0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SIT2018BE-S1-33N-8.704000

SIT2018BE-S1-33N-8.704000

  • 厂商:

    SITIME

  • 封装:

    SC-74A,SOT-753

  • 描述:

    MEMS OSC XO 8.7040MHZ LVCMOS SMD

  • 详情介绍
  • 数据手册
  • 价格&库存
SIT2018BE-S1-33N-8.704000 数据手册
SiT2018B High Temp, Single-Chip, SOT23 Oscillator Features Applications 8B ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ 9B Frequencies between 1 MHz and 110 MHz accurate to 6 decimal places Operating temperature from -40°C to 125°C. For -55°C option, refer to SiT2020 and SiT2021 Supply voltage of 1.8 V or 2.5 V to 3.3 V Excellent total frequency stability as low as ±20 ppm Low power consumption of 3.5 mA typical at 1.8 V LVCMOS/LVTTL compatible output 5-pin SOT23-5 package: 2.9 mm x 2.8 mm RoHS and REACH compliant, Pb-free, Halogen-free and Antimony-free For AEC-Q100 SOT23 Oscillators, refer to SiT2024 and SiT2025 ◼ Industrial, medical, automotive, avionics and other high temperature applications ◼ Industrial sensors, PLC, motor servo, outdoor networking equipment, medical video cam, asset tracking systems, etc. Related products for automotive applications. For aerospace and defense applications SiTime recommends using only Endura™ SiT2044. Electrical Specifications All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise stated. Typical values are at 25°C and nominal supply voltage. Table 1. Electrical Characteristics Parameters Symbol Min. Typ. Max. Unit Condition Frequency Range Output Frequency Range f 1 – 110 MHz Refer to Table 14 for the exact list of supported frequencies Frequency Stability and Aging Frequency Stability F_stab -20 – +20 ppm -25 – +25 ppm -30 – +30 ppm -50 – +50 ppm Inclusive of Initial tolerance at 25°C, 1st year aging at 25°C, and variations over operating temperature, rated power supply voltage and load (15 pF ±10%). Operating Temperature Range Operating Temperature Range (ambient) T_use -40 – +105 °C Extended Industrial -40 – +125 °C Automotive Supply Voltage and Current Consumption Supply Voltage Current Consumption OE Disable Current Standby Current Rev 1.03 Vdd Idd I_od I_std 1.62 1.8 1.98 V 2.25 2.5 2.75 V 2.52 2.8 3.08 V 2.7 3.0 3.3 V 2.97 3.3 3.63 V 2.25 – 3.63 V – 3.8 4.7 mA No load condition, f = 20 MHz, Vdd = 2.8 V, 3.0 V or 3.3 V – 3.6 4.5 mA No load condition, f = 20 MHz, Vdd = 2.5 V – 3.5 4.5 mA No load condition, f = 20 MHz, Vdd = 1.8 V – – 4.5 mA Vdd = 2.5 V to 3.3 V, OE = Low, Output in high Z state – – 4.3 mA Vdd = 1.8 V, OE = Low, Output in high Z state – 2.6 8.5 A Vdd = 2.8 V to 3.3 V, ST = Low, Output is weakly pulled down – 1.4 5.5 A Vdd = 2.5 V, ST = Low, Output is weakly pulled down – 0.6 4.0 A Vdd = 1.8 V, ST = Low, Output is weakly pulled down 1 January 2023 www.sitime.com SiT2018B High Temp, Single-Chip, SOT23 Oscillator Table 1. Electrical Characteristics (continued) Parameters Duty Cycle Rise/Fall Time Symbol Min. Typ. Max. Unit LVCMOS Output Characteristics – 55 % All Vdds Condition DC 45 Tr, Tf – 1.0 2.0 ns Vdd = 2.5 V, 2.8 V, 3.0 V or 3.3 V, 20% - 80% – 1.3 2.5 ns Vdd = 1.8 V, 20% - 80% Vdd = 2.25 V - 3.63 V, 20% - 80% – 1.0 3 ns Output High Voltage VOH 90% – – Vdd Output Low Voltage VOL – – 10% Vdd Input High Voltage VIH 70% – – Vdd Pin 3, OE or ST Input Low Voltage VIL – – 30% Vdd Pin 3, OE or ST Input Pull-up Impedance Z_in 50 87 150 k Pin 3, OE logic high or logic low, or ST logic high 2 – – M Pin 3, ST logic low IOH = -4 mA (Vdd = 3.0 V or 3.3 V) IOH = -3 mA (Vdd = 2.8 V or 2.5 V) IOH = -2 mA (Vdd = 1.8 V) IOL = 4 mA (Vdd = 3.0 V or 3.3 V) IOL = 3 mA (Vdd = 2.8 V or 2.5 V) IOL = 2 mA (Vdd = 1.8 V) Input Characteristics Startup and Resume Timing Startup Time Enable/Disable Time Resume Time T_start – – 5 ms Measured from the time Vdd reaches its rated minimum value T_oe – – 130 ns f = 110 MHz. For other frequencies, T_oe = 100 ns + 3 * clock periods T_resume – – 5 ms Measured from the time ST pin crosses 50% threshold Jitter RMS Period Jitter T_jitt Peak-to-peak Period Jitter T_pk RMS Phase Jitter (random) T_phj – 1.6 2.5 ps f = 75 MHz, Vdd = 2.5 V, 2.8 V, 3.0 V or 3.3 V – 1.9 3 ps f = 75 MHz, Vdd = 1.8 V – 12 20 ps f = 75 MHz, Vdd = 2.5 V, 2.8 V, 3.0 V or 3.3 V – 14 25 ps f = 75 MHz, Vdd = 1.8 V – 0.5 0.8 ps f = 75 MHz, Integration bandwidth = 900 kHz to 7.5 MHz – 1.3 2 ps f = 75 MHz, Integration bandwidth = 12 kHz to 20 MHz Table 2. Pin Description Pin Symbol 1 GND Power 2 NC No Connect Top View Functionality 7B Output Enable OE / / NC NC GND Electrical ground No connect H[1]: specified frequency output L: output is high impedance. Only output driver is disabled. H or Open[1]: specified frequency output 3 OE/ S̅ T̅ ̅ /NC A E A Standby No Connect L: output is low (weak pull down). Device goes to sleep mode. Supply current reduces to I_std. Any voltage between 0 and Vdd or Open[1]: Specified frequency output. Pin 3 has no function. 4 VDD Power Power supply voltage[2] 5 OUT Output Oscillator output VDD OUT Figure 1. Pin Assignments 0B Notes: 1. In OE or ST mode, a pull-up resistor of 10 kΩ or less is recommended if pin 3 is not externally driven. If pin 3 needs to be left floating, use the NC option. 2. A capacitor of value 0.1 µF or higher between Vdd and GND is required. Rev 1.03 Page 2 of 16 www.sitime.com SiT2018B High Temp, Single-Chip, SOT23 Oscillator Table 3. Absolute Maximum Limits Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maxi mum ratings. Min. Max. Unit Storage Temperature Parameter -65 150 °C Vdd -0.5 4 V Electrostatic Discharge – 2000 V Soldering Temperature (follow standard Pb free soldering guidelines) – 260 °C – 150 °C Junction Temperature [3] Note: 3. Exceeding this temperature for extended period of time may damage the device. Table 4. Thermal Consideration[4] Package JA, 4 Layer Board JC, Bottom (°C/W) (°C/W) SOT23-5 421 175 Note: 4. Refer to JESD51 for JA and JC definitions, and reference layout used to determine the JA and JC values in the above table. Table 5. Maximum Operating Junction Temperature[5] Max Operating Temperature (ambient) Maximum Operating Junction Temperature 105°C 115°C 125°C 135°C Note: 5. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature. Table 6. Environmental Compliance Parameter Condition/Test Method Mechanical Shock MIL-STD-883F, Method 2002 Mechanical Vibration MIL-STD-883F, Method 2007 Temperature Cycle JESD22, Method A104 Solderability MIL-STD-883F, Method 2003 Moisture Sensitivity Level MSL1 @ 260°C Rev 1.03 Page 3 of 16 www.sitime.com SiT2018B High Temp, Single-Chip, SOT23 Oscillator Test Circuit and Waveform[6] Vout Test Point Vdd tr 15 pF (including probe and fixture capacitance) 80% Vdd 4 5 1 2 tf 0.1µF 3 50% Power Supply 20% Vdd High Pulse (TH) Period Vdd 1kΩ Low Pulse (TL) OE/ST Function Figure 2. Test Circuit Figure 3. Output Waveform 1B 2B Note: 6. Duty Cycle is computed as Duty Cycle = TH/Period. Timing Diagrams 90% Vdd Vdd Vdd 50% Vdd [7] T_start Pin 4 Voltage No Glitch during start up T_resume ST Voltage CLK Output CLK Output HZ HZ T_start: Time to start from power-off T_resume: Time to resume from ST Figure 4. Startup Timing (OE/ ST Mode) Figure 6. Standby Resume Timing ( ST Mode Only) 4B3 6B5 Vdd Vdd 50% Vdd OE Voltage 50% Vdd T_oe OE Voltage T_oe CLK Output CLK Output HZ HZ T_oe: Time to put the output in High Z mode T_oe: Time to re-enable the clock output Figure 7. OE Disable Timing (OE Mode Only) Figure 5. OE Enable Timing (OE Mode Only) Note: 7. SiT2018 has “no runt” pulses and “no glitch” output during startup or resume. Rev 1.03 Page 4 of 16 www.sitime.com SiT2018B High Temp, Single-Chip, SOT23 Oscillator Performance Plots[8] 1.8 V 2.5 V 2.8 V 3.0 V 3.3 V 6.0 DUT15 DUT16 DUT10 DUT11 DUT17 DUT18 5.5 Frequency (ppm) Idd (mA) 5.0 4.5 4.0 3.5 3.0 0 20 40 60 80 100 5 Figure 8. Idd vs Frequency 1.8 V 2.5 V 2.8 V 3.0 V 125 Figure 9. Frequency vs Temperature 1.8 V 3.3 V 2.5 V 2.8 V 3.0 V 3.3 V 55 4.0 54 3.5 53 3.0 Duty cycle (%) RMS period jitter (ps) 45 2.5 2.0 1.5 52 51 50 49 48 1.0 47 0.5 46 0.0 0 20 40 60 80 45 100 0 Figure 10. RMS Period Jitter vs Frequency 2.5 V 2.8 V 3.0 V 3.3 V 1.8 V 2.5 2.5 2.0 2.0 1.5 1.0 60 80 100 2.5 V 2.8 V 20 40 3.0 V 3.3 V 1.5 1.0 0.5 0.5 0.0 -40 -20 0 20 40 60 80 100 0.0 120 -40 Figure 12. 20%-80% Rise Time vs Temperature Rev 1.03 40 Figure 11. Duty Cycle vs Frequency Fall time (ns) Rise time (ns) 1.8 V 20 -20 0 60 80 100 120 Figure 13. 20%-80% Fall Time vs Temperature Page 5 of 16 www.sitime.com SiT2018B High Temp, Single-Chip, SOT23 Oscillator Performance Plots[8] 2.5 V 2.8 V 3.0 V 3.3 V IPJ (ps) IPJ (ps) 1.8 V Figure 14. RMS Integrated Phase Jitter Random (12k to 20 MHz) vs Frequency[9] Figure 15. RMS Integrated Phase Jitter Random (900 kHz to 20 MHz) vs Frequency[9] Notes: 8. All plots are measured with 15 pF load at room temperature, unless otherwise stated. 9. Phase noise plots are measured with Agilent E5052B signal source analyzer. Integration range is up to 5 MHz for carrier frequencies up to 40 MHz. Rev 1.03 Page 6 of 16 www.sitime.com SiT2018B High Temp, Single-Chip, SOT23 Oscillator Programmable Drive Strength The SiT2018 includes a programmable drive strength feature to provide a simple, flexible tool to optimize the clock rise/fall time for specific applications. Benefits from the programmable drive strength feature are: ◼ Improves system radiated electromagnetic interference (EMI) by slowing down the clock rise/fall time. ◼ Improves the downstream clock receiver’s (RX) jitter by decreasing (speeding up) the clock rise/fall time. ◼ Ability to drive large capacitive loads while maintaining full swing with sharp edge rates. For more detailed information about rise/fall time control and drive strength selection, see the SiTime Application Notes section. The SiT2018 can support up to 60 pF in maximum capacitive loads with drive strength settings. Refer to the Rise/Tall Time Tables (Table 7 to 11) to determine the proper drive strength for the desired combination of output load vs. rise/fall time. SiT2018 Drive Strength Selection Tables 7 through 11 define the rise/fall time for a given capacitive load and supply voltage. 1. Select the table that matches the SiT2018 nominal supply voltage (1.8 V, 2.5 V, 2.8 V, 3.0 V, 3.3 V). 2. Select the capacitive load column that matches the application requirement (5 pF to 60 pF) 3. Under the capacitive load column, select the desired rise/fall times. 4. The left-most column represents the part number code for the corresponding drive strength. 5. Add the drive strength code to the part number for ordering purposes. EMI Reduction by Slowing Rise/Fall Time Figure 16 shows the harmonic power reduction as the rise/fall times are increased (slowed down). The rise/fall times are expressed as a ratio of the clock period. For the ratio of 0.05, the signal is very close to a square wave. For the ratio of 0.45, the rise/fall times are very close to neartriangular waveform. These results, for example, show that the 11th clock harmonic can be reduced by 35 dB if the rise/fall edge is increased from 5% of the period to 45% of the period. trise=0.05 trise=0.1 trise=0.15 trise=0.2 trise=0.25 trise=0.3 trise=0.35 trise=0.4 trise=0.45 10 Harmonic amplitude (dB) 0 -10 -20 Calculating Maximum Frequency Based on the rise and fall time data given in Tables 7 through 11, the maximum frequency the oscillator can operate with guaranteed full swing of the output voltage over temperature can be calculated as the following: 5 x Trf_20/80 where Trf_20/80 is the typical value for 20%-80% rise/fall time. -30 Example 1 -40 Calculate fMAX for the following condition: -50 -60 -70 -80 1 Max Frequency = 1 3 5 7 9 11 Harmonic number Figure 16. Harmonic EMI reduction as a Function of Slower Rise/Fall Time ◼ Vdd = 1.8 V (Table 7) ◼ Capacitive Load: 30 pF ◼ Desired Tr/f time = 3 ns (rise/fall time part number code = E) Part number for the above example: Jitter Reduction with Faster Rise/Fall Time SiT2018BIES2-18E-66.666660 Power supply noise can be a source of jitter for the downstream chipset. One way to reduce this jitter is to speed up the rise/fall time of the input clock. Some chipsets may also require faster rise/fall time in order to reduce their sensitivity to this type of jitter. Refer to the Rise/Fall Time Tables (Table 7 to Table 11) to determine the proper drive strength. Drive strength code is inserted here. Default setting is “-” High Output Load Capability The rise/fall time of the input clock varies as a function of the actual capacitive load the clock drives. At any given drive strength, the rise/fall time becomes slower as the output load increases. As an example, for a 3.3 V SiT2018 device with default drive strength setting, the typical rise/fall time is 1 ns for 15 pF output load. The typical rise/fall time slows down to 2.6 ns when the output load increases to 45 pF. One can choose to speed up the rise/fall time to 1.83 ns by then increasing the drive strength setting on the SiT2018. Rev 1.03 Page 7 of 16 www.sitime.com SiT2018B High Temp, Single-Chip, SOT23 Oscillator Rise/Fall Time (20% to 80%) vs CLOAD Tables Table 8. Vdd = 2.5 V Rise/Fall Times for Specific CLOAD Table 7. Vdd = 1.8 V Rise/Fall Times for Specific CLOAD Drive Strength \ CLOAD L A R B T E U F or "‐": default Rise/Fall Time Typ (ns) 5 pF 15 pF 30 pF 45 pF 60 pF Drive Strength \ CLOAD 6.16 3.19 2.11 1.65 0.93 0.78 0.70 0.65 31.27 16.01 10.77 8.18 4.66 4.09 3.68 3.35 39.91 21.52 14.47 11.08 6.48 5.74 5.09 4.56 L A R B T E or "‐": default U F 11.61 6.35 4.31 3.23 1.91 1.66 1.48 1.30 22.00 11.00 7.65 5.79 3.32 2.94 2.64 2.40 Table 9. Vdd = 2.8 V Rise/Fall Times for Specific CLOAD L A R B T E or "‐": default U F 45 pF 60 pF 4.13 2.11 1.45 1.09 0.62 8.25 4.27 2.81 2.20 1.28 12.82 7.64 5.16 3.88 2.27 21.45 11.20 7.65 5.86 3.51 27.79 14.49 9.88 7.57 4.45 0.54 0.43 0.34 1.00 0.96 0.88 2.01 1.81 1.64 3.10 2.79 2.54 4.01 3.65 3.32 Table 10. Vdd = 3.0 V Rise/Fall Times for Specific CLOAD Rise/Fall Time Typ (ns) Drive Strength \ CLOAD Rise/Fall Time Typ (ns) 5 pF 15 pF 30 pF Rise/Fall Time Typ (ns) 5 pF 3.77 15 pF 7.54 30 pF 12.28 45 pF 19.57 60 pF 25.27 1.94 1.29 0.97 3.90 2.57 2.00 7.03 4.72 3.54 10.24 7.01 5.43 13.34 9.06 6.93 0.55 1.12 2.08 3.22 4.08 0.44 0.34 0.29 1.00 0.88 0.81 1.83 1.64 1.48 2.82 2.52 2.29 3.67 3.30 2.99 Drive Strength \ CLOAD L A R B T or "‐": default E U F 5 pF 3.60 15 pF 7.21 30 pF 11.97 45 pF 18.74 60 pF 24.30 1.84 1.22 0.89 3.71 2.46 1.92 6.72 4.54 3.39 9.86 6.76 5.20 12.68 8.62 6.64 0.51 0.38 0.30 0.27 1.00 0.92 0.83 0.76 1.97 1.72 1.55 1.39 3.07 2.71 2.40 2.16 3.90 3.51 3.13 2.85 Table 11. Vdd = 3.3 V Rise/Fall Times for Specific CLOAD Rise/Fall Time Typ (ns) Drive Strength \ CLOAD L A R B T or "‐": default E U F Rev 1.03 5 pF 3.39 1.74 1.16 15 pF 6.88 3.50 2.33 30 pF 11.63 6.38 4.29 45 pF 17.56 8.98 6.04 60 pF 23.59 12.19 8.34 0.81 1.82 3.22 4.52 6.33 0.46 0.33 1.00 0.87 1.86 1.64 2.60 2.30 3.84 3.35 0.28 0.25 0.79 0.72 1.46 1.31 2.05 1.83 2.93 2.61 Page 8 of 16 www.sitime.com SiT2018B High Temp, Single-Chip, SOT23 Oscillator Pin 1 Configuration Options (OE, ST ̅ ̅ ̅ , or NC) Output on Startup and Resume Pin 3 of the SiT2018 can be factory-programmed to support three modes: Output Enable (OE), standby ( ST ) or No Connect (NC). The SiT2018 comes with gated output. Its clock output is accurate to the rated frequency stability within the first pulse from initial device startup or resume from the standby mode. Output Enable (OE) Mode In addition, the SiT2018 supports “no runt” pulses, and “no glitch” output during startup or resume as shown in the waveform captures in Figure 17 and Figure 18. A E A In the OE mode, applying logic Low to the OE pin only disables the output driver and puts it in Hi-Z mode. The core of the device continues to operate normally. Power consumption is reduced due to the inactivity of the output. When the OE pin is pulled High, the output is typically enabled in
SIT2018BE-S1-33N-8.704000
物料型号:SiT2018B

器件简介: - 工作频率范围在1 MHz至110 MHz之间,精确到小数点后六位。 - 适用于工业、医疗、汽车、航空等高温应用。 - 工作温度范围从-40°C至125°C。 - 电源电压为1.8 V至3.3 V。 - 具有优异的总频率稳定性,低至±20 ppm。 - 低功耗,典型值为3.5 mA(1.8 V时)。

引脚分配: - 5个引脚,包括电源(VDD)、地(GND)、输出使能/待机/无连接(OE/ST/NC)、无连接(NC)、振荡器输出(OUT)。

参数特性: - 频率稳定性包括初始容差、25°C下第一年老化以及在工作温度、额定电源电压和负载变化下的变化。 - 供电电压和电流消耗详细列出了在不同供电电压下的最小、典型和最大值。 - 输出高/低电压、输入高/低电压、输入上拉阻抗等电气特性均有详细说明。

功能详解: - 具有可编程的驱动强度特性,以优化特定应用中的时钟上升/下降时间。 - 改善系统辐射电磁干扰(EMI)和下游时钟接收器的抖动。 - 能够在维持全摆幅和尖锐边缘速率的同时驱动大电容负载。

应用信息: - 适用于工业传感器、PLC、电机伺服、户外网络设备、医疗视频摄像头、资产跟踪系统等。

封装信息: - 采用5引脚SOT23-5封装,尺寸为2.9 mm x 2.8 mm,符合RoHS和REACH标准,无铅、无卤素和无锑。
SIT2018BE-S1-33N-8.704000 价格&库存

很抱歉,暂时无法提供与“SIT2018BE-S1-33N-8.704000”相匹配的价格&库存,您可以联系我们找货

免费人工找货