0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AS3693B-ZQFT

AS3693B-ZQFT

  • 厂商:

    AMSOSRAM(艾迈斯半导体)

  • 封装:

    VFQFN64

  • 描述:

    IC LED DRIVER LINEAR DIM 64QFN

  • 数据手册
  • 价格&库存
AS3693B-ZQFT 数据手册
austriamicrosystems AG is now ams AG The technical content of this austriamicrosystems datasheet is still valid. Contact information: Headquarters: ams AG Tobelbaderstrasse 30 8141 Unterpremstaetten, Austria Tel: +43 (0) 3136 500 0 e-Mail: ams_sales@ams.com Please visit our website at www.ams.com AS3693B austriamicrosystems Product Specification, Confidential al id AS3693B–16 Channel high precision LED driver for LCD Backlight am lc s on A te G nt st il The AS3693B is a 16 channels high precision LED controller with build in PWM generators for driving external FETs in LCD-backlight panels. External clock and synchronizing inputs allow the synchronization of the LCD backlight with the TV picture. Local dimming and scan dimming is supported by 16 independent PWM generators with programmable delay, period and duty cycle. Three free configurable dynamic power feedback circuits make the device usable for white LED as well as RGB backlights. Build in safety features include thermal shutdown as well as open and short LED detection. All circuit parameters are programmable via I2C or SPI interface. 2 Key Features             Free programmable 12 bit resolution ( period, high time and delay ) Overvoltage detection ( short LED ) Undervoltage detection ( open LED ) Temperature shutdown Fault interrupt output H-Sync, V-Sync inputs to synchronize with TVset Internal or external PWM – clock I2C interface SPI interface 5 bit device - address (sets device address and interface mode) Automatic supply regulation feedback Each output can be assigned to red, green or blue feedback. Package epTQFP64 and QFN64 3 Applications • LED backlighting for LCD – TV sets and monitors Te ch  ca       16 Channel LED driver Output current only limited by external transistor Output voltage 0.4V to 50V Absolute current accuracy +/- 0.5% Output slew rate programmable Current programmable with external resistor Linear current control with 8 - bit DAC Linear current control with external analog voltage Digital current control with 16 independent PWM generators  ni   lv 1 General Description www.austriamicrosystems.com Revision 1.21 / 2011-09-30 1 - 32 AS3693B austriamicrosystems 4 Block Diagram PWM Reference, DAC PWM PWM Fault detectors PWM SMPS feedback PWM PWM lv PWM al id V2_5 REF Vreg FBB FBG FBR Vsupply PWM AS3693B PWM PWM PWM am lc s on A te G nt st il PWM 86 byte registers PWM PWM PWM Addr2 Addr1 SDA SCL CS SDO Vsync Hsync SPI / I2C Interface Fault PWM V2_5 Typical application Vdcdc ca Power Supply ni 16 output channels 100k 10k Curr1 Rfb1 Gate1 Curr2 Rfb2 Rfb15 Curr16 Gate15 Vsync Hsync 100k Curr15 Gate2 Rfb16 Gate16 Rfb 10k Vreg SDI SCLK xCS AS3693B V2_5 FBR FBG FBB 10k Micro controller 2.2uF 10k Te 10k ch Rvreg SDO Fault Ref(EXT) V2_5 AGND GND ADDR2 ADDR1 Cfb 10uF Cfb 10uF Cfb 10uF ( Exposed Pad ) 2.2uF www.austriamicrosystems.com 2.2uF Revision 1.21 / 2011-09-30 2 - 32 AS3693B austriamicrosystems Table of Contents General Description ....................................................................................................................................... 1 Key Features.................................................................................................................................................. 1 Applications.................................................................................................................................................... 1 Block Diagram................................................................................................................................................ 2 Characteristics ............................................................................................................................................... 4 5.1 Absolute Maximum Ratings .................................................................................................................... 4 5.2 Operating Conditions .............................................................................................................................. 5 5.3 Electrical Characteristics......................................................................................................................... 6 6 Typical Operation Characteristics .................................................................................................................. 8 6.1 Output current vs Output Voltage ........................................................................................................... 8 6.2 Vsupply vs VREG and V2.5 at startup .................................................................................................... 8 6.3 9us Slew Rate ......................................................................................................................................... 9 6.4 Supply Regulation ................................................................................................................................... 9 7 Block Description ......................................................................................................................................... 10 7.1 Feedback Circuit ................................................................................................................................... 10 7.1.1 Feedback Selection ....................................................................................................................... 11 7.1.2 Voltage fault registers .................................................................................................................... 12 7.2 Curreg 1-16........................................................................................................................................... 12 7.3 PWM – modes ...................................................................................................................................... 14 7.3.1 SYNC mode (PWM_MODE = 00) .................................................................................................. 14 7.3.2 ASYNC – mode (PWM_MODE = 01) ............................................................................................ 16 7.4 PWM – high time, period and delay registers ....................................................................................... 17 7.5 Shunt Regulator .................................................................................................................................... 18 7.5.1 Undervoltage lockout ..................................................................................................................... 18 7.6 Over temperature control ...................................................................................................................... 18 7.7 Device address setup ........................................................................................................................... 19 7.7.1 I2C Device Address setup ............................................................................................................. 19 7.7.2 SPI Device Address setup ............................................................................................................. 19 7.8 Digital interface ..................................................................................................................................... 20 7.8.1 I2C interface .................................................................................................................................. 20 7.8.2 SPI interface .................................................................................................................................. 22 8 Register map................................................................................................................................................ 24 9 Pinout and Packaging .................................................................................................................................. 27 9.1 Pinout.................................................................................................................................................... 27 9.2 Package drawing epTQFP64 ............................................................................................................... 29 9.3 Package drawing QFN64 ...................................................................................................................... 30 10 Ordering Information .................................................................................................................................... 31 Copyright............................................................................................................................................................. 32 Disclaimer ........................................................................................................................................................... 32 Contact Information ............................................................................................................................................. 32 Te ch ni ca am lc s on A te G nt st il lv al id 1 2 3 4 5 www.austriamicrosystems.com Revision 1.21 / 2011-09-30 3 - 32 AS3693B austriamicrosystems 5 Characteristics 5.1 Absolute Maximum Ratings Stresses beyond those listed in Table 1 may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in Section 5 Electrical Characteristics is not implied. Table 1 – Absolute Maximum Ratings Symbol Parameter Min Max Unit Note 1 al id Exposure to absolute maximum rating conditions for extended periods may affect device reliability. VDDMAX Supply for LED’s -0.3 >50 V See notes VINVREG VREG supply voltage -0.3 7.0 V Applicable for pin VREG IINVREG Maximum Vreg current 100 mA VIN2.5V 2.5 V Pins -0.3 V2_5+0.3V V Applicable for 2.5V pins VIN5V 5V Pins -0.3 VREG+ 0.3V V Applicable for 5V pins 50V Pins -0.3 55 V Applicable for CURR1, CURR2, CURR3 up to CURR16 IIN Input Pin Current -25 +25 mA At 25ºC, Norm: Jedec 17 TSTRG Storage Temperature Range -55 150 °C Humidity 5 85 % Non condensing -4000 4000 V Norm: MIL 883 E Method 3015 -2000 2000 V Norm: MIL 883 E Method 3015 W At Ta = 25ºC, no airflow for ePTQFP64 on two layer FR4-Cu 3 PCB lv 4 2 am lc s on A te G nt st il VIN50V VESD Maximum Current flowing into Vreg Electrostatic Discharge on Pins Curr1 – Curr16 VESD Electrostatic Discharge on all Pins PT Total Power Dissipation 3.8W PDERATE PT Derating Factor 40 TBODY Body Temperature during Soldering 260 °C according to IPC/JEDEC J-STD020C ca Notes: mW/ 3 See notes °C Te ch ni 1, As the AS3693B is not directly connected to this supply. Only the parameters VINVREG, VIN5V and VIN50V have to be guaranteed by the application 2, All pins except CURR1 to CURR16 and 2.5V 3, Copper area > 9 cm², thermal vias 4, 2.5V Pins are Fault, SDO, ADDR1 and ADDR2 www.austriamicrosystems.com Revision 1.21 / 2011-09-30 4 - 32 AS3693B austriamicrosystems 5.2 Operating Conditions Test circuit Vcurr Vreg Curr1 Rfb1 Curr2 Gate1 Rfb2 Curr15 Gate2 Rfb15 Curr16 Gate15 Rfb16 al id Vreg Gate16 SDI SCLK xCS AS3693B FBR FBG FBB 10k 10k V2_5 SDO Fault Ref(EXT) V2_5 AGND GND ADDR2 ADDR1 ( Exposed Pad ) 2.2uF am lc s on A te G nt st il 2.2uF lv Vsync Hsync Table 2 – Operating Conditions Symbol Parameter VDD Main Supply Min VDDTOL Main Supply Voltage Tolerance VREGEXT VUVL -20 Supply (shunt regulated by AS3693B) VREGINT Typ Untervoltage lockout voltage Max Unit Note Not Limited V Supply is not directly connected to the AS3693B – see section ‘Shunt Regulator’ +20 % Applies only for supply VREG is connected via Rvdd 5.0 5.2 5.4 V If internally (shunt-)regulated by ZD1 3 4.5 4.9 V If externally supplied 2.4 2.7 3 V If Vreg < UVUL current sources are turned off ( Addr 0x01,Addr 0x02 = 0x00 ) Supply Current (Chip current consumption) ca IVREG IVREG_M Maximum Supply current IVREG ch EXT_OFF ni AX Gate driving capability 30 Maximum Current Into VREG – mA PIN (Supply current + shunt regulator current). 350 uA Condition: externally supplied 0.5 1 2 Curr_reg1-16 off (register 01h = 00h, register 02h = 00h) mA Gate1 – Gate16 output current Te Igate 20 Excluding current through shunt regulator (ZD1) – see section mA ‘Shunt Regulator’. Note: Take care of the Power dissipation of the external Resistor. www.austriamicrosystems.com Revision 1.21 / 2011-09-30 5 - 32 AS3693B austriamicrosystems 5.3 Electrical Characteristics Table 3 – Analog Electrical Characteristics Symbol Parameter VCURR Voltage at CURR1 to CURR16 Min Typ Max Unit 50.0 V +0.5 % Note Using 250mV reference -0.5 @25C TJUNCTION, excluding variation of external resistors (1) ICURR, -1.5 Current Source Tolerance TOL +1.5 % al id Using 250mV reference -20°C to +100°C TJUNCTION, -20°C to +85°C TAMB, excluding variation of external resistors; V(CURRx) t reset with Vsync hsync vsync Delay =N * t hsync P WM P WM s ignal: High time = M * t hsync hsync vsync P WM P WM s ignal: High time = M * t hsync am lc s on A te G nt st il Example: Two PWM output channels with fixed delays and variable high times (HT) PWMINVERT = 0 PWMINVERT = 1 Restart P WM P eriode = P * t hsync hsync lv P*t < t Repetitive PWM reset with P * t al id P WM P eriode = t vsyunc ca 7.3.1.1 SYNC – mode PWM – generator update cycle. ch ni -Store new values from serial interface -Update delay immediately VSYNC -no new data -new data Update HighTime, Period Te Delayed VSYNC (internal) PWM www.austriamicrosystems.com Revision 1.21 / 2011-09-30 15 - 32 AS3693B austriamicrosystems Shift new data in PWM – State maschine Restart PWM VSYNC al id HSYNC lv 7.3.2 ASYNC – mode (PWM_MODE = 01) This PWM is synchronized with Hsync or internal 500KHz clock. The registers are updated with each serial data. am lc s on A te G nt st il Reset Vsync R Hsync Reg: P Counter Compare Compare Reg: M PWM PWMINVERT( Register 0x0F ) High time (M) = registers 0h12 to 0h 31 PWM period (P) = register 0h10 Hs ync AsyncMode ca Repetitive PWM no Reset Syncronized on Hsync or internal Clock P WM P WM s ignal: High time = M * t hsync Te ch ni P WM P eriode = P * t hsync www.austriamicrosystems.com Revision 1.21 / 2011-09-30 16 - 32 AS3693B austriamicrosystems 7.4 PWM – high time, period and delay registers Table 15 – Curreg1-16_DELAY_LSB Addr: 32h – 50h CURREGX_DELAY_LSB 7:0 Bit Name Default Access R/W CurregX_DELAY_LSB Description Defines the delay time of the PWM lv Table 16 – Curreg1-16_DELAY_MSB Addr: 32h-51h CURREGX_DELAY_LSB am lc s on A te G nt st il Defines delay of the different PWM’s Bit 3:0 al id Bit 00000000 Defines delay of the different PWM’s Bit Name Default Access CurregX_DELAY_MSB 0000 R/W Description Defines the delay time of the PWM Table 17– PWM_PERIOD_LSB Addr: 10h PWM – Period – LSB Bit Bit Name Default Access 7:0 PWM_PERIOD_LSB 11111111 Defines PWM – Periode R/W Description Defines the period of the PWM Table 18– PWM_PERIOD_MSB Addr: 11h PWM – Period – MSB ca Defines PWM – Periode Bit Name Default Access 3:0 PWM_PERIOD_MSB 0000 R/W Description Defines the period of the PWM ni Bit ch Table 19– Curreg1-16_HT_LSB Addr: 12h-30h CURREGX_HT_LSB Defines High Time of PWM Bit Name Default Access 7:0 Curreg1_HT_LSB 0 R/W Te Bit www.austriamicrosystems.com Description Defines PWM high time Revision 1.21 / 2011-09-30 17 - 32 AS3693B austriamicrosystems Table 20– Curreg1-16_HT_MSB Addr: 13h-31h CURREGX_HT_MSB Defines High Time of PWM Bit Bit Name Default Access 3:0 Curreg1_HT_MSB 0000 R/W Description Defines PWM high time al id 7.5 Shunt Regulator The supply of the AS3693B is generated from the high voltage supply. To obtain a 5V regulated supply, a series resistor Rvdd is used together with an internal zener diode (ZD1). An external capacitor Cvdd is used to filter the supply on the pin VREG. VDDMIN is the minimum voltage of the supply, where Rvdd is connected VDDMIN − 5,4V 20mA am lc s on A te G nt st il Rvdd = lv The external resistor Rvdd has to be choosen according to the following formula: This ensures enough supply current (IVREGMAX) for the AS3693B under minimum supply voltage VDDMIN. If a stable 5V supply within the operating conditions limits of VREGEXT is already existing in the system it is possible to supply the AS3693B directly. In this case remove the resistor Rvdd and connected this supply directly to VREG. 7.5.1 Undervoltage lockout The undervoltage lockout is an additional safety feature to prevent LED-current under abnormal Vreg conditions. If the supply voltage Vreg is below 2.7V (e.g. device is supplied only by the voltage of the serial interface ) the registers Reg.Control1 and RegControl2 (0x01 and 0x02) are reset. This turns off all current sinks. Vreg 3V to 5.4V Reset Register 0x01 Reset Register 0x02 ni ca 2.7V ch 7.6 Over temperature control Table 14– Overtemp Control Te Addr:55h Over temperature Control Controls the temperature functions Bit Bit Name Default Access 0 overtemp_on 1 R/W 1 ov_temp 0 R/W www.austriamicrosystems.com Description Enables the over temperature protection 0 = Protection off 1 = Protection on Displays temperature status 0 = Normal operation 1 = Over temperature shutdown Revision 1.21 / 2011-09-30 18 - 32 AS3693B austriamicrosystems 7.7 Device address setup The I2C and SPI – Device address can be set via PIN ADDR1 and ADDR2. The AS3693B offers 31 I2C or 32 SPI addresses, which can be set via external resistor. ADDR2 bit 2 decides if I2C or SPI interface is used. AS3693 Flexible 6- Bit Address Programming with 2 external resistors. al id Digital Digital Registers PWM - Generator 6 Bit I2C ADDRESS ADDR1 ADDR2 R2 am lc s on A te G nt st il R1 lv ADC Table 13– Device Address Device Adress Setup: I2C ADDRESS I2C ADDRESS Options Bit Bit Name Default Device ADDR1 5:3 Device ADDR2 000 000 R ni ch Description Lower 3 bits of device address Note: don’t use address 00h 000 open 001 320kΩ 010 160kΩ 011 80kΩ 100 40kΩ 101 20kΩ 110 10kΩ 111 0Ω Upper 3 bits of device address 000 open Note: activates I2C - mode 001 320kΩ Note: activates I2C - mode 010 160kΩ Note: activates I2C - mode 011 80kΩ Note: activates I2C - mode 100 40kΩ Note: activates SPI - mode 101 20kΩ Note: activates SPI - mode 110 10kΩ Note: activates SPI - mode 111 0Ω Note: activates SPI – mode R ca 2:0 Access 7.7.1 I2C Device Address setup BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 0 (ADDR2) ADDR2 ADDR2 ADDR1 ADDR1 ADDR1 R/W Te BIT 7 0 7.7.2 SPI Device Address setup BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 0 0 1 (ADDR2) ADDR2 ADDR2 ADDR1 ADDR1 ADDR1 www.austriamicrosystems.com Revision 1.21 / 2011-09-30 19 - 32 AS3693B 7.8 austriamicrosystems Digital interface The AS3693B can be controlled with two types of interfaces. 7.8.1 I2C interface 7.8.1.1 Feature List al id Fast-mode capability (max. SCL-frequency is 400 kHz) Write formats: Single-Byte-Write, Page-Write Read formats: Current-Address-Read, Random-Read, Sequential-Read SDA input delay and SCL spike filtering by integrated RC-components • • • • 7.8.1.2 Transfer Formats 2 DW A WA A reg_data S Sr DW DR WA A N P white field grey field WA++ A P write register, WA++ 2 START condition after STOP repeated START device address for write device address for read word address acknowledge no acknowledge stop condition slave as receiver slave as transmitter increment word address internally am lc s on A te G nt st il S lv Figure 1 – I C Byte-Write: Figure 2 – I C Page-Write: S DW A WA A reg_data 1 A reg_data 2 … A reg_data n write register WA++ write register WA++ A P write register WA++ Byte-Write and Page-Write are used to write data to the slave. The transmission begins with the START condition, which is generated by the master when the bus is in IDLE state (the bus is free). The device-write address is followed by the word address. After the word address any number of data bytes can be send to the slave. The word address is incremented internally, in order to write subsequent data bytes on subsequent address locations. ni ca For reading data from the slave device, the master has to change the transfer direction. This can be done either with a repeated START condition followed by the device-read address, or simply with a new transmission START followed by the device-read address, when the bus is in IDLE state. The device-read address is always followed st by the 1 register byte transmitted from the slave. In Read-Mode any number of subsequent register bytes can be read from the slave. The word address is incremented internally. ch The diagrams below show various read formats available: 2 Figure 3 – I C Random-Read: DW A Te S WA A Sr DR A data read register WA++ N P WA++ Random-Read and Sequential-Read are combined formats. The repeated START condition is used to change the direction after the data transfer from the master. The word address transfer is initiated with a START condition issued by the master while the bus is idle. The START condition is followed by the device-write address and the word address. www.austriamicrosystems.com Revision 1.21 / 2011-09-30 20 - 32 AS3693B austriamicrosystems st In order to change the data direction a repeated START condition is issued on the 1 SCL pulse after the acknowledge bit of the word address transfer. After the reception of the device-read address, the slave becomes the transmitter. In this state the slave transmits register data located by the previous received word address vector. The master responds to the data byte with a not-acknowledge, and issues a STOP condition on the bus. 2 S DW A WA A Sr DR A data 1 A data 2 … A data n read register WA++ al id Figure 4 – I C Sequential-Read: N P WA++ 2 am lc s on A te G nt st il lv Sequential-Read is the extended form of Random-Read, as more than one register-data bytes are transferred subsequently. In difference to the Random-Read, for a sequential read the transferred register-data bytes are responded by an acknowledge from the master. The number of data bytes transferred in one sequence is unlimited (consider the behavior of the word-address counter). To terminate the transmission the master has to send a not-acknowledge following the last data byte and generate the STOP condition subsequently. Figure 5 – I C Current-Address-Read: S DR A data 1 read register WA++ A data 2 … read register WA++ A data n read register WA++ N P WA++ Te ch ni ca To keep the access time as small as possible, this format allows a read access without the word address transfer in advance to the data transfer. The bus is idle and the master issues a START condition followed by the DeviceRead address. Analogous to Random-Read, a single byte transfer is terminated with a not-acknowledge after the st 1 register byte. Analogous to Sequential-Read an unlimited number of data bytes can be transferred, where the data bytes has to be responded with an acknowledge from the master. For termination of the transmission the master sends a not-acknowledge following the last data byte and a subsequent STOP condition. www.austriamicrosystems.com Revision 1.21 / 2011-09-30 21 - 32 AS3693B 7.8.2 austriamicrosystems SPI interface SPI – Interface Pins OUTPUT Digital SDI Control -Registers PWM - Generator SCL CS FAULT SDO al id VSYNC HSYNC lv ADDR1 ADDR2 am lc s on A te G nt st il SPI Mode – Digital Interface Pins: CS(N) Chip Select input SDO Serial Data output SDI Serial Data input SCL Serial Clock input VSYNC Video Sync signal input HSYNC Video Sync signal input ADDR1 Device Address pins (can be ADDR2 set via resistor). 7.8.2.1 Read Sequence CS1 0 1 SCK 2 3 4 5 6 7 8 9 8 Bit Device Address SDI (SDA) 7 6 5 4 3 2 10 11 12 13 14 1 0 7 Bit Register Address 1 6 0 5 4 3 2 15 16 17 18 7 6 5 19 20 21 22 23 2 1 0 R/W 1 Data Out High Impedance 4 3 ca SDO Te ch ni 7.8.2.2 Page Read Sequence www.austriamicrosystems.com Revision 1.21 / 2011-09-30 22 - 32 AS3693B austriamicrosystems 7.8.2.3 Write Sequence CS1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 TWC SCL 8 Bit Device Address SDI (SDA) 7 6 5 4 3 R/W 7 Bit Address 2 0 1 5 6 4 3 10 11 2 1 12 13 0 Data Byte 0 7 6 5 4 3 2 1 0 al id High Impedance SDO CS1 1 2 3 4 5 6 7 8 9 8 Bit Device Address SDI (SDA) 7 6 5 CS1 24 25 7 6 SCK 4 26 3 27 7 Bit Register Address 2 28 1 6 0 5 4 3 29 30 31 32 33 34 2 1 0 7 6 5 Data Byte 2 15 16 17 18 19 20 21 22 23 5 4 3 35 R/W 1 2 36 0 0 Data Byte 1 7 37 38 39 2 1 0 6 5 Data Byte 3 4 3 4 3 2 1 0 Data Byte n (32 max) 7 6 5 4 3 2 1 0 Te ch ni ca SD (SDA) 14 am lc s on A te G nt st il 0 SCK lv 7.8.2.4 Page Write Sequence www.austriamicrosystems.com Revision 1.21 / 2011-09-30 23 - 32 AS3693B austriamicrosystems 8 Register map Name Def ault B7 b6 b5 B4 b3 b2 b1 b0 Reg. Control1 01h 00h Curreg 8_ON Curreg7 _ON Curreg6 _ON Curreg5 _ON Curreg4 _ON Curreg 3_ON Curreg 2_ON Curreg1 _ON Reg Control 2 02h 00h Curreg 16_ON Curreg1 5_ON Curreg1 4_ON Curreg1 3_ON Curreg1 2_ON Curreg 11_ON Curreg 10_ON Curreg9 _ON Short_Led Detect Voltage SHORT _DET_ ON OPEN_ LED _DET _ON Feedba ck_on_ PWM FEEDB ACK_O N al id Addr Feedback Control 04h 01h DCDC_REGULATI ON_TRIP_POINT Fedback Select 1 05h 94h FB4_ Select FB3_ Select FB2_ Select Fedback Select 2 06h 94h FB8_ Select FB7_ Select FB6_ Select FB5_ Select Fedback Select 3 07h 94h FB12_ Select FB11_ Select FB10_ Select FB9_ Select Fedback Select 4 08h 94h FB16_ Select FB15_ Select FB14_ Select FB13_ Select Voltage_Fault 1 09h 00h Fault_Reg4 Fault_Reg3 Fault_Reg2 Fault_Reg1 Voltage_Fault 2 0Ah 00h Fault_Reg8 Fault_Reg7 Fault_Reg6 Fault_Reg5 Voltage_Fault 3 0Bh 00h Fault_Reg12 Fault_Reg11 Fault_Reg10 Fault_Reg9 Voltage_Fault 4 0Ch 00h Fault_Reg16 Fault_Reg15 Fault_Reg14 Fault_Reg13 CURREG_CONTR OL 0Dh 00h PWM_LOW_LEVE L RC_SEL Select Ref Ref_DAC_Voltage 0Eh 00h PWM –CONTROL 0Fh 04h PWMPERIOD_LSB 10h FFh PWM-PERIODMSB 11h 00h Curreg1_HT_LSB 12h 00h Curreg1_HT_MSB 13h 00h Curreg2_HT_LSB 14h 00h Curreg2_HT_MSB 15h 00h lv am lc s on A te G nt st il switch_ output_ driver boost mode Vref_DAC PWM INVER T 00h Curreg3_HT_MSB 17h 00h Curreg4_HT_LSB 18h 00h Curreg4_HT_MSB 19h 00h Curreg5_HT_LSB 1Ah 00h Curreg5_HT_MSB 1Bh 00h Curreg6_HT_LSB 1Ch 00h Curreg6_HT_MSB 1Dh 00h Curreg7_HT_LSB 1Eh 00h Curreg7_HT_MSB 1Fh 00h Curreg8_HT_LSB 20h 00h www.austriamicrosystems.com VSYNC _INVER T PWMINT/EX T PWM - MODE PWM –PERIOD - LSB PWM – period - MSB Curreg1_HT_LSB ca ni 16h ch Curreg3_HT_LSB Te FB1_Select Curreg1_HT_MSB Curreg2_HT_LSB Curreg2_HT_MSB Curreg3_HT_LSB Curreg3_HT_ MSB Curreg4_HT_LSB Curreg4_HT_ MSB Curreg5_HT_LSB Curreg5_HT_ MSB Curreg6_HT_LSB Curreg6_HT_ MSB Curreg7_HT_LSB Curreg7_HT_ MSB Curreg8_HT_LSB Revision 1.21 / 2011-09-30 24 - 32 AS3693B austriamicrosystems Def ault Curreg8_HT_MSB 21h 00h Curreg9_HT_LSB 22h 00h Curreg9_HT_MSB 23h 00h Curreg10_HT_LSB 24h 00h Curreg10_HT_MSB 25h 00h Curreg11_HT_LSB 26h 00h Curreg11_HT_MSB 27h 00h Curreg12_HT_LSB 28h 00h Curreg12_HT_MSB 29h 00h Curreg13_HT_LSB 2Ah 00h Curreg13_HT_MSB 2Bh 00h Curreg14_HT_LSB 2Ch 00h Curreg14_HT_MSB 2Dh 00h Curreg15_HT_LSB 2Eh Curreg15_HT_MSB 2Fh 00h Curreg16_HT_LSB 30h 00h Curreg16_HT_MSB 31h 00h Curreg1_DELAY_L SB 32h 00h Curreg1_ DELAY _MSB 33h 00h Curreg2_ DELAY _LSB 34h 00h Curreg2_ DELAY _MSB 35h 00h Curreg3_ DELAY _LSB 36h 00h Curreg3_ DELAY _MSB 37h 00h Curreg4_ DELAY _LSB 38h 00h Curreg4_ DELAY _MSB 39h 00h Curreg5_DELAY_L SB 3Ah 00h Curreg5_DELAY_M SB 3Bh Curreg6_DELAY_L SB 3Ch 00h Curreg6_DELAY_M SB 3Dh 00h Curreg7_DELAY_L SB 3Eh 00h Curreg7_DELAY_M SB 3Fh 00h Curreg8_DELAY_L SB 40h 00h B7 b6 b5 B4 b2 b1 b0 Curreg8_HT_ MSB Curreg9_HT_LSB Curreg9_HT_ MSB Curreg10_HT_LSB Curreg10_HT_ MSB Curreg11_HT_LSB Curreg11_HT_ MSB Curreg12_HT_LSB Curreg12_HT_MSB Curreg13_HT_LSB Curreg13_HT_MSB Curreg14_HT_LSB Curreg14_HT_MSB Curreg15_HT_LSB am lc s on A te G nt st il 00h Curreg15_HT_MSB Curreg16_HT_LSB Curreg16_HT_MSB Curreg1_DELAY_LSB Curreg1_DELAY_MSB Curreg2_DELAY_LSB Curreg2_DELAY_MSB Curreg3_DELAY_LSB Curreg3_DELAY_ MSB ca Curreg4_DELAY_LSB Curreg4_DELAY_ MSB Curreg5_DELAY_LSB ni ch Te b3 al id Addr lv Name 00h www.austriamicrosystems.com Curreg5_DELAY_ MSB Curreg6_DELAY_LSB Curreg6_DELAY_ MSB Curreg7_DELAY_LSB Curreg7_DELAY_ MSB Curreg8_DELAY_LSB Revision 1.21 / 2011-09-30 25 - 32 AS3693B austriamicrosystems Curreg8_DELAY_M SB 41h 00h Curreg9_DELAY_L SB 42h 00h Curreg9_DELAY_M SB 43h 00h Curreg10_DELAY_ LSB 44h 00h Curreg10_DELAY_ MSB 45h 00h Curreg11_DELAY_ LSB 46h 00h Curreg11_DELAY_ MSB 47h 00h Curreg12_DELAY_ LSB 48h 00h Curreg12_DELAY_ MSB 49h 00h Curreg13_DELAY_ LSB 4Ah 00h Curreg13_DELAY_ MSB 4Bh 00h Curreg14_DELAY_ LSB 4Ch 00h Curreg14_DELAY_ MSB 4Dh 00h Curreg15_DELAY_ LSB 4Eh 00h Curreg15_DELAY_ MSB 4Fh 00h Curreg16_DELAY_ LSB 50h 00h Curreg16_DELAY_ MSB 51h 00h Overtemp control 55h b5 B4 b3 b2 b1 b0 Curreg8_DELAY_ MSB Curreg9_DELAY_LSB Curreg9_DELAY_ MSB Curreg10_DELAY_LSB Curreg10_DELAY_ MSB Curreg11_DELAY_LSB Curreg11_DELAY_ MSB Curreg12_DELAY_LSB Curreg12_DELAY_MSB Curreg13_DELAY_LSB Curreg13_DELAY_MSB Curreg14_DELAY_LSB Curreg14_DELAY_MSB Curreg15_DELAY_LSB Curreg15_DELAY_MSB Curreg16_DELAY_LSB Curreg16_DELAY_LSB ca ASIC ID2 b6 5Ch 5Dh 01h CAh 1 1 0 0 5Xh 0 1 0 1 ni ASIC ID1 B7 al id Def ault am lc s on A te G nt st il Addr lv Name 1 0 ov_temp ov_temp _on 1 0 REVISION Te ch Revision code: 0x8… initial version November 2008 www.austriamicrosystems.com Revision 1.21 / 2011-09-30 26 - 32 AS3693B austriamicrosystems 9 Pinout and Packaging 9.1 Pinout Table 5 – Pinlist Name Type Description 1 GATE16 AIO Connect to Gate of External Transistor 2 RFB1 AIO Connect to Source of External Transistor and to Resistor RSET 3 GATE1 AIO Connect to Gate of External Transistor 4 CURR_sense1 AIO Connect to Drain of external Transistor (input for Open and Short led detection) 5 FBG AIO Automatic supply regulation for GREEN led strings; if not used, leave open 6 FBB AIO Automatic supply regulation for BLUE led strings; if not used, leave open 7 REF(EXT) AI 8 GND(SENSE) AIO 9 VREG AIO 10 V2_5 11 ADDR2 12 ADDR1 13 lv al id Pin am lc s on A te G nt st il Reference pin for PWM = 1 voltage, if not used leave open GND supply connection (sense) Shunt regulator supply; connect to Rvdd and Cvdd Digital supply, connect 1uF blocking capacitor AIO Connect to external resistor for serial interface address selection, AIO Connect to external resistor for serial interface address selection. CURR_sense2 AIO Connect to Drain of external Transistor (input for Open and Short led detection) 14 GATE2 AIO Connect to Gate of External Transistor 15 RFB2 AIO Connect to Source of External Transistor and to Resistor RSET 16 GATE3 AIO Connect to Gate of External Transistor 17 RFB3 AIO Connect to Source of External Transistor and to Resistor RSET 18 CURR_sense3 AIO Connect to Drain of external Transistor (input for Open and Short led detection) 19 GATE4 AIO Connect to Gate of External Transistor 20 RFB4 AIO Connect to Source of External Transistor and to Resistor RSET 21 CURR_sense4 AIO Connect to Drain of external Transistor (input for Open and Short led detection) 22 GATE5 23 RFB5 24 ca AIO Connect to Gate of External Transistor AIO Connect to Source of External Transistor and to Resistor RSET CURR_sense5 AIO Connect to Drain of external Transistor (input for Open and Short led detection) 25 CURR_sense6 AIO Connect to Drain of external Transistor (input for Open and Short led detection) 26 RFB6 AIO Connect to Source of External Transistor and to Resistor RSET ch ni AIO GATE6 AIO Connect to Gate of External Transistor 28 CURR_sense7 AIO Connect to Drain of external Transistor (input for Open and Short led detection) 29 RFB7 AIO Connect to Source of External Transistor and to Resistor RSET Te 27 30 GATE7 AIO Connect to Gate of External Transistor 31 CURR_sense8 AIO Connect to Drain of external Transistor (input for Open and Short led detection) 32 RFB8 AIO Connect to Source of External Transistor and to Resistor RSET 33 GATE8 AIO Connect to Gate of External Transistor 34 RFB9 AIO Connect to Source of External Transistor and to Resistor RSET 35 GATE9 AIO Connect to Gate of External Transistor www.austriamicrosystems.com Revision 1.21 / 2011-09-30 27 - 32 AS3693B austriamicrosystems Table 5 – Pinlist Pin Name Type 36 CURR_sense9 AIO 37 FBR AIO 38 VSYNC DI Video sync signal , NOTE: Connect to GND in ASYNC MODE 39 HSYNC DI Video sync signal or external clock input in ASYNC mode 40 CS DI SPI : CS – function, I2C: connect to GND 41 SCL DI SPI/ I2C: Serial interface clock input. 42 SDA DI SPI/ I2C: Serial interface data I/O. 43 SDO DO SPI: digital data output, I2C: leave open 44 FAULT DO FAULT PIN, open drain output. Connect pull up resistor to V2_5 45 CURR_sense10 AIO Connect to Drain of external Transistor (input for Open and Short led detection) 46 GATE10 AIO Connect to Gate of External Transistor 47 RFB10 AIO Connect to Source of External Transistor and to Resistor RSET 48 GATE11 AIO Connect to Gate of External Transistor 49 RFB11 AIO Connect to Source of External Transistor and to Resistor RSET 50 CURR_sense11 AIO Connect to Drain of external Transistor (input for Open and Short led detection) 51 GATE12 AIO Connect to Gate of External Transistor 52 RFB12 AIO Connect to Source of External Transistor and to Resistor RSET 53 CURR_sense12 AIO Connect to Drain of external Transistor (input for Open and Short led detection) 54 GATE13 AIO Connect to Gate of External Transistor 55 RFB13 AIO Connect to Source of External Transistor and to Resistor RSET 56 CURR_sense13 AIO Connect to Drain of external Transistor (input for Open and Short led detection) 57 CURR_sense14 AIO Connect to Drain of external Transistor (input for Open and Short led detection) 58 RFB14 AIO Connect to Source of External Transistor and to Resistor RSET 59 GATE14 AIO Connect to Gate of External Transistor 60 CURR_sense15 AIO Connect to Drain of external Transistor (input for Open and Short led detection) 61 RFB15 AIO Connect to Source of External Transistor and to Resistor RSET 62 GATE15 AIO Connect to Gate of External Transistor 63 CURR_sense16 AIO Connect to Drain of external Transistor (input for Open and Short led detection) 64 RFB16 AIO Connect to Source of External Transistor and to Resistor RSET VSS Supply connection; add as many vias to ground plane as possible. ca am lc s on A te G nt st il lv al id Connect to Drain of external Transistor (input for Open and Short led detection) Automatic supply regulation for RED led strings; if not used, leave open ni 65 (EP) Description GND S Te ch AIO…Analog pin DI…Digital input. Protected with clamp to 2.5V DO…Digital output. Protected with clamp to 2.5V S… VSS supply Note: Connect any unused output channel as follows: - GATEx = open, RFbx = CURR_senseX = GND www.austriamicrosystems.com Revision 1.21 / 2011-09-30 28 - 32 AS3693B austriamicrosystems Te ch ni ca am lc s on A te G nt st il lv al id 9.2 Package drawing epTQFP64 www.austriamicrosystems.com Revision 1.21 / 2011-09-30 29 - 32 AS3693B austriamicrosystems Te ch ni ca am lc s on A te G nt st il lv al id 9.3 Package drawing QFN64 www.austriamicrosystems.com Revision 1.21 / 2011-09-30 30 - 32 AS3693B austriamicrosystems 10 Ordering Information Table 6 – Ordering Information Marking Package Type Delivery Form Description AS3693B-ZTQT AS3693B epTQFP64 Tape and Reel in Dry Pack Package size = 10x10mm, Exposed pad size = 4.5x4.5mm, Pitch = 0.5mm, Pb-free; AS3693B-ZQFT AS3693B QFN64 Tape and Reel in Dry Pack Package size = 9x9mm, Pitch = 0.5mm, Pb-free; AS3693B-ZMFT AS3693B MLF64 Tape and Reel in Dry Pack Package size = 9x9mm, Pitch = 0.5mm, Pb-free; Te ch ni ca am lc s on A te G nt st il lv al id Part Number www.austriamicrosystems.com Revision 1.21 / 2011-09-30 31 - 32 AS3693B austriamicrosystems Copyright Copyright © 1997-2006, austriamicrosystems AG, Schloss Premstaetten, 8141 Unterpremstaetten, AustriaEurope. Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. al id All products and companies mentioned are trademarks of their respective companies. Disclaimer am lc s on A te G nt st il lv Devices sold by austriamicrosystems AG are covered by the warranty and patent identification provisions appearing in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. austriamicrosystems AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by austriamicrosystems AG for each application. The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However, austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of austriamicrosystems AG rendering of technical or other services. Contact Information Headquarters: ca austriamicrosystems AG Business Unit Communications A 8141 Schloss Premstätten, Austria T. +43 (0) 3136 500 0 F. +43 (0) 3136 5692 info@austriamicrosystems.com ni For Sales Offices, Distributors and Representatives, please visit: Te ch www.austriamicrosystems.com austriamicrosystems www.austriamicrosystems.com – a leap ahead Revision 1.21 / 2011-09-30 32 - 32
AS3693B-ZQFT 价格&库存

很抱歉,暂时无法提供与“AS3693B-ZQFT”相匹配的价格&库存,您可以联系我们找货

免费人工找货