0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
S-812C21AMC-C2BT2G

S-812C21AMC-C2BT2G

  • 厂商:

    ABLIC(艾普凌科)

  • 封装:

    SOT23-5

  • 描述:

    IC REG LINEAR 2.1V 30MA SOT23-5

  • 详情介绍
  • 数据手册
  • 价格&库存
S-812C21AMC-C2BT2G 数据手册
S-812C Series 16 V INPUT, 75 mA VOLTAGE REGULATOR www.ablic.com www.ablicinc.com Rev.7.0_01 © ABLIC Inc., 2001-2017 The S-812C Series is a high-withstand voltage regulator IC which is developed by using the CMOS technology. This IC is suitable for applications which require withstand because its maximum voltage for operation is as high as 16 V, also for portable device having the low current consumption because this IC not only has the low current consumption but also a ON/OFF circuit. This IC operates stably due to the internal phase compensation circuit so that users are able to use ceramic capacitor as the output capacitor.  Features       Output voltage: Input voltage: Output voltage accuracy: Dropout voltage: Current consumption: Output current:  Built-in ON/OFF circuit:  Built-in short-circuit protection circuit:  Operation temperature range:  Lead-free, Sn 100%, halogen-free*2 2.0 V to 6.0 V, selectable in 0.1 V step 16 V max. 2.0% 120 mV typ. (5.0 V output product, IOUT = 10 mA) During operation: 1.0 A typ., 1.8 A max. (3.0 V output product) Possible to output 50 mA (3.0 V output product, VIN = 5 V)*1 Possible to output 75 mA (5.0 V output product, VIN = 7 V)*1 Selectable available / unavailable of power-off function Selectable active “H” / “L” in the regulator Selectable available / unavailable of short-circuit protection circuit Available short-circuit protection: Short-circuit current 40 mA typ. Ta = 40C to 85C *1. Attention should be paid to the power dissipation of the package when the load is large. *2. Refer to “ Product Name Structure” for details.  Applications  Constant-voltage power supply for home electric appliance  Constant-voltage power supply for battery-powered device  Constant-voltage power supply for communication device  Packages  SNT-6A(H)  SOT-23-5  SOT-89-3  SOT-89-5  TO-92  WLP-4R 1 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01  Block Diagrams 1. S-812CxxA Series (Unavailable short-circuit protection and power-off function) *1 VIN VOUT   Reference voltage VSS *1. Parasitic diode Figure 1 2. S-812CxxB Series (Available short-circuit protection and power-off function) *1 VIN ON/OFF  Short-circuit protection  Reference voltage VSS *1. Parasitic diode Figure 2 2 VOUT 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01 3. S-812CxxE Series (Available Short-circuit protection function, unavailable power-off function) *1 VIN VOUT Short-circuit protection   Reference voltage VSS *1. Parasitic diode Figure 3 3 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01  Product Name Structure Users can select the product type, output voltage, and package type for the S-812C Series. Refer to “1. Product name” regarding the contents of product name, “2. Packages” regarding the package drawings, “3. Product name list” regarding details of product name. 1. Product name 1. 1 S-812CxxA series 1. 1. 1 SOT-23-5, SOT-89-3 S-812C xx A xx - xxx T2 x Environmental code U: Lead-free (Sn 100%), halogen-free G: Lead-free (for details, please contact our sales office) IC direction in tape specifications*1 T2: SOT-23-5, SOT-89-3 Product code*2 Package code MC: SOT-23-5 UA: SOT-89-3 Short-circuit protection and power-off function A: Unavailable Output voltage 20 to 60 (e.g. When the output voltage is 2.0 V, it is expressed 20) *1. Refer to the tape drawing. *2. Refer to “3. Product name list”. 1. 1. 2 TO-92 S-812C xx A Y - x 2 - U Environmental code U: Lead-free (Sn 100%), halogen-free Packing from B: Bulk Z: Tape and ammo Package code Y: TO-92 Short-circuit protection and power-off function A: Unavailable Output voltage 20 to 60 (e.g. When the output voltage is 2.0 V, it is expressed 20) 4 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01 1. 2 S-812CxxB series 1. 2. 1 SNT-6A(H) S-812C xx B PI - xxx TF U Environmental code U: Lead-free (Sn 100%), halogen-free IC direction in tape specifications*1 TF: SNT-6A(H) Product code*2 Package code PI: SNT-6A(H) Short-circuit protection and power-off function B: Available ON/OFF pin positive logic (operates by “H”) Output voltage 20 to 60 (e.g. When the output voltage is 2.0V, it is expressed 20) *1. Refer to the tape drawing. *2. Refer to “3. Product name list”. 1. 2. 2 SOT-23-5、SOT-89-5 S-812C xx B xx - xxx T2 x Environmental code U: Lead-free (Sn 100%), halogen-free G: Lead-free (for details, please contact our sales office) IC direction in tape specifications T2: SOT-23-5, SOT-89-5 *1 *2 Product code Package code MC: SOT-23-5 UC: SOT-89-5 Short-circuit protection and power-off function B: Available ON/OFF pin positive logic (operates by “H”) Output voltage 20 to 60 (e.g. When the output voltage is 2.0V, it is expressed 20) *1. Refer to the tape drawing. *2. Refer to “3. Product name list”. 5 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01 1. 2. 3 WLP-4R S-812C xx B - H4T1 S Environmental code S: Lead-free, halogen-free Package code and packing specifications H4T1: WLP-4R, Tape *1 Short-circuit protection and power-off function B: Available ON/OFF pin positive logic (operates by “H”) Output voltage 20 to 60 (e.g. When the output voltage is 2.0V, it is expressed 20) *1. Refer to the tape drawing. 6 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01 1. 3 S-812CxxE series S-812C xx E UA - xxx T2 x Environmental code U: Lead-free (Sn 100%), halogen-free G: Lead-free (for details, please contact our sales office) IC direction in tape specifications*1 Product code*2 Package code UA: SOT-89-3 Short-circuit protection function: Available Power-off functio: Unavailable Output voltage 20 to 60 (e.g. When the output voltage is 2.0 V, it is expressed 20) *1. Refer to the tape drawing. *2. Refer to “3. Product name list”. 2. Packages Package name Package SNT-6A(H) PI006-A-P-SD SOT-23-5 MP005-A-P-SD SOT-89-3 UP003-A-P-SD SOT-89-5 UP005-A-P-SD TO-92 (Bulk) YS003-D-P-SD TO-92 (Tape and ammo) YZ003-E-P-SD WLP-4R HR004-A-P-SD Drawing code Tape Reel Ammo packing Land PI006-A-L-SD PI006-A-C-SD PI006-A-R-SD  MP005-A-C-SD MP005-A-R-SD   UP003-A-C-SD UP003-A-R-SD   UP005-A-C-SD UP005-A-R-SD       YZ003-E-C-SD YZ003-E-Z-SD   HR004-A-C-SD HR004-A-R-SD   7 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01 3. Product name list 3. 1 S-812CxxA Series (Unavailable short-circuit protection and power-off function) Table 1 Output voltage SOT-23-5 SOT-89-3 S-812C20AMC-C2AT2x S-812C20AUA-C2AT2x 2.0 V2.0 % S-812C21AMC-C2BT2x S-812C21AUA-C2BT2x 2.1 V2.0 % S-812C22AMC-C2CT2x S-812C22AUA-C2CT2x 2.2 V2.0 % S-812C23AMC-C2DT2x S-812C23AUA-C2DT2x 2.3 V2.0 % S-812C24AMC-C2ET2x S-812C24AUA-C2ET2x 2.4 V2.0 % S-812C25AMC-C2FT2x S-812C25AUA-C2FT2x 2.5 V2.0 % S-812C26AMC-C2GT2x S-812C26AUA-C2GT2x 2.6 V2.0 % S-812C27AMC-C2HT2x S-812C27AUA-C2HT2x 2.7 V2.0 % S-812C28AMC-C2IT2x S-812C28AUA-C2IT2x 2.8 V2.0 % S-812C29AMC-C2JT2x S-812C29AUA-C2JT2x 2.9 V2.0 % S-812C30AMC-C2KT2x S-812C30AUA-C2KT2x 3.0 V2.0 % S-812C31AMC-C2LT2x S-812C31AUA-C2LT2x 3.1 V2.0 % S-812C32AMC-C2MT2x S-812C32AUA-C2MT2x 3.2 V2.0 % S-812C33AMC-C2NT2x S-812C33AUA-C2NT2x 3.3 V2.0 % S-812C34AMC-C2OT2x S-812C34AUA-C2OT2x 3.4 V2.0 % S-812C35AMC-C2PT2x S-812C35AUA-C2PT2x 3.5 V2.0 % S-812C36AMC-C2QT2x S-812C36AUA-C2QT2x 3.6 V2.0 % S-812C37AMC-C2RT2x S-812C37AUA-C2RT2x 3.7 V2.0 % S-812C38AMC-C2ST2x S-812C38AUA-C2ST2x 3.8 V2.0 % S-812C39AMC-C2TT2x S-812C39AUA-C2TT2x 3.9 V2.0 % S-812C40AMC-C2UT2x S-812C40AUA-C2UT2x 4.0 V2.0 % S-812C41AMC-C2VT2x S-812C41AUA-C2VT2x 4.1 V2.0 % 4.2 V2.0 % S-812C42AMC-C2WT2x S-812C42AUA-C2WT2x S-812C43AMC-C2XT2x S-812C43AUA-C2XT2x 4.3 V2.0 % S-812C44AMC-C2YT2x S-812C44AUA-C2YT2x 4.4 V2.0 % S-812C45AMC-C2ZT2x S-812C45AUA-C2ZT2x 4.5 V2.0 % S-812C46AMC-C3AT2x S-812C46AUA-C3AT2x 4.6 V2.0 % S-812C47AMC-C3BT2x S-812C47AUA-C3BT2x 4.7 V2.0 % S-812C48AMC-C3CT2x S-812C48AUA-C3CT2x 4.8 V2.0 % S-812C49AMC-C3DT2x S-812C49AUA-C3DT2x 4.9 V2.0 % S-812C50AMC-C3ET2x S-812C50AUA-C3ET2x 5.0 V2.0 % S-812C51AMC-C3FT2x S-812C51AUA-C3FT2x 5.1 V2.0 % S-812C52AMC-C3GT2x S-812C52AUA-C3GT2x 5.2 V2.0 % S-812C53AMC-C3HT2x S-812C53AUA-C3HT2x 5.3 V2.0 % S-812C54AMC-C3IT2x S-812C54AUA-C3IT2x 5.4 V2.0 % S-812C55AMC-C3JT2x S-812C55AUA-C3JT2x 5.5 V2.0 % S-812C56AMC-C3KT2x S-812C56AUA-C3KT2x 5.6 V2.0 % S-812C57AMC-C3LT2x S-812C57AUA-C3LT2x 5.7 V2.0 % S-812C58AMC-C3MT2x S-812C58AUA-C3MT2x 5.8 V2.0 % S-812C59AMC-C3NT2x S-812C59AUA-C3NT2x 5.9 V2.0 % S-812C60AMC-C3OT2x S-812C60AUA-C3OT2x 6.0 V2.0 % *1. “n” changes according to the packing form in TO-92. B: Bulk, Z: Tape and ammo. SOT-89-5                                          TO-92*1 S-812C20AY-n2-U S-812C21AY-n2-U S-812C22AY-n2-U S-812C23AY-n2-U S-812C24AY-n2-U S-812C25AY-n2-U S-812C26AY-n2-U S-812C27AY-n2-U S-812C28AY-n2-U S-812C29AY-n2-U S-812C30AY-n2-U S-812C31AY-n2-U S-812C32AY-n2-U S-812C33AY-n2-U S-812C34AY-n2-U S-812C35AY-n2-U S-812C36AY-n2-U S-812C37AY-n2-U S-812C38AY-n2-U S-812C39AY-n2-U S-812C40AY-n2-U S-812C41AY-n2-U S-812C42AY-n2-U S-812C43AY-n2-U S-812C44AY-n2-U S-812C45AY-n2-U S-812C46AY-n2-U S-812C47AY-n2-U S-812C48AY-n2-U S-812C49AY-n2-U S-812C50AY-n2-U S-812C51AY-n2-U S-812C52AY-n2-U S-812C53AY-n2-U S-812C54AY-n2-U S-812C55AY-n2-U S-812C56AY-n2-U S-812C57AY-n2-U S-812C58AY-n2-U S-812C59AY-n2-U S-812C60AY-n2-U Remark 1. Please contact our sales office for products with an output voltage value other than those specified above. 2. x: G or U 3. Please select products of environmental code = U for Sn 100%, halogen-free products. 8 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01 3. 2 S-812CxxB Series (Available short-circuit protection and power-off function) Table 2 (1 / 2) Output voltage 2.0 V2.0 % 2.1 V2.0 % 2.2 V2.0 % 2.3 V2.0 % 2.4 V2.0 % 2.5 V2.0 % 2.6 V2.0 % 2.7 V2.0 % 2.8 V2.0 % 2.9 V2.0 % 3.0 V2.0 % 3.1 V2.0 % 3.2 V2.0 % 3.3 V2.0 % 3.4 V2.0 % 3.5 V2.0 % 3.6 V2.0 % 3.7 V2.0 % 3.8 V2.0 % 3.9 V2.0 % 4.0 V2.0 % 4.1 V2.0 % 4.2 V2.0 % 4.3 V2.0 % 4.4 V2.0 % 4.5 V2.0 % 4.6 V2.0 % 4.7 V2.0 % 4.8 V2.0 % 4.9 V2.0 % 5.0 V2.0 % 5.1 V2.0 % 5.2 V2.0 % 5.3 V2.0 % 5.4 V2.0 % 5.5 V2.0 % 5.6 V2.0 % 5.7 V2.0 % 5.8 V2.0 % 5.9 V2.0 % 6.0 V2.0 % SNT-6A(H) S-812C20BPI-C4ATFU S-812C21BPI-C4BTFU S-812C22BPI-C4CTFU S-812C23BPI-C4DTFU S-812C24BPI-C4ETFU S-812C25BPI-C4FTFU S-812C26BPI-C4GTFU S-812C27BPI-C4HTFU S-812C28BPI-C4ITFU S-812C29BPI-C4JTFU S-812C30BPI-C4KTFU S-812C31BPI-C4LTFU S-812C32BPI-C4MTFU S-812C33BPI-C4NTFU S-812C34BPI-C4OTFU S-812C35BPI-C4PTFU S-812C36BPI-C4QTFU S-812C37BPI-C4RTFU S-812C38BPI-C4STFU S-812C39BPI-C4TTFU S-812C40BPI-C4UTFU S-812C41BPI-C4VTFU S-812C42BPI-C4WTFU S-812C43BPI-C4XTFU S-812C44BPI-C4YTFU S-812C45BPI-C4ZTFU S-812C46BPI-C5ATFU S-812C47BPI-C5BTFU S-812C48BPI-C5CTFU S-812C49BPI-C5DTFU S-812C50BPI-C5ETFU S-812C51BPI-C5FTFU S-812C52BPI-C5GTFU S-812C53BPI-C5HTFU S-812C54BPI-C5ITFU S-812C55BPI-C5JTFU S-812C56BPI-C5KTFU S-812C57BPI-C5LTFU S-812C58BPI-C5MTFU S-812C59BPI-C5NTFU S-812C60BPI-C5OTFU SOT-23-5 S-812C20BMC-C4AT2x S-812C21BMC-C4BT2x S-812C22BMC-C4CT2x S-812C23BMC-C4DT2x S-812C24BMC-C4ET2x S-812C25BMC-C4FT2x S-812C26BMC-C4GT2x S-812C27BMC-C4HT2x S-812C28BMC-C4IT2x S-812C29BMC-C4JT2x S-812C30BMC-C4KT2x S-812C31BMC-C4LT2x S-812C32BMC-C4MT2x S-812C33BMC-C4NT2x S-812C34BMC-C4OT2x S-812C35BMC-C4PT2x S-812C36BMC-C4QT2x S-812C37BMC-C4RT2x S-812C38BMC-C4ST2x S-812C39BMC-C4TT2x S-812C40BMC-C4UT2x S-812C41BMC-C4VT2x S-812C42BMC-C4WT2x S-812C43BMC-C4XT2x S-812C44BMC-C4YT2x S-812C45BMC-C4ZT2x S-812C46BMC-C5AT2x S-812C47BMC-C5BT2x S-812C48BMC-C5CT2x S-812C49BMC-C5DT2x S-812C50BMC-C5ET2x S-812C51BMC-C5FT2x S-812C52BMC-C5GT2x S-812C53BMC-C5HT2x S-812C54BMC-C5IT2x S-812C55BMC-C5JT2x S-812C56BMC-C5KT2x S-812C57BMC-C5LT2x S-812C58BMC-C5MT2x S-812C59BMC-C5NT2x S-812C60BMC-C5OT2x SOT-89-5              S-812C33BUC-C4NT2x                 S-812C50BUC-C5ET2x           Remark 1. Please contact our sales office for products with an output voltage value other than those specified above. 2. x: G or U 3. Please select products of environmental code = U for Sn 100%, halogen-free products. 9 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01 Table2 (2 / 2) Output voltage 3.3 V2.0% 4.0 V2.0% 5.0 V2.0% WLP-4R S-812C33B-H4T1S S-812C40B-H4T1S S-812C50B-H4T1S Remark Please contact our sales office for products with an output voltage value other than those specified above. 3. 3 S-812CxxE Series (Available short-circuit protection function, unavailable power-off function) Table 3 Output voltage SOT-23-5 SOT-89-3 S-812C33EUA-C5PT2x 3.3 V2.0 %  S-812C36EUA-C5RT2x 3.6 V2.0 %  S-812C40EUA-C5QT2x 4.0 V2.0 %  *1. “n” changes according to the packing form in TO-92. B: Bulk, Z: Tape and ammo. SOT-89-5    TO-92*1    Remark 1. Please contact our sales office for products with an output voltage value other than those specified above. 2. x: G or U 3. Please select products of environmental code = U for Sn 100%, halogen-free products. 10 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01  Pin Configurations Table 4 SNT-6A(H) Top view 1 6 2 5 3 4 Figure 4 SOT-23-5 Top view 5 1 4 2 3 Figure 5 SOT-89-3 Top view 1 2 Pin No. Symbol Description *1 1 NC No connection 2 VIN Input voltage pin 3 VOUT Output voltage pin 4 VSS GND pin 5 VIN Input voltage pin 6 ON/OFF ON/OFF pin *1. The NC pin is electrically open. The NC pin can be connected to VIN pin or VSS pin. Table 5 Pin No. 1 2 3 4 Symbol Description VSS GND pin VIN Input voltage pin VOUT Output voltage pin NC*1 No connection ON/OFF ON/OFF pin (B type) 5 NC*1 No connection (A type, E type) *1. The NC pin is electrically open. The NC pin can be connected to VIN pin or VSS pin. Table 6 Pin No. 1 2 3 Symbol VSS VIN VOUT Description GND pin Input voltage pin Output voltage pin 3 Figure 6 SOT-89-5 Top view 5 1 4 2 Table 7 Pin No. 1 2 3 Symbol Description VOUT Output voltage pin VIN Input voltage pin VSS GND pin ON/OFF ON/OFF pin (B type) 4 *1 NC No connection (A type, E type) 5 NC*1 No connection *1. The NC pin is electrically open. The NC pin can be connected to VIN pin or VSS pin. 3 Figure 7 11 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01 Table 8 TO-92 Bottom view Pin No. 1 2 3 1 2 3 Symbol VSS VIN VOUT Description GND pin Input voltage pin Output voltage pin Figure 8 WLP-4R Top view Bottom view A1 A2 A2 A1 B1 B2 B2 B1 Figure 9 12 Table 9 Pin No. A1 B1 A2 B2 Symbol VOUT VIN VSS ON/OFF Description Output voltage pin Input voltage pin GND pin ON/OFF pin 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01  Absolute Maximum Ratings Table 10 Item Symbol VIN VON/OFF VOUT Input voltage Output voltage SNT-6A(H) SOT-23-5 Power dissipation SOT-89-3 PD SOT-89-5 TO-92 (Ta=25C unless otherwise specified) Absolute Maximum Rating Units V VSS0.3 to VSS18 V VSS0.3 to VIN0.3 V VSS0.3 to VIN0.3 500*1 mW 250 (When not mounted on board) mW 600*1 mW 500 (When not mounted on board) mW 1000*1 mW 500 (When not mounted on board) mW 1000*1 mW 400 (When not mounted on board) mW 800*1 mW 40 to 85 C 40 to 125 C Operation ambient temperature Topr Storage temperature Tstg *1. When mounted on board [Mounted board] (1) Board size : 114.3 mm  76.2 mm  t1.6 mm (2) Board name : JEDEC STANDARD51-7 Power dissipation (PD) [mW] Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions. 1200 SOT-89-5 SOT-89-3 1000 TO-92 800 SOT-23-5 600 400 200 0 SNT-6A(H) 0 150 100 50 Ambient temperature (Ta) [C] Figure 10 Power Dissipation of The Package (When mounted on Board) 13 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01  Electrical Characteristics Table 11 Item Output voltage*1 Symbol VOUT(E) Conditions VIN = VOUT(S)2V, IOUT = 10mA 2.0V  VOUT(S)  2.9V 3.0V  VOUT(S)  3.9V V 2V OUT(S) Output current*2 IOUT  VIN16V 4.0V  VOUT(S)  4.9V 5.0V  VOUT(S)  6.0V 2.0V  VOUT(S)  2.4V 2.5V  VOUT(S)  2.9V 3.0V  VOUT(S)  3.4V 3.5V  VOUT(S)  3.9V IOUT = *3 Dropout voltage Vdrop 10mA 4.0V  VOUT(S)  4.4V 4.5V  VOUT(S)  4.9V 5.0V  VOUT(S)  5.4V 5.5V  VOUT(S)  6.0V VOUT(S)  1V  VIN  16V, Line regulation 1  VOUT11 IOUT = 1mA VOUT(S)  1V  VIN  16V, Line regulation 2  VOUT21 IOUT = 1A 2.0V  VOUT(S)  2.9V, 1A  IOUT  20mA 3.0V  VOUT(S)  3.9V, VIN = VOUT(S) 1A  IOUT  30mA Load regulation  VOUT31  2V 4.0V  VOUT(S)  4.9V, 1A  IOUT  40mA 5.0V  VOUT(S)  6.0V, 1A  IOUT  50mA VOUT VIN = VOUT(S)  1V, IOUT = 10mA, Output voltage temperature coefficient*4 Ta VOUT 40C  Ta  85C 2.0V  VOUT(S)  2.7V VIN =VOUT(S) 2.8V  VOUT(S)  3.7V Current consumption ISS 2V, 3.8V  VOUT(S)  5.1V no load 5.2V  VOUT(S)  6.0V Input voltage VIN  Applied to products with power-off function Current consumption VIN = VOUT(S)  2V, ISS2 during power-off VON/OFF = 0V, no load ON/OFF pin VIN = VOUT(S)  2V, RL = 1k, VSH input voltage “H” determined by VOUT output level ON/OFF pin VIN = VOUT(S)  2V, RL = 1k, VSL input voltage “L” determined by VOUT output level ON/OFF pin ISH VIN = 7V, VON/OFF = 7V input current “H” ON/OFF pin ISL VIN = VOUT(S)  2V, VON/OFF = 0V input current “L” Applied to products with short-circuit protection function Short-circuit current IOS VIN = VOUT(S)  2V, VOUT = 0V 14 (Ta=25C unless otherwise specified) Test Min. Typ. Max. Units circuits VOUT(S) V VOUT(S) OUT(S) V 1  0.98  1.02 30   mA 3 50   mA 3 65   mA 3 75   mA 3 0.46 0.95 V 1  0.32 0.68 V 1  0.23 0.41 V 1  0.19 0.35 V 1  0.16 0.30 V 1  0.14 0.27 V 1  0.12 0.25 V 1  0.11 0.23 V 1   5 20 mV 1  5 20 mV 1  6 30 mV 1  10 45 mV 1  13 65 mV 1  17 80 mV 1  100  ppm/C 1      0.9 1.0 1.2 1.5  1.6 1.8 2.1 2.5 16 A A A A V 2 2 2 2 1  0.1 0.5 A 2 2.0   V 4   0.4 V 4 -0.1  0.1 A 4 -0.1  0.1 A 4  40  mA 3 Rev.7.0_01 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series *1. VOUT(S): Set output voltage VOUT(E) Actual output voltage Output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)2.0V. *2. The output current at which the output voltage becomes 95% of VOUT(E) after gradually increasing the output current. *3. Vdrop = VIN1(VOUT(E)  0.98) VIN1 is the input voltage at which the output voltage becomes 98% of VOUT(E) after gradually decreasing the input voltage. *4. A change in the temperature of the output voltage [mV/°C] is calculated using the following equation. VOUT VOUT [mV/°C]*1 = VOUT(S) [V]*2  Ta V [ppm/°C]*3  1000 Ta OUT *1. Change in temperature of output voltage *2. Set output voltage *3. Output voltage temperature coefficient 15 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01  Test Circuits 1. VIN VOUT A (ON/OFF)*1 VSS Set to ON V Figure 11 2. A VIN VOUT (ON/OFF)*1 VSS Set to VIN or GND Figure 12 3. VIN VOUT A (ON/OFF)*1 VSS V Set to ON Figure 13 4. VIN A VOUT (ON/OFF)*1 VSS Figure 14 *1. In case of product with power-off function. 16 V RL 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01  Standard Circuit OUTPUT INPUT VOUT VIN *3  (ON/OFF) CIN*1 VSS CL*2 GND Single GND *1. CIN is a capacitor for stabilizing the input. *2. In addition to tantalum capacitor, ceramic capacitor can be used for CL. *3. Control this ON/OFF pin in the product with power-off function. Figure 15 Caution The above connection diagram and constant will not guarantee successful operation. Perform through evaluation using the actual application to set the constant. 17 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01  Explanation of Terms 1. Output capacitor (CL) Generally in voltage regulator, output capacitor is used to stabilize regulation and to improve the characteristics of transient response. The S-812C Series operates stably without output capacitor CL. Thus the output capacitor CL is used only for improvement of the transient response. In the applications that users will use the S-812C Series, and they are not cautious about the transient response, it is possible to omit an output capacitor. If using an output capacitor for this IC, users are able to use devices such as ceramic capacitor which has small ESR (Equivalent Series Resistance). 2. Output voltage (VOUT) The accuracy of the output voltage  2.0% is assured under the specified conditions for input voltage, which differs depending upon the product items, output current, and temperature. Caution If the above conditions change, the output voltage value may vary and go out of the accuracy range of the output voltage. Refer to " Electrical Characteristics" and " Characteristics (Typical Data)" for details. 3. Line regulations 1 and 2 (VOUT1, VOUT2) Indicate the dependency of the output voltage against the input voltage. That is, the value shows how much the output voltage changes due to a change in the input voltage after fixing output current constant. 4. Load regulation (VOUT3) Indicates the dependency of the output voltage against the output current. That is, the value shows how much the output voltage changes due to a change in the output current after fixing output current constant. 5. Dropout voltage (Vdrop) Indicates the difference between input voltage (VIN1) and the output voltage when; decreasing input voltage (VIN) gradually until the output voltage has dropped out to the value of 98% of the actual output voltage (VOUT(E)). Vdrop = VIN1  (VOUT(E)  0.98) 18 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01 VOUT  6. Output voltage temperature coefficient  Ta  VOUT  The shaded area in Figure 16 is the range where VOUT varies in the operation temperature range when the output voltage temperature coefficient is 100 ppm/C. Example of S-812C30A typ. product VOUT [V] 0.30 mV/C VOUT(E)*1 0.30 mV/C 40 25 85 Ta [C] *1. VOUT(E) is the value of the output voltage measured at Ta = 25C. Figure 16 A change in the temperature of the output voltage [mV/°C] is calculated using the following equation. VOUT V [ppm/°C]*3  1000 [mV/°C]*1 = VOUT(S) [V]*2  Ta OUT Ta VOUT *1. Change in temperature of output voltage *2. Set output voltage *3. Output voltage temperature coefficient 19 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01  Operation 1. Basic operation Figure 17 shows the block diagram of the S-812C Series. The error amplifier compares the reference voltage (Vref) with feedback voltage (Vfb), which is the output voltage resistance-divided by feedback resistors (Rs and Rf). It supplies the gate voltage necessary to maintain the constant output voltage which is not influenced by the input voltage and temperature change, to the output transistor. VIN *1 Current supply Error amplifier Vref VOUT  Rf  Vfb Reference voltage circuit Rs VSS *1. Parasitic diode Figure 17 2. Output transistor In the S-812C Series, a low on-resistance P-channel MOS FET is used as the output transistor. Be sure that VOUT does not exceed VIN  0.3 V to prevent the voltage regulator from being damaged due to reverse current flowing from the VOUT pin through a parasitic diode to the VIN pin, when the potential of VOUT became higher than VIN. 20 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01 3. ON/OFF pin This pin starts and stops the regulator. When the ON/OFF pin is set to OFF level, the entire internal circuit stops operating, and the built-in P-channel MOS FET output transistor between the VIN pin and the VOUT pin is turned off, reducing current consumption significantly. The VOUT pin becomes the VSS level due to the internally divided resistance of several M between the VOUT pin and the VSS pin. The structure of the ON/OFF pin is as shown in Figure 18. Since the ON/OFF pin is neither pulled down nor pulled up internally, do not use it in the floating status. Note that if applying the voltage of VIN + 0.3 V or more, the current flows to VIN via a parasitic diode in the IC. When not using the ON/OFF pin in the product with the power-off function, connect the ON/OFF pin to the VIN pin (in positive logic), or to the VSS pin (in negative logic). The output voltage may increase by stopping regulation when a lower current (100 A or less) is applied. If the output voltage increased during power-off, pull the VOUT pin down to the VSS pin and set the ON/OFF pin to the power-down level. Table 12 Product Type ON/OFF Pin Internal Circuit VOUT Pin Voltage Current Consumption B “L”: OFF Stop VSS level ISS2 B “H”: ON Operate Set value ISS VIN ON/OFF VSS Figure 18 4. Short-circuit protection circuit In the S-812C Series, users are able to select whether to set the short circuit protection, which protects the output capacitor from short-circuiting between the VOUT pin and the VSS pin. The short circuit protection circuit controls the output current against voltage VOUT, as seen in “ Characteristics (Typical Data)”, “1. Output Voltage vs Output Current (When load current increases)”, and limits the output current at approx. 40 mA even if the VOUT pin and the VSS pins are short-circuited. However, this short circuit protection circuit does not work as for thermal protection. Pay attention to the conditions of input voltage and load current so that, under the usage condition including short circuit, the loss of the IC will not exceed power dissipation of the package. Even if pins are not short-circuited, this protection circuit works to limit the current to the specified value, in order to protect the output capacitor, when the output current and the potential difference between input and output voltages increase. In the product without the short circuit protection circuit, the S-812C Series allows the relatively larger current because this protection circuit is detached. 21 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01  Selection of External Components 1. Output capacitor (CL) The S-812C Series has an internal phase compensation circuit which stabilizes the operation regardless of the change of output load. Therefore it is possible for users to have a stable operation without an output capacitor (CL). However, the values of output overshoot and undershoot, which are the characteristics of transient response, vary depending on the output capacitor. In selecting the value of output capacitor, refer to the data on CL dependency in “ Reference data”, “1. Transient response characteristics (Typical data: Ta25 C)”. Set ESR 10  or less when using a tantalum capacitor or an aluminum electrolytic capacitor. Pay attention at low temperature, that aluminum electrolytic capacitor especially may oscillate because ESR increases. Evaluate sufficiently including the temperature characteristics in use.  Application Circuit 1. Output current boost circuit As shown in Figure 19, the output current can be boosted by externally attaching a PNP transistor. Between the input voltage VIN and the VIN pin (for power supply) in the S-812C Series, if setting the base-emitter voltage VBE which fully switches the PNP transistor on, S-812C Series controls the base current in a PNP transistor so that the output voltage VOUT reaches the level of voltage which is set by the S-812C Series. Since the output current boosting circuit in Figure 19 does not have the good characteristics of transient response, under the usage condition, confirm if output fluctuation due to power-on, and fluctuations of power supply and load affect on the operation or not before use. Note that the short-circuit protection circuit in the S-812C Series does not work as short-circuit protection for this boost circuit. Tr1 S-812C Series ON/OFF VSS VIN VIN R1 CIN CL GND Figure 19 22 VOUT VOUT 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01 2. Constant current circuit This circuit can be used as a constant current circuit if making the composition seen in Figure 20 and 21. Constant current IO is calculated from the following equation (VOUT(E) = actual output voltage): IO = (VOUT(E)  RL) + ISS Note that by using a circuit in Figure 20, it is impossible to set the better driving ability to the constant amperage (IO) than the S-812C Series basically has. To gain the driving ability which exceeds the S-812C Series, there’s a way to combine a constant current circuit and a current boosting circuit, as seen in Figure 21. The maximum input voltage for a constant current circuit is 16 V + the voltage for device (VO). It is not recommended to add a capacitor between the VIN pin (power supply) and the VSS pin or the VOUT pin (output) and the VSS pin because the rush current flows at power-on. VIN S-812C VOUT VIN Series V ON/OFF RL OUT IO Device VO VSS CIN GND Figure 20 Constant Current Circuit Tr1 VIN S-812C VIN VOUT Series R1 ON/OFF VSS CIN GND RL VOUT VO IO Device Figure 21 Constant Current Boost Circuit 3. Output voltage adjustment circuit (Only for S-812CxxA Series (Unavailable short-circuit protection and power-off function)) By using the composition seen in Figure 22, users are able to increase the output voltage. The value of output voltage VOUT1 is calculated from the following equation (VOUT(E) = actual output voltage): VOUT1 = VOUT(E)  (R1 + R2)  R1 + R2  ISS Set the value of resistors R1 and R2 so that the S-812C Series is not affected by current consumption ISS. Capacitor C1 reduces output fluctuation due to power-on, power fluctuation and load fluctuation. Set the value according to the actual evaluation. It is not recommended to add a capacitor between the VIN pin (power supply) and the VSS pin or the VOUT pin (output) and the VSS pin because it causes output fluctuation and output oscillation due to power-on. VIN VIN S-812C Series R1 VSS CIN GND VOUT1 VOUT C1 CL R2 Figure 22 23 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01  Precautions  Wiring patterns for the VIN pin, the VOUT pin and GND should be designed so that the impedance is low. When mounting an output capacitor between the VOUT pin and the VSS pin (CL) and a capacitor for stabilizing the input between the VIN pin and the VSS pin (CIN), the distance from the capacitors to these pins should be as short as possible.  Note that generally the output voltage may increase when a series regulator is used at low load current (1 A or less).  At low load current (100 A or less) output voltage may increase when the regulating operation is halted by the ON/OFF pin.  Generally a series regulator may cause oscillation, depending on the selection of external parts. The following conditions are recommended for the S-812C Series. However, be sure to perform sufficient evaluation under the actual usage conditions for selection, including evaluation of temperature characteristics. Equivalent Series Resistance (ESR): 10  or less (in case of using output capacitor) Input series resistance (RIN): 10  or less  The voltage regulator may oscillate when the impedance of the power supply is high and the input capacitance is small or an input capacitor is not connected.  Overshoot may occur in the output voltage momentarily if the voltage is rapidly raised at power-on or when the power supply fluctuates. Sufficiently evaluate the output voltage at power-on with the actual device.  The application conditions for the input voltage, the output voltage, and the load current should not exceed the package power dissipation.  Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit.  ABLIC Inc. claims no responsibility for any disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party.  Precautions for WLP package ● The side of device silicon substrate is exposed to the marking side of device package. Since this portion has lower strength against the mechanical stress than the standard plastic package, chip, crack, etc should be careful of the handing of a package enough. Moreover, the exposed side of silicon has electrical potential of device substrate, and needs to be kept out of contact with the external potential. ● In this package, the overcoat of the resin of translucence is carried out on the side of device area. Keep it mind that it may affect the characteristic of a device when exposed a device in the bottom of a high light source. 24 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01  Characteristics (Typical Data) 1. Output Voltage vs Output Current (When load current increases) S-812C20B (Ta=25°C) Short- circuit protection 2.5 VIN=2.5V 2.0 5V 7V 1.5 S-812C30B (Ta=25°C) Short-circuit protection 3.5 3.0 VOUT (V) VOUT (V) 1.0 2.0 5V 4V 0.5 0.0 6V VIN=3.5V 1.5 1.0 4V 3V 0.5 8V 2.5 0.0 0 50 100 IOUT (mA) 150 0 50 100 IOUT (mA) 150 200 VOUT (V) S-812C50B (Ta=25°C) Short-circuit protection 6.0 10V 5.0 4.0 3.0 VIN=5.5V 2.0 6V 8V 7V 1.0 0.0 0 100 200 300 IOUT (mA) S-812C20A (Ta=25 ºC) 2.5 No short-circuit protection S-812C30A (Ta=25ºC) 3.5 VIN=2.3V 7V 2.5V 4V 3V 0.5 VOUT (V) VOUT (V) 1.5 1.0 VIN=3.3V 3.0 2.0 5V No short-circuit protection 2.5 2.0 8V 1.5 3.5V 1.0 4V 5V 6V 0.5 0.0 0.0 0 100 200 300 IOUT (mA) S-812C50A (Ta=25ºC) 6.0 0 100 200 IOUT (mA) 300 400 No short-circuit protection VOUT (V) 5.0 4.0 10V 3.0 2.0 VIN=5.3V 1.0 8V 6V 7V 5.5V 0.0 0 100 200 IOUT (mA) 300 400 25 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01 2. Maximum Output Current vs Input Voltage S-812C20B Short-circuit protection 140 S-812C30B Ta=-40°C 120 100 IOUTMAX (mA) IOUTMAX (mA) Short-circuit protection 200 80 60 40 25°C 85°C Ta=-40°C 20 150 100 25°C 50 85°C 0 0 0 4 8 12 0 16 4 VIN (V) S-812C50B 12 16 Short-circuit protection 300 Ta=-40°C 250 IOUTMAX (mA) 8 VIN (V) 200 150 100 25°C 50 85°C 0 0 4 8 12 16 VIN (V) S-812C20A S-812C30A 200 No short-circuit protection 140 Ta=-40ºC 100 80 25ºC 60 40 85ºC 20 4 S-812C50A 8 VIN (V) 12 16 No short-circuit protection 300 IOUTMAX (mA) 250 Ta=-40ºC 200 150 25ºC 100 85ºC 50 0 0 26 100 4 8 VIN(V) 12 16 25ºC 50 0 0 0 Ta=40ºC 150 IOUTMAX (mA) IOUTMAX (mA) 120 No short-circuit protection 85ºC 0 4 8 VIN (V) 12 16 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01 3. Output Current vs. Input Voltage S-812C20B (Ta=25°C) S-812C30B (Ta=25°C) 2.10 3.15 VOUT (V) 3.10 -50 mA -10 mA VOUT (V) IOUT=-1 A 2.05 -20 mA 2.00 -1 mA 1.95 IOUT=-1 A 3.05 -20 mA -50 mA -10 mA 3.00 -1 mA 2.95 2.90 1.90 2.85 1.5 2 2.5 3 VIN (V) S-812C50B (Ta=25°C) 3.5 4 6.5 7 2.5 3 3.5 4 VIN (V) 4.5 5 5.25 IOUT=-1 A VOUT (V) 5.15 5.05 -20 mA -10 mA 4.95 -1 mA -50 mA 4.85 4.75 4.5 5 5.5 6 VIN (V) 4. Dropout Voltage vs Output Current S-812C20B S-812C30B 2000 1600 1400 1200 1000 800 600 400 200 0 85°C Vdrop (mV) Vdrop (mV) 25°C 1500 1000 500 Ta=-40°C 0 0 10 20 30 40 IOUT (mA) 50 85°C 25°C Ta=-40°C 0 10 20 30 IOUT (mA) 40 50 S-812C50B 1000 900 800 700 600 500 400 300 200 100 0 Vdrop (mV) 85°C 25°C Ta=-40°C 0 10 20 30 IOUT (mA) 40 50 27 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01 5. Output Voltage vs Ambient Temperature 3.06 2.02 3.03 VOUT (V) S-812C30B 2.04 VOUT (V) S-812C20B 2.00 2.97 1.98 1.96 3.00 -50 0 50 2.94 100 -50 0 Ta (°C) 50 100 Ta (°C) S-812C50B 5.10 VOUT (V) 5.05 5.00 4.95 4.90 -50 0 50 100 Ta (°C) 20 20 15 15 10 5 0 S-812C20B S-812C50B -50 S-812C30B 0 50 100 VOUT3 (mV) 80 60 20 0 S-812C20B S-812C30B S-812C50B -50 0 50 Ta (°C) 0 S-812C20B S-812C50B -50 0 100 S-812C30B 50 Ta (°C) 8. Load Regulation vs Ambient Temperature 40 10 5 Ta (°C) 28 7. Line Regulation 2 vs Ambient Temperature VOUT2 (mV) VOUT1 (mV) 6. Line Regulation 1 vs Ambient Temperature 100 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01 9. Current Consumption vs Input Voltage S-812C30B S-812C20B 2.5 2.5 2.0 85°C 25°C 1.5 ISS (A) ISS (A) 2.0 1.0 0.5 1.5 1.0 0.5 Ta= -40°C 85°C 25°C Ta= -40°C 0.0 0.0 0 4 8 12 V IN (V) 16 0 4 8 V IN (V) 12 16 S-812C50B 2.5 ISS (A) 2.0 85°C 25°C 1.5 1.0 0.5 Ta= -40°C 0.0 0 4 8 12 V IN (V) 16 10. ON/OFF Pin Input Threshold vs Input Voltage VSH / VSL (V) 2.5 25°C 85°C 2.0 Ta40°C 1.5 1.0 Ta40°C 0.5 25°C 85°C 0.0 0 4 8 12 16 VIN (V) 29 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01  Reference Data 1. Transient Response Characteristics (Typical data: Ta25 C) In p u t v o lta g e or L o a d c u rre n t O v e rs h o o t O u tp u t v o lta g e U n d e rs h o o t 1-1. Power-on : S-812C30B (CL=10F; ceramic capacitor) VIN, VON/OFF05 V, IOUT10 mA, CL10 F VOUT (0.5 V/div) 5V 0V 3V 0V TIME (100 s/div) Load dependency of overshoot at power-on VIN, VON/OFF0VOUT(S)2 V, CL10 F 0.030 Overshoot (V) Overshoot (V) S-812C30B 0.020 0.015 S-812C50B 0.010 0.005 0.02 0.04 0.06 IOUT (A) 0.08 0.1 VIN, VON/OFF0VDD, IOUT10 mA, CL10 F 0.035 S-812C30B 0.4 0.2 0.030 0 0.06 S-812C30B 20 30 CL (F) S-812C50B 0.015 0.010 40 50 VIN, VON/OFF0VOUT(S)2 V, IOUT10 mA, CL10 F 0.05 0.025 0.020 10 “Ta” dependency of overshoot at power-on Overshoot (V) Overshoot (V) S-812C50B 0.6 0.0 0 VDD dependency of overshoot at power-on S-812C50B S-812C30B 0.04 0.03 0.02 0.01 0.005 0.000 0.00 0 30 VIN, VON/OFF0VOUT(S)2 V, IOUT10 mA 0.8 0.025 0.000 CL dependency of overshoot at power-on 5 10 VDD (V) 15 20 50 0 50 Ta (°C) 100 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01 1-2. ON/OFF pin : S-812C30A (CL=10F; ceramic capacitor) VOUT (0.5 V/div) VIN5 V, VON/OFF05 V, IOUT10 mA, CL10F 5V 0V 3V 0V TIME (200 s/div) load dependency of overshoot with ON/OFF pin 0.6 S-812C50B 0.4 CL dependency of overshoot with ON/OFF pin 0.2 S-812C30B 0.0 0.001 0.01 10 Overshoot (V) Overshoot (V) S-812C50B S-812C30B 0.1 0.0 0 5 0.2 10 VDD (V) 15 S-812C30B 0 10 20 30 CL (F) 40 50 “Ta” dependency of overshoot with ON/OFF pin VINVDD, VON/OFF0VDD, IOUT10 mA, CL10 F 0.5 0.4 0.3 0.2 S-812C50B 0.4 100 VDD dependency of overshoot with ON/OFF pin 0.7 0.6 0.6 0.0 0.1 1 IOUT (mA) VINVOUT(S)2 V, VON/OFF0VOUT(S)2 V, IOUT10 mA 0.8 Overshoot (V) Overshoot (V) 0.8 VINVOUT(S)2 V, VON/OFF0 VOUT(S)2 V, CL10 F 20 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 VINVOUT(S)2 V, VON/OFF0VOUT(S)2 V, IOUT10 mA, CL10 F S-812C50B S-812C30B 50 0 50 100 Ta (°C) 31 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01 1-3. Power supply fluctuates: S-812C30B (CL=10F; ceramic capacitor) VOUT (0.05V / div) VIN, VON/OFF4 8 V, IOUT10 mA 10 V 5V 0V 3V 2.9 V TIME (100s/div) S-812C30B 10 20 30 IOUT (mA) 40 Overshoot (V) VIN, VON/OFFVOUT(S)1 VVDD, IOUT10 mA, CL10 F 0.16 0.14 S-812C50B 0.12 0.10 0.08 0.06 0.04 S-812C30B 0.02 0.00 0 5 10 15 20 VDD (V) 0.20 S-812C30B 0.15 S-812C50B 0.10 0.05 0.00 50 VDD dependency of overshoot at power supply fluctuates 32 VIN, VON/OFFVOUT(S)1 VVOUT(S)5 V, IOUT10 mA 0.25 S-812C50B 0 CL dependency of overshoot at power supply fluctuates Overshoot (V) 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 VIN, VON/OFFVOUT(S)1 VVOUT(S)5 V, CL10 F 0 10 20 30 CL (F) 40 50 “Ta” dependency of overshoot at power supply fluctuates VIN, VON/OFFVOUT(S)1 VVOUT(S)5 V, IOUT10 mA, CL10 F Overshoot (V) Overshoot (V) Load dependency of overshoot at power supply fluctuates 0.16 0.14 S-812C50B 0.12 0.10 0.08 0.06 0.04 0.02 0.00 0 50 S-812C30B Ta (°C) 50 100 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01 VOUT (0.05 V / div) VIN, VON/OFF84 V, IOUT10 mA 10 V 5V 0V 3V 2.9 2.8 TIME (500s/div) Load dependency of undershoot at power supply fluctuates CL dependency of undershoot at power supply fluctuates VIN, VON/OFFVOUT(S)5 VVOUT(S)1 V, CL10 F 0.6 S-812C50B 0.4 S-812C30B 0.2 0.35 Undershoot (V) Undershoot (V) 0.8 10 20 30 IOUT (mA) 40 0.10 S-812C50B 0.05 0.30 Undershoot (V) Undershoot (V) 0.15 S-812C30B S-812C30B 0 10 20 30 CL (F) 40 50 “Ta” dependency of undershoot at power supply fluctuates VIN, VON/OFFVDDVOUT(S)1 V, IOUT10mA, CL10 F 0.20 S-812C50B 0.20 0.15 0.10 50 VDD dependency of undershoot at power supply fluctuates 0.25 0.30 0.25 0.05 0.00 0.0 0 VIN, VON/OFF VOUT(S)5 VVOUT(S)1 V, IOUT10 mA VIN, VON/OFFVOUT(S)5 VVOUT(S)1 V, IOUT10mA, CL10 F 0.25 S-812C50B 0.20 0.15 0.10 S-812C30B 0.05 0.00 0.00 0 5 10 VDD (V) 15 20 50 0 Ta (°C) 50 100 33 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01 1-4. Load fluctuation: S-812C30B (CL=10F; ceramic capacitor) VIN5 V, IOUT10 mA1 A, CL10 F VOUT (0.05 V / div) 10 mA 0 mA 3.1 V 3V 2.9 V TIME (200 ms / div) Load dependency of overshoot at load fluctuation VIN, VON/OFFVOUT(S)2 V, IOUTILoad1 A, CL10F 1.0 VIN, VON/OFFVOUT(S)2 V, IOUT10 mA1 A S-812C50B Overshoot (V) Overshoot (V) 1.2 0.8 0.6 0.4 S-812C30B 0.2 0.0 0 20 40 60 ILoad (mA) 80 100 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 IOUT10 mA1 A, CL10 F 10 VDD (V) S-812C30B 15 20 10 20 30 CL (F) 40 50 VIN, VON/OFF=VOUT(S)2 V, IOUT10 mA1 A, CL10 F 0.16 0.14 S-812C30B 5 S-812C50B “Ta” dependency of overshoot at load fluctuation S-812C50B 0 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 0 Overshoot (V) Overshoot (V) VDD dependency of overshoot at load fluctuation 34 CL dependency of overshoot at load fluctuation S-812C50B 0.12 0.10 0.08 0.06 0.04 0.02 0.00 S-812C30B 50 0 50 Ta (°C) 100 16 V INPUT, 75 mA VOLTAGE REGULATOR S-812C Series Rev.7.0_01 VOUT (0.05 V / div) VIN5 V, IOUT1 A,10 mA, CL10 F 10 mA 0 mA 3V 2.9 V TIME (500 s / div) Load dependency of undershoot at load fluctuation VIN, VON/OFFVOUT(S)2 V, IOUT1 AILoad, CL10F 1.0 S-812C50B 0.8 0.6 0.4 S-812C30B 0.2 0.0 0 20 40 60 ILoad (mA) 80 0.10 0.05 S-812C30B 0 0.25 Undershoot (V) 0.15 0.10 S-812C30B 0.05 0 5 10 VDD (V) 15 20 10 20 30 CL (F) 40 50 “Ta” dependency of undershoot at load fluctuation S-812C50B Undershoot (V) S-812C50B 0.15 IOUT1 A10 mA, CL10 F 0.20 0.00 0.20 0.00 100 VDD dependency of undershoot at load fluctuation VIN, VON/OFFVOUT(S)2 V, IOUT1 A10 mA 0.25 Undershoot (V) Undershoot (V) 1.2 CL dependency of undershoot at load fluctuation 0.20 VIN, VON/OFFVOUT(S)2 V, IOUT1 A10 mA, CL10 F S-812C50B 0.15 0.10 0.05 0.00 50 S-812C30B 0 50 100 Ta (°C) 35 1.57±0.03 6 5 1 2 4 +0.05 0.08 -0.02 3 0.5 0.48±0.02 0.2±0.05 No. PI006-A-P-SD-2.1 TITLE SNT-6A(H)-A-PKG Dimensions No. PI006-A-P-SD-2.1 ANGLE UNIT mm ABLIC Inc. +0.1 ø1.5 -0 4.0±0.1 2.0±0.05 0.25±0.05 +0.1 1.85±0.05 ø0.5 -0 4.0±0.1 0.65±0.05 3 2 1 4 5 6 Feed direction No. PI006-A-C-SD-2.0 TITLE SNT-6A(H)-A-Carrier Tape No. PI006-A-C-SD-2.0 ANGLE UNIT mm ABLIC Inc. 12.5max. 9.0±0.3 Enlarged drawing in the central part ø13±0.2 (60°) (60°) No. PI006-A-R-SD-1.0 TITLE SNT-6A(H)-A-Reel No. PI006-A-R-SD-1.0 ANGLE UNIT QTY. mm ABLIC Inc. 5,000 0.52 1.36 2 0.52 0.2 0.3 1. 2. 1 (0.25 mm min. / 0.30 mm typ.) (1.30 mm ~ 1.40 mm) 1. 2. 3. 4. 0.03 mm SNT 1. Pay attention to the land pattern width (0.25 mm min. / 0.30 mm typ.). 2. Do not widen the land pattern to the center of the package (1.30 mm to 1.40 mm). Caution 1. Do not do silkscreen printing and solder printing under the mold resin of the package. 2. The thickness of the solder resist on the wire pattern under the package should be 0.03 mm or less from the land pattern surface. 3. Match the mask aperture size and aperture position with the land pattern. 4. Refer to "SNT Package User's Guide" for details. 1. 2. (0.25 mm min. / 0.30 mm typ.) (1.30 mm ~ 1.40 mm) No. PI006-A-L-SD-4.1 TITLE SNT-6A(H)-A -Land Recommendation No. PI006-A-L-SD-4.1 ANGLE UNIT mm ABLIC Inc. 2.9±0.2 1.9±0.2 4 5 1 2 +0.1 0.16 -0.06 3 0.95±0.1 0.4±0.1 No. MP005-A-P-SD-1.3 TITLE SOT235-A-PKG Dimensions No. MP005-A-P-SD-1.3 ANGLE UNIT mm ABLIC Inc. 4.0±0.1(10 pitches:40.0±0.2) +0.1 ø1.5 -0 +0.2 ø1.0 -0 2.0±0.05 0.25±0.1 4.0±0.1 1.4±0.2 3.2±0.2 3 2 1 4 5 Feed direction No. MP005-A-C-SD-2.1 TITLE SOT235-A-Carrier Tape No. MP005-A-C-SD-2.1 ANGLE UNIT mm ABLIC Inc. 12.5max. 9.0±0.3 Enlarged drawing in the central part ø13±0.2 (60°) (60°) No. MP005-A-R-SD-1.1 SOT235-A-Reel TITLE No. MP005-A-R-SD-1.1 ANGLE QTY. UNIT mm ABLIC Inc. 3,000 4.5±0.1 1.5±0.1 1.6±0.2 45° 1 2 3 1.5±0.1 1.5±0.1 0.4±0.05 0.4±0.1 0.4±0.1 0.45±0.1 No. UP003-A-P-SD-2.0 TITLE SOT893-A-PKG Dimensions No. UP003-A-P-SD-2.0 ANGLE UNIT mm ABLIC Inc. 4.0±0.1(10 pitches : 40.0±0.2) +0.1 ø1.5 -0 2.0±0.05 ø1.5 +0.1 -0 0.3±0.05 8.0±0.1 2.0±0.1 4.75±0.1 Feed direction No. UP003-A-C-SD-2.0 TITLE SOT893-A-Carrier Tape No. UP003-A-C-SD-2.0 ANGLE UNIT mm ABLIC Inc. 16.5max. 13.0±0.3 Enlarged drawing in the central part (60°) (60°) No. UP003-A-R-SD-1.1 TITLE SOT893-A-Reel No. UP003-A-R-SD-1.1 ANGLE UNIT QTY. mm ABLIC Inc. 1,000 4.5±0.1 1.5±0.1 1.6±0.2 5 4 0.3 45° 1 2 3 1.5±0.1 1.5±0.1 0.4±0.05 0.4±0.1 0.4±0.1 0.45±0.1 No. UP005-A-P-SD-2.0 TITLE SOT895-A-PKG Dimensions No. UP005-A-P-SD-2.0 ANGLE UNIT mm ABLIC Inc. 4.0±0.1(10 pitches : 40.0±0.2) ø1.5 +0.1 -0 2.0±0.05 +0.1 ø1.5 -0 0.3±0.05 8.0±0.1 2.0±0.1 4.75±0.1 3 2 1 4 5 Feed direction No. UP005-A-C-SD-2.0 TITLE SOT895-A-Carrier Tape UP005-A-C-SD-2.0 No. ANGLE UNIT mm ABLIC Inc. 16.5max. 13.0±0.3 Enlarged drawing in the central part (60°) (60°) No. UP005-A-R-SD-1.1 TITLE SOT895-A-Reel No. UP005-A-R-SD-1.1 ANGLE UNIT QTY. mm ABLIC Inc. 1,000 4.2max. 5.2max. Marked side 0.6max. 0.45±0.1 0.45±0.1 1.27 No. YS003-D-P-SD-2.1 TITLE TO92-D-PKG Dimensions No. YS003-D-P-SD-2.1 ANGLE UNIT mm 5.2max. 4.2max. Marked side 0.6max. 0.45±0.1 0.45±0.1 +0.4 2.5 -0.1 1.27 No. YZ003-E-P-SD-2.1 TITLE TO92-E-PKG Dimensions No. YZ003-E-P-SD-2.1 ANGLE UNIT mm ABLIC Inc. 12.7±1.0 1.0max. 1.0max. 1.0max. Marked side 1#pin 3#pin 1.45max. 0.7±0.2 ø4.0±0.2 6.35±0.4 12.7±0.3(20 pitches : 254.0±1.0) Z type Feed direction No. YZ003-E-C-SD-1.1 TITLE TO92-E-Radial Tape No. YZ003-E-C-SD-1.1 ANGLE UNIT mm ABLIC Inc. Spacer(Sponge) 312 18 35 Side spacer placed in front side 154 314 Space more than 4 strokes 162 333 43 No. YZ003-E-Z-SD-2.0 TITLE TO92-E-Ammo Packing No. YZ003-E-Z-SD-2.0 ANGLE UNIT QTY. mm ABLIC Inc. 2,000 B 0.73±0.03 1 2 A A B 0.4 0.6max. 4-(ø0.22) ø0.05 M S A B S ø0.22±0.03 0.06 S Pin No. Symbol A1 VOUT B1 A2 B2 VIN VSS ON/OFF No. HR004-A-P-SD-1.0 TITLE WLP-4R-A-PKG Dimensions (S-812CXX) No. HR004-A-P-SD-1.0 ANGLE UNIT mm ABLIC Inc. +0.1 ø1.5 -0 2.0±0.05 ø0.3±0.05 4.0±0.1 0.20±0.05 4.0±0.1 0.65±0.1 1.1±0.1 B1 A1 B2 A2 Feed direction No. HR004-A-C-SD-1.0 TITLE No. WLP-4R-A-C a r r i e r T a p e (S-812CXX) HR004-A-C-SD-1.0 ANGLE UNIT mm ABLIC Inc. +1.0 9.0 - 0.0 11.4±1.0 Enlarged drawing in the central part ø13±0.2 (60°) (60°) No. HR004-A-R-SD-1.0 WLP-4R-A-Reel (S-812CXX) HR004-A-R-SD-1.0 TITLE No. QTY. ANGLE UNIT mm ABLIC Inc. 3,000 Disclaimers (Handling Precautions) 1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice. 2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of any specific mass-production design. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the reasons other than the products described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use of the information described herein. 3. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the incorrect information described herein. 4. Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute maximum ratings, operation voltage range and electrical characteristics, etc. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to the use of the products outside their specified ranges. 5. Before using the products, confirm their applications, and the laws and regulations of the region or country where they are used and verify suitability, safety and other factors for the intended use. 6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related laws, and follow the required procedures. 7. The products are strictly prohibited from using, providing or exporting for the purposes of the development of weapons of mass destruction or military use. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear, biological or chemical weapons or missiles, or use any other military purposes. 8. The products are not designed to be used as part of any device or equipment that may affect the human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by ABLIC, Inc. Do not apply the products to the above listed devices and equipments. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of the products. 9. In general, semiconductor products may fail or malfunction with some probability. The user of the products should therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction. The entire system in which the products are used must be sufficiently evaluated and judged whether the products are allowed to apply for the system on customer's own responsibility. 10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the product design by the customer depending on the intended use. 11. The products do not affect human health under normal use. However, they contain chemical substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be careful when handling these with the bare hands to prevent injuries, etc. 12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used. 13. The information described herein contains copyright information and know-how of ABLIC Inc. The information described herein does not convey any license under any intellectual property rights or any other rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express permission of ABLIC Inc. 14. For more details on the information described herein or any other questions, please contact ABLIC Inc.'s sales representative. 15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into the English language and the Chinese language, shall be controlling. 2.4-2019.07 www.ablic.com
S-812C21AMC-C2BT2G
物料型号:S-812C系列

器件简介: - S-812C系列是一款使用CMOS技术开发的高耐压电压调节器IC。 - 它适用于需要高耐压的应用,因为其最大工作电压高达16V。 - 同时,由于其低电流消耗,也适用于便携式设备。

引脚分配: - SNT-6A(H)、SOT-23-5、SOT-89-3、SOT-89-5、TO-92和WLP-4R等多种封装类型。 - 引脚包括输入电压(VIN)、输出电压(VOUT)、地(VSS)和ON/OFF控制。

参数特性: - 输出电压:2.0V至6.0V,以0.1V步进可调。 - 输入电压:最大16V。 - 输出电压精度:±2.0%。 - 典型压降电压:120mV(5.0V输出产品,IOUT=10mA)。 - 工作电流:典型值1.0μA,最大值1.8μA(3.0V输出产品)。 - 输出电流:可输出高达75mA(5.0V输出产品,VIN=7V)。

功能详解: - 内置的ON/OFF电路允许选择是否启用电源关闭功能。 - 内置短路保护电路,可限制短路电流至约40mA。

应用信息: - 家用电器的恒压电源。 - 电池供电设备的恒压电源。 - 通信设备的恒压电源。

封装信息: - 提供了包括SNT-6A(H)、SOT-23-5、SOT-89-3、SOT-89-5、TO-92和WLP-4R等多种封装选项。
S-812C21AMC-C2BT2G 价格&库存

很抱歉,暂时无法提供与“S-812C21AMC-C2BT2G”相匹配的价格&库存,您可以联系我们找货

免费人工找货