0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
23K256T-I/SN

23K256T-I/SN

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    SOIC8_150MIL

  • 描述:

    具有 SPI 总线的 256K 低功耗串行 SRAM

  • 数据手册
  • 价格&库存
23K256T-I/SN 数据手册
23A256/23K256 256K SPI Bus Low-Power Serial SRAM Device Selection Table Part Number VCC Range Page Size Temp. Ranges Packages 23K256 2.7-3.6V 32 Byte I, E P, SN, ST 23A256 1.5-1.95V 32 Byte I P, SN, ST Features: Description: • Max. Clock 20 MHz • Low-Power CMOS Technology: - Read Current: 3 mA at 1 MHz - Standby Current: 4 A Max. at +85°C • 32,768 x 8-bit Organization • 32-Byte Page • HOLD pin • Flexible Operating modes: - Byte read and write - Page mode (32 Byte Page) - Sequential mode • Sequential Read/Write • High Reliability • Temperature Ranges Supported: - Industrial (I): -40C to +85C -40C to +125C - Automotive (E): The Microchip Technology Inc. 23X256 are 256 Kbit Serial SRAM devices. The memory is accessed via a simple Serial Peripheral Interface (SPI) compatible serial bus. The bus signals required are a clock input (SCK) plus separate data in (SI) and data out (SO) lines. Access to the device is controlled through a Chip Select (CS) input. Communication to the device can be paused via the hold pin (HOLD). While the device is paused, transitions on its inputs will be ignored, with the exception of Chip Select, allowing the host to service higher priority interrupts. The 23X256 is available in standard packages including 8-lead PDIP and SOIC, and advanced packaging including 8-lead TSSOP. Package Types (not to scale) • Pb-Free and RoHS Compliant, Halogen Free Pin Function Table Name Function CS Chip Select Input SO Serial Data Output VSS Ground SI Serial Data Input SCK Serial Clock Input HOLD Hold Input VCC Supply Voltage  2008-2011 Microchip Technology Inc. PDIP/SOIC/TSSOP (P, SN, ST) CS 1 8 VCC SO 2 7 HOLD NC 3 6 SCK VSS 4 5 SI DS22100F-page 1 23A256/23K256 1.0 ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings (†) VCC .............................................................................................................................................................................4.5V All inputs and outputs w.r.t. VSS ......................................................................................................... -0.3V to VCC +0.3V Storage temperature .................................................................................................................................-65°C to 150°C Ambient temperature under bias ...............................................................................................................-40°C to 125°C ESD protection on all pins ...........................................................................................................................................2kV † NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for an extended period of time may affect device reliability. TABLE 1-1: DC CHARACTERISTICS DC CHARACTERISTICS Param. No. Sym. Characteristic Industrial (I): TA = -40°C to +85°C Automotive (E): TA = -40°C to +125°C Min. Typ(1) Max. Units Test Conditions D001 VCC Supply voltage 1.5 — 1.95 V 23A256 (I-Temp) D001 VCC Supply voltage 2.7 — 3.6 V 23K256 (I,E-Temp) D002 VIH High-level input voltage .7 VCC — VCC +0.3 V D003 VIL Low-level input voltage -0.3 — 0.2xVCC 0.15xVCC V V 23K256 (E-Temp) D004 VOL Low-level output voltage — — 0.2 V IOL = 1 mA D005 VOH High-level output voltage VCC -0.5 — — V IOH = -400 A D006 ILI Input leakage current — — ±0.5 A CS = VCC, VIN = VSS OR VCC D007 ILO Output leakage current — — ±0.5 A CS = VCC, VOUT = VSS OR VCC D008 ICC Read — — — — — — 3 6 10 mA mA mA FCLK = 1 MHz; SO = O FCLK = 10 MHz; SO = O FCLK = 20 MHz; SO = O — 0.2 1 A — 1 4 A — 5 10 A CS = VCC = 1.8V, Inputs tied to VCC or VSS CS = VCC = 3.6V, Inputs tied to VCC or VSS CS = VCC = 3.6V, Inputs tied to VCC or VSS @ 125°C 7 pF — V Operating current D009 ICCS Standby current D010 CINT Input capacitance D011 VDR RAM data retention voltage (2) Note 1: 2: — 1.2 VCC = 0V, f = 1 MHz, Ta = 25°C (Note 1) This parameter is periodically sampled and not 100% tested. Typical measurements taken at room temperature (25°C). This is the limit to which VDD can be lowered without losing RAM data. This parameter is periodically sampled and not 100% tested. DS22100F-page 2  2008-2011 Microchip Technology Inc. 23A256/23K256 TABLE 1-2: AC CHARACTERISTICS AC CHARACTERISTICS Param. Sym. No. Characteristic Industrial (I): TA = -40°C to +85°C Automotive (E): TA = -40°C to +125°C Min. Max. Units Test Conditions 1 FCLK Clock frequency — — — — 10 16 16 20 MHz MHz MHz MHz VCC 1.5V (I-Temp) VCC 1.8V (I-Temp) VCC 3.0V (E-Temp) VCC 3.0V (I-Temp) 2 TCSS CS setup time 50 32 32 25 — — — — ns ns ns ns VCC 1.5V (I-Temp) VCC 1.8V (I-Temp) VCC 3.0V (E-Temp) VCC 3.0V (I-Temp) 3 TCSH CS hold time 50 50 50 50 — — — — ns ns ns ns VCC 1.5V (I-Temp) VCC 1.8V (I-Temp) VCC 3.0V (E-Temp) VCC 3.0V (I-Temp) 4 TCSD CS disable time 50 32 32 25 — — — — ns ns ns ns VCC 1.5V (I-Temp) VCC 1.8V (I-Temp) VCC 3.0V (E-Temp) VCC 3.0V (I-Temp) 5 Tsu Data setup time 10 10 10 10 — — — — ns ns ns ns VCC 1.5V (I-Temp) VCC 1.8V (I-Temp) VCC 3.0V (E-Temp) VCC 3.0V (I-Temp) 6 THD Data hold time 10 10 10 10 — — — — ns ns ns ns VCC 1.5V (I-Temp) VCC 1.8V (I-Temp) VCC 3.0V (E-Temp) VCC 3.0V (I-Temp) 7 TR CLK rise time — 2 us Note 1 8 TF CLK fall time — 2 us Note 1 9 THI Clock high time 50 32 32 25 — — — — ns ns ns ns VCC 1.5V (I-Temp) VCC 1.8V (I-Temp) VCC 3.0V (E-Temp) VCC 3.0V (I-Temp) 10 TLO Clock low time 50 32 32 25 — — — — ns ns ns ns VCC 1.5V (I-Temp) VCC 1.8V (I-Temp) VCC 3.0V (E-Temp) VCC 3.0V (I-Temp) 11 TCLD Clock delay time 50 32 32 25 — — — — ns ns ns ns VCC 1.5V (I-Temp) VCC 1.8V (I-Temp) VCC 3.0V (E-Temp) VCC 3.0V (I-Temp) 12 TV Output valid from clock low — — — — 50 32 32 25 ns ns ns ns VCC 1.5V (I-Temp) VCC 1.8V (I-Temp) VCC 3.0V (E-Temp) VCC 3.0V (I-Temp) 13 THO Output hold time 0 — ns Note 1 Note 1: This parameter is periodically sampled and not 100% tested.  2008-2011 Microchip Technology Inc. DS22100F-page 3 23A256/23K256 TABLE 1-2: AC CHARACTERISTICS (CONTINUED) Industrial (I): TA = -40°C to +85°C Automotive (E): TA = -40°C to +125°C AC CHARACTERISTICS Param. Sym. No. Characteristic Min. Max. Units — — — — 20 20 20 20 ns ns ns ns Test Conditions VCC 1.5V (I-Temp) VCC 1.8V (I-Temp) VCC 3.0V (E-Temp) VCC 3.0V (I-Temp) 14 TDIS Output disable time 15 THS HOLD setup time 10 — ns — 16 THH HOLD hold time 10 — ns — 17 THZ HOLD low to output High-Z 10 — ns — 18 THV HOLD high to output valid — 50 ns — Note 1: This parameter is periodically sampled and not 100% tested. TABLE 1-3: AC TEST CONDITIONS AC Waveform: Input pulse level Input rise/fall time Operating temperature CL = 100 pF 0.1 VCC to 0.9 VCC 5 ns -40°C to +125°C — Timing Measurement Reference Level: Input 0.5 VCC Output 0.5 VCC DS22100F-page 4  2008-2011 Microchip Technology Inc. 23A256/23K256 FIGURE 1-1: HOLD TIMING CS 16 15 16 15 SCK 17 SO n+2 SI n+2 n+1 n 17 High-Impedance n 5 Don’t Care n+1 n-1 n n n-1 HOLD FIGURE 1-2: SERIAL INPUT TIMING 4 CS 2 7 8 3 11 SCK 5 SI 6 MSB in LSB in High-Impedance SO FIGURE 1-3: SERIAL OUTPUT TIMING CS 9 3 10 SCK 12 SO 13 MSB out SI  2008-2011 Microchip Technology Inc. 14 LSB out Don’t Care DS22100F-page 5 23A256/23K256 2.0 FUNCTIONAL DESCRIPTION 2.1 Principles of Operation The 23X256 is a 32,768-byte Serial SRAM designed to interface directly with the Serial Peripheral Interface (SPI) port of many of today’s popular microcontroller families, including Microchip’s PIC® microcontrollers. It may also interface with microcontrollers that do not have a built-in SPI port by using discrete I/O lines programmed properly in firmware to match the SPI protocol. The 23X256 contains an 8-bit instruction register. The device is accessed via the SI pin, with data being clocked in on the rising edge of SCK. The CS pin must be low and the HOLD pin must be high for the entire operation. Table 2-1 contains a list of the possible instruction bytes and format for device operation. All instructions, addresses and data are transferred MSB first, LSB last. Data (SI) is sampled on the first rising edge of SCK after CS goes low. If the clock line is shared with other peripheral devices on the SPI bus, the user can assert the HOLD input and place the 23X256 in ‘HOLD’ mode. After releasing the HOLD pin, operation will resume from the point when the HOLD was asserted. 2.2 Modes of Operation The 23A256/23K256 has three modes of operation that are selected by setting bits 7 and 6 in the STATUS register. The modes of operation are Byte, Page and Burst. Byte Operation – is selected when bits 7 and 6 in the STATUS register are set to 00. In this mode, the read/ write operations are limited to only one byte. The Command followed by the 16-bit address is clocked into the device and the data to/from the device is transferred on the next 8 clocks (Figure 2-1, Figure 2-2). Page Operation – is selected when bits 7 and 6 in the STATUS register are set to 10. The 23A256/23K256 has 1024 pages of 32 Bytes. In this mode, the read and write operations are limited to within the addressed page (the address is automatically incremented internally). If the data being read or written reaches the page boundary, then the internal address counter will increment to the start of the page (Figure 2-3, Figure 2-4). 2.3 Read Sequence The device is selected by pulling CS low. The 8-bit READ instruction is transmitted to the 23X256 followed by the 16-bit address, with the first MSB of the address being a “don’t care” bit. After the correct READ instruction and address are sent, the data stored in the memory at the selected address is shifted out on the SO pin. If operating in Page mode, after the first byte of data is shifted out, the next memory location on the page can be read out by continuing to provide clock pulses. This allows for 32 consecutive address reads. After the 32nd address read the internal address counter wraps back to the byte 0 address in that page. If operating in Sequential mode, the data stored in the memory at the next address can be read sequentially by continuing to provide clock pulses. The internal Address Pointer is automatically incremented to the next higher address after each byte of data is shifted out. When the highest address is reached (7FFFh), the address counter rolls over to address 0000h, allowing the read cycle to be continued indefinitely. The read operation is terminated by raising the CS pin (Figure 2-1). 2.4 Write Sequence Prior to any attempt to write data to the 23X256, the device must be selected by bringing CS low. Once the device is selected, the Write command can be started by issuing a WRITE instruction, followed by the 16-bit address, with the first MSB of the address being a “don’t care” bit, and then the data to be written. A write is terminated by the CS being brought high. If operating in Page mode, after the initial data byte is shifted in, additional bytes can be shifted into the device. The Address Pointer is automatically incremented. This operation can continue for the entire page (32 Bytes) before data will start to be overwritten. If operating in Sequential mode, after the initial data byte is shifted in, additional bytes can be clocked into the device. The internal Address Pointer is automatically incremented. When the Address Pointer reaches the highest address (7FFFh), the address counter rolls over to (0000h). This allows the operation to continue indefinitely, however, previous data will be overwritten. Sequential Operation – is selected when bits 7 and 6 in the STATUS register are set to 01. Sequential operation allows the entire array to be written to and read from. The internal address counter is automatically incremented and page boundaries are ignored. When the internal address counter reaches the end of the array, the address counter will roll over to 0x0000 (Figure 2-5, Figure 2-6). DS22100F-page 6  2008-2011 Microchip Technology Inc. 23A256/23K256 TABLE 2-1: INSTRUCTION SET Instruction Name Instruction Format READ 0000 0011 Read data from memory array beginning at selected address WRITE 0000 0010 Write data to memory array beginning at selected address RDSR 0000 0101 Read STATUS register WRSR 0000 0001 Write STATUS register FIGURE 2-1: Description BYTE READ SEQUENCE CS 0 1 2 3 4 5 6 7 8 9 10 11 21 22 23 24 25 26 27 28 29 30 31 SCK Instruction 0 SI 0 0 0 0 16-bit Address 0 1 1 15 14 13 12 2 1 0 Data Out High-Impedance 7 SO FIGURE 2-2: 6 5 4 3 2 1 0 BYTE WRITE SEQUENCE CS 0 1 2 3 4 5 6 7 8 9 10 11 21 22 23 24 25 26 27 28 29 30 31 SCK Instruction SI 0 0 0 0 0 16-bit Address 0 1 0 15 14 13 12 Data Byte 2 1 0 7 6 5 4 3 2 1 0 High-Impedance SO  2008-2011 Microchip Technology Inc. DS22100F-page 7 23A256/23K256 FIGURE 2-3: PAGE READ SEQUENCE CS 0 1 2 0 0 0 3 4 5 6 7 8 9 10 11 21 22 23 24 25 26 27 28 29 30 31 SCK Instruction SI 0 0 16-bit Address 0 1 2 1 15 14 13 12 1 0 Page X, Word Y Page X, Word Y High Impedance SO 7 6 5 4 3 2 1 0 CS 32 33 34 35 36 37 38 39 SCK SI Page X, Word Y+1 7 SO 6 FIGURE 2-4: 5 4 3 2 1 Page X, Word 31 0 7 6 5 4 3 2 Page X, Word 0 1 0 7 6 5 4 3 2 1 0 PAGE WRITE SEQUENCE CS 0 1 2 0 0 0 3 4 5 6 7 8 9 10 11 21 22 23 24 25 26 27 28 29 30 31 SCK Instruction SI 0 0 Page X, Word Y 16-bit Address 0 1 2 0 15 14 13 12 1 0 7 6 5 4 3 2 1 0 Page X, Word Y CS 32 33 34 35 36 37 38 39 SCK Page X, Word Y+1 SI 7 DS22100F-page 8 6 5 4 3 2 1 Page X, Word 31 0 7 6 5 4 3 2 Page X, Word 0 1 0 7 6 5 4 3 2 1 0  2008-2011 Microchip Technology Inc. 23A256/23K256 FIGURE 2-5: SEQUENTIAL READ SEQUENCE CS 0 1 2 0 0 0 3 4 5 6 7 8 9 10 11 21 22 23 24 25 26 27 28 29 30 31 SCK Instruction SI 0 0 16-bit Address 0 1 1 15 14 13 12 2 1 0 Page X, Word Y 7 SO 6 5 4 3 2 1 0 CS SCK SI Page X, Word 31 SO 7 6 5 4 3 2 Page X+1, Word 0 1 0 7 6 5 4 3 2 1 Page X+1, Word 1 0 7 6 5 4 3 2 1 0 CS SCK SI Page X+1, Word 31 SO 7 6 5 4 3 2  2008-2011 Microchip Technology Inc. Page X+n, Word 1 1 0 7 6 5 4 3 2 Page X+n, Word 31 1 0 7 6 5 4 3 2 1 0 DS22100F-page 9 23A256/23K256 FIGURE 2-6: SEQUENTIAL WRITE SEQUENCE CS 0 1 2 3 4 5 6 7 8 9 10 11 21 22 23 24 25 26 27 28 29 30 31 SCK Instruction SI 0 0 0 0 0 16-bit Address 0 1 Data Byte 1 2 0 15 14 13 12 1 0 7 6 5 4 3 2 1 0 CS 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 SCK Data Byte 2 SI 7 DS22100F-page 10 6 5 4 3 2 Data Byte 3 1 0 7 6 5 4 3 2 Data Byte n 1 0 7 6 5 4 3 2 1 0  2008-2011 Microchip Technology Inc. 23A256/23K256 2.5 Read Status Register Instruction (RDSR) The mode bits indicate the operating mode of the SRAM. The possible modes of operation are: 0 0 = Byte mode (default operation) The Read Status Register instruction (RDSR) provides access to the STATUS register. The STATUS register may be read at any time. The STATUS register is formatted as follows: TABLE 2-2: 1 0 = Page mode 0 1 = Sequential mode 1 1 = Reserved Write and read commands are shown in Figure 2-7 and Figure 2-8. STATUS REGISTER 7 6 5 4 3 2 1 0 W/R W/R – – – – – W/R 0 0 0 0 0 HOLD MODE MODE The HOLD bit enables the Hold pin functionality. It must be set to a ‘0’ before HOLD pin is brought low for HOLD function to work properly. Setting HOLD to ‘1’ disables feature. W/R = writable/readable. Bits 1 through 5 are reserved and should always be set to ‘0’. See Figure 2-7 for the RDSR timing sequence. FIGURE 2-7: READ STATUS REGISTER TIMING SEQUENCE (RDSR) CS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 0 SCK Instruction SI 0 0 0 0 0 High-Impedance SO  2008-2011 Microchip Technology Inc. 1 0 1 Data from STATUS Register 7 6 5 4 3 2 DS22100F-page 11 23A256/23K256 2.6 Write Status Register Instruction (WRSR) The Write Status Register instruction (WRSR) allows the user to write to the bits in the STATUS register as shown in Table 2-2. This allows for setting of the Device operating mode. Several of the bits in the STATUS register must be cleared to ‘0’. See Figure 2-8 for the WRSR timing sequence. FIGURE 2-8: WRITE STATUS REGISTER TIMING SEQUENCE (WRSR) CS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 0 SCK Instruction SI 0 0 0 0 Data to STATUS Register 0 0 0 1 7 6 5 4 3 2 High-Impedance SO 2.7 Power-On State The 23X256 powers on in the following state: • The device is in low-power Standby mode (CS = 1) • A high-to-low-level transition on CS is required to enter active state DS22100F-page 12  2008-2011 Microchip Technology Inc. 23A256/23K256 3.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table 3-1. TABLE 3-1: Name PIN FUNCTION TABLE PDIP/SOIC TSSOP Function CS 1 Chip Select Input SO 2 Serial Data Output VSS 4 Ground SI 5 Serial Data Input SCK 6 Serial Clock Input HOLD 7 Hold Input VCC 8 Supply Voltage 3.1 Chip Select (CS) A low level on this pin selects the device. A high level deselects the device and forces it into Standby mode. When the device is deselected, SO goes to the highimpedance state, allowing multiple parts to share the same SPI bus. After power-up, a low level on CS is required, prior to any sequence being initiated. 3.2 3.5 Hold (HOLD) The HOLD pin is used to suspend transmission to the 23X256 while in the middle of a serial sequence without having to retransmit the entire sequence again. It must be held high any time this function is not being used. Once the device is selected and a serial sequence is underway, the HOLD pin may be pulled low to pause further serial communication without resetting the serial sequence. The HOLD pin must be brought low while SCK is low, otherwise the HOLD function will not be invoked until the next SCK high-to-low transition. The 23X256 must remain selected during this sequence. The SI, SCK and SO pins are in a highimpedance state during the time the device is paused and transitions on these pins will be ignored. To resume serial communication, HOLD must be brought high while the SCK pin is low, otherwise serial communication will not resume. Lowering the HOLD line at any time will tri-state the SO line. Hold functionality is disabled by the STATUS register bit. Serial Output (SO) The SO pin is used to transfer data out of the 23X256. During a read cycle, data is shifted out on this pin after the falling edge of the serial clock. 3.3 Serial Input (SI) The SI pin is used to transfer data into the device. It receives instructions, addresses and data. Data is latched on the rising edge of the serial clock. 3.4 Serial Clock (SCK) The SCK is used to synchronize the communication between a master and the 23X256. Instructions, addresses or data present on the SI pin are latched on the rising edge of the clock input, while data on the SO pin is updated after the falling edge of the clock input.  2008-2011 Microchip Technology Inc. DS22100F-page 13 23A256/23K256 4.0 PACKAGING INFORMATION 4.1 Package Marking Information 8-Lead PDIP Example: XXXXXXXX T/XXXNNN YYWW 23K256 I/P e3 1L7 0528 8-Lead SOIC (3.90 mm) Example: 23K256I SN e3 0528 1L7 XXXXXXXT XXXXYYWW NNN 8-Lead TSSOP XXXX TYWW NNN Legend: XX...X T Y YY WW NNN e3 Example: K256 I837 1L7 Part number or part number code Temperature (I, E) Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week ‘01’) Alphanumeric traceability code (2 characters for small packages) Pb-free JEDEC designator for Matte Tin (Sn) Note: For very small packages with no room for the Pb-free JEDEC designator e3 , the marking will only appear on the outer carton or reel label. Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. DS22100F-page 14  2008-2011 Microchip Technology Inc. 23A256/23K256            3 & ' !&" & 4# *!( !!&    4 %&  &#& && 255***'    '5 4 N NOTE 1 E1 1 3 2 D E A2 A L A1 c e eB b1 b 6&! '! 9'&! 7"')  %! 7,8. 7 7 7: ; < &  & &  = =   ##4 4!!   -  1!& &   = =  "# &  "# >#& .  - -  ##4>#& .   #& 9 * 9#>#& :   * + 1, -      !"#$%&" '  ()"&'"!&) &#*& &  & #   +%&,  & !& - '! !#.#  &"#' #%!   & "! ! #%!   & "! !!  &$#/  !#  '! #&    .0 1,21!'!   &$& "! **& "&&  !         * ,#& . - ?1,   ##49&   - - 3 &9& 9  ?  3 & & 9  .3 3 &  R = #& )  = -      !"#$%&" '  ()"&'"!&) &#*& &  & #   '! !#.#  &"#' #%!   & "! ! #%!   & "! !!  &$#''  !# - '! #&    .0 1,2 1!'!   &$& "! **& "&&  ! .32 % '! ("!"*& "&&  (% % '&  " !!          * ,
23K256T-I/SN 价格&库存

很抱歉,暂时无法提供与“23K256T-I/SN”相匹配的价格&库存,您可以联系我们找货

免费人工找货
23K256T-I/SN
    •  国内价格
    • 1+8.83754
    • 10+7.75548
    • 30+7.10997
    • 100+5.83287
    • 500+5.53101
    • 1000+5.39633

    库存:0

    23K256T-I/SN
    •  国内价格
    • 1+5.58785

    库存:0