0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
RTL8370NI-VB-CG

RTL8370NI-VB-CG

  • 厂商:

    REALTEK(瑞昱)

  • 封装:

    LQFP128_20X14MM_EP

  • 描述:

    第2层管理的8端口10/100/1000交换机控制器 LQFP128_20X14MM_EP

  • 数据手册
  • 价格&库存
RTL8370NI-VB-CG 数据手册
RTL8370NI-VB-CG LAYER 2 MANAGED 8-PORT 10/100/1000 SWITCH CONTROLLER DRAFT DATASHEET (CONFIDENTIAL: Development Partners Only) Rev. 0.1 13 August 2019 Track ID: JATR-XXXX-XX Realtek Semiconductor Corp. No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan Tel.: +886-3-578-0211 Fax: +886-3-577-6047 www.realtek.com RTL8370NI-VB Draft Datasheet COPYRIGHT ©2019 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp. DISCLAIMER Realtek provides this document ‘as is’, without warranty of any kind. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors. TRADEMARKS Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners. USING THIS DOCUMENT This document is intended for the software engineer’s reference and provides detailed programming information. Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide. ELECTROSTATIC DISCHARGE (ESD) WARNING This product can be damaged by Electrostatic Discharge (ESD). When handling, care must be taken. Damage due to inappropriate handling is not covered by warranty. Do not open the protective conductive packaging until you have read the following, and are at an approved anti-static workstation.      Use an approved anti-static mat to cover your work surface Use a conductive wrist strap attached to a good earth ground Always discharge yourself by touching a grounded bare metal surface or approved anti-static mat before picking up an ESD-sensitive electronic component If working on a prototyping board, use a soldering iron or station that is marked as ESD-safe Always disconnect the microcontroller from the prototyping board when it is being worked on REVISION HISTORY Revision 0.1 Release Date 2019/08/13 Summary First release. Layer 2 Managed 8-port 10/100/1000 Switch Controller i Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet Table of Contents 1. GENERAL DESCRIPTION .............................................................................................................................................. 1 2. FEATURES ......................................................................................................................................................................... 3 3. SYSTEM APPLICATIONS ............................................................................................................................................... 5 3.1. 8-PORT 1000BASE-T SWITCH ...................................................................................................................................... 5 4. BLOCK DIAGRAM ........................................................................................................................................................... 6 5. PIN ASSIGNMENTS ......................................................................................................................................................... 7 5.1. 5.2. 5.3. 6. PIN DESCRIPTIONS ...................................................................................................................................................... 11 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 6.9. 6.10. 7. MEDIA DEPENDENT INTERFACE PINS ......................................................................................................................... 11 PARALLEL LED PINS ................................................................................................................................................. 12 SCAN MODE LED PINS .............................................................................................................................................. 14 SERIAL MODE LED PINS............................................................................................................................................ 15 SPI FLASH PINS ......................................................................................................................................................... 15 CONFIGURATION STRAPPING PINS ............................................................................................................................. 15 CONFIGURATION STRAPPING PINS (STRP_DISAUTOLOAD, STRP_DIS_8051, STRP_EN_FLASH) ................... 17 MISCELLANEOUS PINS ............................................................................................................................................... 17 TEST PINS .................................................................................................................................................................. 18 POWER AND GND PINS .............................................................................................................................................. 18 PHYSICAL LAYER FUNCTIONAL OVERVIEW...................................................................................................... 19 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 7.7. 7.8. 7.9. 7.10. 8. PIN ASSIGNMENTS ....................................................................................................................................................... 7 PACKAGE IDENTIFICATION ........................................................................................................................................... 7 PIN ASSIGNMENT TABLE .............................................................................................................................................. 8 MDI INTERFACE ........................................................................................................................................................ 19 1000BASE-T TRANSMIT FUNCTION ........................................................................................................................... 19 1000BASE-T RECEIVE FUNCTION .............................................................................................................................. 19 100BASE-TX TRANSMIT FUNCTION........................................................................................................................... 19 100BASE-TX RECEIVE FUNCTION ............................................................................................................................. 20 10BASE-T TRANSMIT FUNCTION ............................................................................................................................... 20 10BASE-T RECEIVE FUNCTION .................................................................................................................................. 20 AUTO-NEGOTIATION FOR UTP .................................................................................................................................. 20 CROSSOVER DETECTION AND AUTO CORRECTION ..................................................................................................... 21 POLARITY CORRECTION ............................................................................................................................................. 21 GENERAL FUNCTION DESCRIPTION ...................................................................................................................... 22 8.1. RESET ........................................................................................................................................................................ 22 8.1.1. Hardware Reset .................................................................................................................................................... 22 8.1.2. Software Reset ...................................................................................................................................................... 22 8.2. IEEE 802.3X FULL DUPLEX FLOW CONTROL ............................................................................................................ 22 8.3. HALF DUPLEX FLOW CONTROL ................................................................................................................................. 23 8.3.1. Back-Pressure Mode ............................................................................................................................................ 23 8.4. SEARCH AND LEARNING ............................................................................................................................................ 23 8.5. SVL AND IVL/SVL ................................................................................................................................................... 24 8.6. ILLEGAL FRAME FILTERING ....................................................................................................................................... 24 8.7. IEEE 802.3 RESERVED GROUP ADDRESSES FILTERING CONTROL ............................................................................. 24 8.8. BROADCAST/MULTICAST/UNKNOWN DA STORM CONTROL ..................................................................................... 25 8.9. PORT SECURITY FUNCTION ........................................................................................................................................ 25 8.10. MIB COUNTERS ......................................................................................................................................................... 25 8.11. PORT MIRRORING ...................................................................................................................................................... 25 Layer 2 Managed 8-port 10/100/1000 Switch Controller ii Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 8.12. VLAN FUNCTION ...................................................................................................................................................... 26 8.12.1. Port-Based VLAN ............................................................................................................................................ 26 8.12.2. IEEE 802.1Q Tag-Based VLAN ....................................................................................................................... 26 8.12.3. Protocol-Based VLAN ..................................................................................................................................... 27 8.12.4. Port VID .......................................................................................................................................................... 27 8.13. QOS FUNCTION .......................................................................................................................................................... 28 8.13.1. Input Bandwidth Control ................................................................................................................................. 28 8.13.2. Priority Assignment ......................................................................................................................................... 28 8.13.3. Priority Queue Scheduling............................................................................................................................... 28 8.13.4. IEEE 802.1p/Q and DSCP Remarking ............................................................................................................ 29 8.13.5. ACL-Based Priority ......................................................................................................................................... 29 8.14. IGMP & MLD SNOOPING FUNCTION......................................................................................................................... 30 8.15. IEEE 802.1X FUNCTION ............................................................................................................................................. 30 8.15.1. Port-Based Access Control .............................................................................................................................. 30 8.15.2. Authorized Port-Based Access Control ........................................................................................................... 30 8.15.3. Port-Based Access Control Direction .............................................................................................................. 30 8.15.4. MAC-Based Access Control............................................................................................................................. 30 8.15.5. MAC-Based Access Control Direction ............................................................................................................ 30 8.15.6. Optional Unauthorized Behavior..................................................................................................................... 31 8.15.7. Guest VLAN ..................................................................................................................................................... 31 8.16. IEEE 802.1D FUNCTION ............................................................................................................................................ 31 8.17. EMBEDDED 8051 ........................................................................................................................................................ 31 8.18. REALTEK CABLE TEST (RTCT) ................................................................................................................................. 32 8.19. LED INDICATOR ........................................................................................................................................................ 32 8.19.1. Parallel LED Mode.......................................................................................................................................... 33 8.19.2. Scan LED Mode ............................................................................................................................................... 34 8.19.3. Serial LED Mode ............................................................................................................................................. 35 8.20. GREEN ETHERNET ...................................................................................................................................................... 38 8.20.1. Link-On and Cable Length Power Saving ....................................................................................................... 38 8.20.2. Link-Down Power Saving ................................................................................................................................ 38 8.21. IEEE 802.3AZ ENERGY EFFICIENT ETHERNET (EEE) FUNCTION ............................................................................... 38 9. INTERFACE DESCRIPTIONS ...................................................................................................................................... 40 9.1. 9.2. 9.3. 9.4. 10. I2C MASTER FOR EEPROM AUTO-LOAD .................................................................................................................. 40 I2C-LIKE SLAVE INTERFACE FOR EXTERNAL CPU TO ACCESS RTL8370NI-VB ...................................................... 41 SLAVE MII MANAGEMENT SMI INTERFACE FOR EXTERNAL CPU TO ACCESS RTL8370NI-VB ............................... 42 SPI FLASH INTERFACE ............................................................................................................................................. 42 ELECTRICAL CHARACTERISTICS...................................................................................................................... 43 10.1. ABSOLUTE MAXIMUM RATINGS ................................................................................................................................ 43 10.2. RECOMMENDED OPERATING RANGE.......................................................................................................................... 43 10.3. THERMAL CHARACTERISTICS .................................................................................................................................... 44 10.3.1. LQFP-128-EPAD ............................................................................................................................................ 44 10.4. DC CHARACTERISTICS ............................................................................................................................................... 45 10.5. AC CHARACTERISTICS ............................................................................................................................................... 46 10.5.1. I2C Master for EEPROM Auto-Load Timing Characteristics ......................................................................... 46 10.5.2. I2C-Like Slave Mode for External CPU Access Interface Timing Characteristics ......................................... 48 10.5.3. Slave MII Management SMI for External CPU Access Interface Timing Characteristics .............................. 49 10.5.4. Serial Shift Mode LED Interface Timing Characteristics ................................................................................ 50 10.5.5. SPI FLASH Interface Timing Characteristics ................................................................................................. 51 10.6. POWER AND RESET CHARACTERISTICS ...................................................................................................................... 52 Layer 2 Managed 8-port 10/100/1000 Switch Controller iii Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 11. 11.1. 12. MECHANICAL DIMENSIONS ................................................................................................................................. 53 RTL8370NI-VB: LQFP 128-PIN E-PAD PACKAGE .................................................................................................. 53 ORDERING INFORMATION ................................................................................................................................... 54 List of Tables TABLE 1. PIN ASSIGNMENT TABLE ................................................................................................................................................ 8 TABLE 2. MEDIA DEPENDENT INTERFACE PINS ........................................................................................................................... 11 TABLE 3. PARALLEL LED PINS ................................................................................................................................................... 12 TABLE 4. SCAN MODE LED PINS ................................................................................................................................................ 14 TABLE 5. SERIAL MODE LED PINS .............................................................................................................................................. 15 TABLE 6. SPI FLASH PINS ............................................................................................................................................................ 15 TABLE 7. CONFIGURATION STRAPPING PINS ............................................................................................................................... 15 TABLE 8. CONFIGURATION STRAPPING PINS (STRP_DISAUTOLOAD, STRP_DIS_8051, STRP_EN_FLASH) ..................... 17 TABLE 9. MISCELLANEOUS PINS ................................................................................................................................................. 17 TABLE 10. TEST PINS .................................................................................................................................................................... 18 TABLE 11. POWER AND GND PINS ................................................................................................................................................ 18 TABLE 12. MEDIA DEPENDENT INTERFACE PIN MAPPING............................................................................................................. 21 TABLE 13. IEEE 802.3 RESERVED GROUP ADDRESSES FILTERING CONTROL ............................................................................... 24 TABLE 14. LED DEFINITIONS........................................................................................................................................................ 32 TABLE 15. RTL8231 SHIFT REGISTER MODE STRAPPING PINS CONFIGURATION ......................................................................... 37 TABLE 16. SLAVE MII MANAGEMENT SMI ACCESS FORMAT....................................................................................................... 42 TABLE 17. ABSOLUTE MAXIMUM RATINGS .................................................................................................................................. 43 TABLE 18. RECOMMENDED OPERATING RANGE ........................................................................................................................... 43 TABLE 19. ASSEMBLY DESCRIPTION ............................................................................................................................................. 44 TABLE 20. MATERIAL PROPERTIES ............................................................................................................................................... 44 TABLE 21. SIMULATION CONDITIONS ........................................................................................................................................... 44 TABLE 22. THERMAL PERFORMANCE OF E-PAD LQFP-128 ON PCB UNDER STILL AIR CONVECTION .......................................... 45 TABLE 23. THERMAL PERFORMANCE OF E-PAD LQFP-128 ON PCB UNDER FORCED CONVECTION ............................................. 45 TABLE 24. DC CHARACTERISTICS................................................................................................................................................. 45 TABLE 25. I2C MASTER FOR EEPROM AUTO-LOAD TIMING CHARACTERISTICS ........................................................................ 47 TABLE 26. I2C-LIKE SLAVE FOR EXTERNAL CPU ACCESS INTERFACE TIMING CHARACTERISTICS.............................................. 48 TABLE 27. SLAVE SMI (MDC/MDIO) TIMING CHARACTERISTICS AND REQUIREMENTS ............................................................. 49 TABLE 28. SERIAL SHIFT MODE LED AC TIMING ........................................................................................................................ 50 TABLE 29. SPI FLASH AC TIMING .............................................................................................................................................. 51 TABLE 30. POWER AND RESET CHARACTERISTICS ........................................................................................................................ 52 TABLE 31. ORDERING INFORMATION ............................................................................................................................................ 54 Layer 2 Managed 8-port 10/100/1000 Switch Controller iv Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet List of Figures FIGURE 1. 8-PORT 1000BASE-T SWITCH ....................................................................................................................................... 5 FIGURE 2. BLOCK DIAGRAM .......................................................................................................................................................... 6 FIGURE 3. RTL8370NI-VB PIN ASSIGNMENTS ............................................................................................................................. 7 FIGURE 4. CONCEPTUAL EXAMPLE OF POLARITY CORRECTION .................................................................................................. 21 FIGURE 5. PROTOCOL-BASED VLAN FRAME FORMAT AND FLOW CHART.................................................................................. 27 FIGURE 6. RTL8370NI-VB MAX-MIN SCHEDULING DIAGRAM ................................................................................................ 29 FIGURE 7. PULL-UP AND PULL-DOWN OF LED PINS FOR SINGLE-COLOR LED........................................................................... 33 FIGURE 8. PULL-UP AND PULL-DOWN OF LED PINS FOR BI-COLOR LED................................................................................... 33 FIGURE 9. SCAN MODE LED CONNECTION DIAGRAM (GROUP A: SINGLE-COLOR LED (LED0))............................................... 34 FIGURE 10. SCAN MODE LED CONNECTION DIAGRAM (GROUP B: BI-COLOR LED (LED1 & LED2)) ........................................ 34 FIGURE 11. RTL8370NI-VB SERIAL LED MODE SHIFT SEQUENCE (PER-PORT THREE SINGLE-COLOR LED) ............................. 35 FIGURE 12. RTL8370NI-VB+74HC164 SERIAL LED CONNECTION DIAGRAM (PER-PORT THREE SINGLE-COLOR LED) ........... 36 FIGURE 13. RTL8231 SERIAL LED OUTPUT DATA SEQUENCE ..................................................................................................... 36 FIGURE 14. RTL8370NI-VB SERIAL LED MODE SHIFT SEQUENCE (PER-PORT TWO SINGLE-COLOR LEDS) ............................... 37 FIGURE 15. RTL8370NI-VB SERIAL LED MODE SHIFT SEQUENCE (PER-PORT ONE SINGLE-COLOR LED) ................................. 38 FIGURE 16. I2C START AND STOP COMMAND ............................................................................................................................... 40 FIGURE 17. I2C MASTER FOR EEPROM AUTO-LOAD INTERFACE CONNECTION EXAMPLE .......................................................... 40 FIGURE 18. 8-BIT EEPROM SEQUENTIAL READ .......................................................................................................................... 40 FIGURE 19. 16-BIT EEPROM SEQUENTIAL READ ........................................................................................................................ 40 FIGURE 20. I2C-LIKE SLAVE FOR EXTERNAL CPU ACCESS INTERFACE CONNECTION EXAMPLE ................................................. 41 FIGURE 21. I2C-LIKE SLAVE INTERFACE WRITE COMMAND ........................................................................................................ 41 FIGURE 22. I2C-LIKE SLAVE INTERFACE READ COMMAND .......................................................................................................... 41 FIGURE 23. SLAVE MII MANAGEMENT SMI INTERFACE CONNECTION EXAMPLE......................................................................... 42 FIGURE 24. SPI FLASH INTERFACE CONNECTION EXAMPLE ....................................................................................................... 42 FIGURE 25. I2C MASTER FOR EEPROM AUTO-LOAD TIMING CHARACTERISTICS ....................................................................... 46 FIGURE 26. I2C MASTER FOR EEPROM AUTO-LOAD POWER ON TIMING .................................................................................... 46 FIGURE 27. I2C MASTER FOR EEPROM AUTO-LOAD TIMING ..................................................................................................... 47 FIGURE 28. I2C-LIKE SLAVE MODE FOR EXTERNAL CPU ACCESS INTERFACE TIMING CHARACTERISTICS ................................. 48 FIGURE 29. MDIO SOURCED BY MASTER (EXTERNAL CPU) ........................................................................................................ 49 FIGURE 30. MDIO SOURCED BY SLAVE (RTL8370NI-VB) .......................................................................................................... 49 FIGURE 31. SERIAL SHIFT MODE LED TIMING CHARACTERISTICS ............................................................................................... 50 FIGURE 32. SPI FLASH TIMING CHARACTERISTICS ..................................................................................................................... 51 FIGURE 33. POWER AND RESET CHARACTERISTICS ....................................................................................................................... 52 Layer 2 Managed 8-port 10/100/1000 Switch Controller v Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 1. General Description The RTL8370NI-VB-CG is an LQFP128 E-PAD, high-performance 8-port Gigabit Ethernet switch. The RTL8370NI-VB features low-power integrated 8-port Giga-PHYs that support 1000Base-T, 100Base-T, and 10Base-T. The embedded packet storage SRAM in the RTL8370NI-VB features superior memory management technology to efficiently utilize memory space. The RTL8370NI-VB integrates a 4096-entry look-up table with a 4-way XOR Hashing algorithm for address searching and learning. The table provides read/write access from the Slave I2C-like interface or Slave MII Management interface, and each of the entries can be configured as a static entry. The entry aging time is between 200 and 400 seconds. Sixteen Filtering Databases are used to provide Independent VLAN Learning and Shared VLAN Learning (IVL/SVL) functions. The RTL8370NI-VB supports standard 802.3x flow control frames for full duplex, and optional backpressure for half duplex. It determines when to invoke the flow control mechanism by checking the availability of system resources, including the packet buffers and transmitting queues. The RTL8370NIVB supports broadcast/multicast output dropping, and will forward broadcast/multicast packets to nonblocked ports only. For IP multicast applications, the RTL8370NI-VB can forward IPv4 IGMPv1/v2/v3 and IPv6 MLDv1/v2 snooping protocol packets. In order to support flexible traffic classification, the RTL8370NI-VB supports 96-entry ACL rule check and multiple actions options. Each port can optionally enable or disable the ACL rule check function. The ACL rule key can be based on packet physical port, Layer2, Layer3, and Layer4 information. When an ACL rule matches, the action taken is configurable to Drop/Permit/Redirect/Mirror, change priority value in 802.1q/Q tag, and rate policing. The rate policing mechanism supports from 8Kbps to 1Gbps (in 8Kbps steps). In Bridge operation the RTL8370NI-VB supports 16 sets and four statuses: disable, block, learning, and forwarding for Spanning Tree Protocol and Multiple Spanning Tree Protocol. To meet security and management application requirements, the RTL8370NI-VB supports IEEE 802.1x Port-based/MAC-based Access Control. For those ports that do not pass IEEE 802.1x authentication, the RTL8370NI-VB provides a Port-based/MAC-based Guest VLAN function for them to access limited network resources. A 1-set Port Mirroring function is configured to mirror traffic (RX, TX, or both) appearing on one of the switch’s ports. Support is provided on each port for multiple RFC MIB Counters, for easy debug and diagnostics. To improve real-time or multimedia networking applications, the RTL8370NI-VB supports eight priority assignments for each received packet. These are based on (1) Port-based priority; (2) 802.1p/Q VLAN tag priority; (3) DSCP field in IPv4/IPv6 header; and (4) ACL-assigned priority; (5) CVLAN-based priority; (6) SVLAN-based priority; and (7) SMAC-based/LUTFWD-based priority. Each output port supports a weighted ratio of eight priority queues to fit bandwidth requirements in different applications. The input bandwidth control function helps limit per-port traffic utilization. There is one leaky bucket for average packet rate control for each queue of all ports. Queue scheduling algorithm can use Strict Priority (SP) or Weighted Fair Queue (WFQ) or mixed. The RTL8370NI-VB provides a 4096-entry VLAN table for 802.1Q port-based, tag-based, and protocolbased VLAN operation to separate logical connectivity from physical connectivity. The RTL8370NI-VB Layer 2 Managed 8-port 10/100/1000 Switch Controller 1 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet supports four Protocol-based VLAN configurations that can optionally select EtherType, LLC, and RFC1042 as the search key. Each port may be set to any topology. In embedded system applications, CPU may want to know the input port of the incoming packet. The RTL8370NI-VB supports an option to insert a VLAN tag with VID=Port VID (PVID) on each egress port. The RTL8370NI-VB also provides an option to admit VLAN tagged packets with a specific PVID only. If this function is enabled, the RTL8370NI-VB will drop all non-tagged packets and packets with an incorrect PVID. Layer 2 Managed 8-port 10/100/1000 Switch Controller 2 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet Features 2.  Single-chip 8-port gigabit non-blocking switch architecture  Embedded 8-port 10/100/1000Base-T PHY  Each port supports full duplex 10/100/1000M connectivity (half duplex only supported in 10/100M mode)  Full-duplex and half-duplex operation with IEEE 802.3x flow control and backpressure  Supports 9216-byte jumbo packet length forwarding at wire speed    Supports Port-based, Tag-based, and Protocol-based VLAN  Up to 4 Protocol-based VLAN entries  Supports per-port and per-VLAN egress VLAN tagging and un-tagging Supports IVL, SVL, and IVL/SVL  Supports 4096-entry MAC address table with 4-way hash algorithm, and 64-entry CAM  Up to 4096 L2/L3 Filtering Database Supports Spanning Tree port behavior configuration Supports Realtek Cable Test (RTCT) function  IEEE 802.1w Rapid Spanning Tree Supports 96-entry ACL Rules  IEEE 802.1s Multiple Spanning Tree with up to 16 Spanning Tree instances      Search keys support physical port, Layer2, Layer3, and Layer4 information  Actions support mirror, redirect, dropping, priority adjustment, traffic policing, CVLAN decision, and SVLAN assignment Supports IEEE 802.1x Access Control Protocol  Port-Based Access Control  MAC-Based Access Control  Guest VLAN  Supports 5 types of user defined ACL rule format for 96 ACL rules  Optional per-port enable/disable of ACL function  Supports per port Input Bandwidth Control  Optional setting of per-port action to take when ACL mismatch  Traffic classification based on IEEE 802.1p/Q priority definition, physical Port, IP DSCP field, ACL definition, VLAN based priority, MAC based priority, and SVLAN based priority  Eight Priority Queues per port  Per queue flow control  Min-Max Scheduling  Strict Priority and Weighted Fair Queue (WFQ) to provide minimum bandwidth  Supports Quality of Service (QoS) Supports IEEE 802.1Q VLAN  Supports 4096 VLANs and 32 Extra Enhanced VLANs  Supports Un-tag definition in each VLAN  Supports VLAN policing and VLAN forwarding decision Layer 2 Managed 8-port 10/100/1000 Switch Controller 3 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet        One leaky bucket to constrain the average packet rate of each queue Supports rate limiting (64 shared meters, with 8kpbs granulation) Supports RFC MIB Counter  MIB-II (RFC 1213)  Ethernet-Like MIB (RFC 3635)  Interface Group MIB (RFC 2863)  RMON (RFC 2819)  Bridge MIB (RFC 1493)  Bridge MIB Extension (RFC 2674) Supports Stacking VLAN and Port Isolation with 8 Enhanced Filtering Databases Supports 64 SVLANs  Supports 32 L2/IPv4 Multicast mappings to SVLAN Supports 4 IEEE 802.3ad Link aggregation port groups Supports OAM and EEE LLDP (Energy Efficient Ethernet Link Layer Discovery Protocol  Supports Loop Detection  Security Filtering Layer 2 Managed 8-port 10/100/1000 Switch Controller 4 Disable learning for each port  Disable learning-table aging for each port  Drop unknown DA for each port  Broadcast/Multicast/Unknown DA storm control protects system from attack by hackers  Supports Realtek Green Ethernet features  Link-On Cable Length Power Saving  Link-Down Power Saving  Each port supports 3 parallel LED or scan LED or serial shift LED outputs  Supports I2C-like Slave interface or Slave MII Management interface to access configuration register  Supports 16K-byte EEPROM space for configuration  Integrated 8051 microprocessor  Supports SPI Flash Interface  25MHz crystal input  RTL8370NI-VB: LQFP 128-pin E-PAD package Supports IEEE 802.1ad Stacking VLAN   Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 3.  System Applications 8-Port 1000Base-T Switch 3.1. 8-Port 1000Base-T Switch Address Table MIB Counter Packet Buffer Queue Manager EEPROM Host/I2C-like Slave ALE ACL Giga MAC 0 Giga MAC 1 Giga MAC 2 Giga MAC 3 Giga MAC 4 Giga MAC 5 Giga MAC 6 Giga MAC 7 Giga PHY 0 Giga PHY 1 Giga PHY 2 Giga PHY 3 Giga PHY 4 Giga PHY 5 Giga PHY 6 Giga PHY 7 RJ-45 Jack RJ-45 Jack RJ-45 Jack RJ-45 Jack RJ-45 Jack RJ-45 Jack RJ-45 Jack RJ-45 Jack Figure 1. 8-Port 1000Base-T Switch Layer 2 Managed 8-port 10/100/1000 Switch Controller 5 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet Block Diagram 4. RTL8370NI-VB Block Diagram UTP UTP UTP UTP UTP UTP UTP UTP Giga-PHY PCS P0 GMAC Giga-PHY PCS P1 GMAC Giga-PHY PCS P2 GMAC Giga-PHY PCS P3 GMAC Giga-PHY PCS P4 GMAC Giga-PHY PCS P5 GMAC Giga-PHY PCS P6 GMAC Giga-PHY PCS P7 GMAC SRAM Controller Queue Managment Packet Buffer SRAM Linking Lists 4096 MAC Address Table Lookup Engine 4096 VLAN Table LED LED GNIC MAC GNIC 8051 PLL I2C Host Flash Interface SPI FLASH 25MHz Crystal I2C Slave Control Registers + MIB Counter SCK/SDA Figure 2. Block Diagram Layer 2 Managed 8-port 10/100/1000 Switch Controller 6 Track ID: JATR-XXXX-XX Rev. 0.1 P2MDICP P2MDICN P2MDIDP P2MDIDN AVDDH P3MDIAP P3MDIAN P3MDIBP P3MDIBN AVDDL P3MDICP P3MDICN P3MDIDP P3MDIDN AVDDH AGND MDIREF AVDDL AVDDH DVDDL DVDDL DVDDL DVDDL AVDDH P4MDIAP P4MDIAN P4MDIBP P4MDIBN AVDDL P4MDICP P4MDICN P4MDIDP P4MDIDN AVDDH P5MDIAP P5MDIAN P5MDIBP P5MDIBN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 AVDDH SDA / MMD_MDIO SCK / MMD_MDC nRESET XTALI XTALO AVDDH DVDDL LED_CK / P0LED0 / SLED_P4B / STRP_SMI_SEL_0 LED_DA / P0LED1 / SLED_G2A DVDDL P0LED2 / SLED_P0_4A / GPIO2 / STRP_EN_PHY P1LED1 / SLED_P1_5A / STRP_EN_EEE P1LED0 / SLED_P2_6A / STRP_MID29 P1LED2 / SLED_P3_7A / STRP_SMI_SEL_1 P2LED1 / SLED_G1B / GPIO4 P2LED0 / SLED_P0B / STRP_DISAUTOLOAD P2LED2 / SLED_P1B / STRP_DIS_8051 P3LED0 / SLED_P2B / STRP_EN_FLASH P3LED2 / SLED_P3B / STRP_EN_PWRLIGHT P3LED1 / SLED_G1A / GPIO5 P4LED1 / SLED_P5B / GPIO6 P4LED0 / SLED_P6B / STRP_EEPROM_MOD P4LED2 / SLED_P7B / GPIO3 DVDDL DVDDIO DVDDL P5LED1 P5LED0 P5LED2 / GPIO0 P6LED1 / GPIO7 P6LED0 / GPIO1 P6LED2 / nSPI_F_CS P7LED1 / SPI_F_D1 P7LED0 / SPI_F_D0 P7LED2 / SPI_F_CLK GPIO9 GPIO8 RTL8370NI-VB Draft Datasheet 5. Pin Assignments 5.1. Pin Assignments P0MDIAP P0MDIAN P0MDIBP P0MDIBN AVDDL P0MDICP P0MDICN P0MDIDP P0MDIDN AVDDH P1MDIAP P1MDIAN P1MDIBP P1MDIBN AVDDL P1MDICP P1MDICN P1MDIDP P1MDIDN PLLVDDL0 ATESTCK0 P2MDIAP P2MDIAN P2MDIBP P2MDIBN AVDDL 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 RTL8370NI XXXXXXX GXXXB TAIWAN E-PAD: GND LQFP 128 E-PAD Layer 2 Managed 8-port 10/100/1000 Switch Controller 7 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 AVDDH P7MDIDN P7MDIDP P7MDICN P7MDICP AVDDL P7MDIBN P7MDIBP P7MDIAN P7MDIAP AVDDH P6MDIDN P6MDIDP P6MDICN P6MDICP AVDDL P6MDIBN P6MDIBP P6MDIAN P6MDIAP PLLVDDL1 P5MDIDN P5MDIDP P5MDICN P5MDICP AVDDL Package Size 14mm x 20mm Figure 3. RTL8370NI-VB Pin Assignments 5.2. Package Identification Green package is indicated by the ‘G’ in GXXXB (Figure 3). The version is indicated by the ‘B’. Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 5.3. Pin Assignment Table Upon Reset: Defined as a short time after the end of a hardware reset. After Reset: Defined as the time after the specified ‘Upon Reset’ time. I: Input Pin AI: Analog Input Pin O: Output Pin AO: Analog Output Pin I/O: Bi-Direction Input/Output Pin AI/O: Analog Bi-Direction Input/Output Pin P: Digital Power Pin AP: Analog Power Pin G: Digital Ground Pin AG: Analog Ground Pin IPU: Input Pin With Pull-Up Resistor; OPU: Output Pin With Pull-Up Resistor; (Typical Value = 75K Ohm) (Typical Value = 75K Ohm) IPD: Input Pin With Pull-Down Resistor; OPD: Output Pin With Pull-Down Resistor; (Typical Value = 75K Ohm) (Typical Value = 75K Ohm) IS: Input Pin With Schmitt Trigger Name P2MDICP P2MDICN P2MDIDP P2MDIDN AVDDH P3MDIAP P3MDIAN P3MDIBP P3MDIBN AVDDL P3MDICP P3MDICN P3MDIDP P3MDIDN AVDDH AGND MDIREF AVDDL AVDDH DVDDL Table 1. Pin Assignment Table Pin No. Type Name 1 AI/O DVDDL 2 AI/O DVDDL 3 AI/O DVDDL 4 AI/O AVDDH 5 AP P4MDIAP 6 AI/O P4MDIAN 7 AI/O P4MDIBP 8 AI/O P4MDIBN 9 AI/O AVDDL 10 AP P4MDICP 11 AI/O P4MDICN 12 AI/O P4MDIDP 13 AI/O P4MDIDN 14 AI/O AVDDH 15 AP P5MDIAP 16 AG P5MDIAN 17 AO P5MDIBP 18 AP P5MDIBN 19 AP AVDDL 20 P P5MDICP Layer 2 Managed 8-port 10/100/1000 Switch Controller 8 Pin No. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Type P P P AP AI/O AI/O AI/O AI/O AP AI/O AI/O AI/O AI/O AP AI/O AI/O AI/O AI/O AP AI/O Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet Name P5MDICN P5MDIDP P5MDIDN PLLVDDL1 P6MDIAP P6MDIAN P6MDIBP P6MDIBN AVDDL P6MDICP P6MDICN P6MDIDP P6MDIDN AVDDH P7MDIAP P7MDIAN P7MDIBP P7MDIBN AVDDL P7MDICP P7MDICN P7MDIDP P7MDIDN AVDDH GPIO8 GPIO9 P7LED2/SPI_F_CLK P7LED0/SPI_F_D0 P7LED1/SPI_F_D1 P6LED2/nSPI_F_CS P6LED0/GPIO1 P6LED1/GPIO7 P5LED2/GPIO0 P5LED0 P5LED1 DVDDL DVDDIO DVDDL P4LED2/SLED_P7B/GPIO3 P4LED0/SLED_P6B/ STRP_EEPROM_MOD P4LED1/SLED_P5B/GPIO6 P3LED1/SLED_G1A/GPIO5 Pin No. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 Type AI/O AI/O AI/O AP AI/O AI/O AI/O AI/O AP AI/O AI/O AI/O AI/O AP AI/O AI/O AI/O AI/O AP AI/O AI/O AI/O AI/O AP I/OPU I/OPU I/OPU I/OPU I/OPU I/OPU I/OPU I/OPU I/OPU I/OPU I/OPU P P P I/OPU I/OPU 81 82 I/OPU I/OPU Layer 2 Managed 8-port 10/100/1000 Switch Controller Name P3LED2/SLED_P3B/ STRP_EN_PWRLIGHT P3LED0/SLED_P2B/ STRP_EN_FLASH P2LED2/SLED_P1B/ STRP_DIS_8051 P2LED0/SLED_P0B/ STRP_DISAUTOLOAD P2LED1/SLED_G1B/GPIO4 P1LED2/SLED_P3_7A/ STRP_SMI_SEL_1 P1LED0/SLED_P2_6A/ STRP_MID29 P1LED1/SLED_P1_5A/STRP_EN _EEE P0LED2/SLED_P0_4A/GPIO2/ STRP_EN_PHY DVDDL LED_DA/P0LED1/SLED_G2A LED_CK/P0LED0/SLED_P4B/ STRP_SMI_SEL_0 DVDDL AVDDH XTALO XTALI nRESET SCK/MMD_MDC SDA/MMD_MDIO AVDDH P0MDIAP P0MDIAN P0MDIBP P0MDIBN AVDDL P0MDICP P0MDICN P0MDIDP P0MDIDN AVDDH P1MDIAP P1MDIAN P1MDIBP P1MDIBN AVDDL P1MDICP P1MDICN 9 Pin No. 83 Type I/OPU 84 I/OPU 85 I/OPU 86 I/OPU 87 88 I/OPU I/OPU 89 I/OPU 90 I/OPU 91 I/OPU 92 93 94 P I/OPU I/OPU 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 P AP AO AI IS I/OPU I/OPU AP AI/O AI/O AI/O AI/O AP AI/O AI/O AI/O AI/O AP AI/O AI/O AI/O AI/O AP AI/O AI/O Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet Name P1MDIDP P1MDIDN PLLVDDL0 ATESTCK0 P2MDIAP Pin No. 120 121 122 123 124 Type AI/O AI/O AP AO AI/O Layer 2 Managed 8-port 10/100/1000 Switch Controller Name P2MDIAN P2MDIBP P2MDIBN AVDDL GND 10 Pin No. 125 126 127 128 EPAD Type AI/O AI/O AI/O AP G Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 6. Pin Descriptions 6.1. Media Dependent Interface Pins Table 2. Media Dependent Interface Pins Pin Name P0MDIAP/N P0MDIBP/N P0MDICP/N P0MDIDP/N P1MDIAP/N P1MDIBP/N P1MDICP/N P1MDIDP/N P2MDIAP/N P2MDIBP/N P2MDICP/N P2MDIDP/N P3MDIAP/N P3MDIBP/N P3MDICP/N P3MDIDP/N P4MDIAP/N P4MDIBP/N P4MDICP/N P4MDIDP/N Pin No. Type Drive Description 103 104 105 106 108 109 110 111 113 114 115 116 118 119 120 121 124 125 126 127 1 2 3 4 6 7 8 9 11 12 13 14 25 26 27 28 30 31 32 33 AI/O (mA) 10 Port 0 Media Dependent Interface A~D. For 1000Base-T operation, differential data from the media is transmitted and received on all four pairs. For 100Base-Tx and 10Base-T operation, only MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs MDIAP/N and MDIBP/N. Each of the differential pairs has an internal 100-ohm termination resistor. AI/O 10 Port 1 Media Dependent Interface A~D. For 1000Base-T operation, differential data from the media is transmitted and received on all four pairs. For 100Base-Tx and 10Base-T operation, only MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs MDIAP/N and MDIBP/N. Each of the differential pairs has an internal 100-ohm termination resistor. AI/O 10 Port 2 Media Dependent Interface A~D. For 1000Base-T operation, differential data from the media is transmitted and received on all four pairs. For 100Base-Tx and 10Base-T operation, only MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs MDIAP/N and MDIBP/N. Each of the differential pairs has an internal 100-ohm termination resistor. AI/O 10 Port 3 Media Dependent Interface A~D. For 1000Base-T operation, differential data from the media is transmitted and received on all four pairs. For 100Base-Tx and 10Base-T operation, only MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs MDIAP/N and MDIBP/N. Each of the differential pairs has an internal 100-ohm termination resistor. AI/O 10 Port 4 Media Dependent Interface A~D. For 1000Base-T operation, differential data from the media is transmitted and received on all four pairs. For 100Base-Tx and 10Base-T operation, only MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs MDIAP/N and MDIBP/N. Each of the differential pairs has an internal 100-ohm termination resistor. Layer 2 Managed 8-port 10/100/1000 Switch Controller 11 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet Pin Name P5MDIAP/N P5MDIBP/N P5MDICP/N P5MDIDP/N P6MDIAP/N P6MDIBP/N P6MDICP/N P6MDIDP/N P7MDIAP/N P7MDIBP/N P7MDICP/N P7MDIDP/N Pin No. Type Drive Description 35 36 37 38 40 41 42 43 45 46 47 48 50 51 52 53 55 56 57 58 60 61 62 63 AI/O (mA) 10 Port 5 Media Dependent Interface A~D. For 1000Base-T operation, differential data from the media is transmitted and received on all four pairs. For 100Base-Tx and 10Base-T operation, only MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs MDIAP/N and MDIBP/N. Each of the differential pairs has an internal 100-ohm termination resistor. AI/O 10 Port 6 Media Dependent Interface A~D. For 1000Base-T operation, differential data from the media is transmitted and received on all four pairs. For 100Base-Tx and 10Base-T operation, only MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs MDIAP/N and MDIBP/N. Each of the differential pairs has an internal 100-ohm termination resistor. AI/O 10 Port 7 Media Dependent Interface A~D. For 1000Base-T operation, differential data from the media is transmitted and received on all four pairs. For 100Base-Tx and 10Base-T operation, only MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs MDIAP/N and MDIBP/N. Each of the differential pairs has an internal 100-ohm termination resistor. 6.2. Parallel LED Pins Table 3. Parallel LED Pins Pin Name Pin No. Type Drive Description P7LED2/ SPI_F_CLK 67 I/OPU (mA) - P7LED0/ SPI_F_D0 P7LED1/ SPI_F_D1 P6LED2/ nSPI_F_CS P6LED0/GPIO1 68 I/OPU - 69 I/OPU - 70 I/OPU - 71 I/OPU - P6LED1/GPIO7 72 I/OPU - P5LED2/GPIO0 73 I/OPU - Port 7 LED2 Output Signal. P7LED2 indicates information is defined by register or EEPROM. Port 7 LED0 Output Signal. P7LED0 indicates information is defined by register or EEPROM. Port 7 LED1 Output Signal. P7LED1 indicates information is defined by register or EEPROM. Port 6 LED2 Output Signal. P6LED2 indicates information is defined by register or EEPROM. Port 6 LED0 Output Signal. P6LED0 indicates information is defined by register or EEPROM. Port 6 LED1 Output Signal. P6LED1 indicates information is defined by register or EEPROM. Port 5 LED2 Output Signal. P5LED2 indicates information is defined by register or EEPROM. Layer 2 Managed 8-port 10/100/1000 Switch Controller 12 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet Pin Name Pin No. Type Drive Description P5LED0 74 I/OPU (mA) - P5LED1 75 I/OPU - P4LED2 79 I/OPU - P4LED0/ STRP_EEPROM_ MOD P4LED1/GPIO6 80 I/OPU - 81 I/OPU - P3LED1/GPIO5 82 I/OPU - P3LED2/ STRP_EN_PWRL IGHT P3LED0/ STRP_EN_FLAS H P2LED2/ STRP_DIS_8051 P2LED0/ STRP_DISAUTO LOAD P2LED1/GPIO4 83 I/OPU - 84 I/OPU - Port 3 LED0 Output Signal. P3LED0 indicates information is defined by register or EEPROM. 85 I/OPU - 86 I/OPU - Port 2 LED2 Output Signal. P2LED2 indicates information is defined by register or EEPROM. Port 2 LED0 Output Signal. P2LED0 indicates information is defined by register or EEPROM. 87 I/OPU - P1LED2/ STRP_SMI_SEL_ 1 P1LED0/ STRP_MID29 88 I/OPU - 89 I/OPU - P1LED1/ STRP_EN_EEE P0LED2/GPIO2/ STRP_EN_PHY P0LED1/ LED_DA P0LED0/ LED_CK/ STRP_SMI_SEL_ 0 90 I/OPU - 91 I/OPU - 93 I/OPU - 94 I/OPU - Port 5 LED0 Output Signal. P5LED0 indicates information is defined by register or EEPROM. Port 5 LED1 Output Signal. P5LED1 indicates information is defined by register or EEPROM. Port 4 LED2 Output Signal. P4LED2 indicates information is defined by register or EEPROM. Port 4 LED0 Output Signal. P4LED0 indicates information is defined by register or EEPROM. Port 4 LED1 Output Signal. P4LED1 indicates information is defined by register or EEPROM. Port 3 LED1 Output Signal. P3LED1 indicates information is defined by register or EEPROM. Port 3 LED2 Output Signal. P3LED2 indicates information is defined by register or EEPROM. Port 2 LED1 Output Signal. P2LED1 indicates information is defined by register or EEPROM. Port 1 LED2 Output Signal. P1LED2 indicates information is defined by register or EEPROM. Port 1 LED0 Output Signal. P1LED0 indicates information is defined by register or EEPROM. Port 1 LED1 Output Signal. P1LED1 indicates information is defined by register or EEPROM. Port 0 LED2 Output Signal. P0LED2 indicates information is defined by register or EEPROM. Port 0 LED1 Output Signal. P0LED1 indicates information is defined by register or EEPROM. Port 0 LED0 Output Signal. P0LED0 indicates information is the same as P7LED0 and is defined by register or EEPROM. Layer 2 Managed 8-port 10/100/1000 Switch Controller 13 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 6.3. Scan Mode LED Pins Table 4. Scan Mode LED Pins Pin Name Pin No. Type Drive Description (mA) SLED_G1A/P3LED1 82 I/OPU Scan Mode LED Group A G1A Output Signal. /GPIO5 SLED_G2A/LED_DA 93 I/OPU Scan Mode LED Group A G2A Output Signal. /P0LED1 SLED_P0_4A/GPIO2 91 I/OPU Scan Mode LED Group A P0_4A Output Signal. /STRP_EN_PHY/ P0LED2 SLED_P1_5A 90 I/OPU Scan Mode Group A LED P1_5A Output Signal. /P1LED1/ STRP_EN_EEE SLED_P2_6A/ 89 I/OPU Scan Mode LED Group A P2_6A Output Signal. P1LED0/ STRP_MID29 SLED_P3_7A 88 I/OPU Scan Mode LED Group A P3_7A Output Signal. /P1LED2/ STRP_SMI_SEL_1 SLED_G1B/P2LED1 87 I/OPU Scan Mode LED Group B G1B Output Signal. /GPIO4 SLED_P0B/P2LED0 86 I/OPU Scan Mode LED Group B P0B Output Signal. /STRP_DISAUTOLO AD SLED_P1B/P2LED2 85 I/OPU Scan Mode LED Group B P1B Output Signal. /STRP_DIS_8051 SLED_P2B/P3LED0/ 84 I/OPU Scan Mode LED Group B P2B Output Signal. STRP_EN_FLASH SLED_P3B/P3LED2/ 83 I/OPU Scan Mode LED Group B P3B Output Signal. STRP_EN_PWRLIGH T SLED_P4B/LED_CK 94 I/OPU Scan Mode LED Group B P4B Output Signal. /P0LED0/ STRP_SMI_SEL_0 SLED_P5B/P4LED1 81 I/OPU Scan Mode LED Group B P5B Output Signal. /GPIO6 SLED_P6B/P4LED0 80 I/OPU Scan Mode LED Group B P6B Output Signal. /STRP_EEPROM_MO D SLED_P7B/P4LED2 79 I/OPU Scan Mode LED Group B P7B Output Signal. /GPIO3 Note: See section 8.19.2 Scan LED Mode, page 34 for details. Layer 2 Managed 8-port 10/100/1000 Switch Controller 14 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 6.4. Serial Mode LED Pins Table 5. Serial Mode LED Pins Pin Name LED_DA/ P0LED1 LED_CK/P0LED0/ STRP_SMI_SEL_0 Pin No. Type Drive Description 93 94 I/OPU I/OPU (mA) - Serial Shift Mode LED Data Signal. Serial Shift Mode LED Clock Signal. 6.5. SPI Flash Pins Table 6. SPI Flash Pins Pin Name Pin No. Type Drive Description nSPI_F_CS/P6LED2 SPI_F_D1/P7LED1 70 69 I/OPU I/OPU (mA) 8 8 SPI_F_D0/P7LED0 68 I/OPU 8 SPI_F_CLK/P7LED2 67 I/OPU 8 SPI FLASH chip select signal. In Serial I/O Mode SPI Serial FLASH Serial Data Output (RTL8370NI-VB input pin) In Dual I/O Mode SPI FLASH bi-directional pin (this is MSB) In Serial I/O Mode SPI Serial FLASH Serial Data Input (RTL8370NI-VB output pin) In Dual I/O Mode SPI FLASH bi-directional pin (this is LSB) SPI FLASH Clock. 6.6. Configuration Strapping Pins Table 7. Configuration Strapping Pins Pin Name STRP_EEPROM_MOD/ P4LED0 Pin No. 80 Type I/OPU Description EEPROM Mode Selection. Pull Up: EEPROM 24Cxx Size greater than 16Kbits (24C32~) Pull Down: EEPROM 24Cxx Size less than or equal to 16Kbit (24C02~24C16). Note: This pin must be kept floating, or pulled high or low via an external 4.7k ohm resistor upon power on or reset. When this pin is pulled low, the LED output polarity will be high active. When this pin is pulled high, the LED output polarity will change from high active to low active. Layer 2 Managed 8-port 10/100/1000 Switch Controller 15 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet Pin Name STRP_EN_PWRLIGHT/ P3LED2 Pin No. 83 Type I/OPU STRP_EN_FLASH/ P3LED0 84 I/OPU STRP_DIS_8051/P2LED2 85 I/OPU STRP_DISAUTOLOAD/ P2LED0 86 I/OPU STRP_SMI_SEL_1/ P1LED2 88 I/OPU STRP_SMI_SEL_0/ P0LED0 94 I/OPU Description Enable LED Power On Light. Pull Up: Enable LED Power On Light upon power on or reset Pull Down: Disable LED Power On Light upon power on or reset Note: This pin must be kept floating, or pulled high or low via an external 4.7k ohm resistor upon power on or reset. When this pin is pulled low, the LED output polarity will be high active. When this pin is pulled high, the LED output polarity will change from high active to low active. Enable SPI Flash Interface Pull Up: Enable SPI Flash Interface upon power on or reset Pull Down: Disable SPI Flash Interface upon power on or reset Note 1: Please Refer chapter 6.7 for detail description. Note 2: This pin must be kept floating, or pulled high or low via an external 4.7k ohm resistor upon power on or reset. When this pin is pulled low, the LED output polarity will be high active. When this pin is pulled high, the LED output polarity will change from high active to low active. Disable Embedded 8051. Pull Up: Disable embedded 8051 upon power on or reset Pull Down: Enable embedded 8051 upon power on or reset Note 1: Please Refer chapter 6.7 for detail description. Note 2: This pin must be kept floating, or pulled high or low via an external 4.7k ohm resistor upon power on or reset. When this pin is pulled low, the LED output polarity will be high active. When this pin is pulled high, the LED output polarity will change from high active to low active. Disable EEPROM or SPI FLASH Auto download. Pull Up: Disable EEPROM or SPI FLASH auto download upon power on or reset Pull Down: Enable EEPROM or SPI FLASH auto download upon power on or reset Note1: Please Refer chapter 6.7 for detail description. Note2: This pin must be kept floating, or pulled high or low via an external 4.7k ohm resistor upon power on or reset. When this pin is pulled low, the LED output polarity will be high active. When this pin is pulled high, the LED output polarity will change from high active to low active. External CPU Access Interface Selection. STRP_SMI_SEL[1:0]: 00:LSB I2C mode 01:MSB I2C mode 10:Slave MII Management MDC/MDIO 11:Realtek I2C-like mode Note: These pin must be kept floating, or pulled high or low via an external 4.7k ohm resistor upon power on or reset. When this pin is pulled low, the LED output polarity will be high active. When this pin is pulled high, the LED output polarity will change from high active to low active. Layer 2 Managed 8-port 10/100/1000 Switch Controller 16 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet Pin Name STRP_MID29/P1LED0 Pin No. 89 Type I/OPU STRP_EN_EEE/P1LED1 90 I/OPU STRP_EN_PHY/P0LED2 91 I/OPU Description Select Slave MII Management MDC/MDIO Device ID. Pull Down: MDC/MDIO DEVID=0 upon power on or reset Pull Up: MDC/MDIO DEVID=29 upon power on or reset Note: This pin must be kept floating, or pulled high or low via an external 4.7k ohm resistor upon power on or reset. When this pin is pulled low, the LED output polarity will be high active. When this pin is pulled high, the LED output polarity will change from high active to low active. EEE Enable/Disable Pull Up: Enable MAC/PHY 100Base-TX & 1000Base-T EEE upon power on or reset Pull Down: Disable MAC/PHY 100Base-TX & 1000Base-T EEE upon power on or reset Note: This pin must be kept floating, or pulled high or low via an external 4.7k ohm resistor upon power on or reset. When this pin is pulled low, the LED output polarity will be high active. When this pin is pulled high, the LED output polarity will change from high active to low active. Enable Embedded PHY. Pull Up: Enable embedded PHY upon power on or reset Pull Down: Disable embedded PHY upon power on or reset Note: This pin must be kept floating, or pulled high or low via an external 4.7k ohm resistor upon power on or reset. When this pin is pulled low, the LED output polarity will be high active. When this pin is pulled high, the LED output polarity will change from high active to low active. 6.7. Configuration Strapping Pins (STRP_DISAUTOLOAD, STRP_DIS_8051, STRP_EN_FLASH) Table 8. Configuration Strapping Pins (STRP_DISAUTOLOAD, STRP_DIS_8051, STRP_EN_FLASH) STRP_DIS STRP_EN STRP_DISAUTOLOAD Initial Stage (Power On or Reset) Loading Data _8051 _FLASH From To 0 0 0 EEPROM Embedded 8051 Instruction Memory 0 0 1 SPI FLASH Embedded 8051 Instruction Memory 0 1 0 EEPROM Register 1 Irrelevant Irrelevant Do Nothing Do Nothing 6.8. Miscellaneous Pins Table 9. Miscellaneous Pins Pin Name XTALI Pin No. 98 Type AI Description 25MHz Crystal Clock Input Pin. 25MHz +/-50ppm tolerance crystal reference input. Layer 2 Managed 8-port 10/100/1000 Switch Controller 17 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet Pin Name XTALO Pin No. 97 Type AO MDIREF 17 AO GPIO8 GPIO9 GPIO1/P6LED0 GPIO7/P6LED1 GPIO0/P5LED2 GPIO3/P4LED2 GPIO6/P4LED1 GPIO5/P3LED1 GPIO4/P2LED1 GPIO2/P0LED2 SCK/MMD_MDC 65 66 71 72 73 79 81 82 87 91 100 I/OPU I/OPU I/OPU I/OPU I/OPU I/OPU I/OPU I/OPU I/OPU I/OPU I/OPU SDA/MMD_MDI O nRESET 101 I/OPU 99 IS/PU Description 25MHz Crystal Clock Output Pin. 25MHz +/-50ppm tolerance crystal output. Reference Resistor. A 2.49K ohm (1%) resistor must be connected between MDIREF and GND. General Purpose Input/Output Interfaces IO8. General Purpose Input/Output Interfaces IO9. General Purpose Input/Output Interfaces IO1. General Purpose Input/Output Interfaces IO7. General Purpose Input/Output Interfaces IO0. General Purpose Input/Output Interfaces IO3. General Purpose Input/Output Interfaces IO6. General Purpose Input/Output Interfaces IO5. General Purpose Input/Output Interfaces IO4. General Purpose Input/Output Interfaces IO2. EEPROM I2C Host Interface Clock/Slave I2C-like Interface Clock/Slave MII Management Interface Clock EEPROM I2C Host Interface Data/Slave I2C-like Interface Data/Slave MII Management Interface Data System Reset Input Pin. When low active will reset the RTL8370NI-VB. 6.9. Test Pins Table 10. Test Pins Pin Name ATESTCK0 Pin No. 123 Type AO Description Reserved for Internal Use. Must be left floating. 6.10. Power and GND Pins Table 11. Power and GND Pins Pin Name DVDDIO DVDDL AVDDH AVDDL PLLVDDL0 PLLVDDL1 GND AGND Pin No. 77 20, 21, 22, 23, 76, 78, 92, 95 5, 15, 19, 24, 34, 54, 64, 96, 102, 112 10, 18, 29, 39, 49, 59, 107, 117, 128 122 44 EPAD 16 Type P P Description Digital I/O High Voltage Power. Digital Low Voltage Power. AP Analog High Voltage Power. AP Analog Low Voltage Power. AP AP G AG PLL0 Low Voltage Power. PLL1 Low Voltage Power. GND. Analog GND. Layer 2 Managed 8-port 10/100/1000 Switch Controller 18 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 7. Physical Layer Functional Overview 7.1. MDI Interface The RTL8370NI-VB embeds eight Gigabit Ethernet PHYs in one chip. Each port uses a single common MDI interface to support 1000Base-T, 100Base-Tx, and 10Base-T. This interface consists of four signal pairs-A, B, C, and D. Each signal pair consists of two bi-directional pins that can transmit and receive at the same time. The MDI interface has internal termination resistors, and therefore reduces BOM cost and PCB complexity. For 1000Base-T, all four pairs are used in both directions at the same time. For 10/100 links and during auto-negotiation, only pairs A and B are used. 7.2. 1000Base-T Transmit Function The 1000Base-TX transmit function performs 8B/10B coding, scrambling, and 4D-PAM5 encoding. These code groups are passed through a waveform-shaping filter to minimize EMI effects, and are transmitted onto 4-pair CAT5 cable at 125MBaud/s through a D/A converter. 7.3. 1000Base-T Receive Function Input signals from the media pass through the sophisticated on-chip hybrid circuit to subtract the transmitted signal from the input signal for effective reduction of near-end echo. The received signal is then processed with state-of-the-art technology, e.g., adaptive equalization, BLW (Baseline Wander) correction, cross-talk cancellation, echo cancellation, timing recovery, error correction, and 4D-PAM5 decoding. The 8-bit-wide data is recovered and is sent to the GMII interface at a clock speed of 125MHz. The RX MAC retrieves the packet data from the internal receive MII/GMII interface and sends it to the packet buffer manager. 7.4. 100Base-TX Transmit Function The 100Base-TX transmit function performs parallel to serial conversion, 4B/5B coding, scrambling, NRZ/NRZI conversion, and MLT-3 encoding. The 5-bit serial data stream after 4B/5B coding is then scrambled as defined by the TP-PMD Stream Cipher function to flatten the power spectrum energy such that EMI effects can be reduced significantly. The scrambled seed is based on PHY addresses and is unique for each port. After scrambling, the bit stream is driven onto the network media in the form of MLT-3 signaling. The MLT-3 multi-level signaling technology moves the power spectrum energy from high frequency to low frequency, which also reduces EMI emissions. Layer 2 Managed 8-port 10/100/1000 Switch Controller 19 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 7.5. 100Base-TX Receive Function The receive path includes a receiver composed of an adaptive equalizer and DC restoration circuits (to compensate for an incoming distorted MLT-3 signal), an MLT-3 to NRZI and NRZI to NRZ converter to convert analog signals to digital bit-stream, and a PLL circuit to clock data bits with minimum bit error rate. A de-scrambler, 5B/4B decoder, and serial-to-parallel conversion circuits are followed by the PLL circuit. Finally, the converted parallel data is fed into the MAC. 7.6. 10Base-T Transmit Function The output 10Base-T waveform is Manchester-encoded before it is driven onto the network media. The internal filter shapes the driven signals to reduce EMI emissions, eliminating the need for an external filter. 7.7. 10Base-T Receive Function The Manchester decoder converts the incoming serial stream to NRZ data when the squelch circuit detects the signal level is above squelch level. 7.8. Auto-Negotiation for UTP The RTL8370NI-VB obtains the states of duplex, speed, and flow control ability for each port in UTP mode through the auto-negotiation mechanism defined in the IEEE 802.3 specifications. During autonegotiation, each port advertises its ability to its link partner and compares its ability with advertisements received from its link partner. By default, the RTL8370NI-VB advertises full capabilities (1000Full, 100Full, 100Half, 10Full, 10Half) together with flow control ability. Layer 2 Managed 8-port 10/100/1000 Switch Controller 20 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 7.9. Crossover Detection and Auto Correction The RTL8370NI-VB automatically determines whether or not it needs to crossover between pairs (see Table 12) so that an external crossover cable is not required. When connecting to another device that does not perform MDI crossover, when necessary, the RTL8370NI-VB automatically switches its pin pairs to communicate with the remote device. When connecting to another device that does have MDI crossover capability, an algorithm determines which end performs the crossover function. The crossover detection and auto correction function can be disabled via register configuration. The pin mapping in MDI and MDI Crossover mode is given below. Pairs A B C D Table 12. Media Dependent Interface Pin Mapping MDI MDI Crossover 1000Base-T 100Base-TX 10Base-T 1000Base-T 100Base-TX A TX TX B RX B RX RX A TX C Unused Unused D Unused D Unused Unused C Unused 10Base-T RX TX Unused Unused 7.10. Polarity Correction The RTL8370NI-VB automatically corrects polarity errors on the receiver pairs in 1000Base-T and 10Base-T modes. In 100Base-TX mode, the polarity is irrelevant. In 1000Base-T mode, receive polarity errors are automatically corrected based on the sequence of idle symbols. Once the de-scrambler is locked, the polarity is also locked on all pairs. The polarity becomes unlocked only when the receiver loses lock. In 10Base-T mode, polarity errors are corrected based on the detection of valid spaced link pulses. The detection begins during the MDI crossover detection phase and locks when the 10Base-T link is up. The polarity becomes unlocked when the link is down. Link Partner Switch Controller + RX _ TX + _ TX _ + + _ + _ RX Figure 4. Conceptual Example of Polarity Correction Layer 2 Managed 8-port 10/100/1000 Switch Controller 21 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet General Function Description 8. 8.1. Reset 8.1.1. Hardware Reset In a power-on reset, an internal power-on reset pulse is generated and the RTL8370NI-VB will start the reset initialization procedures. These are:      Determine various default settings via the hardware strap pins at the end of the nRESET signal Autoload the configuration from EEPROM if EEPROM is detected Complete the embedded SRAM BIST process Initialize the packet buffer descriptor allocation Initialize the internal registers and prepare them to be accessed by the external CPU 8.1.2. Software Reset The RTL8370NI-VB supports two software resets; a chip reset and a soft reset. 8.1.2.1 CHIP_RESET When CHIP_RESET is set to 0b1 (write and self-clear), the chip will take the following steps: 1. Download configuration from strap pin and EEPROM 2. Start embedded SRAM BIST (Built-In Self Test) 3. Clear all the Lookup and VLAN tables 4. Reset all registers to default values 5. Restart the auto-negotiation process 8.1.2.2 SOFT_RESET When SOFT_RESET is set to 0b1 (write and self-clear), the chip will clear the FIFO and re-start the packet buffer link list. 8.2. IEEE 802.3x Full Duplex Flow Control The RTL8370NI-VB supports IEEE 802.3x flow control in 10/100/1000M modes. Flow control can be decided in two ways:   When Auto-Negotiation is enabled, flow control depends on the result of NWay When Auto-Negotiation is disabled, flow control depends on register definition Layer 2 Managed 8-port 10/100/1000 Switch Controller 22 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 8.3. Half Duplex Flow Control In half-duplex mode, the CSMA/CD media access method is the means by which two or more stations share a common transmission medium. To transmit, a station waits (defers) for a quiet period on the medium (that is, no other station is transmitting) and then sends the intended message in bit-serial form. If the message collides with that of another station, then each transmitting station intentionally transmits for an additional predefined period to ensure propagation of the collision throughout the system. The station remains silent for a random amount of time (backoff) before attempting to transmit again. When a transmission attempt has terminated due to a collision, it is retried until it is successful. The scheduling of the retransmissions is determined by a controlled randomization process called “truncated binary exponential backoff”. At the end of enforcing a collision (jamming), the switch delays before attempting to retransmit the frame. The delay is an integer multiple of slot time (512 bit times). The number of slot times to delay before the nth retransmission attempt is chosen as a uniformly distributed random integer ‘r’ in the range: 0 ≤ r < 2k where: k = min (n, backoffLimit). The backoffLimit for the RTL8370NI-VB is 9. The half-duplex back-off algorithm in the RTL8370NI-VB does not have the maximum retry count limitation of 16 (as defined in IEEE 802.3). This means packets in the switch will not be dropped if the back-off retry count is over 16. 8.3.1. Back-Pressure Mode In Back-Pressure mode, the RTL8370NI-VB sends a 12-byte jam pattern (preamble+SFD+4bytes 0xAA) to collide with incoming packets when congestion control is activated. RTL8370NI-VB supports 48PASS1 function, which receives one packet after 48 consecutive jam collisions (data collisions are not included in the 48). Enable this function to prevent port partition after 63 consecutive collisions (data collisions + consecutive jam collisions). 8.4. Search and Learning Search When a packet is received, the RTL8370NI-VB uses the destination MAC address, Filtering Identifier (FID) and enhanced Filtering Identifier (FID) to search the 4096-entry look-up table. The 48-bit MAC address, 4-bit FID and 3-bit EFID use a hash algorithm to calculate a 12-bit index value. The RTL8370NI-VB uses the index to compare the packet MAC address with the entries (MAC addresses) in the look-up table. This is the ‘Address Search’. If the destination MAC address is not found, the switch will broadcast the packet according to VLAN configuration. Learning The RTL8370NI-VB uses the source MAC address, FID, and EFID of the incoming packet to hash into a 12-bit index. It then compares the source MAC address with the data (MAC addresses) in this index. If there is a match with one of the entries, the RTL8370NI-VB will update the entry with new information. If there is no match and the 4096 entries are not all occupied by other MAC addresses, the RTL8370NILayer 2 Managed 8-port 10/100/1000 Switch Controller 23 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet VB will record the source MAC address and ingress port number into an empty entry. This process is called ‘Learning’. The RTL8370NI-VB supports a 64-entry Content Addressable Memory (CAM) to avoid look-up table hash collisions. When all 4K entries in the look-up table index are occupied, the source MAC address can be learned into the 64-entry CAM. If both the look-up table and the CAM are full, the source MAC address will not be learned in the RTL8370NI-VB. Address aging is used to keep the contents of the address table correct in a dynamic network topology. The look-up engine will update the time stamp information of an entry whenever the corresponding source MAC address appears. An entry will be invalid (aged out) if its time stamp information is not refreshed by the address learning process during the aging time period. The aging time of the RTL8370NI-VB is between 200 and 400 seconds (typical is 300 seconds). 8.5. SVL and IVL/SVL The RTL8370NI-VB supports a 4K-group Filtering Identifier (FID) for L2 search and learning. In default operation, all VLAN entries belong to the same FID. This is called Shared VLAN Learning (SVL). If VLAN entries are configured to different FIDs, then the same source MAC address with multiple FIDs can be learned into different look-up table entries. This is called Independent VLAN Learning and Shared VLAN Learning (IVL/SVL). 8.6. Illegal Frame Filtering Illegal frames such as CRC error packets, runt packets (length maximum length) will be discarded by the RTL8370NI-VB. The maximum packet length may be set to 1522, 1536, 1552, or 16384 bytes. 8.7. IEEE 802.3 Reserved Group Addresses Filtering Control The RTL8370NI-VB supports the ability to drop/forward IEEE 802.3 specified reserved group MAC addresses: 01-80-C2-00-00-00 to 01-80-C2-00-00-2F. The default setting enables forwarding of these reserved group MAC address control frames. Frames with group MAC address 01-80-C2-00-00-01 (802.3x Pause) and 01-80-C2-00-00-02 (802.3ad LACP) will always be filtered. Table 13 shows the Reserved Multicast Address (RMA) configuration mode from 01-80-C2-00-00-00 to 01-80-C2-00-00-2F. Table 13. IEEE 802.3 Reserved Group Addresses Filtering Control Assignment Bridge Group Address IEEE Std 802.3, 1988 Edition, Full Duplex PAUSE Operation IEEE Std 802.3ad Slow Protocols-Multicast Address IEEE Std 802.1X PAE Address All LANs Bridge Management Group Address GMRP Address Layer 2 Managed 8-port 10/100/1000 Switch Controller 24 Value 01-80-C2-00-00-00 01-80-C2-00-00-01 01-80-C2-00-00-02 01-80-C2-00-00-03 01-80-C2-00-00-10 01-80-C2-00-00-20 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet Assignment GVRP Address Undefined 802.1 Bridge Address Value 01-80-C2-00-00-21 01-80-C2-00-00-04 | 01-80-C2-00-00-0F 01-80-C2-00-00-22 | 01-80-C2-00-00-2F Undefined GARP Address 8.8. Broadcast/Multicast/Unknown DA Storm Control The RTL8370NI-VB enables or disables per-port broadcast/multicast/unknown DA storm control by setting registers (default is disabled). After the receiving rate of broadcast/multicast/unknown DA packets exceeds a reference rate, all other broadcast/multicast/unknown DA packets will be dropped. The reference rate is set via register configuration. 8.9. Port Security Function The RTL8370NI-VB supports three types of security function to prevent malicious attacks:    Per-port enable/disable SA auto-learning for an ingress packet Per-port enable/disable look-up table aging update function for an ingress packet Per-port enable/disable drop all unknown DA packets 8.10. MIB Counters The RTL8370NI-VB supports a set of counters to support management functions.       MIB-II (RFC 1213) Ethernet-Like MIB (RFC 3635) Interface Group MIB (RFC 2863) RMON (RFC 2819) Bridge MIB (RFC 1493) Bridge MIB Extension (RFC 2674) 8.11. Port Mirroring The RTL8370NI-VB supports one set of port mirroring functions for all ports. The TX, or RX, or both TX/RX packets of the source port can be monitored from a mirror port. Layer 2 Managed 8-port 10/100/1000 Switch Controller 25 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 8.12. VLAN Function The RTL8370NI-VB supports 4K VLAN groups. These can be configured as port-based VLANs, IEEE 802.1Q tag-based VLANs, and Protocol-based VLANs. Two ingress-filtering and egress-filtering options provide flexible VLAN configuration: Ingress Filtering  Acceptable frame types of the ingress process can be set to ‘admit all’, ‘admit untagged only’, and ‘admit tagged only’  ‘Admit’ or ‘Discard’ frames associated with a VLAN for which that port is not in the member set Egress Filtering  ‘Forward’ or ‘Discard’ Leaky VLAN frames between different VLAN domains  ‘Forward’ or ‘Discard’ Multicast VLAN frames between different VLAN domains The VLAN tag can be inserted or removed at the output port. The RTL8370NI-VB will insert a Port VID (PVID) for untagged frames, or remove the tag from tagged frames. The RTL8370NI-VB also supports a special insert VLAN tag function to separate traffic from the WAN and LAN sides in Router and Gateway applications. In embedded system applications, the CPU may want to know which input port this packet came from. The RTL8370NI-VB supports Port VID (PVID) for each port and can insert a PVID in the VLAN tag on egress. Using this function, VID information carried in the VLAN tag will be changed to PVID. The RTL8370NI-VB also provides an option to admit VLAN tagged packets with a specific PVID only. If this function is enabled, it will drop non-tagged packets and packets with an incorrect PVID. 8.12.1. Port-Based VLAN This default configuration of the VLAN function can be modified via an I2C-like Slave or Slave MII Management interface. The 4096-entry VLAN Table designed into the RTL8370NI-VB provides full flexibility for users to configure the input ports to associate with different VLAN groups. Each input port can join with more than one VLAN group. Port-based VLAN mapping is the simplest implicit mapping rule. Each ingress packet is assigned to a VLAN group based on the input port. It is not necessary to parse and inspect frames in real-time to determine their VLAN association. All the packets received on a given input port will be forwarded to this port’s VLAN members. 8.12.2. IEEE 802.1Q Tag-Based VLAN The RTL8370NI-VB supports 4K VLAN entries to perform 802.1Q tag-based VLAN mapping. In 802.1Q VLAN mapping, the RTL8370NI-VB uses a 12-bit explicit identifier in the VLAN tag to associate received packets with a VLAN. The RTL8370NI-VB compares the explicit identifier in the VLAN tag with the 4K VLAN Table to determine the VLAN association of this packet, and then forwards this packet to the member set of that VLAN. Two VIDs are reserved for special purposes. One of them is all 1’s, which is reserved and currently unused. The other is all 0’s, which indicates a priority tag. A priority-tagged frame should be treated as an untagged frame. Layer 2 Managed 8-port 10/100/1000 Switch Controller 26 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet When ‘802.1Q tag aware VLAN’ is enabled, the RTL8370NI-VB performs 802.1Q tag-based VLAN mapping for tagged frames, but still performs port-based VLAN mapping for untagged frames. If ‘802.1Q tag aware VLAN’ is disabled, the RTL8370NI-VB performs only port-based VLAN mapping both on non-tagged and tagged frames. The processing flow when ‘802.1Q tag aware VLAN’ is enabled is illustrated below. Two VLAN ingress filtering functions are supported in registers by the RTL8370NI-VB. One is the ‘VLAN tag admit control’. The other is ‘VLAN member set ingress filtering’, which will drop frames if the ingress port is not in the member set. 8.12.3. Protocol-Based VLAN The RTL8370NI-VB supports a 4-group Protocol-based VLAN configuration. The packet format can be RFC 1042, LLC, or Ethernet, as shown in Figure 5. There are 4 configuration tables to assign the frame type and corresponding field value. Taking IP packet configuration as an example, the user can configure the frame type to be ‘Ethernet’ and value to be ‘0x0800’. Each table will index to one of the entries in the 4K-entry VLAN table. The packet stream will match the protocol type and the value will follow the VLAN member configuration of the indexed entry to forward the packets. Ethernet DA/SA TYPE …… RFC_1042 DA/SA Length AA- AA-03 00-00-00 LLC_Other DA/SA Length DSAP/SSAP …… TYPE …… Frame Input Type/Length is 00-00~05-FF? 6 bytes after Type/Length are AA-AA-03-00-00-00? No No Frame Type = Ethernet Frame Type = LLC_ Other Frame Type = RFC_1042 Figure 5. Protocol-Based VLAN Frame Format and Flow Chart 8.12.4. Port VID In a router application, the router may want to know which input port this packet came from. The RTL8370NI-VB supports Port VID (PVID) for each port to insert a PVID in the VLAN tag for untagged or priority tagged packets on egress. When 802.1Q tag-aware VLAN is enabled, VLAN tag admit control is enabled, and non-PVID Discard is enabled at the same time. When these functions are enabled, the RTL8370NI-VB will drop non-tagged packets and packets with an incorrect PVID. Layer 2 Managed 8-port 10/100/1000 Switch Controller 27 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 8.13. QoS Function The RTL8370NI-VB supports 8 priority queues and input bandwidth control. Packet priority selection can depend on Port-based priority, 802.1p/Q Tag-based priority, IPv4/IPv6 DSCP-based priority, and ACL-based priority. When multiple priorities are enabled in the RTL8370NI-VB, the packet’s priority will be assigned based on the priority selection table. Each queue has one leaky bucket for Average Packet Rate. Per-queue in each output port can be set as Strict Priority (SP) or Weighted Fair Queue (WFQ) for packet scheduling algorithm. 8.13.1. Input Bandwidth Control Input bandwidth control limits the input bandwidth. When input traffic is more than the RX Bandwidth parameter, this port will either send out a ‘pause ON’ frame, or drop the input packet depending on register setup. Per-port input bandwidth control rates can be set from 8Kbps to 1Gbps (in 8Kbps steps). 8.13.2. Priority Assignment Priority assignment specifies the priority of a received packet according to various rules. The RTL8370NI-VB can recognize the QoS priority information of incoming packets to give a different egress service priority. The RTL8370NI-VB identifies the priority of packets based on several types of QoS priority information:        Port-based priority 802.1p/Q-based priority IPv4/IPv6 DSCP-based priority ACL-based priority VLAN-based priority MAC-based priority SVLAN-based priority 8.13.3. Priority Queue Scheduling The RTL8370NI-VB supports MAX-MIN packet scheduling. Packet scheduling offers two modes:   APR leaky bucket, which specifies the average rate of one queue Weighted Fair Queue (WFQ), which decides which queue is selected in one slot time to guarantee the minimal packet rate of one queue In addition, each queue of each port can select Strict Priority or WFQ packet scheduling according to packet scheduling mode. Figure 6 shows the RTL8370NI-VB packet-scheduling diagram. Layer 2 Managed 8-port 10/100/1000 Switch Controller 28 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet Guaranteed Max. Guaranteed Min. APR Leaky Bucket WFQ Leaky Bucket Queue 0 Queue 1 Scheduler Queue 7 Figure 6. RTL8370NI-VB MAX-MIN Scheduling Diagram 8.13.4. IEEE 802.1p/Q and DSCP Remarking The RTL8370NI-VB supports the IEEE 802.1p/Q and IP DSCP (Differentiated Services Code Point) remarking function. When packets egress from one of the 8 queues, the packet’s 802.1p/Q priority and IP DSCP can optionally be remarked to a configured value. Each output queue has a 3-bit 802.1p/Q, and a 6bit IP DSCP value configuration register. 8.13.5. ACL-Based Priority The RTL8370NI-VB supports 96-entry ACL (Access Control List) rules. When a packet is received, its physical port, Layer2, Layer3, and Layer4 information are recorded and compared to ACL entries. If a received packet matches multiple entries, the entry with the lowest address is valid. If the entry is valid, the action bit and priority bit will be applied.     If the action bit is ‘Drop’, the packet will be dropped. If the action bit is ‘CPU’, the packet will be trapped to the CPU instead of forwarded to non-CPU ports (except where it will be dropped by rules other than the ACL rule) If the action bit is ‘Permit’, ACL rules will override other rules If the action bit is ‘Mirror’, the packet will be forwarded to the mirror port and the L2 lookup result destination port. The mirror port indicates the port configured in the port mirror mechanism The priority bit will take effect only if the action bit is ‘CPU’, ‘Permit’, and ‘Mirror’. The Priority bit is used to determine the packet queue ID according to the priority assignment mechanism Layer 2 Managed 8-port 10/100/1000 Switch Controller 29 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 8.14. IGMP & MLD Snooping Function The RTL8370NI-VB can trap all IGMP and MLD packets to the CPU port. The CPU processes these packets, gets the IP multicast group information of all ports, and writes the correct multicast entry to the lookup table via I2C-like Slave interface or Slave MII Management interface. 8.15. IEEE 802.1x Function The RTL8370NI-VB supports IEEE 802.1x Port-based/MAC-based Access Control.        Port-Based Access Control for each port Authorized Port-Based Access Control for each port Port-Based Access Control Direction for each port MAC-Based Access Control for each port MAC-Based Access Control Direction Optional Unauthorized Behavior Guest VLAN 8.15.1. Port-Based Access Control Each port of the RTL8370NI-VB can be set to 802.1x port-based authenticated checking function usage and authorized status. Ports with 802.1X unauthorized status will drop received/transmitted frames. 8.15.2. Authorized Port-Based Access Control If a dedicated port is set to 802.1x port-based access control, and passes the 802.1x authorization, then its port authorization status can be set to authorized. 8.15.3. Port-Based Access Control Direction Ports with 802.1X unauthorized status will drop received/transmitted frames only when port authorization direction is ‘BOTH’. If the authorization direction of an 802.1X unauthorized port is IN, incoming frames to that port will be dropped, but outgoing frames will be transmitted. 8.15.4. MAC-Based Access Control MAC-Based Access Control provides authentication for multiple logical ports. Each logical port represents a source MAC address. There are multiple logical ports for a physical port. When a logical port or a MAC address is authenticated, the relevant source MAC address has the authorization to access the network. A frame with a source MAC address that is not authenticated by the 802.1x function will be dropped or trapped to the CPU. 8.15.5. MAC-Based Access Control Direction Unidirectional and Bi-directional control are two methods used to process frames in 802.1x. As the system cannot predict which port the DA is on, a system-wide MAC-based access control direction setup is provided for determining whether receiving or bi-direction must be authorized. Layer 2 Managed 8-port 10/100/1000 Switch Controller 30 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet If MAC-based access control direction is BOTH, then received frames with unauthenticated SA or unauthenticated DA will be dropped. When MAC-based access control direction is IN, only received frames with unauthenticated SA will be dropped. 8.15.6. Optional Unauthorized Behavior Both in Port-Based Network Access Control and MAC-Based Access Control, a whole system control setup is provided to determine unauthorized frame dropping, trapping to CPU, or tagging as belonging to a Guest VLAN (see the following ‘Guest VLAN’ section). 8.15.7. Guest VLAN When the RTL8370NI-VB enables the Port-based or MAC-based 802.1x function, and the connected PC does not support the 802.1x function or does not pass the authentication procedure, the RTL8370NI-VB will drop all packets from this port. The RTL8370NI-VB also supports one Guest VLAN to allow unauthorized ports or packets to be forwarded to a limited VLAN domain. The user can configure one VLAN ID and member set for these unauthorized packets. 8.16. IEEE 802.1D Function When using IEEE 802.1D, the RTL8370NI-VB supports 16 sets and four status for each port for CPU implementation 802.1D (STP) and 802.1s (MSTP) function:     Disabled: The port will not transmit/receive packets, and will not perform learning Blocking: The port will only receive BPDU spanning tree protocol packets, but will not transmit any packets, and will not perform learning Learning: The port will receive any packet, including BPDU spanning tree protocol packets, and will perform learning, but will only transmit BPDU spanning tree protocol packets Forwarding: The port will transmit/receive all packets, and will perform learning The RTL8370NI-VB also supports a per-port transmission/reception enable/disable function. Users can control the port state via register. 8.17. Embedded 8051 An 8051 MCU is embedded in the RTL8370NI-VB to support management functions. The 8051 MCU can access all of the registers in the RTL8370NI-VB through the internal bus. With the Network Interface Circuit (NIC) acting as the data path, the 8051 MCU connects to the switch core and can transmit frames to or receive frames from the Ethernet network. The features of the 8051 MCU are listed below:     256 Bytes fast internal RAM On-chip 48K data memory On-chip 16K code memory Supports code-banking Layer 2 Managed 8-port 10/100/1000 Switch Controller 31 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet   12KBytes NIC buffer EEPROM read/write ability 8.18. Realtek Cable Test (RTCT) The RTL8370NI-VB physical layer transceivers use DSP technology to implement the Realtek Cable Test (RTCT) feature. The RTCT function can be used to detect short, open or impedance mismatch in each differential pair. The RTL8370NI-VB also provides LEDs to indicate test status and results. 8.19. LED Indicator The RTL8370NI-VB supports parallel mode LEDs, scan mode LEDs and serial mode LEDs for each port. Each port has three LED indicators, LED0, LED1, and LED2. Each may have different indicator information (defined in Table 14). Upon reset, the RTL8370NI-VB supports chip diagnostics and LED operation test by blinking all LEDs once. LED Statuses LED_Off Dup/Col Link/Act Spd1000 Spd100 Spd10 Spd1000/Act Spd100/Act Spd10/Act Spd100 (10)/Act Act Table 14. LED Definitions Description LED always off. Duplex/Collision, Indicator. Blinking when collision occurs. Low for full duplex, and high for half-duplex mode. Link, Activity Indicator. Low for link established. Link/Act Blinking when the corresponding port is transmitting or receiving. 1000Mbps Speed Indicator. Low for 1000Mbps. 100Mbps Speed Indicator. Low for 100Mbps. 10Mbps Speed Indicator. Low for 10Mbps. 1000Mbps Speed/Activity Indicator. Low for 1000Mbps. Blinking when the corresponding port is transmitting or receiving. 100Mbps Speed/Activity Indicator. Low for 100Mbps. Blinking when the corresponding port is transmitting or receiving. 10Mbps Speed/Activity Indicator. Low for 10Mbps. Blinking when the corresponding port is transmitting or receiving. 10/100Mbps Speed/Activity Indicator. Low for 10/100Mbps. Blinking when the corresponding port is transmitting or receiving. Activity Indicator. Act blinking when the corresponding port is transmitting or receiving. Layer 2 Managed 8-port 10/100/1000 Switch Controller 32 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 8.19.1. Parallel LED Mode The RTL8370NI-VB supports parallel LED mode. The parallel LED pin also supports pin strapping configuration functions. The PnLED0, PnLED1, and PnLED2 pins are dual-function pins; input operation for configuration upon reset, and output operation for LED after reset. If the pin input is pulled high upon reset, the pin output is active low after reset. If the pin input is pulled down upon reset, the pin output is active high after reset. Typical values for pull-up/pull-down resistors are 4.7K. The PnLED1 can be combined with PnLED0 or PnLED2 as a Bi-color LED. LED_PnLED1 should operate with the same polarity as other Bi-color LED pins. For example:   P0LED1 should pull up upon reset if P0LED1 is combined with P0LED2 as a Bi-color LED, and P0LED2 input is pulled high upon reset. In this configuration, the output of these pins is active low after reset P0LED1 should be pulled down upon reset if P0LED1 is combined with P0LED2 as a Bi-color LED, and P0LED2 input is pulled down upon reset. In this configuration, the output of these pins is active high after reset Pull-Down Pull-Up DVDDIO 4.7K ohm LED Pin 470 ohm RTL8370NI-VB 470 ohm 4.7K ohm RTL8370NI-VB LED Pin LED Pins Output Active High LED Pins Output Active Low Figure 7. Pull-Up and Pull-Down of LED Pins for Single-Color LED Pull-Down Pull-Up SPD 1000 4.7K ohm DVDDIO SPD 100 470ohm 470ohm RTL8370 NI-VB Yellow SPD100 4.7K ohm RTL8370NI-VB Green Yellow SPD1000 4.7K ohm Green 4.7K ohm LED Pins Output Active High LED Pins Output Active Low Figure 8. Pull-Up and Pull-Down of LED Pins for Bi-Color LED Layer 2 Managed 8-port 10/100/1000 Switch Controller 33 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 8.19.2. Scan LED Mode The RTL8370NI-VB provides scan LED mode to reduce LED pins but keep the same number of LED indicators as parallel LED mode. Each port includes one bi-color and one single-color LED. The bi-color LED consists of LED1 & LED 2 (Figure 10) and the single-color LED is driven by LED0 (Figure 9). In the bi-color LED circuit, a 30K ohm parallel-connected resistor must be used if the strapping pin on either side of the bi-color LED is pulled low. Otherwise it is not required. Some Scan mode LED pins also support strapping pins and will not affect the LED polarity. SLED_P3/ 7A P3 LED 0 P7 LED 0 SLED_P2/ 6 A Controller P2 LED 0 P6 LED 0 SLED_P1/ 5 A P1 LED 0 P5 LED 0 SLED_P0/ 4 A P0 LED 0 P4 LED 0 0 ohm 0 ohm 0 ohm 0 ohm S1LED_ G 2 A S1LED_ G1 A Figure 9. Scan Mode LED Connection Diagram (Group A: Single-Color LED (LED0)) 30K ohm SLED _ P 7 B SLED _ P 6 B SLED _ P 5 B SLED _ P 4 B P 7 LED 2 Yellow 30K ohm P 6 LED 2 Yellow 30K ohm P 5 LED 2 Yellow 30K ohm P 4 LED 2 Yellow 30K ohm P 3 LED 2 Yellow 30K ohm P 2 LED 2 Yellow 30K ohm P 1 LED 2 Yellow 30K ohm P 0 LED 2 Yellow Controller SLED _ P 3 B SLED _ P 2 B SLED _ P 1 B SLED _ P 0 B Green P 7 LED 1 Green P 6 LED 1 Green P5 LED 1 Green P4 LED 1 Green P3 LED 1 Green P2 LED 1 Green P1 LED 1 Green P0 LED 1 SLED _ G 1 B Figure 10. Scan Mode LED Connection Diagram (Group B: Bi-Color LED (LED1 & LED2)) Layer 2 Managed 8-port 10/100/1000 Switch Controller 34 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 8.19.3. Serial LED Mode The RTL8370NI-VB supports serial shift LED mode to show the speed, link status and other information of the port status. In serial led mode, the RTL8370NI-VB supports per-port one/two/three single-color LED. The serial LED default is per-port three single-color LED, and the RTL8370NI-VB support 8-port (port0~port7) LED. 8.19.3.1 Serial Shift LED Default Mode, Per-Port Three Single-Color LED T3=16ms T2=2.538us T1 = 108ns T4 = (0.4~0.6) * T1 LED_CK LED_DA P7 P6 P5 P3 P2 P1 P0 P4 P7 P6 P5 P3 P2 P1 P0 P4 P7 P6 P5 P3 P2 P1 P0 P4 LED0 LED0 LED0 LED0 LED0 LED0 LED0 LED0 LED1 LED1 LED1 LED1 LED1 LED1 LED1 LED1 LED2 LED2 LED2 LED2 LED2 LED2 LED2 LED2 P7 P5 P6 LED0 LED0 LED0 Figure 11. RTL8370NI-VB Serial Led Mode Shift Sequence (Per-Port Three Single-Color LED) A 74HC164 8-Bit Serial-In, Parallel-Out Shift Register captures the per-port link status and diagnostic information. The related circuit design is shown in the following diagram. Layer 2 Managed 8-port 10/100/1000 Switch Controller 35 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 3.3V LED_DA 3.3V LED_CK A B CLK P0_LED2 P1_LED2 QA QB P2_LED2 P3_LED2 P4_LED2 QC 74HC164 The first 74HC164 QD QE P5_LED2 P6_LED2 QF QG P7_LED2 QH A B CLK 3.3V LED_CK P0_LED1 P1_LED1 P2_LED1 QA QB QC 74HC164 The second 74HC164 P3_LED1 P4_LED1 P5_LED1 P6_LED1 QD QE QF QG P7_LED1 QH A B CLK 3.3V LED_CK P0_LED0 P1_LED0 P2_LED0 QA QB QC 74HC164 The third 74HC164 470 ohm P3_LED0 P4_LED0 P5_LED0 P6_LED0 QD QE QF QG P7_LED0 QH Figure 12. RTL8370NI-VB+74HC164 Serial LED Connection Diagram (Per-Port Three Single-Color LED) The RTL8231’s shift register mode can reserve the serial data, and output parallel data in order. There are 36 shift registers in the RTL8231. The output data sequence is shown below: LED Pin Output LED[0] SI D Q LED[1] D Q LED[2] D Q LED[35] D Q SO CLK_IN Figure 13. RTL8231 Serial LED Output Data Sequence To latch the current serial data received at the SI pin, and shift the preceding data to the next stage at the each rising edge of the serial clock, first the serial data is input to the RTL8231, and then output from the pin 15 LED[0]. At the last shift register, the serial data is output to the LED[35] pin and the SO pin at the same time. The strapping pin configuration of the RTL8231 in Shift Register Mode is shown in Table 15. Layer 2 Managed 8-port 10/100/1000 Switch Controller 36 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet Table 15. RTL8231 Shift Register Mode Strapping Pins Configuration Pin Name Pin Type LED[0]/Dis_SMI 15 I/OPD SO/MOD[1] 16 I/O LED[15]/MOD[0] 42 I/ OPU Configuration for Serial LED Mode Description Select RTL8231 in the SMI mode or Shift Register mode. 0: SMI mode.(default) 1: Shift register mode MOD[1:0] defines the parallel output initial value after finish reset. 2b’00: LED[15] initial high, others parallel output initial low. 2b’01: All parallel output initial high. 2b’10: LED[0] initial high, others parallel output initial low. 2b’11: LED[15] initial low, others parallel output initial high. Pull high Pull low Pull high 8.19.3.2 Serial Shift LED, Per-Port Two Single-Color LEDs T3=16ms T2=1.674us T1 = 108ns T4 = (0.4~0.6) * T1 LED_CK LED_DA P7 P6 P5 P3 P2 P1 P0 P4 P7 P6 P5 P3 P2 P1 P0 P4 LED0 LED0 LED0 LED0 LED0 LED0 LED0 LED0 LED1 LED1 LED1 LED1 LED1 LED1 LED1 LED1 P7 P5 P6 LED0 LED0 LED0 Figure 14. RTL8370NI-VB Serial Led Mode Shift Sequence (Per-Port Two Single-Color LEDs) Layer 2 Managed 8-port 10/100/1000 Switch Controller 37 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 8.19.3.3 Serial Shift LED, Per-Port One Single-Color LED T3=16ms T2=810ns T1 = 108ns T4 = (0.4~0.6) * T1 LED_CK LED_DA P7 P6 P5 P3 P2 P1 P0 P4 LED0 LED0 LED0 LED0 LED0 LED0 LED0 LED0 P7 P5 P6 LED0 LED0 LED0 Figure 15. RTL8370NI-VB Serial Led Mode Shift Sequence (Per-Port One Single-Color LED) 8.20. Green Ethernet 8.20.1. Link-On and Cable Length Power Saving The RTL8370NI-VB provides link-on and dynamic detection of cable length and dynamic adjustment of power required for the detected cable length. This feature provides high performance with minimum power consumption. 8.20.2. Link-Down Power Saving The RTL8370NI-VB implements link-down power saving on a per-port basis, greatly cutting power consumption when the network cable is disconnected. After it detects an incoming signal, it wakes up from link-down power saving and operates in normal mode. 8.21. IEEE 802.3az Energy Efficient Ethernet (EEE) Function The RTL8370NI-VB support IEEE 802.3az Energy Efficient Ethernet ability for 1000Base-T, 100BaseTX in full duplex operation, and 10Base-T in full/half duplex mode. The Energy Efficient Ethernet (EEE) optional operational mode combines the IEEE 802.3 Media Access Control (MAC) sub-layer with 100Base-T and 1000Base-T Physical Layers defined to support operation in Low Power Idle mode. When Low Power Idle mode is enabled, systems on both sides of the link can disable portions of the functionality and save power during periods of low link utilization.   For 1000Base-T PHY: Supports Energy Efficient Ethernet with the optional function of Low Power Idle For 100Base-TX PHY: Supports Energy Efficient Ethernet with the optional function of Low Power Idle Layer 2 Managed 8-port 10/100/1000 Switch Controller 38 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet The RTL8370NI-VB MAC uses Low Power Idle signaling to indicate to the PHY, and to the link partner, that a break in the data stream is expected, and components may use this information to enter power saving modes that require additional time to resume normal operation. Similarly, it informs the LPI Client that the link partner has sent such an indication. Layer 2 Managed 8-port 10/100/1000 Switch Controller 39 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet Interface Descriptions 9. 9.1. I2C Master for EEPROM Auto-load The EEPROM interface of the RTL8370NI-VB uses the serial bus I2C to read the Serial EEPROM. When the RTL8370NI-VB is powered up, it drives SCK and SDA to read the configuration/code data from the EEPROM by strapping configuration. SCK SDA START STOP Figure 16. I2C Start and Stop Command 3.3V NC-1.5K ohm I2C Master SCK EERPOM EEPROM_SCL 3.3V 1.5K ohm SDA EEPROM_SDA 4.7K ohm STRP_DISAUTOLOAD Figure 17. I2C Master for EEPROM Auto-load Interface Connection Example The EEPROM can be divided into two sizes: 2Kb~16Kb and 32Kb~512Kb. The address of the small size EEPROM is 8-bits, however the larger EEPROM has word-high addressing and word-low addressing, and it is 16-bits (two bytes). The RTL8370NI-VB supports these two types EEPROM. 1 CONTROL BYTE S 1 0 1 0 0 0 R/ A 0 W# C (0) K 1 ADDRESS BYTE The 1st DATA BYTE 1 CONTROL BYTE A C K ADDR[7:0] S 1 0 1 0 0 R/ A 0 W# C (1) K 0 MSB to LSB ACK by Slave(EEPROM) N O A C P K A C K MSB to LSB ACK by Slave(EEPROM) The 2nd DATA BYTE MSB to LSB ACK by Slave(EEPROM) ACK by Master NOACK by Master Figure 18. 8-Bit EEPROM Sequential Read 1 CONTROL BYTE S 1 0 1 0 0 0 R/ A 0 W# C (0) K The 1st ADDRESS BYTE (Word High Addressing) The 2nd ADDRESS BYTE (Word Low Addressing) A C K ADDR[15:8] MSB to LSB ACK by Slave(EEPROM) ADDR[7:0] 1 CONTROL BYTE A C K S 1 0 1 0 0 0 MSB to LSB ACK by Slave(EEPROM) The 1st DATA BYTE R/ A 0 W# C (1) K The 2nd DATA BYTE A C K MSB to LSB ACK by Slave(EEPROM) ACK by Slave(EEPROM) N O A C P K MSB to LSB ACK by Master NOACK by Master Figure 19. 16-Bit EEPROM Sequential Read Layer 2 Managed 8-port 10/100/1000 Switch Controller 40 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 9.2. I2C-Like Slave Interface for External CPU to Access RTL8370NI-VB When EEPROM auto-load is completed, the RTL8370NI-VB registers can be accessed via SCK and SDA (I2C-Like) via an external CPU (Decided by Strapping Configuration). 3.3V 1.5K ohm I2C Slave External CPU S_SCK M_SCL 3.3V 1.5K ohm S_SDA M_SDA 3.3V 4.7K ohm* STRP_SMI_SEL_1 4.7K ohm* STRP_SMI_SEL_0 Figure 20. I2C-Like Slave for External CPU Access Interface Connection Example 1 CONTROL BYTE S 1 0 1 1 1 R/ A 0 W# C (0) K 0 The 1st ADDRESS BYTE (reg_addr[7:0]) The 2nd ADDRESS BYTE (reg_addr[15:8]) A C K ADDR[7:0] MSB to LSB ACK by Slave The 2nd DATA BYTE (write_data[15:8]) A C K ADDR[15:8] MSB to LSB ACK by Slave The 1st DATA BYTE (write_data[7:0]) A C K MSB to LSB ACK by Slave A C P K MSB to LSB ACK by Slave ACK by Slave Figure 21. I2C-Like Slave Interface Write Command 1 CONTROL BYTE S 1 0 1 1 1 0 R/ A 0 W# C (1) K The 1st ADDRESS BYTE (reg_addr[7:0]) ADDR[7:0] MSB to LSB ACK by Slave The 2nd ADDRESS BYTE (reg_addr[15:8]) A C K ADDR[15:8] MSB to LSB ACK by Slave ACK by Slave The 1st DATA BYTE (read_data[7:0]) A C K The 2nd DATA BYTE (read_data[15:8]) A C K MSB to LSB N O A C P K MSB to LSB ACK by Master NOACK by Master Figure 22. I2C-Like Slave Interface Read Command Layer 2 Managed 8-port 10/100/1000 Switch Controller 41 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 9.3. Slave MII Management SMI Interface for External CPU to Access RTL8370NI-VB The RTL8370NI-VB registers can be accessed via Slave MDC and MDIO via an external CPU (Decided by Strapping Configuration). SMI Slave External CPU 33 ohm S_MDC M_MDC 3.3V 1.5K ohm S_MDIO M_MDIO 3.3V 4.7K ohm STRP_SMI_SEL_1 4.7K ohm STRP_SMI_SEL_0 Figure 23. Slave MII Management SMI Interface Connection Example Table 16. Slave MII Management SMI Access Format Management Frame Fields PRE ST OP DEVAD REGAD TA DATA IDLE 1…1 01 10 AAAAA RRRRR Z0 DDDDDDDDDDDDDDDD Z Read 1…1 01 01 AAAAA RRRRR 10 DDDDDDDDDDDDDDDD Z Write Note: The Slave needs no less than 32bit Preambles (PRE) for accessing a slave via the Slave SMI interface default. An External CPU can configure the Slave to enable preamble suppression function, and then the Slave does not need preamble for accessing a slave. 9.4. SPI FLASH Interface The RTL8370NI-VB supports a Serial IO and Dual IO mode SPI Interface to connect SPI FLASH. The RTL8370NI-VB only supports 3-byte address mode access. 4Mbyte capacity of SPI FLASH is ideal for RTL8370NI-VB application. Controller SPI FLASH SPI_F_CLK CLK NC-4.7K ohm nSPI_F_CS 3.3V /CS SPI_F_D1 DO(IO1) SPI_F_D0 DI(IO0) Figure 24. SPI FLASH Interface Connection Example Layer 2 Managed 8-port 10/100/1000 Switch Controller 42 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 10. Electrical Characteristics 10.1. Absolute Maximum Ratings WARNING: Absolute Maximum Ratings are limits beyond which Electrical Overstress (EOS) damage can occur. Permanent damage may be caused to the device, or device reliability can be affected. All voltages are specified reference to GND unless otherwise specified. Table 17. Absolute Maximum Ratings Parameter Min Junction Temperature (Tj) Storage Temperature -45 DVDDIO_2, DVDDIO_0, DVDDIO_1, AVDDH, Supply GND-0.3 Referenced to GND and AGND DVDDL, AVDDL, PLLVDDL0, PLLVDDL1 Supply Referenced GND-0.3 to GND, AGND, PLLGND0, and PLLGND1 Digital Input Voltage GND-0.3 Max +125 +125 Units C C +3.63 V +1.21 V VDDIO+0.3 V 10.2. Recommended Operating Range Table 18. Recommended Operating Range Parameter Min Typical Ambient Operating Temperature (Ta) -40 DVDDIO, AVDDH Supply Voltage Range 3.135 3.3 DVDDL, AVDDL, PLLVDDL0, PLLVDDL1 Supply Voltage 1.045 1.1 Range Layer 2 Managed 8-port 10/100/1000 Switch Controller 43 Max 85 3.465 Units C V 1.155 V Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 10.3. Thermal Characteristics 10.3.1. LQFP-128-EPAD 10.3.1.1 Assembly Description Package PCB Table 19. Assembly Description Type E-Pad LQFP128 Dimension (L x W) 14 x 20 mm Thickness 1.4 mm PCB Dimension (L x W) 130 x 75mm PCB Thickness 1.6 mm 2-Layer: - Top layer (1oz): 20% coverage of Cu - Bottom layer (1oz): 75% coverage of Cu 4-Layer: Number of Cu Layer-PCB - 1st layer (1oz): 20% coverage of Cu - 2nd layer (1oz): 80% coverage of Cu - 3rd layer (1oz): 80% coverage of Cu - 4th layer (1oz): 75% coverage of Cu 10.3.1.2 Material Properties Item Package Die Silver Paste Lead Frame Mold Compound PCB Table 20. Material Properties Material Thermal Conductivity K (W/m-k) Si 147 1033BF 2.5 CDA7025 168 7372 0.88 Cu 400 FR4 0.2 10.3.1.3 Simulation Conditions Table 21. Simulation Conditions 2.6W 2L (2S)/4L (2S2P) Air Flow = 0, 1, 2 m/s Input Power Test Board (PCB) Control Condition Layer 2 Managed 8-port 10/100/1000 Switch Controller 44 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 10.3.1.4 Thermal Performance of E-Pad LQFP-128 on PCB under Still Air Convection Table 22. Thermal Performance of E-Pad LQFP-128 on PCB under Still Air Convection θJA θJB θJC ΨJT ΨJB 4L PCB 18.2 8.2 7.5 2.5 8.8 2L PCB 30.1 10.0 8.9 3.4 11 Note: θJA: Junction to ambient thermal resistance θJB: Junction to board thermal resistance θJC: Junction to case thermal resistance ΨJT: Junction to top center of package thermal characterization ΨJB: Junction to bottom surface center of PCB thermal characterization 10.3.1.5 Thermal Performance of E-Pad LQFP-128 on PCB under Forced Convection Table 23. Thermal Performance of E-Pad LQFP-128 on PCB under Forced Convection Air Flow (m/s) 0 1 2 θJA 18.2 15.2 14.2 4L PCB ΨJT 2.5 2.8 3.5 ΨJB 8.8 8.6 8.3 θJA 30.1 25.9 24.2 2L PCB ΨJT 3.4 4.5 5.6 ΨJB 11 10.7 10.5 10.4. DC Characteristics Table 24. DC Characteristics SYM Min Typical Max System Idle (No UTP Port Link Up, 1 System Power LED) Power Supply Current for VDDH IDVDDIO, IAVDDH 41 Power Supply Current for VDDL IDVDDL, IAVDDL, 165 IPLLVDDL Total Power Consumption for All Ports PS 316.8 1000M Active (8 UTP Ports Link Up, 1 System Power LED, 8 Activity LEDs, 8 Speed LEDs) Power Supply Current for VDDH IDVDDIO, IAVDDH 530 Power Supply Current for VDDL IDVDDL, IAVDDL, 881 IPLLVDDL Total Power Consumption for All Ports PS 2718.1 100M Active (8 UTP Ports Link Up, 1 System Power LED, 8 Activity LEDs, 8 Speed LEDs) Power Supply Current for VDDH IDVDDIO, IAVDDH 201 Power Supply Current for VDDL IDVDDL, IAVDDL, 282 IPLLVDDL Total Power Consumption for All Ports PS 973.5 10M Active (8 UTP Ports Link Up, 1 System Power LED, 8 Activity LEDs) Power Supply Current for VDDH IDVDDIO, IAVDDH 242 Parameter Layer 2 Managed 8-port 10/100/1000 Switch Controller 45 Units mA mA mW mA mA mW mA mA mW mA Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet Parameter Power Supply Current for VDDL SYM Min IDVDDL, IAVDDL, IPLLVDDL Total Power Consumption for All Ports PS VDDIO=3.3V TTL Input High Voltage Vih 1.9 TTL Input Low Voltage Vil Output High Voltage Voh 2.7 Output Low Voltage Vol Output Low Voltage Vol Note: DVDDIO=3.3V, AVDDH=3.3V, DVDDL=1.1V, AVDDL=1.1V PLLVDDL=1.1V. Typical 200 Max - Units mA 1020 - mW - 0.7 0.6 0.4 V V V V V 10.5. AC Characteristics 10.5.1. I2C Master for EEPROM Auto-Load Timing Characteristics Tsck t1 t2 SCK t3 t4 SDA t5 t6 t7 Data Output Data Output Data Input t8 Data Input t11 Figure 25. I2C Master for EEPROM Auto-Load Timing Characteristics t9 nRESET SCK SDA Figure 26. I2C Master for EEPROM Auto-Load Power on Timing Layer 2 Managed 8-port 10/100/1000 Switch Controller 46 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet t10 SCK SDA Data Valid Start Condition Stop Condition Figure 27. I2C Master for EEPROM Auto-Load Timing Table 25. I2C Master for EEPROM Auto-Load Timing Characteristics Symbol Description Type Min Typical Max Tsck SCK Clock Period O 9 t1 SCK High Time O 4.05 4.5 t2 SCK Low Time O 4.05 4.5 t3 START Condition Setup Time O 2 t4 START Condition Hold Time O 2 t5 Data Input Hold Time I 0 t6 Data Input Setup Time I 10 t7 Data output delay O 2.15 2.35 t8 STOP Condition Setup Time O 2 t9 SCK/SDA Active from Reset Ready O 76.8 t10 8K-bits EEPROM Auto-Load Time O 236 t11 Time the bus is free before new START O 10 SCK Rise Time (10% to 90%) O 100 SCK Fall Time (90% to 10%) O 100 Duty Cycle O 40 50 60 Note: t9, and t10 are measured with the ATMEL AT24C08 EEPROM. Layer 2 Managed 8-port 10/100/1000 Switch Controller 47 Units µs µs µs µs µs ns ns µs µs ms ms µs ns ns % Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 10.5.2. I2C-Like Slave Mode for External CPU Access Interface Timing Characteristics t1 t2 SCK t3 SDA t4 t5 Data Input t6 t7 Data Input t8 t9 Data Output Figure 28. I2C-Like Slave Mode for External CPU Access Interface Timing Characteristics Table 26. I2C-Like Slave for External CPU Access Interface Timing Characteristics Symbol Description Type Min Typical Max t1 SCK High Time I 4.0 t2 SCK Low Time I 4.0 t3 START Condition Setup Time I 0.25 t4 START Condition Hold Time I 0.25 t5 Data Input Hold Time I 0 t6 Data Input Setup Time I 100 t7 Clock to Data Output Delay O 10 100 t8 STOP Condition Setup Time I 0.25 t9 Time the bus is free before new START I 0.5 - Layer 2 Managed 8-port 10/100/1000 Switch Controller 48 Units µs µs µs µs µs ns ns µs µs Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 10.5.3. Slave MII Management SMI for External CPU Access Interface Timing Characteristics The RTL8370NI-VB supports MDIO slave mode. The Master (the RTL8370NI-VB link partner CPU) can access the Slave (RTL8370NI-VB) registers via the MDIO interface. The MDIO is a bi-directional signal that can be sourced by the Master or the Slave. In a write command, the Master sources the MDIO signal. In a read command, the Slave sources the MDIO signal.   The timing characteristics of the Master (the RTL8370NI-VB link partner CPU) are provided by the Master when the Master sources the MDIO signal (Write command) The timing characteristics of the Slave (RTL8370NI-VB) are provided by the RTL8370NI-VB when the RTL8370NI-VB sources the MDIO signal (Read command) t1 VIH MDC VIL VIH MDIO VIL t2 t3 Figure 29. MDIO Sourced by Master (External CPU) VIH MDC VIL VIH MDIO VIL t4 Figure 30. MDIO Sourced by Slave (RTL8370NI-VB) Table 27. Slave SMI (MDC/MDIO) Timing Characteristics and Requirements Parameter SYM Description/Condition Type Min Typical MDC Clock Period t1 Clock Period I 125 MDIO to MDC Rising Setup t2 Input Setup Time I 8 Time (Write Data) MDIO to MDC Rising Hold t3 Input Hold Time I 8 Time (Write Data) MDC to MDIO Delay Time t4 Clock (Rising Edge) to Data Delay O 0 (Read Data) Time Layer 2 Managed 8-port 10/100/1000 Switch Controller 49 Max - Units ns - ns - ns 80 ns Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 10.5.4. Serial Shift Mode LED Interface Timing Characteristics Tcyc LED_CK tsetup:O LED_DA thold:O V ih(max) V ih( min) Vih(max) Vih(min) Data Output Figure 31. Serial Shift Mode LED Timing Characteristics Table 28. Serial Shift Mode LED AC Timing Mode and Description Symbol Min Input High Voltage Vih 2.0 Input Low Voltage Vil Serial LED_CK Clock Cycle Tcyc Shift Duty Cycle of the LED_CK Duty 45 LED LED_DA to LED_CK Output Setup Time tsetup:O 40 LED_DA to LED_CK Output Hold Time thold:O 20 Layer 2 Managed 8-port 10/100/1000 Switch Controller 50 Typical 108 50 - Max 0.8 55 - Units V V ns % ns ns Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 10.5.5. SPI FLASH Interface Timing Characteristics tSLCH tCHSH SPI_CS# SPI_SCK tsetup:O thold:O SPI_SI (Output) tsetup:I thold:I MSB High-Z Data In SPI_SO (Input) Figure 32. SPI FLASH Timing Characteristics Table 29. SPI FLASH AC Timing Symbol Description Type Min fSPI_SCK Clock Frequency of the SPI_SCK O Duty Duty Cycle of the SPI_SCK O 45 tSLCH CS# Active Setup Time O 6 tCHSH CS# Active Hold Time O 6 tsetup:O Data Output Setup Time O 5 thold:O Data Output Hold Time O 6 tsetup:I Data Input Setup Time I 2 thold:I Data Input Hold Time I 0 Test Condition: FSPI_SCK=62.5MHz Layer 2 Managed 8-port 10/100/1000 Switch Controller 51 Typical 62.5 50 - Max 55 - Units MHz % ns ns ns ns ns ns Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 10.6. Power and Reset Characteristics t1 t3 DVDDL AVDDL PLLVDDL0 PLLVDDL1 DVDDIO AVDDH t2 t4 nRESET Figure 33. Power and Reset Characteristics Parameter Reset Delay Time Reset Low Time VDDL Power Rising Settling Time VDDH Power Rising Settling Time Table 30. Power and Reset Characteristics SYM Description/Condition Type t1 The duration from all powers steady to I the reset signal released to high. t2 The duration of reset signal remain low time for issuing a reset to the I RTL8370NI-VB. t3 DVDDL, AVDDL, PLLVDDL0 and I PLLVDDL1 power rising settling time. t4 DVDDIO and AVDDH power rising I settling time. Layer 2 Managed 8-port 10/100/1000 Switch Controller 52 Min Typical Max Units 10 - - ms 10 - - ms 0.5 - 100 ms 0.5 - 100 ms Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 11. Mechanical Dimensions 11.1. RTL8370NI-VB: LQFP 128-Pin E-PAD Package Thermally Enhanced Low-profile Quad Flat Package (LQFP) 128 Leads 14x20mm Outline. Symbol Dimension in mm Nom Max A 1.60 A1 0.15 A2 1.40 1.45 b 0.2 0.27 D 22.00BSC D1 20.00BSC D2/E 2 5.60 6.60 7.50 E 16.00BSC E1 14.00BSC e 0.50BSC L 0.45 0.60 0.75 L1 1.00REF Note 1: CONTROLLING DIMENSION: MILLIMETER (mm). Note 2: REFERENCE DOCUMENT: JEDEC MS-26. Min 0.05 1.35 0.17 Layer 2 Managed 8-port 10/100/1000 Switch Controller 53 Min 0.002 0.053 0.007 0.220 0.018 Dimension in inch Nom 0.055 0.009 0.866BSC 0.787BSC 0.260 0.630BSC 0.551BSC 0.020BSC 0.024 0.039REF Max 0.063 0.006 0.057 0.011 0.295 0.030 Track ID: JATR-XXXX-XX Rev. 0.1 RTL8370NI-VB Draft Datasheet 12. Ordering Information Table 31. Ordering Information Part Number Package RTL8370NI-VB-CG LQFP 128-Pin E-PAD ‘Green’ Package Note: See page 7 for package identification information. Status - Realtek Semiconductor Corp. Headquarters No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan, R.O.C. Tel: 886-3-5780211 Fax: 886-3-5776047 www.realtek.com Layer 2 Managed 8-port 10/100/1000 Switch Controller 54 Track ID: JATR-XXXX-XX Rev. 0.1
RTL8370NI-VB-CG 价格&库存

很抱歉,暂时无法提供与“RTL8370NI-VB-CG”相匹配的价格&库存,您可以联系我们找货

免费人工找货
RTL8370NI-VB-CG
    •  国内价格
    • 1+61.09950
    • 10+54.07710
    • 30+46.09610
    • 72+42.50400

    库存:567

    RTL8370NI-VB-CG
      •  国内价格
      • 1+57.13200
      • 10+50.56560
      • 30+43.10280
      • 72+39.74400

      库存:551