH register according to the following formula: F0= 2400 + RF_CH MHz You must program a transmitter and a receiver with the same RF channel frequency to communicate with each other. 3.3.4 Received Power Detector measurements Received Power Detector (RPD), located in register 09, bit 0, triggers at received power levels above -64 dBm that are present in the RF channel you receive on. If the received power is less than -64 dBm, RDP = 0. The RPD can be read out at any time while the RF transceiver is in receive mode. This offers a snapshot of the current received power level in the channel. The RPD is latched whenever a packet is received or when the MCU sets rfce low. The status of RPD is correct when RX mode is enabled and after a wait time of Tstby2a +Tdelay_AGC= 130 μs + 40 μs. The RX gain varies over temperature which means that the RPD threshold also varies over temperature. The RPD threshold value is reduced by - 5dB at T = -40°C and increased by + 5dB at 85°C. 3.3.5 PA control The PA (Power Amplifier) control is used to set the output power from the RF transceiver power amplifier. In TX mode PA control has four programmable steps, see Table 5. on page 23 Revision 1.2 Page 22 of 190 nRF24LE1 OTP Product Specification The PA control is set by the RF_PWR bits in the RF_SETUP register. SPI RF-SETUP RF output power (RF_PWR) 11 0 dBm 10 -6 dBm 01 -12 dBm 00 -18 dBm DC current consumption 11.1mA 8.8mA 7.3mA 6.8mA Conditions: VDD = 3.0V, VSS = 0V, TA = 27ºC, Load impedance = 15+j88. Table 5. RF output power setting for the RF transceiver 3.3.6 RX/TX control The RX/TX control is set by PRIM_RX bit in the CONFIG register and sets the RF transceiver in transmit/ receive. 3.4 Enhanced ShockBurst™ Enhanced ShockBurst™ is a packet based data link layer that features automatic packet assembly and timing, automatic acknowledgement and retransmissions of packets. Enhanced ShockBurst™ enables the implementation of ultra low power and high performance communication. The Enhanced ShockBurst™ features enable significant improvements of power efficiency for bi-directional and uni-directional systems, without adding complexity on the host controller side. 3.4.1 Features The main features of Enhanced ShockBurst™ are: • • • • 3.4.2 1 to 32 bytes dynamic payload length Automatic packet handling Auto packet transaction handling  Auto Acknowledgement  Auto retransmit 6 data pipe MultiCeiver™ for 1:6 star networks Enhanced ShockBurst™ overview Enhanced ShockBurst™ uses ShockBurst™ for automatic packet handling and timing. During transmit, ShockBurst™ assembles the packet and clocks the bits in the data packet for transmission. During receive, ShockBurst™ constantly searches for a valid address in the demodulated signal. When ShockBurst™ finds a valid address, it processes the rest of the packet and validates it by CRC. If the packet is valid the payload is moved into a vacant slot in the RX FIFOs. All high speed bit handling and timing is controlled by ShockBurst™. Enhanced ShockBurst™ features automatic packet transaction handling for the easy implementation of a reliable bi-directional data link. An Enhanced ShockBurst™ packet transaction is a packet exchange between two transceivers, with one transceiver acting as the Primary Receiver (PRX) and the other transceiver acting as the Primary Transmitter (PTX). An Enhanced ShockBurst™ packet transaction is always initiated by a packet transmission from the PTX, the transaction is complete when the PTX has Revision 1.2 Page 23 of 190 nRF24LE1 OTP Product Specification received an acknowledgment packet (ACK packet) from the PRX. The PRX can attach user data to the ACK packet enabling a bi-directional data link. The automatic packet transaction handling works as follows: 1. You begin the transaction by transmitting a data packet from the PTX to the PRX. Enhanced ShockBurst™ automatically sets the PTX in receive mode to wait for the ACK packet. If the packet is received by the PRX, Enhanced ShockBurst™ automatically assembles and transmits an acknowledgment packet (ACK packet) to the PTX before returning to receive mode. If the PTX does not receive the ACK packet immediately, Enhanced ShockBurst™ automatically retransmits the original data packet after a programmable delay and sets the PTX in receive mode to wait for the ACK packet. 2. 3. In Enhanced ShockBurst™ it is possible to configure parameters such as the maximum number of retransmits and the delay from one transmission to the next retransmission. All automatic handling is done without the involvement of the MCU. 3.4.3 Enhanced Shockburst™ packet format The format of the Enhanced ShockBurst™ packet is described in this section. The Enhanced ShockBurst™ packet contains a preamble field, address field, packet control field, payload field and a CRC field. Figure 7. shows the packet format with MSB to the left. Figure 7. An Enhanced ShockBurst™ packet with payload (0-32 bytes) 3.4.3.1 Preamble The preamble is a bit sequence used to synchronize the receivers demodulator to the incoming bit stream. The preamble is one byte long and is either 01010101 or 10101010. If the first bit in the address is 1 the preamble is automatically set to 10101010 and if the first bit is 0 the preamble is automatically set to 01010101. This is done to ensure there are enough transitions in the preamble to stabilize the receiver. 3.4.3.2 Address This is the address for the receiver. An address ensures that the correct packet is detected by the receiver. The address field can be configured to be 3, 4 or, 5 bytes long with the AW register. Note: Addresses where the level shifts only one time (that is, 000FFFFFFF) can often be detected in noise and can give a false detection, which may give a raised Packet-Error-Rate. Addresses as a continuation of the preamble (hi-low toggling) raises the Packet-Error-Rate. Revision 1.2 Page 24 of 190 nRF24LE1 OTP Product Specification 3.4.3.3 Packet Control Field (PCF) Figure 8. shows the format of the 9 bit packet control field, MSB to the left. Figure 8. Packet control field (PCF) The packet control field contains a 6 bit payload length field, a 2 bit PID (Packet Identity) field and a 1 bit NO_ACK flag. Payload length This 6 bit field specifies the length of the payload in bytes. The length of the payload can be from 0 to 32 bytes. Coding: 000000 = 0 byte (only used in empty ACK packets.) 100000 = 32 byte, 100001 = Don’t care. This field is only used if the Dynamic Payload Length function is enabled. PID (Packet identification) The 2 bit PID field is used to detect if the received packet is new or retransmitted. PID prevents the PRX operation from presenting the same payload more than once to the MCU. The PID field is incremented at the TX side for each new packet received through the SPI. The PID and CRC fields (see section 3.4.3.5 on page 26) are used by the PRX operation to determine if a packet is retransmitted or new. When several data packets are lost on the link, the PID fields may become equal to the last received PID. If a packet has the same PID as the previous packet, the RF transceiver compares the CRC sums from both packets. If the CRC sums are also equal, the last received packet is considered a copy of the previously received packet and discarded. No Acknowledgment flag (NO_ACK) The Selective Auto Acknowledgement feature controls the NO_ACK flag. This flag is only used when the auto acknowledgement feature is used. Setting the flag high, tells the receiver that the packet is not to be auto acknowledged. 3.4.3.4 Payload The payload is the user defined content of the packet. It can be 0 to 32 bytes wide and is transmitted on-air when it is uploaded (unmodified) to the device. Enhanced ShockBurst™ provides two alternatives for handling payload lengths; static and dynamic. The default is static payload length. With static payload length all packets between a transmitter and a receiver have the same length. Static payload length is set by the RX_PW_Px registers on the receiver side. The payload length on the transmitter side is set by the number of bytes clocked into the TX_FIFO and must equal the value in the RX_PW_Px register on the receiver side. Revision 1.2 Page 25 of 190 nRF24LE1 OTP Product Specification Dynamic Payload Length (DPL) is an alternative to static payload length. DPL enables the transmitter to send packets with variable payload length to the receiver. This means that for a system with different payload lengths it is not necessary to scale the packet length to the longest payload. With the DPL feature the nRF24L01+ can decode the payload length of the received packet automatically instead of using the RX_PW_Px registers. The MCU can read the length of the received payload by using the R_RX_PL_WID command. Note: Always check if the packet width reported is 32 bytes or shorter when using the R_RX_PL_WID command. If its width is longer than 32 bytes then the packet contains errors and must be discarded. Discard the packet by using the Flush_RX command. In order to enable DPL the EN_DPL bit in the FEATURE register must be enabled. In RX mode the DYNPD register must be set. A PTX that transmits to a PRX with DPL enabled must have the DPL_P0 bit in DYNPD set. 3.4.3.5 CRC (Cyclic Redundancy Check) The CRC is the error detection mechanism in the packet. It may either be 1 or 2 bytes and is calculated over the address, Packet Control Field and Payload. The polynomial for 1 byte CRC is X8 + X2 + X + 1. Initial value 0xFF. The polynomial for 2 byte CRC is X16+ X12 + X5 + 1. Initial value 0xFFFF. No packet is accepted by Enhanced ShockBurst™ if the CRC fails. Revision 1.2 Page 26 of 190 nRF24LE1 OTP Product Specification 3.4.4 Automatic packet assembly The automatic packet assembly assembles the preamble, address, packet control field, payload and CRC to make a complete packet before it is transmitted. Figure 9. Automatic packet assembly Revision 1.2 Page 27 of 190 nRF24LE1 OTP Product Specification 3.4.5 Automatic packet disassembly After the packet is validated, Enhanced ShockBurst™ disassembles the packet and loads the payload into the RX FIFO, and asserts the RX_DR IRQ. Figure 10. Automatic packet disassembly Revision 1.2 Page 28 of 190 nRF24LE1 OTP Product Specification 3.4.6 Automatic packet transaction handling Enhanced ShockBurst™ features two functions for automatic packet transaction handling; auto acknowledgement and auto re-transmit. 3.4.6.1 Auto Acknowledgement Auto Acknowledgment is a function that automatically transmits an ACK packet to the PTX after it has received and validated a packet. The Auto Acknowledgement function reduces the load of the system MCU and reduces average current consumption. The Auto Acknowledgement feature is enabled by setting the EN_AA register. Note: If the received packet has the NO_ACK flag set, auto acknowledgement is not executed. An ACK packet can contain an optional payload from PRX to PTX. In order to use this feature, the Dynamic Payload Length (DPL) feature must be enabled. The MCU on the PRX side has to upload the payload by clocking it into the TX FIFO by using the W_ACK_PAYLOAD command. The payload is pending in the TX FIFO (PRX) until a new packet is received from the PTX. The RF transceiver can have three ACK packet payloads pending in the TX FIFO (PRX) at the same time. Figure 11. TX FIFO (PRX) with pending payloads Figure 11. shows how the TX FIFO (PRX) is operated when handling pending ACK packet payloads. From the MCU the payload is clocked in with the W_ACK_PAYLOAD command. The address decoder and buffer controller ensure that the payload is stored in a vacant slot in the TX FIFO (PRX). When a packet is received, the address decoder and buffer controller are notified with the PTX address. This ensures that the right payload is presented to the ACK generator. If the TX FIFO (PRX) contains more than one payload to a PTX, payloads are handled using the first in – first out principle. The TX FIFO (PRX) is blocked if all pending payloads are addressed to a PTX where the link is lost. In this case, the MCU can flush the TX FIFO (PRX) by using the FLUSH_TX command. In order to enable Auto Acknowledgement with payload the EN_ACK_PAY bit in the FEATURE register must be set. 3.4.6.2 Auto Retransmission (ART) The Auto Retransmission is a function that retransmits a packet if an ACK packet is not received. It is used in an Auto Acknowledgement system on the PTX. When a packet is not acknowledged, you can set the number of times it is allowed to retransmit by setting the ARC bits in the SETUP_RETR register. PTX enters RX mode and waits a time period for an ACK packet each time a packet is transmitted. The amount of time the PTX is in RX mode is based on the following conditions: Revision 1.2 Page 29 of 190 nRF24LE1 OTP Product Specification • • • Auto Retransmit Delay (ARD) elapsed. No address match within 250 μs. After received packet (CRC correct or not) if address match within 250 μs. The RF transceiver asserts the TX_DS IRQ when the ACK packet is received. The RF transceiver enters standby-I mode if there is no more untransmitted data in the TX FIFO and the rfce bit in the RFCON register is low. If the ACK packet is not received, the RF transceiver goes back to TX mode after a delay defined by ARD and retransmits the data. This continues until acknowledgment is received, or the maximum number of retransmits is reached. Two packet loss counters are incremented each time a packet is lost, ARC_CNT and PLOS_CNT in the OBSERVE_TX register. The ARC_CNT counts the number of retransmissions for the current transaction. You reset ARC_CNT by initiating a new transaction. The PLOS_CNT counts the total number of retransmissions since the last channel change. You reset PLOS_CNT by writing to the RF_CH register. It is possible to use the information in the OBSERVE_TX register to make an overall assessment of the channel quality. The ARD defines the time from the end of a transmitted packet to when a retransmit starts on the PTX. ARD is set in SETUP_RETR register in steps of 250 μs. A retransmit is made if no ACK packet is received by the PTX. There is a restriction on the length of ARD when using ACK packets with payload. The ARD time must never be shorter than the sum of the startup time and the time on-air for the ACK packet. • • For 2 Mbps data rate and 5-byte address; 15 byte is maximum ACK packet payload length for ARD=250 μs (reset value). For 1 Mbps data rate and 5-byte address; 5 byte is maximum ACK packet payload length for ARD=250 μs (reset value). ARD=500 μs is long enough for any ACK payload length in 1 or 2 Mbps mode. • For 250kbps data rate and 5-byte address the following values apply: ARD 1500μs 1250μs 1000μs 750μs 500μs ACK packet size (in bytes) All ACK payload sizes < 24 < 16
NRF24LE1-O17Q32-R 价格&库存

很抱歉,暂时无法提供与“NRF24LE1-O17Q32-R”相匹配的价格&库存,您可以联系我们找货

免费人工找货