0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CA-IS3721HG

CA-IS3721HG

  • 厂商:

    CHIPANALOG(川土微)

  • 封装:

    SOIC8WB(G)

  • 描述:

    CA-IS3721HG

  • 数据手册
  • 价格&库存
CA-IS3721HG 数据手册
CA-IS3720, CA-IS3721, CA-IS3722 上海川土微电子有限公司 CA-IS372x High-Speed Dual-Channel Digital Isolators 1. Key Features • • • • • • • • Signal Rate: DC to 150Mbps Wide Operating Supply Voltage: 2.5V to 5.5V Wide Operating Temperature Range: -40°C to 125°C No Start-Up Initialization Required Default Output High and Low Options High Electromagnetic Immunity High CMTI: ±100kV/µs (Typical) Low Power Consumption (Typical): ▪ 1.5mA per Channel at 1Mbps with 5.0V Supply ▪ 6.6mA per Channel at 100Mbps with 5.0V Supply Precise Timing (Typical) ▪ 8ns Propagation Delay ▪ 1ns Pulse Width Distortion ▪ 2ns Propagation Delay Skew ▪ 5ns Minimum Pulse Width Isolation Rating up to 5.0kVrms Isolation Barrier Life: >40 Years Schmitt Trigger Inputs RoHS-Compliant Packages ▪ SOIC8 ▪ SOIC8 Wide Body • • • • • 2. Applications • • • • • • Industrial Automation Systems Motor Control Medical Electronics Isolated Switch Mode Supplies Solar Inverters Isolated ADC, DAC 3. Description two channels in the same direction, the CA-IS3721 device has one forward and one reverse-direction channels, and the CA-IS3722 device has the channel configuration that is opposite to CA-IS3721. All devices have fail-safe mode option. If the input power or signal is lost, default output is low for devices with suffix L and high for devices with suffix H. CA-IS372x devices has high insulation capability to handle noise and surge on a data bus or other circuits from entering the local ground and interfering with or damaging sensitive circuitry. High CMTI ability promises the correct transmission of digital signal. The CA-IS372x devices are available in 8-pin SOIC and 8-pin wide body SOIC packages. And the CA-IS372x devices are also available in 8-pin wide body SOIC package. All products have 3.75kVrms isolation rating, and products in wide-body packages support insulation withstanding up to 5kVrms. Device Information PART NUMBER CA-IS3720, CA-IS3721, CA-IS3722 Copyright © 2019, Chipanalog Incorporated 上海川土微电子有限公司 BODY SIZE(NOM) SOIC8 (S) 4.90 mm × 3.90 mm SOIC8-WB(G) 5.85 mm ×7.50 mm Simplified Channel Structure Channel A side Schmitt Trigger The CA-IS372x devices are high-performance dual - channel digital isolators with precise timing characteristics and low power consumption. The CA-IS372x devices provide high electromagnetic immunity and low emissions, while isolating CMOS digital I/Os. All device versions have Schmitt trigger input for high noise immunity. Each isolation channel consists of a transmitter and a receiver separated by silicon dioxide (SiO2) insulation barrier. The CA-IS3720 device has PACKAGE Isolation Barrrier Channel B side Mixer VIN Driver VOUT Driver RX GNDA GNDB Channel A side and B side are separated by isolation capacitors. GNDA and GNDB are the isolated ground for signals and supplies of A side and B side respectively. CA-IS3720, CA-IS3721, CA-IS3722 上海川土微电子有限公司 4. Ordering Guide Table 4-1 Ordering Guide for Valid Ordering Part Number Ordering Part Number Number of Inputs A Side Number of Inputs B Side Default Output Isolation Rating (kV) Output Enable Package CA-IS3720LS 2 0 Low 3.75 No SOIC8 CA-IS3720LG 2 0 Low 5.0 No SOIC8-WB CA-IS3720HS 2 0 High 3.75 No SOIC8 CA-IS3720HG 2 0 High 5.0 No SOIC8-WB CA-IS3721LS 1 1 Low 3.75 No SOIC8 CA-IS3721LG 1 1 Low 5.0 No SOIC8-WB CA-IS3721HS 1 1 High 3.75 No SOIC8 CA-IS3721HG 1 1 High 5.0 No SOIC8-WB CA-IS3722LS 1 1 Low 3.75 No SOIC8 CA-IS3722LG 1 1 Low 5.0 No SOIC8-WB CA-IS3722HS 1 1 High 3.75 No SOIC8 CA-IS3722HG 1 1 High 5.0 No SOIC8-WB 2 Copyright © 2019, Chipanalog Incorporated 上海川土微电子有限公司 CA-IS3720, CA-IS3721, CA-IS3722 上海川土微电子有限公司 Table of Contents 1. 2. 3. 4. 5. 6. 6.9.1. 6.9.2. 6.9.3. Key Features .......................................................1 Applications ........................................................1 Description .........................................................1 Ordering Guide ...................................................2 PIN Descriptions and Functions ...........................4 Specifications......................................................5 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. Absolute Maximum Ratings ................................5 ESD Ratings..........................................................5 Recommended Operating Conditions .................5 Thermal Information ...........................................6 Power Rating .......................................................6 Insulation Specifications .....................................7 Safety-Related Certifications ...............................8 Electrical Characteristics .....................................9 6.8.1. 6.8.2. 6.8.3. 6.9. VDDA = VDDB = 5 V ± 10%, TA = -40 to 125°C..........9 VDDA = VDDB = 3.3 V ± 10%, TA = -40 to 125°C.......9 VDDA = VDDB = 2.5 V ± 5%, TA = -40 to 125°C.........9 6.10. Timing Characteristics ....................................... 13 6.10.1. 6.10.2. 6.10.3. 7. 8. VDDA = VDDB = 5 V ± 10%, TA = -40 to 125°C ....... 10 VDDA = VDDB = 3.3 V ± 10%, TA = -40 to 125°C .... 11 VDDA = VDDB = 2.5 V ± 5%, TA = -40 to 125°C ...... 12 VDDA = VDDB = 5 V ± 10%, TA = -40 to 125°C... 13 VDDA = VDDB = 3.3 V ± 10%, TA = -40 to 125°C 13 VDDA = VDDB = 2.5 V ± 5%, TA = -40 to 125°C.. 13 Parameter Measurement Information ............... 14 Detailed Description ......................................... 16 8.1. 8.2. 8.3. Theory of Operation ......................................... 16 Functional Block Diagram ................................. 16 Device Operation Modes .................................. 17 9. Application and Implementation ....................... 18 10. Package Information ......................................... 19 10.1. 10.2. 8-Pin SOIC Package ........................................... 19 8-Pin Wide Body SOIC Package ......................... 20 TAPE AND REEL INFORMATION ................................. 21 Supply Current Characteristics ..........................10 Copyright © 2019, Chipanalog Incorporated 上海川土微电子有限公司 3 CA-IS3720, CA-IS3721, CA-IS3722 上海川土微电子有限公司 5. PIN Descriptions and Functions CA-IS3720 8-Pin SOIC Top View 1 VI1 2 TX VI2 3 TX GNDA 4 ISOLATION BARRIER VDDA 8 VDDB RX 7 VO1 RX 6 VO2 5 GNDB 8 VDDB RX 7 VO1 TX 6 VI2 5 GNDB 8 VDDB TX 7 VI1 RX 6 VO2 5 GNDB CA-IS3721 8-Pin SOIC Top View 1 VI1 2 TX VO2 3 RX GNDA 4 ISOLATION BARRIER VDDA CA-IS3722 8-Pin SOIC Top View 1 VO1 2 RX VI2 3 TX GNDA 4 ISOLATION BARRIER VDDA Figure 5-1 CA-IS372x in 8-Pin SOIC and 8-Pin Wide Body SOIC Package Top View Table 5-1 CA-IS372x in 8-Pin SOIC and 8-Pin Wide Body SOIC Package Pin Description and Functions Name VDDA VI1/VO1 VI2/VO2 GNDA GNDB VI2/VO2 VI1/VO1 VDDB 4 SOIC8 Pin# 1 2 3 4 5 6 7 8 Type Supply Digital I/O Digital I/O Ground Ground Digital I/O Digital I/O Supply Description Side A Power Supply Side A Digital Input for CA-IS3720/21 or Output for CA-IS3722 Side A Digital Input for CA-IS3720/22 or Output for CA-IS3721. Side A Ground Side B Ground Side B Digital Input for CA-IS3721 or Output for CA-IS3720/22. Side B Digital Input for CA-IS3722 or Output for CA-IS3720/21. Side B Power Supply Copyright © 2019, Chipanalog Incorporated 上海川土微电子有限公司 CA-IS3720, CA-IS3721, CA-IS3722 上海川土微电子有限公司 6. Specifications 6.1. Absolute Maximum Ratings1 MIN -0.5 -0.5 -20 Voltage2 MAX 6.0 VDDA+0.53 20 150 150 UNIT V V mA °C °C VDDA, VDDB Supply Vin Voltage at Ax, Bx, ENx IO Output Current TJ Junction Temperature TSTG Storage Temperature -65 NOTE: 1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 2. All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GNDA or GNDB) and are peak voltage values. 3. Maximum voltage must not exceed 6 V. 6.2. ESD Ratings VESD Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins1 VALUE ±4000 Charged device model (CDM), per JEDEC specification JESD22-C101, all pins2 ±1000 UNIT V NOTE: 1. JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. 2. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3. Recommended Operating Conditions VDDA, VDDB VDD(UVLO+) Supply Voltage VDD Undervoltage Threshold When Supply Voltage is Rising MIN 2.375 1.95 TYP 3.3 2.24 MAX 5.5 2.375 VDD(UVLO-) VDD Undervoltage Threshold When Supply Voltage is Falling 1.88 2.10 2.325 VHYS(UVLO) VDD Undervoltage Threshold Hysteresis 70 140 250 IOH High-level Output Current IOL Low-level Output Current VIH High-level Input Voltage VIL Low-level Input Voltage DR Data Rate TA Ambient Temperature NOTE: 1. VDDO = Output-side VDD Copyright © 2019, Chipanalog Incorporated 上海川土微电子有限公司 VDDO1 = 5V VDDO = 3.3V VDDO = 2.5V VDDO = 5V VDDO = 3.3V VDDO = 2.5V -4 -2 -1 V mV mA 4 2 1 2.0 0 -40 UNIT V V 27 0.8 150 125 mA V V Mbps °C 5 CA-IS3720, CA-IS3721, CA-IS3722 上海川土微电子有限公司 6.4. Thermal Information CA-IS372x S (SOIC) G(SOIC) 8 Pins 8 Pins 109.0 92.3 54.4 45.3 52.0 50.5 13.2 14.0 THERMAL METRIC RθJA RθJC(top) RθJB ψJT Junction-to-ambient thermal resistance Junction-to-case(top) thermal resistance Junction-to-board thermal resistance Junction-to-top characterization parameter ψJB Junction-to-board characterization parameter RθJC(bottom) Junction-to-case(bottom) thermal resistance 6.5. 49.3 n/a °C/W °C/W °C/W °C/W °C/W °C/W Power Rating PARAMETER CA-IS3720 PD PDA PDB CA-IS3721 PD PDA PDB CA-IS3722 PD PDA PDB 6 51.5 n/a UNIT TEST CONDITIONS Maximum Power Dissipation Maximum Power Dissipation on Side-A Maximum Power Dissipation on Side-B VDDA = VDDB = 5.5 V, CL = 15 pF, Maximum Power Dissipation Maximum Power Dissipation on Side-A Maximum Power Dissipation on Side-B VDDA = VDDB = 5.5 V, CL = 15 pF, Maximum Power Dissipation Maximum Power Dissipation on Side-A Maximum Power Dissipation on Side-B VDDA = VDDB = 5.5 V, CL = 15 pF, TJ = 150°C, Input a 75-MHz 50% duty cycle square wave TJ = 150°C, Input a 75-MHz 50% duty cycle square wave TJ = 150°C, Input a 75-MHz 50% duty cycle square wave MIN TYP MAX UNIT 120 20 100 mW mW mW 120 60 60 mW mW mW 120 60 60 mW mW mW Copyright © 2019, Chipanalog Incorporated 上海川土微电子有限公司 CA-IS3720, CA-IS3721, CA-IS3722 上海川土微电子有限公司 6.6. Insulation Specifications PARAMETR CLR External clearance1 CPG External creepage1 DTI CTI Distance through the insulation Comparative tracking index Material group Overvoltage category per IEC 60664-1 DIN V VDE V 0884-11:2017-012 VIORM Maximum repetitive peak isolation voltage VIOWM Maximum working isolation voltage VIOTM Maximum transient isolation voltage VIOSM Maximum surge isolation voltage3 qpd Apparent charge4 CIO Barrier capacitance, input to output5 RIO Isolation resistance5 TEST CONDITIONS Shortest terminal-to-terminal distance through air Shortest terminal-to-terminal distance across the package surface Minimum internal gap (internal clearance) DIN EN 60112 (VDE 0303-11); IEC 60112 According to IEC 60664-1 Rated mains voltage ≤ 300 VRMS Rated mains voltage ≤ 400 VRMS Rated mains voltage ≤ 600 VRMS AC voltage (bipolar) AC voltage; Time dependent dielectric breakdown (TDDB) Test DC voltage VTEST = VIOTM, t = 60 s (qualification); VTEST = 1.2 × VIOTM, t= 1 s (100% production) Test method per IEC 60065, 1.2/50 μs waveform, VTEST = 1.6 × VIOSM (qualification) Method a, After Input/Output safety test subgroup 2/3, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM, tm = 10 s Method a, After environmental tests subgroup 1, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.6 × VIORM, tm = 10 s Method b1, At routine test (100% production) and preconditioning (type test) Vini = 1.2 × VIOTM, tini = 1 s; Vpd(m) = 1.875 × VIORM, tm = 1 s VIO = 0.4 × sin (2πft), f = 1 MHz VIO = 500 V, TA = 25°C VIO = 500 V, 100°C ≤ TA ≤ 125°C VIO = 500 V at TS = 150°C Pollution degree VALUE UNIT G 8 S 4 8 4 mm 14 >600 I I-IV I-IV I-III 14 >600 I I-III I-III n/a μm V 1414 637 VPK 1000 450 VRMS 1414 637 VDC 7070 5300 VPK 6250 5000 VPK ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ~0.5 >1012 >1011 >109 2 ~0.5 >1012 >1011 >109 2 pF 5000 3750 VRMS mm pC Ω UL 1577 VISO Maximum withstanding isolation voltage VTEST = VISO , t = 60 s (qualification), VTEST = 1.2 × VISO , t = 1 s (100% production) NOTE: 1. Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications. 2. This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits. 3. Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier. 4. Apparent charge is electrical discharge caused by a partial discharge (pd). 5. All pins on each side of the barrier tied together creating a two-terminal device. Copyright © 2019, Chipanalog Incorporated 上海川土微电子有限公司 7 CA-IS3720, CA-IS3721, CA-IS3722 上海川土微电子有限公司 6.7. Safety-Related Certifications VDE(Pending) CSA(Pending) Certified according to DIN V VDE V 0884-11:2017-01 Certified according to IEC 60950-1, IEC 62368-1 and IEC 60601-1 8 UL(Pending) CQC(Pending) Recognized under UL 1577 Component Recognition Program Certified according to GB4943.1-2011 TUV(Pending) Certified according to EN 61010-1:2010 (3rd Ed) and EN 609501:2006/A2:2013 Copyright © 2019, Chipanalog Incorporated 上海川土微电子有限公司 CA-IS3720, CA-IS3721, CA-IS3722 上海川土微电子有限公司 6.8. Electrical Characteristics 6.8.1. VDDA = VDDB = 5 V ± 10%, TA = -40 to 125°C VOH VOL VIT+(IN) VIT-(IN) VI(HYS) IIH IIL ZO CMTI CI PARAMETER High-level Output Voltage Low-level Output Voltage Positive-going Input Threshold Negative-going Input Threshold Input Threshold Hysteresis High-Level Input Leakage Current Low-Level Input Leakage Current Output Impedance2 Common-mode Transient Immunity Input Capacitance3 TEST CONDITIONS IOH = -4mA; See Figure 7-1 IOL = 4mA; See Figure 7-1 VIH = VDDA at Ax or Bx or ENx VIL = 0 V at Ax or Bx 1 VI = VDDI or 0 V, VCM = 1200 V; See Figure 7-3 VI = VDD/ 2 + 0.4×sin(2πft), f = 1 MHz, VDD = 5 V MIN TYP VDDO1-0.4 4.8 0.2 1.4 1.67 1.0 1.23 0.30 0.44 MAX 0.4 1.9 1.4 0.50 4 -4 75 50 100 2 UNIT V V V V V µA µA Ω kV/µS pF NOTE: 1. 2. 3. VDDI = Input-side VDD, VDDO = Output-side VDD The nominal output impedance of an isolator driver channel is approximately 50 Ω ± 40%. Measured from pin to Ground. 6.8.2. VDDA = VDDB = 3.3 V ± 10%, TA = -40 to 125°C VOH VOL VIT+(IN) VIT-(IN) VI(HYS) IIH IIL ZO CMTI CI PARAMETER High-level Output Voltage Low-level Output Voltage Positive-going Input Threshold Negative-going Input Threshold Input Threshold Hysteresis High-Level Input Leakage Current Low-Level Input Leakage Current Output Impedance2 Common-mode Transient Immunity Input Capacitance3 TEST CONDITIONS IOH = -4mA; See Figure 7-1 IOL = 4mA; See Figure 7-1 VIH = VDDA at Ax or Bx or ENx VIL = 0 V at Ax or Bx VI = VDDI1 or 0 V, VCM = 1200 V; See Figure 7-3 VI = VDD/ 2 + 0.4×sin(2πft), f = 1 MHz, VDD = 3.3 V MIN TYP VDDO1-0.4 3.1 0.2 1.4 1.67 1.0 1.23 0.30 0.44 MAX 0.4 1.9 1.4 0.50 4 -4 75 50 100 2 UNIT V V V V V µA µA Ω kV/µs pF NOTE: 1. VDDI = Input-side VDD, VDDO = Output-side VDD 2. The nominal output impedance of an isolator driver channel is approximately 50 Ω ± 40%. 3. Measured from pin to Ground. 6.8.3. VDDA = VDDB = 2.5 V ± 5%, TA = -40 to 125°C VOH VOL VIT+(IN) VIT-(IN) VI(HYS) IIH IIL ZO CMTI CI PARAMETER High-level Output Voltage Low-level Output Voltage Positive-going Input Threshold Negative-going Input Threshold Input Threshold Hysteresis High-Level Input Leakage Current Low-Level Input Leakage Current Output Impedance2 Common-mode Transient Immunity Input Capacitance3 TEST CONDITIONS IOH = -4mA; See Figure 7-1 IOL = 4mA; See Figure 7-1 VIH = VDDA at Ax or Bx or ENx VIL = 0 V at Ax or Bx VI = VDDI1 or 0 V, VCM = 1200 V; See Figure 7-3 VI = VDD/ 2 + 0.4×sin(2πft), f = 1 MHz, VDD = 2.5 V MIN TYP VDDO1-0.4 2.3 0.2 1.4 1.67 1.0 1.23 0.30 0.44 -4 75 50 100 2 MAX 0.4 1.9 1.4 0.50 4 UNIT V V V V V µA µA Ω kV/µS pF NOTE: 1. VDDI = Input-side VDD, VDDO = Output-side VDD 2. The nominal output impedance of an isolator driver channel is approximately 50 Ω ± 40%. 3. Measured from pin to Ground. Copyright © 2019, Chipanalog Incorporated 上海川土微电子有限公司 9 CA-IS3720, CA-IS3721, CA-IS3722 上海川土微电子有限公司 6.9. Supply Current Characteristics 6.9.1. VDDA = VDDB = 5 V ± 10%, TA = -40 to 125°C PARAMETER SUPPLY CURRENT TEST CONDITION MIN TYP MAX UNIT CA-IS3720 Supply Current – DC Signal Supply Current – AC Signal VIN = 0V (CA-IS3720L); VIN = VDDI1 (CA-IS3720H) VIN = VDDI (CA-IS3720L); VIN = 0V(CA-IS3720H) All Channels Switching with 50% Duty Cycle Square Wave Clock Input with 5V Amplitude; CL = 15 pF for Each Channel 1Mbps (500kHz) 10Mbps (5MHz) 100Mbps (50MHz) IDDA IDDB IDDA IDDB IDDA IDDB IDDA IDDB IDDA IDDB 0.8 1.6 2.3 1.6 1.6 1.7 1.6 2.7 1.6 12.2 1.2 2.3 3.5 2.4 2.3 2.6 2.3 4.0 2.3 18.2 mA 1Mbps (500kHz) 10Mbps (5MHz) 100Mbps (50MHz) IDDA IDDB IDDA IDDB IDDA IDDB IDDA IDDB IDDA IDDB 1.3 1.3 2.1 2.1 1.8 1.8 2.2 2.2 7.0 7.0 2.0 2.0 3.1 3.1 2.6 2.6 3.3 3.3 10.5 10.5 mA 1Mbps (500kHz) 10Mbps (5MHz) 100Mbps (50MHz) IDDA IDDB IDDA IDDB IDDA IDDB IDDA IDDB IDDA IDDB 1.3 1.3 2.1 2.1 1.8 1.8 2.2 2.2 7.0 7.0 2.0 2.0 3.1 3.1 2.6 2.6 3.3 3.3 10.5 10.5 mA CA-IS3721 Supply Curr2.0ent – DC Signal Supply Curre3.1nt – AC Signal VIN = 0V (CA-IS3721L); VIN = VDDI (CA-IS3721H) VIN = VDDI (CA-IS3721L); VIN = 0V(CA-IS3721H) All Channels Switching with 50% Duty Cycle Square Wave Clock Input with 5V Amplitude; CL = 15 pF for Each Channel CA-IS3722 Supply Current – DC Signal Supply Current – AC Signal VIN = 0V (CA-IS3722L); VIN = VDDI (CA-IS3722H) VIN = VDDI (CA-IS3722L); VIN = 0V(CA-IS3722H) All Channels Switching with 50% Duty Cycle Square Wave Clock Input with 5V Amplitude; CL = 15 pF for Each Channel Note: 1. VDDI = Input-side VDD 10 Copyright © 2019, Chipanalog Incorporated 上海川土微电子有限公司 CA-IS3720, CA-IS3721, CA-IS3722 上海川土微电子有限公司 6.9.2. VDDA = VDDB = 3.3 V ± 10%, TA = -40 to 125°C PARAMETER SUPPLY CURRENT TEST CONDITION MIN TYP MAX UNIT CA-IS3720 Supply Current – DC Signal Supply Current – AC Signal VIN = 0V (CA-IS3720L); VIN = VDDI1 (CA-IS3720H) VIN = VDDI (CA-IS3720L); VIN = 0V(CA-IS3720H) All Channels Switching with 50% Duty Cycle Square Wave Clock Input with 5V Amplitude; CL = 15 pF for Each Channel 1Mbps (500kHz) 10Mbps (5MHz) 100Mbps (50MHz) IDDA IDDB IDDA IDDB IDDA IDDB IDDA IDDB IDDA IDDB 0.8 1.6 2.3 1.6 1.6 1.7 1.6 2.4 1.6 9.2 1.2 2.3 3.5 2.4 2.3 2.6 2.3 3.6 2.3 13.7 mA 1Mbps (500kHz) 10Mbps (5MHz) 100Mbps (50MHz) IDDA IDDB IDDA IDDB IDDA IDDB IDDA IDDB IDDA IDDB 1.3 1.3 2.1 2.1 1.8 1.8 2.1 2.1 5.5 5.5 2.0 2.0 3.1 3.1 2.6 2.6 3.2 3.2 8.2 8.2 mA 1Mbps (500kHz) 10Mbps (5MHz) 100Mbps (50MHz) IDDA IDDB IDDA IDDB IDDA IDDB IDDA IDDB IDDA IDDB 1.3 1.3 2.1 2.1 1.8 1.8 2.1 2.1 5.5 5.5 2.0 2.0 3.1 3.1 2.6 2.6 3.2 3.2 8.2 8.2 mA CA-IS3721 Supply Current – DC Signal Supply Current – AC Signal VIN = 0V (CA-IS3721L); VIN = VDDI (CA-IS3721H) VIN = VDDI (CA-IS3721L); VIN = 0V(CA-IS3721H) All Channels Switching with 50% Duty Cycle Square Wave Clock Input with 5V Amplitude; CL = 15 pF for Each Channel CA-IS3722 Supply Current – DC Signal Supply Current – AC Signal VIN = 0V (CA-IS3722L); VIN = VDDI (CA-IS3722H) VIN = VDDI (CA-IS3722L); VIN = 0V(CA-IS3722H) All Channels Switching with 50% Duty Cycle Square Wave Clock Input with 5V Amplitude; CL = 15 pF for Each Channel Note: 1. VDDI = Input-side VDD Copyright © 2019, Chipanalog Incorporated 上海川土微电子有限公司 11 CA-IS3720, CA-IS3721, CA-IS3722 上海川土微电子有限公司 6.9.3. VDDA = VDDB = 2.5 V ± 5%, TA = -40 to 125°C PARAMETER SUPPLY CURRENT TEST CONDITION MIN TYP MAX UNIT CA-IS3720 Supply Current – DC Signal Supply Current – AC Signal VIN = 0V (CA-IS3720L); VIN = VDDI1 (CA-IS3720H) VIN = VDDI (CA-IS3720L); VIN = 0V(CA-IS3720H) All Channels Switching with 50% Duty Cycle Square Wave Clock Input with 5V Amplitude; CL = 15 pF for Each Channel 1Mbps (500kHz) 10Mbps (5MHz) 100Mbps (50MHz) IDDA IDDB IDDA IDDB IDDA IDDB IDDA IDDB IDDA IDDB 0.8 1.6 2.3 1.6 1.6 1.7 1.6 2.2 1.6 7.2 1.2 2.3 3.5 2.4 2.3 2.6 2.3 3.3 2.3 10.7 mA 1Mbps (500kHz) 10Mbps (5MHz) 100Mbps (50MHz) IDDA IDDB IDDA IDDB IDDA IDDB IDDA IDDB IDDA IDDB 1.3 1.3 2.1 2.1 1.8 1.8 2.0 2.0 4.5 4.5 2.0 2.0 3.1 3.1 2.6 2.6 3.0 3.0 6.7 6.7 mA 1Mbps (500kHz) 10Mbps (5MHz) 100Mbps (50MHz) IDDA IDDB IDDA IDDB IDDA IDDB IDDA IDDB IDDA IDDB 1.3 1.3 2.1 2.1 1.8 1.8 2.0 2.0 4.5 4.5 2.0 2.0 3.1 3.1 2.6 2.6 3.0 3.0 6.7 6.7 mA CA-IS3721 Supply Current – DC Signal Supply Current – AC Signal VIN = 0V (CA-IS3721L); VIN = VDDI (CA-IS3721H) VIN = VDDI (CA-IS3721L); VIN = 0V(CA-IS3721H) All Channels Switching with 50% Duty Cycle Square Wave Clock Input with 5V Amplitude; CL = 15 pF for Each Channel CA-IS3722 Supply Current – DC Signal Supply Current – AC Signal VIN = 0V (CA-IS3722L); VIN = VDDI (CA-IS3722H) VIN = VDDI (CA-IS3722L); VIN = 0V(CA-IS3722H) All Channels Switching with 50% Duty Cycle Square Wave Clock Input with 5V Amplitude; CL = 15 pF for Each Channel Note: 1. VDDI = Input-side VDD 12 Copyright © 2019, Chipanalog Incorporated 上海川土微电子有限公司 CA-IS3720, CA-IS3721, CA-IS3722 上海川土微电子有限公司 6.10. Timing Characteristics 6.10.1. VDDA = VDDB = 5 V ± 10%, TA = -40 to 125°C PARAMETER TEST CONDITIONS MIN TYP MAX UNIT DR Data Rate 0 150 Mbps PWmin Minimum Pulse Width 5.0 ns tPLH, tPHL Propagation Delay Time 5.0 8.0 13.0 ns See Figure 7-1 PWD Pulse Width Distortion |tPLH - tPHL| 0.2 4.5 ns tsk(o) Channel-to-channel Output Skew Time1 Same-direction 0.4 2.5 ns tsk(pp) Part-to-part Skew Time2 2.0 4.5 ns tr Output Signal Rise Time See Figure 7-1 2.5 4.0 ns tf Output Signal Fall Time See Figure 7-1 2.5 4.0 ns tDO Default Output Delay Time from Input Power Loss See Figure 7-2 8 12 ns tSU Start-up Time 15 40 µs NOTE: 1. tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. 2. tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads. 6.10.2. VDDA = VDDB = 3.3 V ± 10%, TA = -40 to 125°C PARAMETER TEST CONDITIONS MIN TYP MAX UNIT DR Data Rate 0 150 Mbps PWmin Minimum Pulse Width 5.0 ns tPLH, tPHL Propagation Delay Time 5.0 8.0 13.0 ns See Figure 7-1 PWD Pulse Width Distortion |tPLH - tPHL| 0.2 4.5 ns 1 tsk(o) Channel-to-channel Output Skew Time Same-direction 0.4 2.5 ns tsk(pp) Part-to-part Skew Time2 2.0 4.5 ns tr Output Signal Rise Time See Figure 7-1 2.5 4.0 ns tf Output Signal Fall Time See Figure 7-1 2.5 4.0 ns tDO Default Output Delay Time from Input Power Loss See Figure 7-2 8 12 ns tSU Start-up Time 15 40 µs NOTE: 1. tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. 2. tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads. 6.10.3. VDDA = VDDB = 2.5 V ± 5%, TA = -40 to 125°C PARAMETER TEST CONDITIONS MIN TYP MAX UNIT DR Data Rate 0 150 Mbps PWmin Minimum Pulse Width 5.0 ns tPLH, tPHL Propagation Delay Time 5.0 8.0 13.0 ns See Figure 7-1 PWD Pulse Width Distortion |tPLH - tPHL| 0.2 5.0 ns tsk(o) Channel-to-channel Output Skew Time1 Same-direction 0.4 2.5 ns tsk(pp) Part-to-part Skew Time2 2.0 5.0 ns tr Output Signal Rise Time See Figure 7-1 2.5 4.0 ns tf Output Signal Fall Time See Figure 7-1 2.5 4.0 ns tDO Default Output Delay Time from Input Power Loss See Figure 7-2 8 12 ns tSU Start-up Time 15 40 µs NOTE: 1. tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. 2. tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads. Copyright © 2019, Chipanalog Incorporated 上海川土微电子有限公司 13 CA-IS3720, CA-IS3721, CA-IS3722 上海川土微电子有限公司 Parameter Measurement Information Isolation Barrier 7. IN VIN1 OUT 50% VIN VOUT tPHL tPLH CL2 50Ω 50% 90% VOUT 50% 50% 10% tf tr NOTE: 1. A square wave generator generate the VIN input signal with the following constraints: waveform frequency ≤ 100kHz, 50% duty cycle, tr≤3ns, tf≤3ns. Since the waveform generator has an output impedance of Zout = 50Ω, the 50Ω resistor in the figure is used for matching. There is no need in the actual application. 2. CL is the load capacitance about 15pF together with the instrumentation capacitance. Since the load capacitance influence the output rising time, it’s a key factor in the timing characteristic measurement. Figure 7-1 Timing Characteristics Test Circuit and Voltage Waveforms VDDI1 VDDO VDDI VDDO IN = 0 V for CA-IS372xH IN = VDDI for CA-IS372xL IN Isolation Barrier 2.15V OUT 0V VOUT tDO Default High for CA-IS371x/2xH CL2 VOH VOUT 50% Default Low for CA-IS371x/2xL VOL NOTE: 1. Power Supply Ramp Rate = 10 mV/ns. VDDI should ramp over 2.15V but no higher than 5.5V. 2. CL is the load capacitance about 15pF together with the instrumentation capacitance. Since the load capacitance influence the output rising time, it’s a key factor in the timing characteristic measurement. Figure 7-2 Default Output Delay Time Test Circuit and Voltage Waveforms 14 Copyright © 2019, Chipanalog Incorporated 上海川土微电子有限公司 CA-IS3720, CA-IS3721, CA-IS3722 上海川土微电子有限公司 IN CBP4 VDDO Isolation Barrier VDDI OUT VOUT3 CBP4 CL2 GNDA High Voltage Surge Generator1 GNDB NOTE: 1. The High Voltage Surge Generator generates repetitive high voltage surges with > 1kV amplitude and 100kV/μs slew rate. 2. CL is the load capacitance about 15pF together with the instrumentation capacitance. 3. Pass-fail criteria: The output must remain stable whenever the high voltage surges come. 4. CBP is the 0.1 ~ 1uF bypass capacitance. Figure 7-3 Common-Mode Transient Immunity Test Circuit Copyright © 2019, Chipanalog Incorporated 上海川土微电子有限公司 15 CA-IS3720, CA-IS3721, CA-IS3722 上海川土微电子有限公司 8. 8.1. Detailed Description Theory of Operation The CA-IS37xx family of devices use a simple ON-OFF keying (OOK) modulation scheme to transmit signal across the SiO2 isolation capacitors that provide a robust insulation between two different voltage domain and act as a high frequency signal path between the input and the output. The transmitter (TX) modulates the input signal onto the carrier frequency, that is, TX delivers high frequency signal across the isolation barrier in one input state and delivers no signal across the barrier in the other input state. Then the receiver rebuilds the input signal according to the detected in-band energy. This simple architecture offers a robust isolated data path and requires no special considerations or initialization at start-up. The capacitor-based signal path is fully differential to maximize noise immunity, which is also known as common-mode transient immunity. Advanced circuitry techniques are applied for better EMI introduced by the carrier signal and IO switching. The capacitively-coupled architecture provides much higher electromagnetic immunity compared to the inductively-coupled one. And OOK modulation scheme eliminates the missing-pulse error that occurs in the pulse modulation method. A simplified functional block diagram and conceptual operation waveforms of a single channel is shown in Figure 8-1 and Figure 8-2. 8.2. Functional Block Diagram Isolation Barrier Transmitter (TX) Receiver (RX) Schmitt Trigger Driver VIN Modulator Demodulator VOUT RF Carrier Generator Figure 8-1 Functional Block Diagram of a Single Channel VIN Signal through isolation barrier VOUT Figure 8-2 Conceptual Operation Waveforms of a Single Channel 16 Copyright © 2019, Chipanalog Incorporated 上海川土微电子有限公司 CA-IS3720, CA-IS3721, CA-IS3722 上海川土微电子有限公司 8.3. Device Operation Modes Table 8-1 provides the operation modes for the CA-IS372x devices. Table 8-1 Operation Mode Table1 VDDI VDDO PU PU PD PU INPUT(Ax/Bx)2 H L OUTPUT (Ax/Bx) H L Open Default X Default OPERATION Normal operation mode: A channel’s output follows the input state Default output fail-safe mode: If a channel’s input is left open, its output goes to the default value (Low for CA-IS372xL and High for CA-IS372xH). Default output fail-safe mode: If the input side VDD is unpowered, the outputs go in to the default output fail-safe mode (Low for CA-IS372xL and High for CA-IS372xH) If the output side VDD is unpowered, the outputs’ states are undetermined.3 X PD X Undetermined NOTE: 1. VDDI = Input-side VDD; VDDO = Output-side VDD; PU = Powered up (VCC ≥ 2.375 V); PD = Powered down (VCC ≤ 2.25 V); X = Irrelevant; H = High level; L = Low level. 2. A strongly driven input signal can weakly power the floating VDD through an internal protection diode and cause undetermined output. 3. The outputs are in undetermined state when 2.25V < VDDI, VDDO < 2.375 V. Copyright © 2019, Chipanalog Incorporated 上海川土微电子有限公司 17 CA-IS3720, CA-IS3721, CA-IS3722 上海川土微电子有限公司 9. Application and Implementation Unlike optocouplers, which need external components to improve performance, provide bias, or limit current, the CA-IS372x family device CMOS digital isolator needs only two external VDD bypass capacitors (0.1μF to 1 μF) to operate. Its TTL level compatible input terminals draw only micro amps of leakage current, allowing them to be driven without external buffering circuits. The output terminals have a characteristic impedance of 50 Ω (rail-to-rail swing) and are available in both forward and reverse channel configurations. The circuit of Figure 9-1 is typical for most applications of CA-IS37xx series products and is as easy to use as a standard logic gate. CA-IS37xx Series Products VDD1 VDDA VDD2 VDDB 0.1uF 0.1uF IN1 A1 TX INm-1 Am-1 TX OUTm Am RX OUTn An RX ISOLATION BARRIER GNDA GNDB OUT1 RX B1 RX Bm-1 TX Bm INm TX Bn INn OUTm-1 Figure 9-1 CA-IS37xx Series Digital Isolator Application Schematic 18 Copyright © 2019, Chipanalog Incorporated 上海川土微电子有限公司 CA-IS3720, CA-IS3721, CA-IS3722 上海川土微电子有限公司 10. Package Information 10.1. 8-Pin SOIC Package The figure below illustrates the package details and the recommended land pattern details for the CA-IS372x digital isolator in a 8-pin narrow-body SOIC package. The values for the dimensions are shown in millimeters. 5.00 4.80 8 0.60 1.27 5 2.00 4.00 3.80 5.40 6.20 5.80 PIN I ID 1 4 TOP VIEW RECOMMENDED LAND PATTERN 0.70 1.75 0.50 1.25 0.50 0.25 1.80 1.35 0.51 0.306 0.25 0.10 1.27BSC 8° 0° 0.80 0.30 1.04REF FRONT VIEW Copyright © 2019, Chipanalog Incorporated 上海川土微电子有限公司 LEFT-SIDE VIEW 19 CA-IS3720, CA-IS3721, CA-IS3722 上海川土微电子有限公司 10.2. 8-Pin Wide Body SOIC Package The figure below illustrates the package details and the recommended land pattern details for the CA-IS372x digital isolator in a 8-pin wide body SOIC package. The values for the dimensions are shown in millimeters. 5.95 5.75 8 0.60 1.27 5 2.00 7.60 7.40 11.75 11.25 10.90 PIN I ID 1 4 TOP VIEW RECOMMENDED LAND PATTERN 1.07 2.386 0.97 2.186 2.80 2.35 0.51 0.31 1.27BSC FRONT VIEW 20 0.46 0.36 1.0 0.50 8° 0° 2.0REF LEFT-SIDE VIEW Copyright © 2019, Chipanalog Incorporated 上海川土微电子有限公司 CA-IS3720, CA-IS3721, CA-IS3722 上海川土微电子有限公司 TAPE AND REEL INFORMATION TAPE DIMENSIONS REEL DIMENSIONS A0 B0 K0 W P1 Dimension designed to accommodate the component width Dimension designed to accommodate the component length Dimension designed to accommodate the component thickness Overall width of the carrier tape Pitch between successive cavity centers QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE *All dimensions are nominal Device Package Type Package Drawing Pins SPQ CA-IS3720LSR CA-IS3720LGR CA-IS3720HSR CA-IS3720HGR CA-IS3721LSR CA-IS3721LGR CA-IS3721HSR CA-IS3721HGR CA-IS3722LSR CA-IS3722LGR CA-IS3722HSR CA-IS3722HGR SOIC SOIC SOIC SOIC SOIC SOIC SOIC SOIC SOIC SOIC SOIC SOIC S G S G S G S G S G S G 8 8 8 8 8 8 8 8 8 8 8 8 2500 1000 2500 1000 2500 1000 2500 1000 2500 1000 2500 1000 Copyright © 2019, Chipanalog Incorporated 上海川土微电子有限公司 Reel Diameter (mm) 330 330 330 330 330 330 330 330 330 330 330 330 Reel Width W1 (mm) 12.4 16.4 12.4 16.4 12.4 16.4 12.4 16.4 12.4 16.4 12.4 16.4 A0 (mm) B0 (mm) K0 (mm) P1 (mm) W (mm) Pin1 Quadrant 6.5 12.05 6.5 12.05 6.5 12.05 6.5 12.05 6.5 12.05 6.5 12.05 5.4 6.15 5.4 6.15 5.4 6.15 5.4 6.15 5.4 6.15 5.4 6.15 2.1 3.3 2.1 3.3 2.1 3.3 2.1 3.3 2.1 3.3 2.1 3.3 8.0 16.0 8.0 16.0 8.0 16.0 8.0 16.0 8.0 16.0 8.0 16.0 12.0 16.0 12.0 16.0 12.0 16.0 12.0 16.0 12.0 16.0 12.0 16.0 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 21 CA-IS3720, CA-IS3721, CA-IS3722 上海川土微电子有限公司 IMPORTANT NOTICE The above information is for reference only and is used to assist Chipanalog customers in design and development. Chipanalog reserves the right to change the above information due to technological innovation without prior notice. Chipanalog products are all factory tested. The customers shall be responsible for self-assessment and determine whether it is applicable for their specific application. Chipanalog's authorization to use the resources is limited to the development of related applications that the Chipanalog products involved in. In addition, the resources shall not be copied or displayed. And Chipanalog shall not be liable for any claim, cost, and loss arising from the use of the resources. Trademark Information Chipanalog Inc. ®, Chipanalog® are trademarks or registered trademarks of Chipanalog. http://www.chipanalog.com 22 Copyright © 2019, Chipanalog Incorporated 上海川土微电子有限公司
CA-IS3721HG 价格&库存

很抱歉,暂时无法提供与“CA-IS3721HG”相匹配的价格&库存,您可以联系我们找货

免费人工找货