24AA02UID/24AA025UID
2K I2C™ Serial EEPROMs with Unique 32-bit Serial Number
Device Selection Table
Part Number
24AA02UID
24AA025UID
Note 1:
VCC
Range
Max. Clock
Frequency
Temp.
Ranges
Cascadable
Page Size
Unique ID
Length
1.7-5.5V
400 kHz(1)
I
No
8-Byte
32-Bit
1.7-5.5V
(1)
I
Yes
16-Byte
32-Bit
400 kHz
100 kHz for VCC 4,000V
• More than 1 Million Erase/Write Cycles
• Data Retention >200 Years
• Factory Programming Available
• Available Packages:
- 8-lead PDIP, 8-lead SOIC, and 5-lead
SOT-23 (24AA02UID)
- 8-lead PDIP, 8-lead SOIC, and 6-lead
SOT-23 (24AA025UID)
• RoHS Compliant
• Temperature Ranges:
- Industrial (I): -40°C to +85°C
The Microchip Technology Inc. 24AA02UID/
24AA025UID (24AA02XUID*) is a 2 Kbit Electrically
Erasable PROM with a preprogrammed, 32-bit
unique ID. The device is organized as two blocks of
128 x 8-bit memory with a 2-wire serial interface.
Low-voltage design permits operation down to 1.7V,
with maximum standby and active currents of only
1 A and 1 mA, respectively. The 24AA02XUID also
has a page write capability for up to eight bytes of
data (16 bytes on the 24AA025UID). The
24AA02XUID is available in the standard 8-pin PDIP,
8-pin SOIC, 5-lead SOT-23, and 6-lead SOT-23
packages.
Package Types (24AA02UID)
SOT-23
SCL
1
Vss
2
SDA
3
PDIP/SOIC
NC
5
4
Vcc
NC
1
8
VCC
NC
2
7
NC
NC
3
6
SCL
VSS
4
5
SDA
Package Types (24AA025UID)
SOT-23
SCL
1
6
PDIP/SOIC
VCC
VSS
2
5
A0
SDA
3
4
A1
A0
1
8
VCC
A1
2
7
NC
A2
3
6
SCL
VSS
4
5
SDA
*24AA02XUID is used in this document as a generic
part number for the 24AA02UID/24AA025UID devices.
2013 Microchip Technology Inc.
DS20005202A-page 1
24AA02UID/24AA025UID
Block Diagram
A0(1) A1(1) A2(1)
I/O
Control
Logic
HV Generator
Memory
Control
Logic
XDEC
EEPROM
Array
SDA SCL
VCC
VSS
Write-Protect
Circuitry
YDEC
Sense Amp.
R/W Control
Note 1: Pins A0, A1 and A2 are not available on
the 24AA02UID.
DS20005202A-page 2
2013 Microchip Technology Inc.
24AA02UID/24AA025UID
1.0
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings (†)
VCC.............................................................................................................................................................................6.5V
All inputs and outputs w.r.t. VSS ..........................................................................................................-0.3V to VCC +1.0V
Storage temperature ...............................................................................................................................-65°C to +150°C
Ambient temperature with power applied..................................................................................................-40°C to +85°C
ESD protection on all pins 4 kV
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
TABLE 1-1:
DC CHARACTERISTICS
DC CHARACTERISTICS
Param.
No.
Sym.
Characteristic
Industrial (I):
TA = -40°C to +85°C, VCC = +1.7V to +5.5V
Min.
Typ.
Max.
Units
Conditions
—
SCL, SDA, A0, A1, and
A2 pins
—
—
—
—
—
D1
VIH
High-level Input Voltage
0.7 VCC
—
—
V
—
D2
VIL
Low-level Input Voltage
D3
VHYS
Hysteresis of Schmitt
Trigger inputs
D4
VOL
D5
ILI
D6
—
—
0.3 VCC
V
—
0.05 VCC
—
—
V
(Note)
Low-level Output Voltage
—
—
0.40
V
IOL = 3.0 mA, VCC = 2.5V
Input Leakage Current
—
—
±1
A
VIN = VSS or VCC
ILO
Output Leakage Current
—
—
±1
A
VOUT = VSS or VCC
D7
CIN,
COUT
Pin Capacitance
(all inputs/outputs)
—
—
10
pF
VCC = 5.0V (Note)
TA = 25°C, FCLK = 1 MHz
D8
ICC write Operating Current
—
0.1
3
mA
VCC = 5.5V, SCL = 400 kHz
D9
ICC read
—
0.05
1
mA
—
D10
ICCS
—
0.01
1
Industrial
SDA = SCL = VCC
A0, A1, A2 = VSS
Note:
Standby Current
This parameter is periodically sampled and not 100% tested.
2013 Microchip Technology Inc.
DS20005202A-page 3
24AA02UID/24AA025UID
TABLE 1-2:
AC CHARACTERISTICS
AC CHARACTERISTICS
Param.
No.
Sym.
Characteristic
TA = -40°C to +85°C, VCC = +1.7V to +5.5V
Industrial (I):
Min.
Typ.
Max.
Units
Conditions
1
FCLK
Clock frequency
—
—
—
—
400
100
kHz
2.5V VCC 5.5V
1.7V VCC 2.5V
2
THIGH
Clock high time
600
4000
—
—
—
—
ns
2.5V VCC 5.5V
1.7V VCC 2.5V
3
TLOW
Clock low time
1300
4700
—
—
—
—
ns
2.5V VCC 5.5V
1.7V VCC 2.5V
4
TR
SDA and SCL rise time
(Note 1)
—
—
—
—
300
1000
ns
2.5V VCC 5.5V (Note 1)
1.7V VCC 2.5V (Note 1)
5
TF
SDA and SCL fall time
—
—
—
300
ns
(Note 1)
6
THD:STA
Start condition hold time
600
4000
—
—
—
—
ns
2.5V VCC 5.5V
1.7V VCC 2.5V
7
TSU:STA
Start condition setup
time
600
4700
—
—
—
—
ns
2.5V VCC 5.5V
1.7V VCC 2.5V
8
THD:DAT
Data input hold time
0
—
—
—
ns
(Note 2)
9
TSU:DAT
Data input setup time
100
250
—
—
—
—
ns
2.5V VCC 5.5V
1.7V VCC 2.5V
10
TSU:STO
Stop condition setup
time
600
4000
—
—
—
—
ns
2.5V VCC 5.5V
1.7V VCC 2.5V
11
TAA
Output valid from clock
(Note 2)
—
—
—
—
900
3500
ns
2.5V VCC 5.5V
1.7V VCC 2.5V
12
TBUF
Bus free time: Time the
bus must be free before
a new transmission can
start
1300
4700
—
—
—
—
ns
2.5V VCC 5.5V
1.7V VCC 2.5V
13
TOF
Output fall time from VIH
minimum to VIL
maximum
—
—
—
—
250
250
ns
2.5V VCC 5.5V
1.7V VCC 2.5V
14
TSP
Input filter spike
suppression
(SDA and SCL pins)
—
—
50
ns
(Notes 1 and 3)
15
TWC
Write cycle time (byte or
page)
—
—
5
ms
—
16
—
Endurance
1M
—
—
Note 1:
2:
3:
4:
cycles 25°C (Note 4)
Not 100% tested. CB = total capacitance of one bus line in pF.
As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region
(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.
The combined TSP and VHYS specifications are due to new Schmitt Trigger inputs which provide improved
noise spike suppression. This eliminates the need for a TI specification for standard operation.
This parameter is not tested but ensured by characterization. For endurance estimates in a specific
application, please consult the Total Endurance™ Model which can be obtained from Microchip’s web site
at www.microchip.com.
DS20005202A-page 4
2013 Microchip Technology Inc.
24AA02UID/24AA025UID
FIGURE 1-1:
BUS TIMING DATA
5
4
2
3
SCL
7
SDA
IN
8
10
9
6
14
12
11
SDA
OUT
FIGURE 1-2:
BUS TIMING START/STOP
D3
SCL
6
7
10
SDA
Start
2013 Microchip Technology Inc.
Stop
DS20005202A-page 5
24AA02UID/24AA025UID
2.0
PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 2-1.
TABLE 2-1:
Name
PDIP
SOIC
5-Pin SOT-23
6-Pin SOT-23
A0
1
1
—
5
Chip Address Input(1)
A1
2
2
—
4
Chip Address Input(1)
A2
3
3
—
—
Chip Address Input(1)
VSS
4
4
2
2
Ground
Description
SDA
5
5
3
3
Serial Address/Data I/O
SCL
6
6
1
1
Serial Clock
NC
7
7
5
—
Not Connected
VCC
8
8
4
6
+1.7V to 5.5V Power Supply
Note 1:
2.1
PIN FUNCTION TABLE
Chip address inputs A0, A1 and A2 are not connected on the 24AA02UID.
Serial Address/Data Input/Output
(SDA)
SDA is a bidirectional pin used to transfer addresses
and data into and out of the device. Since it is an opendrain terminal, the SDA bus requires a pull-up resistor
to VCC (typical 10 k for 100 kHz, 2 k for 400 kHz).
For normal data transfer, SDA is allowed to change
only during SCL low. Changes during SCL high are
reserved for indicating Start and Stop conditions.
2.2
Serial Clock (SCL)
The SCL input is used to synchronize the data transfer
to and from the device.
2.3
A0, A1, A2 Chip Address Inputs
The A0, A1 and A2 pins are not used by the
24AA02UID. They may be left floating or tied to either
VSS or VCC.
For the 24AA025UID, the levels on the A0, A1 and A2
inputs are compared with the corresponding bits in the
slave address. The chip is selected if the compare is
true. For the 6-lead SOT-23 package, pin A2 is not connected and its corresponding bit in the slave address
should always be set to ‘0’.
Up to eight 24AA025UID devices (four for the SOT-23
package) may be connected to the same bus by using
different Chip Select bit combinations. These inputs
must be connected to either VSS or VCC.
DS20005202A-page 6
2013 Microchip Technology Inc.
24AA02UID/24AA025UID
3.0
FUNCTIONAL DESCRIPTION
The 24AA02XUID supports a bidirectional, 2-wire bus
and data transmission protocol. A device that sends
data onto the bus is defined as transmitter, while a
device receiving data is defined as a receiver. The bus
has to be controlled by a master device which generates the Serial Clock (SCL), controls the bus access
and generates the Start and Stop conditions, while the
24AA02XUID works as slave. Both master and slave
can operate as transmitter or receiver, but the master
device determines which mode is activated.
4.0
BUS CHARACTERISTICS
The following bus protocol has been defined:
• Data transfer may be initiated only when the bus
is not busy.
• During data transfer, the data line must remain
stable whenever the clock line is high. Changes in
the data line while the clock line is high will be
interpreted as a Start or Stop condition.
Accordingly, the following bus conditions have been
defined (Figure 4-1).
4.1
Start Data Transfer (B)
A high-to-low transition of the SDA line while the clock
(SCL) is high determines a Start condition. All
commands must be preceded by a Start condition.
4.3
Stop Data Transfer (C)
A low-to-high transition of the SDA line while the clock
(SCL) is high determines a Stop condition. All
operations must be ended with a Stop condition.
FIGURE 4-1:
(A)
Data Valid (D)
The state of the data line represents valid data when,
after a Start condition, the data line is stable for the
duration of the high period of the clock signal.
The data on the line must be changed during the low
period of the clock signal. There is one clock pulse per
bit of data.
Each data transfer is initiated with a Start condition and
terminated with a Stop condition. The number of data
bytes transferred between Start and Stop conditions is
determined by the master device and is, theoretically,
unlimited (although only the last sixteen will be stored
when doing a write operation). When an overwrite does
occur, it will replace data in a first-in first-out (FIFO)
fashion.
4.5
Acknowledge
Each receiving device, when addressed, is obliged to
generate an acknowledge after the reception of each
byte. The master device must generate an extra clock
pulse which is associated with this Acknowledge bit.
Note:
Bus Not Busy (A)
Both data and clock lines remain high.
4.2
4.4
The 24AA02XUID does not generate any
Acknowledge bits
if an internal
programming cycle is in progress.
The device that acknowledges has to pull down the
SDA line during the acknowledge clock pulse in such a
way that the SDA line is stable-low during the high
period of the acknowledge related clock pulse. Of
course, setup and hold times must be taken into
account. During reads, a master must signal an end of
data to the slave by not generating an Acknowledge bit
on the last byte that has been clocked out of the slave.
In this case, the slave (24AA02XUID) will leave the
data line high to enable the master to generate the Stop
condition.
DATA TRANSFER SEQUENCE ON THE SERIAL BUS
(B)
(D)
Start
Condition
Address or
Acknowledge
Valid
(D)
(C)
(A)
SCL
SDA
2013 Microchip Technology Inc.
Data
Allowed
to Change
Stop
Condition
DS20005202A-page 7
24AA02UID/24AA025UID
5.0
DEVICE ADDRESSING
FIGURE 5-1:
A control byte is the first byte received following the
Start condition from the master device. The control byte
consists of a 4-bit control code. For the 24AA02XUID,
this is set as ‘1010’ binary for read and write
operations. For the 24AA02UID the next three bits of
the control byte are “don’t cares”.
For the 24AA025UID, the next three bits of the control
byte are the Chip Select bits (A2, A1, A0). The Chip
Select bits allow the use of up to eight 24AA025UID
devices on the same bus and are used to select which
device is accessed. The Chip Select bits in the control
byte must correspond to the logic levels on the corresponding A2, A1 and A0 pins for the device to respond.
These bits are in effect the three Most Significant bits of
the word address.
For the 6-pin SOT-23 package, the A2 address pin is
not available. During device addressing, the A2 Chip
Select bit should be set to ‘0’.
The last bit of the control byte defines the operation to
be performed. When set to ‘1’, a read operation is
selected. When set to ‘0’, a write operation is selected.
Following the Start condition, the 24AA02XUID monitors the SDA bus, checking the device type identifier
being transmitted and, upon a ‘1010’ code, the slave
device outputs an Acknowledge signal on the SDA line.
Depending on the state of the R/W bit, the
24AA02XUID will select a read or write operation.
Operation
Control
Code
Chip Select
R/W
Read
1010
Chip Address
1
Write
1010
Chip Address
0
FIGURE 5-2:
Read/Write Bit
Chip
Select
Bits
Control Code
S
1
0
1
0
A2* A1* A0* R/W ACK
Slave Address
Acknowledge Bit
Start Bit
Note:
5.1
* Bits A0, A1 and A2 are “don’t cares” for
the 24AA02UID.
Contiguous Addressing Across
Multiple Devices
The Chip Select bits A2, A1 and A0 can be used to
expand the contiguous address space for up to 16K bits
by adding up to eight 24AA025UID devices on the
same bus. In this case, software can use A0 of the control byte as address bit A8, A1 as address bit A9 and
A2 as address bit A10. It is not possible to sequentially
read across device boundaries.
For the SOT-23 package, up to four 24AA025UID
devices can be added for up to 8K bits of address
space. In this case, software can use A0 of the control
byte as address bit A8, and A1 as address bit A9. It is
not possible to sequentially read across device
boundaries.
ADDRESS SEQUENCE BIT ASSIGNMENTS
Control Byte
1
0
1
Control
Code
Note:
CONTROL BYTE
ALLOCATION
0 A2* A1* A0* R/W
Address Low Byte
A
7
•
•
•
•
•
•
A
0
Chip
Select
bits
* Bits A0, A1 and A2 are “don’t cares” for the 24AA02UID.
DS20005202A-page 8
2013 Microchip Technology Inc.
24AA02UID/24AA025UID
6.0
WRITE OPERATION
6.1
Byte Write
constant. If the master should transmit more than eight
words (16 for the 24AA025UID) prior to generating the
Stop condition, the address counter will roll over and the
previously received data will be overwritten. As with the
byte write operation, once the Stop condition is received
an internal write cycle will begin (Figure 6-2).
Following the Start condition from the master, the
device code (4 bits), the chip address (3 bits) and the
R/W bit which is a logic-low, is placed onto the bus by
the master transmitter. This indicates to the addressed
slave receiver that a byte with a word address will
follow once it has generated an Acknowledge bit during
the ninth clock cycle. Therefore, the next byte transmitted by the master is the word address and will be
written into the Address Pointer of the 24AA02XUID.
After receiving another Acknowledge signal from the
24AA02XUID, the master device will transmit the data
word to be written into the addressed memory location.
The 24AA02XUID acknowledges again and the master
generates a Stop condition. This initiates the internal
write cycle and, during this time, the 24AA02XUID will
not generate Acknowledge signals (Figure 6-1).
6.2
Note:
Page Write
The write-control byte, word address and the first data
byte are transmitted to the 24AA02XUID in the same
way as in a byte write. However, instead of generating
a Stop condition, the master transmits up to eight data
bytes to the 24AA02XUID, which are temporarily stored
in the on-chip page buffer and will be written into memory once the master has transmitted a Stop condition.
Upon receipt of each word, the three lower-order
Address Pointer bits (four for the 24AA025UID) are
internally incremented by ‘1’. The higher-order five bits
(four for the 24AA025UID) of the word address remain
FIGURE 6-1:
6.3
Bus Activity
Master
SDA Line
S
The upper half of the array (80h-FFh) is permanently
write-protected. Write operations to this address range
are inhibited. Read operations are not affected.
The remaining half of the array (00h-7Fh) can be
written to and read from normally.
Control
Byte
1
0
1
Word
Address
Data
P
A
C
K
A
C
K
Chip
Select
Bits
Note:
* Bits A0, A1 and A2 are “don’t cares” for the 24AA02UID.
A
C
K
PAGE WRITE
Bus Activity
Master
S
T
A
R
T
SDA Line
S 1 0 1 0 A2 A1 A0 0
Note:
S
T
O
P
0 A2* A1*A0* 0
Bus Activity
Bus Activity
Write Protection
BYTE WRITE
S
T
A
R
T
FIGURE 6-2:
Page write operations are limited to writing bytes within a single physical page
regardless of the number of bytes
actually being written. Physical page
boundaries start at addresses that are
integer multiples of the page buffer size
(or ‘page size’) and end at addresses that
are integer multiples of [page size – 1]. If
a page Write command attempts to write
across a physical page boundary, the
result is that the data wraps around to the
beginning of the current page (overwriting
data previously stored there), instead of
being written to the next page, as might be
expected. It is therefore necessary for the
application software to prevent page write
operations that would attempt to cross a
page boundary.
Control
Byte
Word
Address (n)
Data (n + 1)
Data (n)
S
T
O
P
Data (n + 7)
* * *
P
A
C
K
A
C
K
Chip
Select
Bits
* Bits A0, A1 and A2 are “don’t cares” for the 24AA02UID.
2013 Microchip Technology Inc.
A
C
K
A
C
K
A
C
K
DS20005202A-page 9
24AA02UID/24AA025UID
7.0
ACKNOWLEDGE POLLING
Since the device will not acknowledge during a write
cycle, this can be used to determine when the cycle is
complete (this feature can be used to maximize bus
throughput). Once the Stop condition for a Write
command has been issued from the master, the device
initiates the internally-timed write cycle and ACK polling
can then be initiated immediately. This involves the
master sending a Start condition followed by the control
byte for a Write command (R/W = 0). If the device is still
busy with the write cycle, no ACK will be returned. If the
cycle is complete, the device will return the ACK and
the master can then proceed with the next Read or
Write command. See Figure 7-1 for a flow diagram of
this operation.
FIGURE 7-1:
ACKNOWLEDGE POLLING
FLOW
Send
Write Command
Send Stop
Condition to
Initiate Write Cycle
Send Start
Send Control Byte
with R/W = 0
Did Device
Acknowledge
(ACK = 0)?
No
Yes
Next
Operation
DS20005202A-page 10
2013 Microchip Technology Inc.
24AA02UID/24AA025UID
8.0
READ OPERATION
8.3
Sequential Read
Read operations are initiated in the same way as write
operations, with the exception that the R/W bit of the
slave address is set to ‘1’. There are three basic types
of read operations: current address read, random read
and sequential read.
Sequential reads are initiated in the same way as a
random read, except that once the 24AA02XUID
transmits the first data byte, the master issues an
acknowledge as opposed to a Stop condition in a random read. This directs the 24AA02XUID to transmit the
next sequentially-addressed 8-bit word (Figure 8-3).
8.1
To provide sequential reads, the 24AA02XUID contains
an internal Address Pointer that is incremented by one
upon completion of each operation. This Address
Pointer allows the entire memory contents to be serially
read during one operation.
Current Address Read
The 24AA02XUID contains an address counter that
maintains the address of the last word accessed, internally incremented by ‘1’. Therefore, if the previous
access (either a read or write operation) was to address
n, the next current address read operation would
access data from address n + 1. Upon receipt of the
slave address with R/W bit set to ‘1’, the 24AA02XUID
issues an acknowledge and transmits the 8-bit data
word. The master will not acknowledge the transfer, but
does generate a Stop condition, and the 24AA02XUID
discontinues transmission (Figure 8-1).
8.2
8.4
Noise Protection
The 24AA02XUID employs a VCC threshold detector
circuit which disables the internal erase/write logic if the
VCC is below 1.5V at nominal conditions.
The SCL and SDA inputs have Schmitt Trigger and
filter circuits which suppress noise spikes to assure
proper device operation, even on a noisy bus.
Random Read
Random read operations allow the master to access
any memory location in a random manner. To perform
this type of read operation, the word address must first
be set. This is accomplished by sending the word
address to the 24AA02XUID as part of a write
operation. Once the word address is sent, the master
generates a Start condition following the acknowledge.
This terminates the write operation, but not before the
internal Address Pointer is set. The master then issues
the control byte again, but with the R/W bit set to a ‘1’.
The 24AA02XUID will then issue an acknowledge and
transmit the 8-bit data word. The master will not
acknowledge the transfer, but does generate a Stop
condition, and the 24AA02XUID will discontinue
transmission (Figure 8-2).
FIGURE 8-1:
CURRENT ADDRESS READ
Bus Activity
Master
S
T
A
R
T
SDA Line
S 1
Bus Activity
Note:
Control
Byte
0
1
S
T
O
P
Data (n)
0 A2* A1*A0* 1
Chip
Select
Bits
P
A
C
K
N
o
A
C
K
* Bits A0, A1 and A2 are “don’t cares” for the 24AA02UID.
2013 Microchip Technology Inc.
DS20005202A-page 11
24AA02UID/24AA025UID
FIGURE 8-2:
RANDOM READ
Bus Activity
Master
S
T
A
R
T
Control
Byte
S
T
A
R
T
Word
Address (n)
* * *
Chip
Select
Bits
Bus Activity
Note:
FIGURE 8-3:
Bus Activity
Master
SDA Line
Bus Activity
DS20005202A-page 12
S
T
O
P
Data (n)
* **
S 1 0 1 0 A2A1A0 0
SDA Line
Control
Byte
S 1 0 1 0 A2A1A0 1
A
C
K
A
C
K
Chip
Select
Bits
P
A
C
K
N
o
A
C
K
* Bits A0, A1 and A2 are “don’t cares” for the 24AA02UID.
SEQUENTIAL READ
Control
Byte
Data (n)
Data (n + 1)
Data (n + 2)
S
T
O
P
Data (n + x)
P
1
A
C
K
A
C
K
A
C
K
A
C
K
N
o
A
C
K
2013 Microchip Technology Inc.
24AA02UID/24AA025UID
9.0
PREPROGRAMMED UNIQUE
32-BIT SERIAL NUMBER
9.2
For applications that require serial numbers larger than
32 bits, additional data bytes can be used to pad the
provided serial number to meet the required length.
Any data byte values can be used for padding as the
32-bit serial number ensures the extended serial number remains unique.
The 24AA02XUID is programmed at the factory with a
unique 32-bit serial number stored in the upper half of
the array and permanently write-protected. The
remaining 1,024 bits are available for application use.
Note:
The 32-bit serial number is unique across
all Microchip UID-family serial EEPROM
devices.
FIGURE 9-1:
The padding can be performed in two ways. The first
method is to pad the data in software by combining the
32-bit serial number from the 24AA02XUID with fixed
data. The second method is to extend the number of
bytes read from the 24AA02XUID to meet the required
length. Table 9-1 shows example address ranges and
their corresponding serial number lengths.
MEMORY ORGANIZATION
00h
Standard
EEPROM
80h
TABLE 9-1:
Write-Protected
Serial Number Block
FFh
The 4-byte serial number is stored in array locations
0xFC through 0xFF, as shown in Figure 9-2.
9.1
Extending the 32-bit Serial
Number
Manufacturer and Device Codes
EXTENDED READ EXAMPLES
Start Address
End Address
Serial Number
Length
0xFC
0xFF
32 bits
0xFA
0xFF
48 bits
0xF8
0xFF
64 bits
0xF0
0xFF
128 bits
0xE0
0xFF
256 bits
In addition to the serial number, a manufacturer code is
stored at location 0xFA and a device identifier is stored
at 0xFB. The manufacturer code is fixed as 0x29. For
the 24AA02XUID, the device identifier is 0x41. The ‘4’
indicates the I2C™ family and the ‘1’ indicates a 2 Kbit
memory density.
FIGURE 9-2:
SERIAL NUMBER PHYSICAL MEMORY MAP EXAMPLE
Description
Manufacturer
Code
Device
Code
Data
29h
41h
Type
Array
Address
32-bit Serial Number
12h
34h
Fixed
FAh
2013 Microchip Technology Inc.
56h
78h
FEh
FFh
Serialized
FBh
FCh
FDh
DS20005202A-page 13
24AA02UID/24AA025UID
10.0
PACKAGING INFORMATION
10.1
Package Marking Information
8-Lead PDIP (300 mil)
Example:
XXXXXXXX
TXXXXNNN
YYWW
24AA02ID
I/P e3 1L7
1327
8-Lead SOIC (3.90 mm)
Example:
24A2UIDI
SN e3 1327
1L7
XXXXXXXT
XXXXYYWW
NNN
5-Lead SOT-23
Example:
XXXXY
WWNNN
AAAF3
271L7
6-Lead SOT-23
Example:
XXXXY
WWNNN
AAAE3
271L7
1st Line Marking Code
Part Number
SOT-23
SOIC
PDIP
I Temp.
I Temp.
I Temp.
24AA02UID
AAAFY
24A2UIDT
24AA02ID
24AA025UID
AAAEY
4A25UIDT
24A25UID
Note:
NN = Alphanumeric traceability code
DS20005202A-page 14
2013 Microchip Technology Inc.
24AA02UID/24AA025UID
Legend: XX...X
T
Y
YY
WW
NNN
e3
Note:
Note:
Part number or part number code
Temperature (I, E)
Year code (last digit of calendar year)
Year code (last 2 digits of calendar year)
Week code (week of January 1 is week ‘01’)
Alphanumeric traceability code (2 characters for small packages)
Pb-free JEDEC designator for Matte Tin (Sn)
For very small packages with no room for the Pb-free JEDEC designator
e3 , the marking will only appear on the outer carton or reel label.
In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
*Standard OTP marking consists of Microchip part number, year code, week code, and traceability code.
2013 Microchip Technology Inc.
DS20005202A-page 15
24AA02UID/24AA025UID
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
DS20005202A-page 16
2013 Microchip Technology Inc.
24AA02UID/24AA025UID
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2013 Microchip Technology Inc.
DS20005202A-page 17
24AA02UID/24AA025UID
!"#$%
&
!
"# $% &"'""
($)
%
*++&&&!
!+$
DS20005202A-page 18
2013 Microchip Technology Inc.
24AA02UID/24AA025UID
'
(
("()%
&
!
"# $% &"'""
($)
%
*++&&&!
!+$
b
N
E
E1
3
2
1
e
e1
D
A2
A
c
φ
A1
L
L1
?"
!"
@!"
A#!H
)("
@@6
6
A
AE
G
A
;
@%(
; @
K
13
@
@
3
K
N
@3
1;
K
O
K
1O
@%
$""
K
N
@%L%
H
K
;3
&
3 !"
"%63%
#%!
%)"
#"
"
%)"
#"
""
7%3!! "%
!"
%
683;