0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TE0745-02-30-1IA-K

TE0745-02-30-1IA-K

  • 厂商:

    TRENZELECTRONIC

  • 封装:

  • 描述:

    IC MOD SOM DDR 1GB ZYNQ

  • 数据手册
  • 价格&库存
TE0745-02-30-1IA-K 数据手册
TE0745 TRM Revision: V.80 Exported on:  04/11/2018 TE0745 TRM V.80   1 Table of Contents 1 Table of Contents........................................................................................................................................... 2 2 Overview......................................................................................................................................................... 4 2.1 Key Features................................................................................................................................................... 4 2.2 Block Diagram ................................................................................................................................................ 5 2.3 Main Components.......................................................................................................................................... 6 2.4 Initial Delivery State....................................................................................................................................... 6 3 Signals, Interfaces and Pins........................................................................................................................... 8 3.1 Board to Board (B2B) I/O's ............................................................................................................................ 8 3.2 MGT Lanes ...................................................................................................................................................... 8 3.3 JTAG Interface.............................................................................................................................................. 10 3.4 System Controller I/O's................................................................................................................................ 10 3.5 Quad SPI Interface ....................................................................................................................................... 11 3.6 Gigabit Ethernet Interface ........................................................................................................................... 11 3.7 USB Interface................................................................................................................................................ 12 3.8 I2C Interface ................................................................................................................................................. 13 4 Boot Process................................................................................................................................................. 14 5 On-board Peripherals .................................................................................................................................. 15 5.1 System Controller CPLD .............................................................................................................................. 15 5.2 Quad SPI Flash Memory............................................................................................................................... 15 5.3 Gigabit Ethernet PHY ................................................................................................................................... 15 5.4 High-speed USB ULPI PHY ........................................................................................................................... 15 5.5 MAC Address EEPROM.................................................................................................................................. 15 5.6 RTC - Real Time Clock .................................................................................................................................. 16 5.7 Programmable PLL Clock (Phase-Locked Loop)........................................................................................ 16 5.8 Oscillators..................................................................................................................................................... 17 5.9 On-board LEDs ............................................................................................................................................. 17 6 Power and Power-On Sequence ................................................................................................................. 18 6.1 Power Consumption .................................................................................................................................... 18 6.2 Power Distribution Dependencies .............................................................................................................. 18 6.3 Power-On Sequence Diagram ..................................................................................................................... 20 6.4 Voltage Monitor Circuit ................................................................................................................................ 20 6.5 Power Rails................................................................................................................................................... 21 6.6 Bank Voltages............................................................................................................................................... 21 7 B2B connectors ............................................................................................................................................ 22 7.1 Features........................................................................................................................................................ 22 Copyright ©  2018 Trenz Electronic GmbH 2 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   7.2 Connector Stacking height .......................................................................................................................... 22 7.3 Current Rating .............................................................................................................................................. 22 7.4 Connector Speed Ratings ............................................................................................................................ 23 7.5  Manufacturer Documentation.................................................................................................................... 23 8 Variants Currently In Production ................................................................................................................ 24 9 Technical Specification ............................................................................................................................... 25 9.1 Absolute Maximum Ratings......................................................................................................................... 25 9.2 Recommended Operating Conditions ........................................................................................................ 25 9.3 Operating Temperature Ranges.................................................................................................................. 26 9.4 Physical Dimensions .................................................................................................................................... 26 10 Revision History ........................................................................................................................................... 28 10.1 Hardware Revision History .......................................................................................................................... 28 10.2 Document Change History .......................................................................................................................... 28 11 Disclaimer..................................................................................................................................................... 29 11.1 Document Warranty..................................................................................................................................... 29 11.2 Limitation of Liability................................................................................................................................... 29 11.3 Copyright Notice .......................................................................................................................................... 29 11.4 Technology Licenses.................................................................................................................................... 29 11.5 Environmental Protection ........................................................................................................................... 29 11.6 REACH, RoHS and WEEE .............................................................................................................................. 29 Copyright ©  2018 Trenz Electronic GmbH 3 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   2 Overview Refer to https://wiki.trenz-electronic.de/display/PD/TE0745+TRM for online version of this manual and the rest of the available documentation. The Trenz Electronic TE0745 is an industrial-grade module integrating a Xilinx Zynq SoC (XC7Z-030, XC7Z-035 or XC7Z-045), 1 GByte DDR3/L SDRAM, 32 MByte SPI Flash memory for configuration and operation and powerful switch-mode power supplies for all on-board voltages. A large number of configurable I/O's is provided via rugged high-speed stacking strips. 2.1 Key Features • Industrial grade Xilinx Zynq SoC (XCZ7030, XC7Z035, XC7Z045) • Dual-core ARM Cortex-A9 MPCore™ with CoreSight™ • 250 FPGA PL I/Os (120 LVDS pairs possible) • 17 PS MIOs on B2B connector available • 16-bit wide 1GB DDR3L SDRAM • 32 MByte QSPI Flash memory • 4 or 8 GTX transceiver lanes (XC7Z030 variant has 4) • Gigabit Ethernet transceiver PHY • EEPROM for storing Ethernet MAC Address • Hi-speed USB 2.0 ULPI transceiver with full OTG support • Programmable quad clock generator • Temperature compensated RTC (real-time clock) • Plug-on module with 3 × 160-pin high-speed hermaphroditic strips • On-board high-efficiency DC-DC converters • System management • eFUSE bit-stream encryption • AES bit-stream encryption • User LED • Evenly-spread supply pins for good signal integrity • Rugged for shock and high vibration Additional assembly options are available for cost or performance optimization upon request. Copyright ©  2018 Trenz Electronic GmbH 4 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   2.2 Block Diagram Figure 1: TE0745-02 Block Diagram. Copyright ©  2018 Trenz Electronic GmbH 5 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   2.3 Main Components Figure 2: TE0745-02 SoC module. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. Xilinx Zynq XC7Z family SoC, U1 256 Mbit Quad SPI Flash memory Micron N25Q256A, U12 Reference clock signal oscillator SiTime SiT8008BI @33.333333 MHz, U12 Reference clock signal oscillator SiTime SiT8008BI @25.000000 MHz, U9 Marvell Alaska 88E1512 Gigabit Ethernet PHY, U3 Intelligent Memory 512 MByte DDR3L-1600 SDRAM (8 Banks a 32 MWords, 16-bit word width), U3 TI TPS51206 DDR3 memory termination regulator with buffered reference voltage VTTREF, U18 Intersil ISL12020MIRZ Real-Time-Clock, U24 TI TCA9517 level-shifting I2C bus repeater, U17 Red LED, D2 Green LED, D1 Intelligent Memory 512 MByte DDR3L-1600 SDRAM (8 banks a 32 MWords, 16 Bit word width), U5 Altera Enpirion EN63A0QI 12A DC-DC PowerSoC @1.0V (VCCINT), U4 TI TPS74401RGW LDO DC-DC regulator @1.2V (MGTAVTT), U8 TI TPS72018DRVR LDO DC-DC regulator @1.8V (MGTAUX), U6 TI TPS74401RGW LDO DC-DC regulator @1.0V (MGTAVCC), U11 Silicon Labs Si5338A I2C Programmable Quad Clock Generator, U13 Reference clock signal oscillator SiTime SiT8008BI @25.000 MHz, U21 Samtec ST5-80-1.50-L-D-P-TR 160-pin stacking strips (2 rows a 80 positions), J3 Samtec ST5-80-1.50-L-D-P-TR 160-pin stacking strips (2 rows a 80 positions), J1 Samtec ST5-80-1.50-L-D-P-TR 160-pin stacking strips (2 rows a 80 positions), J2 256 Mbit Quad SPI Flash memory (Micron N25Q256A), U14 Microchip USB3320 USB transceiver PHY , U32 Reference clock signal oscillator SiTime SiT8008BI @52.000000 MHz, U33 Microchip 24AA025E48 EEPROM for MAC address, U23 Lattice Semiconductor MachXO2-256HC System Controller CPLD, U2 2.4 Initial Delivery State Storage Device Name Content 24AA025E48 EEPROM User content, programmed Copyright ©  2018 Trenz Electronic GmbH Notes not Valid MAC Address from manufacturer. 6 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   Storage Device Name Content Notes SPI Flash OTP Area Except serial number programmed by flash vendor. Empty, not programmed SPI Flash Quad Enable Programmed bit - SPI Flash main array Not programmed - eFUSE USER Not programmed - eFUSE Security Not programmed - Si5338 OTP NVM Not programmed OTP not re-programmable after delivery from factory Table 1: Initial delivery state. Copyright ©  2018 Trenz Electronic GmbH 7 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   3 Signals, Interfaces and Pins 3.1 Board to Board (B2B) I/O's The B2B connectors are high-speed hermaphroditic stacking strips providing modular interface to the SoC's PL and PS I/Os. Both single ended and differential signaling LVDS pairs are supported. Ban Typ B2B k e Connector 12 HR J1 I/O Signal Count 50 LVDS Pairs Count 24 Bank Voltage Notes 13 HR J1 50 24 33 HP J3 50 24 34 HP J2 50 24 35 HP J2 50 24 500 MIO J2 5 - VCCIO_12 pins J1-54, J1-55 VCCIO_13 pins J1-112, J1-113 VCCIO_33 pins J3-115, J3-120 VCCIO_34 pins J2-29, J2-30 VCCIO_35 pins J2-87, J2-88 1.8V 501 MIO J3 12 - 1.8V Voltage range 1.2V to 3.3V Voltage range 1.2V to 3.3V Voltage range 1.2V to 1.8V Voltage range 1.2V to 1.8V Voltage range 1.2V to 1.8V MIO0, MIO12 ... MIO15, user configurable I/O's on B2B MIO40 ... MIO51, user configurable I/O's on B2B Table 2: Count, type and voltage range of SoC's PL and PS I/O banks pins available through B2B connectors. All MIO banks are powered from on-module DC-DC power rail. All PL I/O Banks have separate VCCO pins in the B2B connectors, valid VCCO should be supplied from the baseboard. For detailed information about the pin-out, please refer to the Pin-out Table. The configuration of the I/O's MIO0, MIO12 ... MIO15 and MIO40 ... MIO51 are depending on the base-board peripherals connected to these pins. 3.2 MGT Lanes MGT (Multi Gigabit Transceiver) lane consists of one transmit and one receive (TX/RX) differential pair, two signals each or four signals total per one MGT lane. Following table lists lane number, MGT bank number, transceiver type, signal schematic name, board-to-board pin connection and FPGA pins connection: Copyright ©  2018 Trenz Electronic GmbH 8 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   LaneBank TypeSignal Name B2B PinFPGA Pin 0 112 GTX • MGT_RX0_P • J3-50 • MGTHRXP0_112, AB4 • MGT_RX0_N • J3-52 • MGTHRXN0_112, AB3 • MGT_TX0_P • J3-51 • MGTHTXP0_112, AA2 • MGT_TX0_N • J3-53 • MGTHTXN0_112, AA1 1 112 GTX • MGT_RX1_P • J3-56 • MGTHRXP1_112, Y4 2 112 GTX • MGT_RX2_P • J3-62 • MGTHRXP2_112, V4 3 112 GTX • MGT_RX3_P • J3-68 • MGTHRXP3_112, T4 • MGT_RX1_N • J3-58 • MGTHRXN1_112, Y3 • MGT_TX1_P • J3-57 • MGTHTXP1_112, W2 • MGT_TX1_N • J3-59 • MGTHTXN1_112, W1 • MGT_RX2_N • J3-64 • MGTHRXN2_112, V3 • MGT_TX2_P • J3-63 • MGTHTXP2_112, U2 • MGT_TX2_N • J3-65 • MGTHTXN2_112, U1 • MGT_RX3_N • J3-70 • MGTHRXN3_112, T3 • MGT_TX3_P • J3-69 • MGTHTXP3_112, R2 • MGT_TX3_N • J3-71 • MGTHTXN3_112, R1 4 111 1) GTX • MGT_RX4_P • J1-23 • MGTHRXP0_111, AD8 • MGT_RX4_N • J1-21 • MGTHRXN0_111, AD7 • MGT_TX4_P • J1-22 • MGTHTXP0_111, AF8 • MGT_TX4_N • J1-20 • MGTHTXN0_111, AF7 5 111 1) GTX • MGT_RX5_P • J1-17 • MGTHRXP1_111, AE6 • MGT_RX5_N • J1-15 • MGTHRXN1_111, AE5 • MGT_TX5_P • J1-16 • MGTHTXP1_111, AF4 • MGT_TX5_N • J1-14 • MGTHTXN1_111, AF3 6 111 1) GTX • MGT_RX6_P • J1-11 • MGTHRXP2_111, AC6 • MGT_RX6_N • J1-9 • MGTHRXN2_111, AC5 • MGT_TX6_P • J1-10 • MGTHTXP2_111, AE2 • MGT_TX6_N • J1-8 • MGTHTXN2_111, AE1 7 111 1) GTX • MGT_RX7_P • J1-5 • MGT_RX7_N • J1-3 • MGT_TX7_P • J1-4 • MGT_TX7_N • J1-2 • • • • MGTHRXP3_111, AD4 MGTHRXN3_111, AD3 MGTHTXP3_111, AC2 MGTHTXN3_111, AC1 Table 3: SoC's MGT lanes connections to the B2B connectors. Below are listed MGT banks reference clock sources. Clock signal Bank Source FPGA Pin MGT_CLK0_P 112 B2B, J3-75 MGTREFCLK0P_112, R6 MGT_CLK0_N112 B2B, J3-77 MGTREFCLK0N_112, R5 MGT_CLK1_P 112 U16, CLK0A MGTREFCLK1P_112, U6 MGT_CLK1_N112 U16, CLK0BMGTREFCLK1N_112, U5 MGT_CLK2_P 111 1) B2B, J3-81 MGTREFCLK0P_111, W6 Notes Supplied by the carrier board. Supplied by the carrier board. On-module Si5338A. On-module Si5338A. Supplied by the carrier board. MGT_CLK2_N 111 1) B2B, J3-83 MGTREFCLK0N_111, W5 Supplied by the carrier board. MGT_CLK3_P 111 1) U16, CLK3A MGTREFCLK1P_111, AA6 On-module Si5338A. MGT_CLK3_N 111 1) U16, CLK3BMGTREFCLK1N_111, AA5On-module Si5338A. Copyright ©  2018 Trenz Electronic GmbH 9 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   Table 4: MGT reference clock sources. 1) Note: MGT bank 111 not available at XC7Z030 Zynq SoC. 3.3 JTAG Interface JTAG interface access is provided through the SoC's PS configuration bank 0 and is available on B2B connector J1. JTAG SignalB2B Connector Pin TCK J1-143 TDI J1-142 TDO J1-145 TMS J1-144 Table 5: JTAG interface signals.  JTAG_EN pin 148 in B2B connector J1 should be kept low or grounded for normal operation! 3.4 System Controller I/O's Following special purpose pins are connected to System Controller CPLD: Pin Mod Functio B2B Default Configuration Name e n Connector Pin During normal operating mode the JTAG_EN pin should be in JTAG_E Inpu JTAG J1-148 the low state for JTAG signals to be forwarded to the Zynq SoC. N t select If JTAG_EN pin is set to high or left open the JTAG signals are forwarded to the System Controller CPLD. RST_IN Inpu Reset _N t PS_SR Inpu Reset ST t BOOTM Out Boot ODE put mode J2-131 J2-152 J2-133 Low-active Power-On reset pin, controls POR_B-signal (bank 500, pin C23) of Zynq chip. Low-active PS system-reset pin of Zynq chip. Control line which sets in conjunction with signal 'BOOTMODE1' (B2B-pin J2-133) the boot source of the Zynq chip. See section "Boot Modes". Permanent logic high in standard SC-CPLD firmware. PWR_P Inpu Power J2-135 L_OK t good PWR_P Inpu Power J2-139 S_OK t good EN_PL Out Enable put signal Copyright ©  2018 Trenz Electronic GmbH Indicates stable state of PL supply voltage (low-active) after power-up sequence. Indicates stable state of PS supply voltage (low-active) after power-up sequence. Low active Enable-signal for activating PL supply voltage. Permanent logic high in standard SC-CPLD firmware. 10 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   Pin Mod Functio B2B Default Configuration Name e n Connector Pin MIO8 Inpu PS MIO User I/O (pulled-up to PS_1.8V). t MIO0 Inpu PS MIO J2-137 User I/O. t RTC_IN Inpu Interru Interrupt-signal from on-board RTC. T t pt signal LED Out LED Green LED D1, indicates SC-CPLD activity by blinking. put control Table 6: System Controller CPLD special purpose I/O pins. 3.5 Quad SPI Interface Quad SPI Flash (U14) is connected to the Zynq PS QSPI0 interface via PS MIO bank 500, pins MIO1 ... MIO6. MIOSignal NameU14 Pin 1 SPI-CS C2 2 SPI-DQ0/M0 D3 3 SPI-DQ1/M1 D2 4 SPI-DQ2/M2 C4 5 SPI-DQ3/M3 D4 6 SPI-SCK/M4 B2 Table 7: MIO-pin assignment of the Quad SPI Flash memory IC. 3.6 Gigabit Ethernet Interface On-board Gigabit Ethernet PHY (U7) is provided with Marvell Alaska 88E1512 IC. The Ethernet PHY RGMII interface is connected to the Zynq Ethernet0 PS GEM0. I/O voltage is fixed at 1.8V for HSTL signaling. The reference clock input of the PHY is supplied from the on-board 25.000000 MHz oscillator (U9). The 125MHz PHY output clock (PHY_CLK125M) is routed to the B2B connector J2 pin 150. PHY Pin MDC/MDIO PHY LEDs ZYNQ PS B2B MIO52, MIO53 PHY_LED0: J2-144 PHY_LED1: J2-146 PHY_LED2 / INTn:J2-148 PHY_CLK125M J2-150 CONFIG RESETn MIO9 RGMII MIO16 ... MIO27- Copyright ©  2018 Trenz Electronic GmbH Notes Active low interrupt line. 125 MHz Ethernet PHY clock out. Permanent logic high. Active low reset line. Reduced Gigabit Media Independent Interface. 11 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   PHY Pin SGMII ZYNQ PS - B2B - MDI - PHY_MDI0: J2-120 / J2-122 PHY_MDI1: J2-126 / J2-128 PHY_MDI2: J2-132 / J2-134 PHY_MDI3: J2-138 / J2-140 Notes Serial Gigabit Media Independent Interface. Media Dependent Interface. Table 8: Ethernet PHY interface connections. 3.7 USB Interface USB PHY (U32) is provided by USB3320 from Microchip. The ULPI interface is connected to the Zynq PS USB0. I/O voltage is fixed at 1.8V and PHY reference clock input is supplied from the on-board 52.000000 MHz oscillator (U33). PHY Pin ULPI ZYNQ PS MIO28 ... MIO39 REFCLK REFSEL[0.. 2] RESETB MIO7 CLKOUT MIO36 DP, DM - CPEN - VBUS - ID - B2B - Notes Zynq USB0 MIO pins are connected to the PHY. - 52MHz from on board oscillator (U33). All pins set to GND selects the external reference clock frequency (52.000000 MHz). Low active USB PHY Reset (pulled-up to PS_1.8V). Set to logic high to select reference clock (oscillator U33) operation mode. OTG_D_P, USB data lines. OTG_D_N , pin J2-149 / J2-151 VBUS_V_ External USB power switch active-high enable signal. EN, pin J2-141 USB_VBU Connect to USB VBUS via a series of resistors, see reference S, schematics. pin J2-145 OTG_ID, For an A-device connect to the ground. For a B-device, leave pin floating. J2-143 Table 9: USB PHY interface connections. Copyright ©  2018 Trenz Electronic GmbH 12 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   The schematics for the USB connector and required components is different depending on the USB usage. USB standard A or B connectors can be used for Host or Device modes. A Mini USB connector can be used for USB Device mode. A USB Micro connector can be used for Device mode, OTG Mode or Host Mode. 3.8 I2C Interface The I2C interface on B2B connector J2 has PS_3.3V as reference voltage and is connected to the Zynq SoC via voltage level translating (3.3V ↔ 1.8V) I2C bus repeater (U17).: B2B pinSignal Schematic NameNotes J2-119 I2C_33_SCL 3.3V reference voltage J2-121 I2C_33_SDA 3.3V reference voltage Table 10: Pin assignment of the B2B I2C interface. The on-module I2C interface works with reference voltage 1.8V: PS Bank 500Signal Schematic NameNotes MIO 10 I2C_SCL 1.8V reference voltage MIO 11 I2C_SDA 1.8V reference voltage Table 11: MIO-pin assignment of the on-module I2C interface. Except the on-module RTC (U24), all other on-module I2C slave devices are operating with the reference voltage PS_1.8V. I2C addresses for on-module devices are listed in the table below: I2C Device  Zynq chip U1, bank 500 (PS MIO), pins MIO10 (SCL), MIO11 (SDA) I2C Address Notes User Configured as I2C by programmable. default. Quad programmable PLL clock generator U16: pins 12 0x70 (SCL), 19 (SDA) MAC Address EEPROM U23, pins 1 (SCL), 3 (SDA) 0x53 SC CPLD U2, bank 2, pins 16 (SDA), 17 (SCL) User programmable. RTC, U24 0x6F RTC RAM, U24 0x57 Table 12:  Module's I2C-interfaces overview. Copyright ©  2018 Trenz Electronic GmbH 13 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   4 Boot Process TE0745 module supports different boot modes which are configurable by the control line 'BOOTMODE' and 'BOOTMODE_1'. The line 'BOOTMODE' is available on B2B connector pin J2-133, the line 'BOOTMODE_1' is connected to the System Controller CPLD on bank 1, pin 21 (permanent logic high in standard SC-CPLD firmware).The boot mode selection will be set by the Zynq's PS MIO pins MIO3...MIO5. Following table describes how to set the control lines to configure the boot mode: Boot Mode JTAG MIO5 (BOOTMODE_1), SC CPLD 0 MIO4 (BOOTMODE), J2-133 0 1 0 1 1 QSPI Flash Memory SD-Card Note standard mode in current configuration. SD-Card on base board necessary. Table 13: Selectable boot modes. In delivery state of the SoM the boot mode depends on the configured SC-CPLD firmware. Basically MIO5 is set to 1 and JTAG is in cascade. Copyright ©  2018 Trenz Electronic GmbH 14 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   5 On-board Peripherals 5.1 System Controller CPLD The System Controller CPLD (U2) is provided by Lattice Semiconductor LCMXO2-256HC (MachXO2 Product Family). The  SC-CPLD is the central system management unit where essential control signals are logically linked by the implemented logic in CPLD firmware, which generates output signals to control the system, the on-board peripherals and the interfaces. Interfaces like JTAG and I2C between the on-board peripherals and to the FPGAmodule are by-passed, forwarded and controlled by the System Controller CPLD. Other tasks of the System Controller CPLD are the monitoring of the power-on sequence and to display the programming state of the FPGA module. 5.2 Quad SPI Flash Memory On-board QSPI flash memory (U14) on the TE0745-02 is provided by Micron Serial NOR Flash Memory N25Q256A with 256 Mbit (32 MByte) storage capacity. This non volatile memory is used to store initial FPGA configuration. Besides FPGA configuration, remaining free flash memory can be used for user application and data storage. All four SPI data lines are connected to the FPGA allowing x1, x2 or x4 data bus widths. Maximum data rate depends on the selected bus width and clock frequency used.  SPI Flash QE (Quad Enable) bit must be set to high or FPGA is unable to load its configuration from flash during power-on. By default this bit is set to high at the manufacturing plant. 5.3 Gigabit Ethernet PHY On-board Gigabit Ethernet PHY (U7) is provided with Marvell Alaska 88E1512 IC (U8). The Ethernet PHY RGMII interface is connected to the Zynq Ethernet0 PS GEM0. I/O voltage is fixed at 1.8V for HSTL signaling. The reference clock input of the PHY is supplied from an on-board 25.000000 MHz oscillator (U9), the 125MHz output clock signal CLK_125MHZ is connected to the pin J2-150 of B2B connector J2. 5.4 High-speed USB ULPI PHY Hi-speed USB ULPI PHY (U32) is provided with USB3320 from Microchip. The ULPI interface is connected to the Zynq PS USB0 via MIO28..39, bank 501 (see also section). The I/O voltage is fixed at 1.8V and PHY reference clock input is supplied from the on-board 52.000000 MHz oscillator (U33). 5.5 MAC Address EEPROM A Microchip 24AA025E48 serial EEPROM (U23) contains a globally unique 48-bit node address, which is compatible with EUI-48(TM) specification. The device is organized as two blocks of 128 x 8-bit memory. One of the blocks stores the 48-bit node address and is write protected, the other block is available for application use. It is accessible over I2C bus with slave device address 0x53. Copyright ©  2018 Trenz Electronic GmbH 15 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   5.6 RTC - Real Time Clock An temperature compensated Intersil ISL12020M is used as Real Time Clock (U24). Battery voltage must be supplied to the clock from the base board via pin 'VBAT_IN' (J1-146). Battery backed registers can be accessed over I2C bus at slave address 0x6F. General purpose RAM of the RTC can be accessed at I2C slave address 0x57. RTC IC is supported by Linux so it can be used as hwclock device. The interrupt line 'RTC_INT' of the RTC is connected to System Controller CPLD bank 3 pin 4. 5.7 Programmable PLL Clock (Phase-Locked Loop) There is a Silicon Labs I2C programmable quad PLL clock generator Si5338A (U16) on-board. It's output frequencies can be programmed by using the I2C-bus with address 0x70. A 25 MHz (U21) oscillator is connected to pin 3 (IN3) and is used to generate the output clocks. Once running, the frequency and other parameters can be changed by programming the device using the I2C-bus connected between the Zynq module (master) and reference clock signal generator (slave). Si5338A Signal Name / Pin Description IN1 CLKIN_P IN5 Connected To Directio Note n B2B, J3-76 Input Reference input clock from base board. CLKIN_N B2B, J3-74 Input Reference input clock. Oscillator U21, Input 25.000000 MHz oscillator, Si8008BI. pin 3 GND Input I2C slave device address LSB (0x70 default address). Not connected. Input Not used. IN6 CLK0A MGT_CLK1_P CLK0B MGT_CLK1_N CLK1A CLK1B CLK2A CLK2B CLK3A CLK1_P CLK1_N CLK2_P CLK2_P MGT_CLK3_P CLK3B MGT_CLK3_N IN2 IN3 IN4 GND Zynq Soc U1, pin U6 Zynq Soc U1, pin U5 B2B, J3-80 B2B, J3-82 B2B, J3-86 B2B, J3-88 Zynq Soc U1, pin AA6 Zynq Soc U1, pin AA6 Input Not used. Output MGT bank 112 reference clock. Output Output Output Output Output Output Reference clock output to base board. Reference clock output to base board. MGT bank 111 reference clock. Output Table 14: Programmable quad PLL clock generator inputs and outputs. Copyright ©  2018 Trenz Electronic GmbH 16 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   5.8 Oscillators The SoC module has following reference clocking signals provided by external baseboard sources and on-board oscillators: Clock Source Schematic NameFrequency SiTime SiT8008BI oscillator, 25.000000 U21 MHz SiTime SiT8008BI oscillator, PS_CLK 33.333333 U12 MHz Clock Input Destination Quad PLL clock generator U16, pin 3 Bank 500 (MIO0 bank), pin B24 SiTime SiT8008BI oscillator, OTG-RCLK U33 SiTime SiT8008BI oscillator, ETH_CLKIN U9 USB 2.0 transceiver PHY U32, pin 26 Gigabit Ethernet PHY U7, pin 34 52.000000 MHz 25.000000 MHz Table 15: Clock sources overview. 5.9 On-board LEDs LEDColo Connected to Description and Notes r D1 Gree System Controller CPLD, bank System main status LED, blinking indicates system n 3, pin 5 activity D2 Red Zynq chip (U1), bank 0 (config Reflects inverted DONE signal. ON when FPGA is not bank), 'DONE' (pin W9) configured, OFF as soon as PL is configured. This LED remains OFF if System Controller CPLD can not power up the PL supply voltage. Table 16: LEDs of the module. Copyright ©  2018 Trenz Electronic GmbH 17 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   6 Power and Power-On Sequence 6.1 Power Consumption The maximum power consumption of a module mainly depends on the design which is running on the FPGA. Xilinx provide a power estimator excel sheets to calculate power consumption. It's also possible to evaluate the power consumption of the developed design with Vivado. See also Trenz Electronic Wiki FAQ. Power Input PinTypical Current PL_VIN TBD* PS_VIN TBD* PS_3.3V TBD* Table 17: Typical power consumption. *to be determined soon with reference design setup. Power supply with minimum current capability of 3A for system startup is recommended. For the lowest power consumption and highest efficiency of on board DC-DC regulators it is recommended to powering the module from one single 3.3V supply. All input power supplies have a nominal value of 3.3V. Although the input power supplies can be powered up in any order, it is recommended to power them up simultaneously. The on-board voltages of the TE0745 SoC module will be powered-up in order of a determined sequence after the external voltages 'PL_VIN', 'PS_VIN' and 'PS_3.3V' are available. All those power-rails can be powered up, with 3.3V power sources, also shared.  To avoid any damage to the module, check for stabilized on-board voltages should be carried out(i.e. power good and enable signals) before powering up any SoC's I/O bank voltages VCCO_x. All I/Os should be tri-stated during power-on sequence. Core voltages and main supply voltages have to reach stable state and their "Power Good"-signals have to be asserted before other voltages like PL bank's I/O voltages can be powered up. It is important that all baseboard I/Os are tri-stated at power-on until the "Power Good"-signals 'PWR_PS_OK' (J2-139) and 'PWR_PL_OK' (J2-135) are high, meaning that all on-module voltages have become stable and module is properly powered up. 6.2 Power Distribution Dependencies There are following dependencies how the initial voltages of the power rails on the B2B connectors are distributed to the on-board DCDC converters, which power up further DCDC converters and the particular on-board voltages: Copyright ©  2018 Trenz Electronic GmbH 18 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   Figure 3: Power Distribution Diagram See Xilinx data sheet DS191 for additional information. User should also check related base board documentation when intending base board design for TE0745 module.  Current rating of Samtec Razor Beam LP Terminal/Socket Strip ST5/SS5 B2B connectors is 1.5 A per pin (1 pin powered per row). Copyright ©  2018 Trenz Electronic GmbH 19 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   6.3 Power-On Sequence Diagram The TE0745 SoM meets the recommended criteria to power up the Xilinx Zynq MPSoC properly by keeping a specific sequence of enabling the on-board DCDC converters dedicated to the particular functional units of the Zynq chip and powering up the on-board voltages. Following diagram clarifies the sequence of enabling the particular on-board voltages, which will power-up in descending order as listed in the blocks of the diagram: Figure 4: Power-On Sequence The Enable-Signal 'EN_PL' is permanently logic high in standard SC-CPLD firmware. The "Power Good"-signals 'PWR_PS_OK' and 'PWR_PL_OK' (latter low-active, extern pull-up needed) are available B2B-connector J2 (pins J2-139, J2-135) and on the SC-CPLD. 6.4 Voltage Monitor Circuit The voltages 'VCCPINT' and 'PS_1.8V' are monitored by the voltage monitor circuit U41, which generates the POR_B reset signal at Power-On. A manual reset is also possible by driving the MR-pin (available on J2-131 or SC-CPLD) to GND. Leave this pin unconnected or connect to VDD (PS_1.8V) when unused. Figure 5: Voltage monitor circuit. Copyright ©  2018 Trenz Electronic GmbH 20 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   6.5 Power Rails Voltages on B2B B2B J1 Pin Connectors B2B J2 Pin B2B J3 PinInput/ Note Output PL_VIN 147, 149, 151, 153, 155, 157, 159 - Input module supply voltage PS_VIN - - Input module supply voltage PS_3.3V VCCIO12 VCCIO13 VCCIO33 54, 55 112, 113 - 154, 156, 158 160 - 115, 120 Input Input Input Input VCCIO34 29, 30   - VCCIO35 87, 88   - VBAT_IN 146 - - PS_1.8V - 130 - module supply voltage high range bank I/O voltage high range bank I/O voltage high performance bank I/O voltage Input high performance bank I/O voltage Input high performance bank I/O voltage Input RTC (battery-backed) supply voltage Output internal 1.8V voltage level (Process System) Table 18: Power rails of the SoC module on B2B connectors. 6.6 Bank Voltages Bank Schematic Name 0 (config) VCCIO_0 500 (MIO0) 501 (MIO1) 502 (DDR3) 12 HR 13 HR 33 HP 34 HP 35 HP PS_1.8V  PS_1.8V 1.35V VCCIO_12 VCCIO_13 VCCIO_33 VCCIO_34 VCCIO_35 Voltage Voltage Range PL_1.8V, if R67 is equipped PS_1.8V, if R68 is equipped 1.8V 1.8V 1.35V User User User User User HR: 1.2V to 3.3V HR: 1.2V to 3.3V HP: 1.2V to 1.8V HP: 1.2V to 1.8V HP: 1.2V to 1.8V Table 19: Range of SoC module's bank voltages. Copyright ©  2018 Trenz Electronic GmbH 21 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   7 B2B connectors 5.2 x 7.6 cm SoM Kintex modules use three Samtec Razor Beam LP Terminal Strip (ST5) on the bottom side. • 3x REF-192552-02 (160-pins) • ST5 Mates with SS5 5.2 x 7.6 cm SoM Kintex carrier use three Samtec Razor Beam LP Socket Strip (SS5) on the top side. • 3x REF192552-01 (160-pins) • SS5 Mates with ST5 7.1 Features • • • • • • • • • • Board-to-Board Connector 160-pins, 80 contacts per row Ultrafine .0197" (0.50 mm) pitch Narrow body design saves space on board Lead style -03.5 Samtec 28+ Gbps Solution Mates with: ST5 Insulator Material: Liquid Crystal Polymer, schwarz Operating Temperature Range: -55°C bis +125°C Lead-Free Solderable: Yes RoHS Konform: Yes 7.2 Connector Stacking height When using the standard type on baseboard and module, the mating height is 5 mm. Other mating heights are possible by using connectors with a different height: Order number 27219 REF number REF19255 2-01 Samtec Type Contribution to Number stacking height SS5-80-3.50-L- Baseboard 3.5mm D-K-TR connector Comment 27018 REF-18954  SS5-80-3.00-L- Baseboard 3 mm  5-02 D-K-TR connector Assembly option on request 27220 REF-19255  ST5-80-1.50-L- Module 2-02 D-P-TR connector 1.5 mm Standard connector used on modules 27017 REF-18954  ST5-80-1.00-L- Module 5-01 D-P-TR connector 1 mm Assembly option on request Standard connector used on modules The module can be manufactured using other connectors upon request. 7.3 Current Rating Current rating of Samtec Razor Beam LP Terminal/Socket Strip ST5/SS5 B2B connectors is 1.5 A per pin (1 pin powered per row). Copyright ©  2018 Trenz Electronic GmbH 22 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   7.4 Connector Speed Ratings The connector speed rating depends on the stacking height: Stacking height Speed rating 4 mm, Single-Ended13GHz/26Gbps 4 mm, Differential 13.5GHz/27Gbps 5 mm, Single-Ended13.5GHz/27Gbps 5 mm, Differential 20GHz/40 Gbps The SS5/ST5 series board-to-board spacing is currently available in 4mm (0.157"), 4.5mm (0.177") and 5mm (0.197") stack heights. The data in the reports is applicable only to the 4mm and 5mm board-to-board mated connector stack height. 7.5  Manufacturer Documentation Copyright ©  2018 Trenz Electronic GmbH 23 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   8 Variants Currently In Production  Module Variant Zynq SoC SoC Junction TemperatureOperating Temperature Range TE0745-02-30-1I XC7Z030-1FBG67 –40°C to +100°C Industrial 6I TE0745-02-35-1 XC7Z035-1FBG67 0°C to +85°C Commercial C 6C TE0745-02-45-1 XC7Z045-1FBG67 0°C to +85°C Commercial C 6C TE0745-02-45-2I XC7Z045-2FBG67 –40°C to +100°C Industrial 6I Table 20: Module variants. Copyright ©  2018 Trenz Electronic GmbH 24 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   9 Technical Specification 9.1 Absolute Maximum Ratings Parameter Min Max PL_VIN PS_VIN PS_3.3V -0.3 5 -0.3 7 3.13 3.465 5 Unit Notes s V TI TPS720 data sheet V TI TPS82085 data sheet V 3.3V nominal ± 5% Attention: PS_3.3V is directly connected to numerous on-board peripherals as supply and I/O voltage. VBAT supply voltage -1 6.0 PL IO bank supply voltage for HR -0.5 3.6 I/O banks (VCCO) PL IO bank supply voltage for HP -0.5 2.0 I/O banks (VCCO) V ISL12020MIRZ data sheet V V - I/O input voltage for HR I/O -0.4 VCCO_X banks +0.55 I/O input voltage for HP I/O banks-0.55 VCCO_X +0.55 GT receiver (RXP/RXN) and -0.5 1.26 transmitter (TXP/TXN) Voltage on module JTAG pins -0.3 3.6 V - V - V - Storage temperature °C Limits of ISL12020MIRZ RTC chp. -40 +85 Storage temperature without the -55 +100 ISL12020MIRZ V MachX02 Family data sheet °C Limits of DDR3 memory chips. Table 21: Module absolute maximum ratings.  Assembly variants for higher storage temperature range are available on request. 9.2 Recommended Operating Conditions Parameter PL_VIN PS_VIN PS_3.3V VBAT_IN supply voltage Copyright ©  2018 Trenz Electronic GmbH Min Max 3.3 4.5 3.3 6.0 3.1353.465 2.7 5.5 UnitsNotes V V V V - 25 of 30 Reference Document TI TPS720 data sheet TI TPS82085 data sheet 3.3V nominal ± 5% ISL12020MIRZ data sheet http://www.trenz-electronic.de TE0745 TRM V.80   Parameter Min Max PL I/O bank supply voltage for HR 1.14 3.465 I/O banks (VCCO) UnitsNotes V - Reference Document Xilinx datasheet DS191 PL I/O bank supply voltage for HP 1.14 1.89 I/O banks (VCCO) V - Xilinx datasheet DS191 I/O input voltage for HR I/O banks -0.20 VCCO_X+ 0.20 I/O input voltage for HP I/O banks -0.20 VCCO_X+ 0.20 GT receiver (RXP/RXN) and (*) (*) transmitter (TXP/TXN) Voltage on Module JTAG pins 3.1353.6 V - Xilinx datasheet DS191 V - Xilinx datasheet DS191 V (*) Check Xilinx datasheet DS191 datasheet V JTAG MachX02 Family Data Sheet signals forwarded to Zynq module config bank 0 Table 22: Module recommended operating conditions.  Please check Xilinx datasheet DS191 (for XC7Z030) for complete list of absolute maximum and recommended operating ratings. 9.3 Operating Temperature Ranges Commercial grade: 0°C to +70°C. Industrial grade: -40°C to +85°C. Extended grade: 0°C to +85°C. The module operating temperature range depends also on customer design and cooling solution. Please contact us for options. 9.4 Physical Dimensions • • • • Module size: 52 mm × 76 mm.  Please download the assembly diagram for exact numbers Mating height with standard connectors: 4mm PCB thickness: 1.6mm Highest part on PCB: approx. 3mm. Please download the step model for exact numbers All dimensions are given in millimeters. Copyright ©  2018 Trenz Electronic GmbH 26 of 30 http://www.trenz-electronic.de TE0745 TRM V.80              Figure 6: Physical dimensions of the TE0745 SoC module. Copyright ©  2018 Trenz Electronic GmbH 27 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   10 Revision History 10.1 Hardware Revision History  Date 2016-10-11 RevisionNotes 02 Link to PCNDocumentation Link • First Production release  • Refer to Changes list in Schematic for TE0745-02 further details in changes to REV01 2016-04-18 01 • Prototypes  - TE0745-01 Table 23: Module hardware revision history. Hardware revision number is written on the PCB board together with the module model number separated by the dash. Figure 7: TE0745 module revision number. 10.2 Document Change History   Date RevisionContributors 2017-11-14 V.80 2017-11-13  V.79 Description • Update B2B Section John Hartfiel Ali Naseri, Jan Kumann, John Hartfiel • First TRM release Table 24: Document change history. Copyright ©  2018 Trenz Electronic GmbH 28 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   11 Disclaimer 11.1 Document Warranty The material contained in this document is provided “as is” and is subject to being changed at any time without notice. Trenz Electronic does not warrant the accuracy and completeness of the materials in this document. Further, to the maximum extent permitted by applicable law, Trenz Electronic disclaims all warranties, either express or implied, with regard to this document and any information contained herein, including but not limited to the implied warranties of merchantability, fitness for a particular purpose or non infringement of intellectual property. Trenz Electronic shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. 11.2 Limitation of Liability In no event will Trenz Electronic, its suppliers, or other third parties mentioned in this document be liable for any damages whatsoever (including, without limitation, those resulting from lost profits, lost data or business interruption) arising out of the use, inability to use, or the results of use of this document, any documents linked to this document, or the materials or information contained at any or all such documents. If your use of the materials or information from this document results in the need for servicing, repair or correction of equipment or data, you assume all costs thereof. 11.3 Copyright Notice No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Trenz Electronic. 11.4 Technology Licenses The hardware / firmware / software described in this document are furnished under a license and may be used / modified / copied only in accordance with the terms of such license. 11.5 Environmental Protection To confront directly with the responsibility toward the environment, the global community and eventually also oneself. Such a resolution should be integral part not only of everybody's life. Also enterprises shall be conscious of their social responsibility and contribute to the preservation of our common living space. That is why Trenz Electronic invests in the protection of our Environment. 11.6 REACH, RoHS and WEEE REACH Trenz Electronic is a manufacturer and a distributor of electronic products. It is therefore a so called downstream user in the sense of REACH. The products we supply to you are solely non-chemical products (goods). Moreover and under normal and reasonably foreseeable circumstances of application, the goods supplied to you shall not release any substance. For that, Trenz Electronic is obliged to neither register nor to provide safety data sheet. According to present knowledge and to best of our knowledge, no SVHC (Substances of Very High Concern) on the Candidate List are contained in our products. Furthermore, we will immediately and unsolicited inform our customers in compliance with REACH - Article 33 if any substance present in our goods (above a concentration of 0,1 % weight by weight) will be classified as SVHC by the European Chemicals Agency (ECHA). Copyright ©  2018 Trenz Electronic GmbH 29 of 30 http://www.trenz-electronic.de TE0745 TRM V.80   RoHS Trenz Electronic GmbH herewith declares that all its products are developed, manufactured and distributed RoHS compliant. WEEE Information for users within the European Union in accordance with Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE). Users of electrical and electronic equipment in private households are required not to dispose of waste electrical and electronic equipment as unsorted municipal waste and to collect such waste electrical and electronic equipment separately. By the 13 August 2005, Member States shall have ensured that systems are set up allowing final holders and distributors to return waste electrical and electronic equipment at least free of charge. Member States shall ensure the availability and accessibility of the necessary collection facilities. Separate collection is the precondition to ensure specific treatment and recycling of waste electrical and electronic equipment and is necessary to achieve the chosen level of protection of human health and the environment in the European Union. Consumers have to actively contribute to the success of such collection and the return of waste electrical and electronic equipment. Presence of hazardous substances in electrical and electronic equipment results in potential effects on the environment and human health. The symbol consisting of the crossed-out wheeled bin indicates separate collection for waste electrical and electronic equipment. Trenz Electronic is registered under WEEE-Reg.-Nr. DE97922676. 02.09.2017 Copyright ©  2018 Trenz Electronic GmbH 30 of 30 http://www.trenz-electronic.de
TE0745-02-30-1IA-K 价格&库存

很抱歉,暂时无法提供与“TE0745-02-30-1IA-K”相匹配的价格&库存,您可以联系我们找货

免费人工找货