0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SLMI8233BDCG-DG

SLMI8233BDCG-DG

  • 厂商:

    SILLUMIN(数明半导体)

  • 封装:

    SOP16W_300MIL

  • 描述:

    双通道1A和4A,5.0kVRMS隔离栅极驱动器

  • 数据手册
  • 价格&库存
SLMI8233BDCG-DG 数据手册
SLMi823x Dual Channel 1A and 4A, 5.0kVRMS Isolated Gate Driver GENERAL DESCRIPTION FEATURE The SLMi823x isolated driver family is an isolated dual channel gate driver with different configurations. The SLMi8230/1/3/4 are configured as high-side/lowside drivers, while the SLMi8232/5 are configured as dual drivers. The peak source output current of SLMi8230/1/2 is 1.0A and the peak source output current of SLMi8233/4/5 is 4.0A. Programmable dead time (DT) feature is available in SLMi8230/1/3/4. Pulling high the DIS pin shuts down both outputs simultaneously, and allows for normal operation when the DIS pin is open or pulled low. As a fail-safe measure, primary-side logic failures force both outputs low. • • • • 1.0A or 4.0A peak source current 40ns (Typ.) propagation delay 18ns (Max.) pulse width distortion 18ns (Max.) delay matching • 100kV/us (Min.) common mode transient immunity (CMTI) Wide input voltage: 3V to 18V Up to 40V driver output voltage 5V reverse polarity voltage handling capability on input stage 1500V functional isolation between two drivers Operating temperature: –40°C to +125°C Safety certifications: • 5kVRMS isolation for 1 minute per UL 1577 with SOP16W package • CQC certification per GB4943.1-2011 • TUV certification per EN/IEC 61010-1: 2010+A1 and EN/IEC 62368-1: 2018 • DIN V VDE 0884-11 (Planned) • • • • • • The VDDA and VDDB supply voltage are up to 40 V. A wide input VDDI range from 3 V to 18 V makes the driver suitable for interfacing with both analog and digital controllers. All the supply voltage pins have under voltage lock-out (UVLO) protection. The SLMi823x has 5.0kVRMS isolation in SOP16W package per UL1577. High CMTI, low propagation delay, small size and flexible configuration make the SLMi823x family is suitable for a wide range of isolated MOSFET/IGBT and SiC or GaN FET gate drive applications. APPLICATION • • • AC/DC or DC/DC power supplies in server, telecom and industry DC/AC solar inverters EV battery charging APPLICATION CIRCUIT VDDB D1 VDDI C3 1uF VDDI C1 1uF C2 0.1uF VBUS GNDI VDDA C6 Q1 VOA GNDA VIA VIB PWM CONTROLLER SLMi8230/3 VDDB DT CDT VDDB RDT C4 0.1uF C5 10uF GNDB DIS Q2 VOB Figure 1. SLMi8230/3 Application Circuit Sillumin Semiconductor Co., Ltd. – www.sillumin.com Rev1.3, Jul 2023 1 SLMi823x VDDB D1 VDDI C3 1uF VDDI C1 1uF C2 0.1uF VBUS VDDA GNDI C6 Q1 VOA PWMOUT PWM GNDA SLMi8231/4 PWM CONTROLLER VDDB DT CDT VDDB RDT C4 0.1uF C5 10uF GNDB Q2 DIS VOB Figure 2. SLMi8231/4 Application Circuit VDDI VDDI C1 1uF Q1 C2 0.1uF VOA GNDI VDDA VDDA C3 0.1uF GNDA VIA PWM CONTROLLER C4 10uF VIB SLMi8232/5 VDDB VDDB C5 0.1uF C6 10uF GNDB DIS Q2 VOB Figure 3. SLMi8232/5 Application Circuit Sillumin Semiconductor Co., Ltd. – www.sillumin.com Rev1.3, Jul 2023 2 SLMi823x Table of Contents General Description ....................................................................................................................................................1 Feature ........................................................................................................................................................................1 Application ..................................................................................................................................................................1 Application Circuit .......................................................................................................................................................1 PIN Configuration .......................................................................................................................................................4 PIN Description ...........................................................................................................................................................5 Functional Block Diagram ...........................................................................................................................................7 Ordering Information ...................................................................................................................................................8 Family Overview .........................................................................................................................................................8 Absolute Maximum Ratings1 .......................................................................................................................................9 Recommended Operation Conditions1 .......................................................................................................................9 ESD Ratings ...............................................................................................................................................................9 Thermal Information ..................................................................................................................................................10 Package Specifications .............................................................................................................................................11 Insulation Specifications ...........................................................................................................................................11 Safety Related Certifications ....................................................................................................................................12 Safety LimitING Values .............................................................................................................................................12 Electrical Characteristics (DC) ..................................................................................................................................13 Switching Characteristics (AC) .................................................................................................................................14 Parameter Measurement Information .......................................................................................................................15 Propagation Delay and Pulse Width Distortion .................................................................................................15 Rise and Fall Time Testing ................................................................................................................................15 CMTI Testing .....................................................................................................................................................15 Feature Description ..................................................................................................................................................16 Under Voltage Lockout ......................................................................................................................................16 Disable Input Function .......................................................................................................................................16 Control Input and Output Logic .........................................................................................................................16 Dead-time Program ...........................................................................................................................................17 Application Information .............................................................................................................................................19 Layout .......................................................................................................................................................................20 Package Case Outlines ............................................................................................................................................21 Reflow Profile Guidance ...........................................................................................................................................22 Revision History ........................................................................................................................................................23 Sillumin Semiconductor Co., Ltd. – www.sillumin.com Rev1.3, Jul 2023 3 SLMi823x PIN CONFIGURATION Part Number SLMi8230/3 SLMi8231/4 SLMi8232/5 Pin Configuration (Top View) VIA 1 16 VDDA VIB 2 15 VOA VDDI 3 14 GNDA GNDI 4 13 NC SLMi8230/3 DIS 5 12 NC DT 6 11 VDDB NC 7 10 VOB VDDI 8 9 GNDB PWM 1 16 VDDA NC 2 15 VOA VDDI 3 14 GNDA GNDI 4 13 NC SLMi8231/4 DIS 5 12 NC DT 6 11 VDDB NC 7 10 VOB VDDI 8 9 GNDB VIA 1 16 VDDA VIB 2 15 VOA VDDI 3 14 GNDA GNDI 4 13 NC SLMi8232/5 DIS 5 12 NC NC 6 11 VDDB NC 7 10 VOB VDDI 8 9 Sillumin Semiconductor Co., Ltd. – www.sillumin.com Rev1.3, Jul 2023 GNDB 4 SLMi823x PIN DESCRIPTION Table 1. SLMi8230/3 Pin Description No. Pin Description 1 VIA Input of driver A. The output of driver A is in phase with the input. This pin is pulled low internally if left open. Recommend to connect this pin to ground if not used for better noise immunity. 2 VIB Input of driver B. The output of driver B is in phase with the input. This pin is pulled low internally if left open. Recommend to connect this pin to ground if not used for better noise immunity. 3 VDDI Input power supply. A local low ESR and ESL capacitor should be connected between VDDI and GNDI. 4 GNDI Input power ground. 5 DIS Device disable input. When DIS pin is high, both driver is disabled and driver output is low. When DIS pin is low, it allows the device to perform in normal operation. 6 DT Dead time programming input. Connect a resistor between DT and GNDI to program the dead time. A bypassing capacitor, 2.2nF or greater, is recommended to be put between DT and GNDI to achieve better noise immunity. 7 NC No connection 8 VDDI Input power supply. This pin is internally connected to pin3. 9 GNDB Power ground of driver B. 10 VOB Output of driver B. 11 VDDB Power supply of driver B. A local low ESR and ESL capacitor should be connected between VDDB and GNDB. 12 NC No connection 13 NC No connection 14 GNDA Power ground of driver A. 15 VOA Output of driver A. 16 VDDA Power supply of driver A. A local low ESR and ESL capacitor should be connected between VDDA and GNDA. Table 2. SLMi8231/4 Pin Description No. Pin Description 1 PWM PWM input. The output of driver A is in phase with PWM input and the output of driver B is out of phase with PWM input. 2 NC No connection 3 VDDI Input power supply. A local low ESR and ESL capacitor should be connected between VDDI and GNDI. 4 GNDI Input power ground. 5 DIS 6 DT Device disable input. When DIS pin is high, both driver is disabled and driver output is low. When DIS pin is low, it allows the device to perform in normal operation. Dead time programming input. Connect a resistor between DT and GNDI to program the dead time. A bypassing capacitor, 2.2nF or greater, is recommended to be put between DT and GNDI to achieve better noise immunity. Sillumin Semiconductor Co., Ltd. – www.sillumin.com Rev1.3, Jul 2023 5 SLMi823x No. Pin Description 7 NC No connection 8 VDDI Input power supply. This pin is internally connected to pin3. 9 GNDB Power ground of driver B. 10 VOB Output of driver B. 11 VDDB Power supply of driver B. A local low ESR and ESL capacitor should be connected between VDDB and GNDB. 12 NC No connection 13 NC No connection 14 GNDA Power ground of driver A. 15 VOA Output of driver A. 16 VDDA Power supply of driver A. A local low ESR and ESL capacitor should be connected between VDDA and GNDA. Table 3. SLMi8232/5 Pin Description No. Pin Description 1 VIA Input of driver A. The output of driver A is in phase with the input. This pin is pulled low internally if left open. Recommend to connect this pin to ground if not used for better noise immunity. 2 VIB Input of driver B. The output of driver B is in phase with the input. This pin is pulled low internally if left open. Recommend to connect this pin to ground if not used for better noise immunity. 3 VDDI Input power supply. A local low ESR and ESL capacitor should be connected between VDDI and GNDI. 4 GNDI Input power ground. 5 DIS Device disable input. When DIS pin is high, both driver is disabled and driver output is low. When DIS pin is low, it allows the device to perform in normal operation. 6 NC No connection 7 NC No connection 8 VDDI Input power supply. This pin is internally connected to pin3. 9 GNDB Power ground of driver B. 10 VOB Output of driver B. 11 VDDB Power supply of driver B. A local low ESR and ESL capacitor should be connected between VDDB and GNDB. 12 NC No connection 13 NC No connection 14 GNDA Power ground of driver A. 15 VOA Output of driver A. 16 VDDA Power supply of driver A. A local low ESR and ESL capacitor should be connected between VDDA and GNDA. Sillumin Semiconductor Co., Ltd. – www.sillumin.com Rev1.3, Jul 2023 6 SLMi823x FUNCTIONAL BLOCK DIAGRAM VDDI VDDA ISOLATION VIA VIB VOA UVLO GNDA VDDI UVLO GNDI DT CONTROL &OVERLAP PROTECTION DIS VDDI VDDB ISOLATION DT VOB UVLO GNDB SLMi8230/3 Figure 4. SLMi8230/3 Functional Block Diagram VDDI VDDA ISOLATION PWM VOA UVLO GNDA VDDI UVLO GNDI DT CONTROL &OVERLAP PROTECTION DIS VDDI VDDB ISOLATION DT VOB UVLO GNDB SLMi8231/4 Figure 5. SLMi8231/4 Functional Block Diagram VDDI VDDA ISOLATION VIA VIB VOA UVLO GNDA VDDI UVLO GNDI DIS VDDI ISOLATION VDDB VOB UVLO SLMi8232/5 GNDB Figure 6. SLMi8232/5 Functional Block Diagram Sillumin Semiconductor Co., Ltd. – www.sillumin.com Rev1.3, Jul 2023 7 SLMi823x ORDERING INFORMATION Order Part No. Package QTY SLMi8230BDCG-DG SOP16W, Pb-Free 1500/Reel SLMi8230DDCG-DG SOP16W, Pb-Free 1500/Reel SLMi8231BDCG-DG SOP16W, Pb-Free 1500/Reel SLMi8231DDCG-DG SOP16W, Pb-Free 1500/Reel SLMi8232BDCG-DG SOP16W, Pb-Free 1500/Reel SLMi8232DDCG-DG SOP16W, Pb-Free 1500/Reel SLMi8233BDCG-DG SOP16W, Pb-Free 1500/Reel SLMi8233DDCG-DG SOP16W, Pb-Free 1500/Reel SLMi8234BDCG-DG SOP16W, Pb-Free 1500/Reel SLMi8234DDCG-DG SOP16W, Pb-Free 1500/Reel SLMi8235BDCG-DG SOP16W, Pb-Free 1500/Reel SLMi8235DDCG-DG SOP16W, Pb-Free 1500/Reel FAMILY OVERVIEW Part Number Input Configuration Output Configuration Programmable Dead Time Overlap Protection Peak Output Current UVLO SLMi8230BDCG-DG VIA,VIB HS/LS Yes Yes 1.0 A 8.5V/7.5V SLMi8230DDCG-DG VIA,VIB HS/LS Yes Yes 1.0 A 12.5V/11.5V SLMi8231BDCG-DG PWM HS/LS Yes Yes 1.0 A 8.5V/7.5V SLMi8231DDCG-DG PWM HS/LS Yes Yes 1.0 A 12.5V/11.5V SLMi8232BDCG-DG VIA,VIB Dual Driver No No 1.0 A 8.5V/7.5V SLMi8232DDCG-DG VIA,VIB Dual Driver No No 1.0 A 12.5V/11.5V SLMi8233BDCG-DG VIA,VIB HS/LS Yes Yes 4.0 A 8.5V/7.5V SLMi8233DDCG-DG VIA,VIB HS/LS Yes Yes 4.0 A 12.5V/11.5V SLMi8234BDCG-DG PWM HS/LS Yes Yes 4.0 A 8.5V/7.5V SLMi8234DDCG-DG PWM HS/LS Yes Yes 4.0 A 12.5V/11.5V SLMi8235BDCG-DG VIA,VIB Dual Driver No No 4.0 A 8.5V/7.5V SLMi8235DDCG-DG VIA,VIB Dual Driver No No 4.0 A 12.5V/11.5V Sillumin Semiconductor Co., Ltd. – www.sillumin.com Rev1.3, Jul 2023 8 SLMi823x ABSOLUTE MAXIMUM RATINGS1 Symbol Definition Min Max Unit VDDI Input Power Supply Voltage -0.3 20 V VIA,VIB, VDIS,VPWM Input Signal Voltage -7 20 V VDDA, VDDB Driver Power Supply -0.3 45 V Driver Output Voltage -0.3 VDDA+0.3, VDDB+0.3 V Driver Output Voltage, Transient for 200ns2 -3 VDDA+0.3, VDDB+0.3 V Driver Output Voltage, Transient for 50ns2 -6 VDDA+0.3, VDDB+0.3 V 1500 V VOUTA, VOUTB Vch2ch Channel to Channel Voltage TJ Junction Temperature -40 150 C TS Storage Temperature -65 150 C RECOMMENDED OPERATION CONDITIONS1 Symbol Definition Min Max Unit VDDI Input Power Supply Voltage 3 18 V VIA,VIB, VDIS,VPWM Input Signal Voltage -5 18 V 9 40 V 13.5 40 V VDDA, VDDB VDDA, VDDB Driver Power Supply (8.5V UVLO Version) Power Supply for Driver (12.5V UVLO Version) TJ Junction Temperature -40 150 C TA Storage Temperature -40 125 C ESD RATINGS Symbol Definition Value HBM 4000 CDM 2000 VESD Units V Note 1: VDDI, VIA, VIB, VDIS, VPWM are reference to GNDI; VDDA, VOUTA are referenced to GNDA; VDDB, VOUTB are referenced to GNDB; Note 2: Values are verified by characterization on bench Sillumin Semiconductor Co., Ltd. – www.sillumin.com Rev1.3, Jul 2023 9 SLMi823x THERMAL INFORMATION Symbol Definition Value Unit RθJA Junction to ambient thermal resistance 100 °C/W RθJC(TOP) Junction to case (top) thermal resistance 40 °C/W Sillumin Semiconductor Co., Ltd. – www.sillumin.com Rev1.3, Jul 2023 10 SLMi823x PACKAGE SPECIFICATIONS Symbol Definition Min. Typ. Max. Units RIO Resistance (Input Side to Output Side) 1012  CIO Capacitance (Input Side to Output Side) 1.8 pF INSULATION SPECIFICATIONS Symbol Definition Test Condition Value Units CLR External clearance Shortest terminal to terminal distance through air 8.0 mm CPG External creepage Shortest terminal to terminal distance across the package surface 8.0 mm DTI Distance through the insulation Minimum internal gap >16 um CTI Comparative tracking index DIN EN 60112 (VDE 0303-11), IEC 60112 >600 V Material Group Overvoltage category I Rated mains voltages 150Vrms I-IV Rated mains voltages 300Vrms I-IV Rated mains voltages 600Vrms I-III Rated mains voltages 1000Vrms I-II DIN V VDE 0884-11(1) VIORM Maximum repetitive peak isolation voltage 1414 VPK VIOWM Maximum isolation working voltage 1000 VRMS VIOTM Maximum transient isolation voltage 60s 7000 VPK VIOSM Maximum surge isolation voltage Test method per IEC62368, 1.2/50us waveform, VTEST=1.6 x VIOSM 6250 VPK qpd Apparent charge Method b2: Vpd(m)=1.875 x VIORM, tm=1 s 5 pC Climatic Category 40/125/21 Pollution Degree 2 UL1577 VISO Withstand Isolation Voltage VTEST=VISO, t=60s (qualification), VTEST=1.2 x VISO, t=1s (100% production) 5000 VRMS Note 1: Certification planned Sillumin Semiconductor Co., Ltd. – www.sillumin.com Rev1.3, Jul 2023 11 SLMi823x SAFETY RELATED CERTIFICATIONS VDE UL CQC TUV DIN V VDE 088401111: 2017-01 UL 1577 component recognition program Certified according to Certified according to EN IEC 61010-1: 2010+A1 and EN IEC 62368-1: 2018 Reinforced Insulation Single protection, 5000 VRMS Certification Pending File number: E521801 Reinforced insulation, Altitude≤ 5000m, Tropical climate,400 VRMS maximum working voltage File number: CQC21001324484 GB4943.1-2011 5000Vrms reinforced insulation, 800Vrms maximum working voltage Ref.Certif.No: DE 2-038921 Ref.Certif.No: JPTUV146634 Certificate No: R 50590519 SAFETY LIMITING VALUES Symbol IS Parameter Side Value Unit Driver A and Driver B 73 mA Condition Safety output current VDDA=VDDB=16V, CLOAD=1nF, 2MHz PWM, 50% duty, RθJA=100°C/W, TJ =150°C, TA =25°C PS Input 36 Driver A 584 TJ =150°C, TA =25°C Driver B Total 584 1204 Maximum safety temperature 80 1600 70 1400 60 50 40 30 20 10 0 0 mW 150 Safety Limiting Power (mW) Safety Limiting Current (mA) TS Safety input, output, or total power VDDA=VDDB=16V, CLOAD=1nF, VDDI=12V, 2MHz PWM, 50% duty, RθJA=100°C/W, °C 1200 1000 800 600 400 200 25 50 75 100 125 150 Ambient Temperature (oC) Figure 7. Thermal Derating Curve for Limiting Current per VDE (Current in VDDA and VDDB) Sillumin Semiconductor Co., Ltd. – www.sillumin.com Rev1.3, Jul 2023 0 0 25 50 75 100 125 150 Ambient Temperature (oC) Figure 8. Thermal Derating Curve for Limiting Power per VDE 12 SLMi823x ELECTRICAL CHARACTERISTICS (DC) VDDI = 5 V, 0.1μF capacitor from VDDI to GNDI, VDDA = VDDB =15V, 1μF capacitor from VDDA and VDDB to GNDA and GNDB, TA = –40°C to +125°C, unless otherwise specified. Symbol Parameter Condition Min Typ Max Unit 18 V Input Power Supply VDDI Input Supply Voltage 3 VUVLO_VDDI_R VDDI UVLO Rising 2.55 2.7 2.85 V VUVLO_VDDI_F VDDI UVLO Falling 2.35 2.5 2.65 V VUVLO_HYS VDDI UVLO Hysteresis IVDDI 0.2 Quiescent Current VIA = 0V, VIB = 0V Operation Current fsw= 100kHz, (50% Duty Cycle), both channels 1.4 2 V 2.6 3.3 mA mA Logic Interface VIH High Level Input Threshold Voltage at VIA, VIB, DIS and PWM VIL Low Level Input Threshold Voltage at VIA, VIB, DIS and PWM RPD Pull down Resistance on VIA,VIB,DIS and PWM 2 V 0.8 V 126 180 280 k 8.5V UVLO Version 8 8.5 9 V 12.5V UVLO Version 11.5 12.5 13.5 V 8.5V UVLO Version 7 7.5 8 V 12.5V UVLO Version 10.5 11.5 12.5 V Driver Power Supply VUVLO_VDDA_R, VUVLO_VDDB_R VDDA, VDDB UVLO Rising VUVLO_VDDA_F, VUVLO_VDDB_F VDDA, VDDB UVLO Falling VUVLO_VDDA_HYS, VUVLO_VDDB_HYS VDDA, VDDB UVLO Hysteresis IVDDA, VDDA/B Quiescent Current, per Channel IVDDB 8.5V UVLO Version 1 V 12.5V UVLO Version 1 V VIA = 0V, VIB = 0V 0.8 1.5 2.6 mA OUTPUT (SLMi8230/1/2) IOH Peak Source Current 1 A IOL Peak Sink Current 1.5 A VOH High Level Output Voltage IO=-10mA 70 120 mV VOL Low Level Output Voltage IO=10mA 30 65 mV OUTPUT (SLMi8233/4/5) IOH Peak Source Current 4 A IOL Peak Sink Current 7 A Sillumin Semiconductor Co., Ltd. – www.sillumin.com Rev1.3, Jul 2023 13 SLMi823x Symbol Parameter VOH High Level Output Voltage VOL Low Level Output Voltage Condition Min Typ Max Unit IO=-10mA 12 22 mV IO=10mA 6.2 11 mV 220 k 240 ns 10 nF Dead Time RDT Resistance range on DT tDT Dead time CDT 5 RDT=20k 160 200 Capacitance of CDT SWITCHING CHARACTERISTICS (AC) VDDI = 5 V, 0.1μF capacitor from VDDI to GNDI, VDDA = VDDB =15V, 1μF capacitor from VDDA and VDDB to GNDA and GNDB, TA = –40°C to +125°C, unless otherwise specified. Symbol Parameter Condition Min Typ Max Unit 40 60 ns 40 60 ns 6 15 ns 4 10 ns Switching Characteristics tPLH Propagation Delay, Low to High tPHL Propagation Delay, High to Low tr Turn on Rise Time tf Turn off Fall Time CLOAD=1nF, fsw=1kHz, (50% Duty Cycle) tPWD Pulse Width Distortion 18 ns tDM Propagation Delay Matching between OUTA and OUTB 18 ns VDDI UVLO Recovery Delay 15 μs tUVLO_REC_VDDA(B) VDDA, VDDB UVLO Recovery Delay 18 μs CMTIH High Level Static Common Mode Transient Immunity VCM=1000V, TA=25°C 100 kV/μs CMTIL Low Level Static Common Mode Transient Immunity VCM=1000V, TA=25°C 100 kV/μs tUVLO_REC_VDDI Sillumin Semiconductor Co., Ltd. – www.sillumin.com Rev1.3, Jul 2023 14 SLMi823x PARAMETER MEASUREMENT INFORMATION Propagation Delay and Pulse Width Distortion Figure 9 shows the timing diagram of the propagation delay tPDLH and tPDHL, pulse distortion tPWD and delay matching tDM from the input VIA and VIB. Short the DT pin to VDDI to disable the dead time function. VIA/B tPLHA tPHLA tDM VOA tPLHB tPHLB tPWDB=|tPLHB -tPHLB| VOB Figure 9. Propagation Delay and Pulse Width Distortion Rise and Fall Time Testing Figure 10 shows the criteria for measuring rise time (tr) and fall time (tf). 80% 50% tr 20% tf Figure 10. Turn On Rise Time and Turn Off Fall Time CMTI Testing Figure 11 is the simplified diagram of the CMTI testing. Common mode voltage is set to 1000V. VCC VDD VIA 1 16 2 15 VCC VDDI GNDI Reinforced Isolation VIB 3 4 DIS 5 DT NC VDDI 6 14 VDDA VOA GNDA Functional Isolation 11 7 10 8 9 VDDB VOB GNDB Common Mode Surge Generator Figure 11. CMTI Test Circuit Sillumin Semiconductor Co., Ltd. – www.sillumin.com Rev1.3, Jul 2023 15 SLMi823x FEATURE DESCRIPTION SLMi823x is a flexible dual channel isolated gate driver that can drive IGBTs and MOSFETs. It has 1.0A or 4.0A peak output current capability with maxim output driver supply voltage of 40V. SLMi823x has many features that allow it to integrate well with control circuitry and protect the gates it drives such as: resistor programmable dead time control, an DIS pin, and under voltage lock out (UVLO) for both input and output voltages. Under Voltage Lockout The SLMi823x has under voltage lock out (UVLO) protection feature on each driver power supply voltage between the VDDA (VDDB) and GNDA (GNDB) pins. When the VDDx voltage is lower than VUVLO_VDDX_R, during device start up or lower than VUVLO_VDDX_F, after start up, the VDDA (VDDB) UVLO feature holds the driver output low, regardless of the status of the input pins. A hysteresis on the UVLO feature prevents glitch when there is noise from the power supply. The SLMi823x also monitors the input power supply and there is an internal under voltage lock out protection feature on the VDDI. The driver outputs (VOA and VOB) are hold low when the voltage on the VDDI is lower than VUVLO_VDDI_R during start up or lower than VUVLO_VDDI_F after start up. There is a hysteresis on the VDDI UVLO feature to prevent glitch due the noise on the VDDI power supply. Disable Input Function When the DIS is pulled high, the VOA and VOB are pulled low regardless of the states of VIA and VIB. When the DIS pin is pulled low, the VOA and VOB are allowed for normal operation and controlled by the VIA and VIB. The DIS input has no effect if VDDI is below its UVLO threshold and VOA, VOB remain low. There is an internal pull down resistor on the DIS pin. Control Input and Output Logic The VIA and VIB input controls the corresponding output channel, VOA and VOB. A logic high signal on VIA (VIB) causes the output of VOA (VOB) to go high. And a logic low on VIA (VIB) causes the output of VOA (VOB) to go low. For PWM input versions (SLMi8231/4), when the PWM input is high, the VOA is high and VOB is low. And when the PWM input is low, the VOA is low and VOB is high. The Table 4 and Table 5 show the relationship between VIA,VIB, PWM, DIS, UVLO and Output of VOA and VOB. Table 4. Relationship between Input and Output with VIA, VIB input (SLMi8230/2/3/5) VIA VIB DIS VDDI UVLO VDDA UVLO VDDB UVLO VOA VOB Note H L L No No No H L L H L No No No L H L L L No No No L L H H L No No No H H SLMi8232/5 L L SLMi8230/3 X X H No No No L L Device disabled X X X Yes No No L L VDDI UVLO active H X L No No Yes H L L X L No No Yes L L VDDB UVLO active X H L No Yes No L H X L L No Yes No L L Sillumin Semiconductor Co., Ltd. – www.sillumin.com Rev1.3, Jul 2023 VDDA UVLO active 16 SLMi823x Table 5. Relationship between Input and Output with PWM input (SLMi8231/4) PWM DIS VDDI UVLO VDDA UVLO VDDB UVLO VOA VOB Note H L No No No H L L L No No No L H X H No No No L L Device disabled X X Yes No No L L VDDI UVLO active H L No No Yes H L L L No No Yes L L VDDB UVLO active H L No Yes No L L L L No Yes No L H VDDA UVLO active Dead-time Program For the high side/low side configuration driver, there is a dead-time between VOA and VOB. The dead-time delay (tDT) is programmed by a resistor (RDT) connected from the DT input to ground and it can be calculated with below equation. 𝑡𝐷𝑇 [ns] ≈10× 𝑅𝐷𝑇 [kΩ] Here, tDT is the dead-time delay, RDT is the resistance value between DT and ground. The DT pin can be connected to VDDI or left floating to provide a nominal dead time at approximately 400 ps. A bypassing capacitor, 2.2nF or greater, is recommended to be put between DT and GNDI to achieve better noise immunity. The Figure 12 shows the input and output logic with dead-time in different condition. VIA/ PWM VIB DT DT DT DT DT DT DT DT VOA VOB A B C D E F G H Figure 12. Input and output logic with dead-time Condition A: VIA goes high and VIB goes low. VOB goes low immediately and VOA goes high after the programmed dead-time. Condition B: VIA goes low and VIB goes high. VOA goes low immediately and VOB goes high after the programmed dead-time. Condition C: VIB goes low and VIA still low. VOB goes low immediately. Since the VIA input dead-time is longer than the programmed dead-time, the VOA goes high immediately when the VIA input goes high. Sillumin Semiconductor Co., Ltd. – www.sillumin.com Rev1.3, Jul 2023 17 SLMi823x Condition D: VIA goes low and VIB still low. VOA goes low immediately. Since the VIB input dead-time is longer than the programmed dead-time, the VOB goes high immediately when the VIB input goes high. Condition E: VIA goes high while VIB and VOB are still high, the overlap time is shorter than the programmed deadtime. To avoid overshoot, VOB goes low immediately when the VIA goes high. The VOA goes high after the programmed dead-time. Condition F: VIB goes high while VIA and VOA are still high, the overlap time is shorter than the programmed deadtime. To avoid overshoot, VOA goes low immediately when the VIB goes high. The VOB goes high after the programmed dead-time. Condition G: VIA goes high while VIB and VOB are still high, the overlap time is longer than the programmed deadtime. To avoid overshoot, VOB goes low immediately when the VIA goes high. Since the overlap time is longer than the programmed dead-time, the VOA goes high immediately when the VIB goes low. Condition H: VIB goes high while VIA and VOA are still high, the overlap time is longer than the programmed deadtime. To avoid overshoot, VOA goes low immediately when the VIB goes high. Since the overlap time is longer than the programmed dead-time, the VOB goes high when the VIA goes low. Sillumin Semiconductor Co., Ltd. – www.sillumin.com Rev1.3, Jul 2023 18 SLMi823x APPLICATION INFORMATION The circuit in Figure 13 shows the typical application circuit for SLMi823x to driver a typical half bridge configuration which could be used in several popular power converter topologies such as synchronous buck, synchronous boost, half bridge, full bridge, LLC etc. topologies and 3-phase motor drive applications. VDD RBOOT VBUS PWMA RIN PWMB DC+ VIA VIB VDDI uC GNDI DIS I/O DT COPT 1 16 2 15 3 4 5 6 Reinforced Isolation RIN ROFF VOA RON 14 GNDA RGS SW Functional Isolation RDT VDD 11 VDDB ROFF 10 VOB NC 7 VDDI VDDA 8 9 GNDB RON RGS DC- Figure 13. Typical Application Schematic Sillumin Semiconductor Co., Ltd. – www.sillumin.com Rev1.3, Jul 2023 19 SLMi823x LAYOUT Figure 14 and Figure 15 shows a 2 layer PCB layout example with the signals and key components. Figure 14. PCB Top View Figure 15. PCB Bottom View Sillumin Semiconductor Co., Ltd. – www.sillumin.com Rev1.3, Jul 2023 20 SLMi823x PACKAGE CASE OUTLINES Figure 16. SOP16W Package Outline Dimensions Sillumin Semiconductor Co., Ltd. – www.sillumin.com Rev1.3, Jul 2023 21 SLMi823x REFLOW PROFILE GUIDANCE Sillumin Semiconductor Co., Ltd. – www.sillumin.com Rev1.3, Jul 2023 22 SLMi823x REVISION HISTORY Note: page numbers for previous revisions may differ from page numbers in current version Page or Item Subjects (major changes since previous revision) Rev 1.0 datasheet: 2021-12-30 Whole document Initial release Rev 1.1 datasheet: 2022-10-25 Page 9 Update the values in the absolute maximum ratings table Page 10 Add thermal information Page 11 Add the test condition in the Insulation specifications Page 12 Add safety related certifications Add safety limiting values Page 13, 14 Updated the IVDDI, RPD, VOH, VOL and add the IVDDA, IVDDB in the electrical characteristics (DC) table Page 14 Update tPWD, tDM in the switching characteristics (AC) table Rev 1.2 datasheet: 2023-05-05 Page 11 Updated the VIOTM value Page 12 Add the TUV certification in Safety Related Certifications Page 13 Updated the RPD max value Rev 1.3 datasheet: 2023-07-03 Page 12 Add the TUV certification No: R 50590519 Sillumin Semiconductor Co., Ltd. – www.sillumin.com Rev1.3, Jul 2023 23
SLMI8233BDCG-DG 价格&库存

很抱歉,暂时无法提供与“SLMI8233BDCG-DG”相匹配的价格&库存,您可以联系我们找货

免费人工找货
SLMi8233BDCG-DG
    •  国内价格
    • 1+8.74340
    • 10+7.43820
    • 30+6.72210
    • 100+5.90210
    • 500+5.02430

    库存:0

    SLMi8233BDCG-DG
      •  国内价格
      • 1+8.17560
      • 10+6.95520
      • 30+6.28560
      • 100+5.51880
      • 500+4.69800

      库存:0