VDSM ITAVM ITRMS ITSM VT0 rT
= = = = = =
4200 V 4275 A 6715 A 60000 A 0.95 V 0.130 mΩ
Doc. No. 5SYA1051-01 Sep.00
Phase Control Thyristor
5STP 38Q4200
• Patented free-floating silicon technology • Low on-state and switching losses • Designed for traction, energy and industrial applications • Optimum power handling capability • Interdigitated amplifying gate.
Blocking
Part Number VDRM VRSM1 IDRM IRRM dV/dtcrit VRRM 5STP 38Q4200 4200 V 4600 V 5STP 38Q4000 4000 V 4400 V ≤ 400 mA ≤ 400 mA 2000 V/µs 5STP 38Q3600 3600 V 4000 V Conditions f = 50 Hz, tp = 10ms tp = 5 ms, single pulse VDRM VRRM @ Exp. to 0.67xVDRM Tj = 125°C
Mechanical data
FM Mounting force nom. min. max. a Acceleration Device unclamped Device clamped m DS Da Weight Surface creepage distance Air strike distance 50 m/s 2.1 kg 36 mm 15 mm
2
90 kN 81 kN 108 kN
100 m/s2
ABB Semiconductors AG reserves the right to change specifications without notice.
5STP 38Q4200
On-state
ITAVM ITRMS ITSM I2t Max. average on-state current Max. RMS on-state current Max. peak non-repetitive surge current Limiting load integral 4275 A 6715 A 60000 A 65000 A 18000 kA2s 17500 kA2s VT VT0 rT IH On-state voltage Threshold voltage Slope resistance Holding current 1.35 V 0.95 V 0.130 mΩ 40-100 mA 20-75 mA IL Latching current 100-500 mA 150-350 mA tp tp tp tp IT IT Tj Tj Tj Tj = = = = = = 10 ms 8.3 ms 10 ms 8.3 ms 3000 A 2500 - 7500 A Tj = 125°C Tj = 125°C Half sine wave, TC = 70°C
After surge: VD = VR = 0V
= 25°C = 125°C = 25°C = 125°C
Switching
di/dtcrit Critical rate of rise of on-state current ≤ ≤ 250 A/µs 500 A/µs Cont. 60 sec. VD = 0.4⋅VDRM VD ≤ 0.67⋅VDRM ITRM = IFG td tq Delay time Turn-off time 3.0 µs 600 µs IFG = = Tj = 125°C 5000 A f = 50 Hz 2.0 A tr = 0.5 µs 2.0 A tr = 0.5 µs 5000 A Tj = 125°C 200 V -5 A/µs
VD ≤ 0.67⋅VDRM ITRM = dvD/dt = 20V/µs VR >
Qrr
Recovery charge
min max
5000 µAs 10000 µAs
diT/dt =
Triggering
VGT IGT VGD IGD VFGM IFGM VRGM PG Gate trigger voltage Gate trigger current Gate non-trigger voltage Gate non-trigger current Peak forward gate voltage Peak forward gate current Peak reverse gate voltage Maximum gate power loss 2.6 V Tj = 25°C = 0.4⋅VDRM = 0.4⋅VDRM 400 mA Tj = 25°C 0.3 V 10 mA 12 V 10 A 10 V 3W VD VD
ABB Semiconductors AG reserves the right to change specifications without notice. 2 of 6
Doc. No. 5SYA1051-01 Sep.00
5STP 38Q4200
Thermal
Tj max Tj stg RthJC Max. junction temperature Storage temperature range Thermal resistance junction to case 125°C -40...150°C 10 K/kW 10 K/kW 5 K/kW RthCH Thermal resistance case to heat sink
Analytical function for transient thermal impedance:
Anode side cooled Cathode side cooled Double side cooled Single side cooled Double side cooled
2 K/kW 1 K/kW
ZthJC(t) = ∑ Ri(1 - e -t/τ i )
i =1
i Ri(K/kW) τi(s) 1 3.27 0.5237 2 0.736 0.1082 3 0.661 0.02 4 0.312 0.0075
Fig. 1 Transient thermal impedance junction to case. On-state characteristic model:
VT = A + B ⋅ iT + C ⋅ ln(iT + 1) + D ⋅ IT Valid for iT = 500 – 14000 A
n
A 0.341725
B 0.00009
C 0.07628
D 0.00231
Fig 2. On-state characteristics.
Fig. 3 On state characteristics.
ABB Semiconductors AG reserves the right to change specifications without notice. 3 of 6
Doc. No. 5SYA1051-01 Sep.00
5STP 38Q4200
Tcase (°C)
130 Double-sided cooling 125 120 115 110 105 100 95 90 85 80 75 70 0 1000 2000 3000 4000 5000 6000 7000 DC 18 0° r ectangular 18 0° s ine 12 0° r ectangular
IT AV (A)
Fig. 4
On-state power dissipation vs. mean onstate current. Turn-on losses excluded.
Fig. 5
Max. permissible case temperature vs. mean on-state current.
Fig. 6
Surge on-state current vs. pulse length. Half-sine wave.
Fig. 7
Surge on-state current vs. number of pulses. Half-sine wave, 10 ms, 50Hz.
ABB Semiconductors AG reserves the right to change specifications without notice. 4 of 6
Doc. No. 5SYA1051-01 Sep.00
5S TP 38Q4200
5STP 38Q4200
Fig. 8
Gate trigger characteristics.
Fig. 9
Max. peak gate power loss.
Fig. 10
Recovery charge vs. decay rate of on-state current.
Fig. 11
Peak reverse recovery current vs. decay rate of on-state current.
Turn –off time, typical parameter relationship.
Fig. 12
tq/tq1 = f1(Tj)
Fig. 13
tq/tq1 = f2(-di/dt)
Fig. 14
tq/tq1 = f3(dv/dt)
tq = tq1 • tq/tq1 f1(Tj) • tq/tq1 f2(-di/dt) • tq/tq1 f3(dv/dt)
tq1 :at normalized values (see page 2) tq : at varying conditions
ABB Semiconductors AG reserves the right to change specifications without notice. 5 of 6
Doc. No. 5SYA1051-01 Sep.00
5STP 38Q4200
Turn-on and Turn-off losses
Fig. 15
W on = f(IT, tP), Tj = 125°C. Half sinusoidal waves.
Fig. 16
W on = f(IT, di/dt), Tj = 125°C. Rectangular waves.
Fig. 17
W off = f(V0,IT), Tj = 125°C. Half sinusoidal waves. tP = 10 ms.
Fig. 18
W off = f(V0,di/dt), Tj = 125°C. Rectangular waves.
ABB Semiconductors reserves the right to change specifications without notice.
ABB Semiconductors AG Fabrikstrasse 3 CH-5600 Lenzburg, Switzerland Telephone +41 (0)62 888 6419 Fax +41 (0)62 888 6306 Email Info@ch.abb.com Internet www.abbsem.com
Doc. No. 5SYA1051-01 Sep.00
很抱歉,暂时无法提供与“5STP38Q4000”相匹配的价格&库存,您可以联系我们找货
免费人工找货