Revision 18
DS0097
ProASIC3 Flash Family FPGAs
with Optional Soft ARM Support
Features and Benefits
Advanced I/O
High Capacity
• 15 K to 1 M System Gates
• Up to 144 Kbits of True Dual-Port SRAM
• Up to 300 User I/Os
Reprogrammable Flash Technology
• 130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS
Process
• Instant On Level 0 Support
• Single-Chip Solution
• Retains Programmed Design when Powered Off
High Performance
• 350 MHz System Performance
• 3.3 V, 66 MHz 64-Bit PCI†
In-System Programming (ISP) and Security
• ISP Using On-Chip 128-Bit Advanced Encryption Standard
(AES) Decryption (except ARM®-enabled ProASIC®3 devices)
via JTAG (IEEE 1532–compliant)†
• FlashLock® to Secure FPGA Contents
Low Power
• Core Voltage for Low Power
• Support for 1.5 V-Only Systems
• Low-Impedance Flash Switches
High-Performance Routing Hierarchy
• Segmented, Hierarchical Routing and Clock Structure
• 700 Mbps DDR, LVDS-Capable I/Os (A3P250 and above)
• 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation
• Wide Range Power Supply Voltage Support per JESD8-B,
Allowing I/Os to Operate from 2.7 V to 3.6 V
• Bank-Selectable I/O Voltages—up to 4 Banks per Chip
• Single-Ended I/O Standards: LVTTL, LVCMOS 3.3 V /
2.5 V / 1.8 V / 1.5 V, 3.3 V PCI / 3.3 V PCI-X† and LVCMOS
2.5 V / 5.0 V Input
• Differential I/O Standards: LVPECL, LVDS, B-LVDS, and
M-LVDS (A3P250 and above)
• I/O Registers on Input, Output, and Enable Paths
• Hot-Swappable and Cold Sparing I/Os‡
• Programmable Output Slew Rate† and Drive Strength
• Weak Pull-Up/-Down
• IEEE 1149.1 (JTAG) Boundary Scan Test
• Pin-Compatible Packages across the ProASIC3 Family
Clock Conditioning Circuit (CCC) and PLL†
• Six CCC Blocks, One with an Integrated PLL
• Configurable Phase-Shift, Multiply/Divide, Delay Capabilities
and External Feedback
• Wide Input Frequency Range (1.5 MHz to 350 MHz)
Embedded Memory†
• 1 Kbit of FlashROM User Nonvolatile Memory
• SRAMs and FIFOs with Variable-Aspect-Ratio 4,608-Bit RAM
Blocks (×1, ×2, ×4, ×9, and ×18 organizations)†
• True Dual-Port SRAM (except ×18)
ARM Processor Support in ProASIC3 FPGAs
• M1 ProASIC3 Devices—ARM®Cortex®-M1 Soft Processor
Available with or without Debug
ProASIC3 Devices
A3P0151
A3P030
A3P060 A3P125
A3P250
A3P400
A3P600
2
Cortex-M1 Devices
M1A3P250 M1A3P400
M1A3P600
System Gates
15,000
30,000
60,000 125,000
250,000
400,000
600,000
Typical Equivalent Macrocells
128
256
512
1,024
2,048
–
–
VersaTiles (D-flip-flops)
384
768
1,536
3,072
6,144
9,216
13,824
RAM Kbits (1,024 bits)
–
–
18
36
36
54
108
4,608-Bit Blocks
–
–
4
8
8
12
24
FlashROM Kbits
1
1
1
1
1
1
1
Secure (AES) ISP 3
–
–
Yes
Yes
Yes
Yes
Yes
Integrated PLL in CCCs
–
–
1
1
1
1
1
VersaNet Globals 4
6
6
18
18
18
18
18
I/O Banks
2
2
2
2
4
4
4
Maximum User I/Os
49
81
96
133
157
194
235
Notes:
1. A3P015 is not recommended for new designs.
2. Refer to the Cortex-M1 product brief for more information.
3. AES is not available for Cortex-M1 ProASIC3 devices.
4. Six chip (main) and three quadrant global networks are available for A3P060 and above.
5. The M1A3P250 device does not support this package.
6. For higher densities and support of additional features, refer to the ProASIC3E Flash Family FPGAs datasheet.
7. Package not available.
† A3P015 and A3P030 devices do not support this feature.
March 2016
© 2016 Microsemi Corporation
A3P1000
M1A3P1000
1,000,000
–
24,576
144
32
1
Yes
1
18
4
300
‡ Supported only by A3P015 and A3P030 devices.
I
ProASIC3 Flash Family FPGAs
ProASIC3 Devices
Cortex-M1 Devices 2
Package Pins
QFN
CS
VQFP
TQFP
PQFP
FBGA
A3P0151
A3P030
A3P060
A3P125
A3P250
M1A3P250
QN68
QN48, QN68,
QN1327
QN1327
QN1327
QN1327
VQ100
TQ144
PQ208
FG144
VQ100
VQ100
CS121
VQ100
TQ144
FG144
A3P400
M1A3P400
A3P600
M1A3P600
A3P1000
M1A3P1000
PQ208
PQ208
FG144/256 5 FG144/256/
484
PQ208
FG144/256/
484
PQ208
FG144/256/
484
Notes:
1. A3P015 is not recommended for new designs.
2. Refer to the Cortex-M1 product brief for more information.
3. AES is not available for Cortex-M1 ProASIC3 devices.
4. Six chip (main) and three quadrant global networks are available for A3P060 and above.
5. The M1A3P250 device does not support this package.
6. For higher densities and support of additional features, refer to the ProASIC3E Flash Family FPGAs datasheet.
7. Package not available.
II
R evis i o n 18
ProASIC3 Flash Family FPGAs
I/Os Per Package 1
ProASIC3
Devices
A3P0152
A3P030
A3P060
A3P125
Cortex-M1
Devices
A3P250 3
A3P400 3
A3P600
A3P1000
M1A3P250 3,5
M1A3P400 3
M1A3P600
M1A3P1000
–
49
49
–
–
–
–
–
QN132
–
81
80
84
87
19
CS121
–
–
96
–
–
VQ100
–
77
71
71
TQ144
–
–
91
PQ208
–
–
FG144
–
FG2565,6
FG4846
QN68
7
Differential I/O Pairs
Differential I/O Pairs
–
Single-Ended I/O4
Single-Ended I/O4
–
Differential I/O Pairs
Single-Ended I/O
–
Single-Ended I/O4
Single-Ended I/O
34
QN48
Differential I/O Pairs
Single-Ended I/O
–
Package
Single-Ended I/O4
Single-Ended I/O
I/O Type
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
68
13
–
–
–
–
–
100
–
–
–
–
–
–
–
–
–
133
151
34
151
34
154
35
154
35
–
96
97
97
24
97
25
97
25
97
25
–
–
–
–
157
38
178
38
177
43
177
44
–
–
–
–
–
–
194
38
235
60
300
74
–
Notes:
1. When considering migrating your design to a lower- or higher-density device, refer to the ProASIC3 FPGA Fabric User Guide to
ensure complying with design and board migration requirements.
2. A3P015 is not recommended for new designs.
3. For A3P250 and A3P400 devices, the maximum number of LVPECL pairs in east and west banks cannot exceed 15. Refer to
the ProASIC3 FPGA Fabric Users Guide for position assignments of the 15 LVPECL pairs.
4. Each used differential I/O pair reduces the number of single-ended I/Os available by two.
5. The M1A3P250 device does not support FG256 package.
6. FG256 and FG484 are footprint-compatible packages.
7. Package not available.
Table 1 • ProASIC3 FPGAs Package Sizes Dimensions
CS121
QN48
QN68
QN132 *
VQ100
TQ144
PQ208
FG144
FG256
FG484
6×6
6×6
8×8
8×8
14 × 14
20 × 20
28 × 28
13 × 13
17 × 17
23 × 23
Nominal Area
(mm2)
36
36
64
64
196
400
784
169
289
529
Pitch (mm)
0.5
0.4
0.4
0.5
0.5
0.5
0.5
1.0
1.0
1.0
Height (mm)
0.99
0.90
0.90
0.75
1.00
1.40
3.40
1.45
1.60
2.23
Package
Length × Width
(mm × mm)
Note: * Package not available
R ev i si o n 1 8
III
ProASIC3 Flash Family FPGAs
ProASIC3 Ordering Information
A3P1000
_
1
FG
G
144
I
Y
Security Feature
Y = Device Includes License to Implement IP Based on the
Cryptography Research, Inc. (CRI) Patent Portfolio
Blank = Device Does Not Include License to Implement IP Based
on the Cryptography Research, Inc. (CRI) Patent Portfolio
Note: Only devices with packages greater than or equal to 5x5 are supported
Application (Temperature Range)
Blank = Commercial (0°C to +85°C Junction Temperature)
I = Industrial (–40°C to +100°C Junction Temperature)
PP = Pre-Production
ES = Engineering Sample (Room Temperature Only)
Package Lead Count
Lead-Free Packaging
Blank = Standard Packaging
G= RoHS-Compliant (Green) Packaging (some packages also halogen-free)
Package Type
QN = Quad Flat Pack No Leads (0.4 mm and 0.5 mm pitches)
VQ = Very Thin Quad Flat Pack (0.5 mm pitch)
TQ = Thin Quad Flat Pack (0.5 mm pitch)
PQ = Plastic Quad Flat Pack (0.5 mm pitch)
FG = Fine Pitch Ball Grid Array (1.0 mm pitch)
Speed Grade CS = Chip Scale Package (0.5 mm pitch)
Blank = Standard
1 = 15% Faster than Standard
2 = 25% Faster than Standard
Part Number
ProASIC3 Devices
A3P015 =
A3P030 =
A3P060 =
A3P125 =
A3P250 =
A3P400 =
A3P600 =
A3P1000 =
15,000 System Gates (A3P015 is not recommended for new designs.)
30,000 System Gates
60,000 System Gates
125,000 System Gates
250,000 System Gates
400,000 System Gates
600,000 System Gates
1,000,000 System Gates
ProASIC3 Devices with Cortex-M1
M1A3P250
M1A3P400
M1A3P600
M1A3P1000
=
=
=
=
250,000 System Gates
400,000 System Gates
600,000 System Gates
1,000,000 System Gates
ProASIC3 Device Status
ProASIC3 Devices
Status
Cortex-M1 Devices
Status
A3P015
Not recommended for new designs.
A3P030
Production
A3P060
Production
A3P125
Production
A3P250
Production
M1A3P250
Production
A3P400
Production
M1A3P400
Production
A3P600
Production
M1A3P600
Production
A3P1000
Production
M1A3P1000
Production
IV
R evis i o n 18
ProASIC3 Flash Family FPGAs
ProASIC3 Device Family Overview
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
ProASIC3 DC and Switching Characteristics
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Calculating Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
User I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
VersaTile Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-81
Global Resource Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-85
Clock Conditioning Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-90
Embedded SRAM and FIFO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-92
Embedded FlashROM Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-107
JTAG 1532 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-108
Pin Descriptions
Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
User Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Special Function Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-1
3-2
3-3
3-4
3-4
Package Pin Assignments
QN48 – Bottom View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
QN68 – Bottom View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
QN132 – Bottom View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
CS121 – Bottom View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15
VQ100 – Top View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18
TQ144 – Top View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23
PQ208 – Top View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28
FG144 – Bottom View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-39
FG256 – Bottom View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-52
FG484 – Bottom View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-65
Datasheet Information
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15
Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15
R ev i si o n 1 8
V
1 – ProASIC3 Device Family Overview
General Description
ProASIC3, the third-generation family of Microsemi flash FPGAs, offers performance, density, and
features beyond those of the ProASICPLUS® family. Nonvolatile flash technology gives ProASIC3 devices
the advantage of being a secure, low power, single-chip solution that is Instant On. ProASIC3 is
reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable
designers to create high-density systems using existing ASIC or FPGA design flows and tools.
ProASIC3 devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as
clock conditioning circuitry based on an integrated phase-locked loop (PLL). The A3P015 and A3P030
devices have no PLL or RAM support. ProASIC3 devices have up to 1 million system gates, supported
with up to 144 kbits of true dual-port SRAM and up to 300 user I/Os.
ProASIC3 devices support the ARM Cortex-M1 processor. The ARM-enabled devices have Microsemi
ordering numbers that begin with M1A3P (Cortex-M1) and do not support AES decryption.
Flash Advantages
Reduced Cost of Ownership
Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based ProASIC3 devices allow all functionality to be Instant On; no external boot
PROM is required. On-board security mechanisms prevent access to all the programming information
and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system
reprogramming to support future design iterations and field upgrades with confidence that valuable
intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the
industry-standard AES algorithm. The ProASIC3 family device architecture mitigates the need for ASIC
migration at higher user volumes. This makes the ProASIC3 family a cost-effective ASIC replacement
solution, especially for applications in the consumer, networking/ communications, computing, and
avionics markets.
Security
The nonvolatile, flash-based ProASIC3 devices do not require a boot PROM, so there is no vulnerable
external bitstream that can be easily copied. ProASIC3 devices incorporate FlashLock, which provides a
unique combination of reprogrammability and design security without external overhead, advantages that
only an FPGA with nonvolatile flash programming can offer.
ProASIC3 devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level
of protection in the FPGA industry for intellectual property and configuration data. In addition, all
FlashROM data in ProASIC3 devices can be encrypted prior to loading, using the industry-leading
AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the National
Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. ProASIC3
devices have a built-in AES decryption engine and a flash-based AES key that make them the most
comprehensive programmable logic device security solution available today. ProASIC3 devices with
AES-based security provide a high level of protection for remote field updates over public networks such
as the Internet, and are designed to ensure that valuable IP remains out of the hands of system
overbuilders, system cloners, and IP thieves.
ARM-enabled ProASIC3 devices do not support user-controlled AES security mechanisms. Since the
ARM core must be protected at all times, AES encryption is always on for the core logic, so bitstreams
are always encrypted. There is no user access to encryption for the FlashROM programming data.
Security, built into the FPGA fabric, is an inherent component of the ProASIC3 family. The flash cells are
located beneath seven metal layers, and many device design and layout techniques have been used to
make invasive attacks extremely difficult. The ProASIC3 family, with FlashLock and AES security, is
unique in being highly resistant to both invasive and noninvasive attacks.
R ev i si o n 1 8
1-1
ProASIC3 Flash Family FPGAs
Your valuable IP is protected with industry-standard security, making remote ISP possible. A ProASIC3 device
provides the best available security for programmable logic designs.
Single Chip
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration
data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system powerup (unlike SRAM-based FPGAs). Therefore, flash-based ProASIC3 FPGAs do not require system configuration
components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials
costs and PCB area, and increases security and system reliability.
Instant On
Flash-based ProASIC3 devices support Level 0 of the Instant On classification standard. This feature helps in system
component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory
blocks, clock generation, and bus activity management. The Instant On feature of flash-based ProASIC3 devices
greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock
generation PLLs that are used for these purposes in a system. In addition, glitches and brownouts in system power will
not corrupt the ProASIC3 device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be
reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM,
expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based
ProASIC3 devices simplify total system design and reduce cost and design risk while increasing system reliability and
improving system initialization time.
Firm Errors
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a
configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and
thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in
SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the
configuration memory of ProASIC3 flash-based FPGAs. Once it is programmed, the flash cell configuration element of
ProASIC3 FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft)
errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and
correction (EDAC) circuitry built into the FPGA fabric.
Low Power
Flash-based ProASIC3 devices exhibit power characteristics similar to an ASIC, making them an ideal choice for
power-sensitive applications. ProASIC3 devices have only a very limited power-on current surge and no high-current
transition period, both of which occur on many FPGAs.
ProASIC3 devices also have low dynamic power consumption to further maximize power savings.
R ev i si o n 1 8
1-2
ProASIC3 Device Family Overview
Advanced Flash Technology
The ProASIC3 family offers many benefits, including nonvolatility and reprogrammability through an advanced flashbased, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to
implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and
abundant flash switches allows for very high logic utilization without compromising device routability or performance.
Logic functions within the device are interconnected through a four-level routing hierarchy.
Advanced Architecture
The proprietary ProASIC3 architecture provides granularity comparable to standard-cell ASICs. The ProASIC3 device
consists of five distinct and programmable architectural features (Figure 1-1 and Figure 1-2 on page 1-4):
•
FPGA VersaTiles
•
Dedicated FlashROM
•
Dedicated SRAM/FIFO memory†
•
Extensive CCCs and PLLs†
•
Advanced I/O structure
Bank 0
Bank 0
Bank 1
CCC
RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block*
I/Os
ISP AES
Decryption*
User Nonvolatile
FlashROM
Bank 0
Bank 1
VersaTile
Charge Pumps
Bank 1
Note: *Not supported by A3P015 and A3P030 devices
Figure 1-1 • ProASIC3 Device Architecture Overview with Two I/O Banks (A3P015, A3P030, A3P060, and
A3P125)
† The A3P015 and A3P030 do not support PLL or SRAM.
1 -3
R evis i o n 18
ProASIC3 Flash Family FPGAs
Bank 0
Bank 1
Bank 3
CCC
RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block
I/Os
Bank 1
Bank 3
VersaTile
ISP AES
Decryption
User Nonvolatile
FlashROM
RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block
(A3P600 and A3P1000)
Charge Pumps
Bank 2
Figure 1-2 •
ProASIC3 Device Architecture Overview with Four I/O Banks (A3P250, A3P600, and A3P1000)
The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a Dflip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The
versatility of the ProASIC3 core tile as either a three-input lookup table (LUT) equivalent or as a D-flip-flop/latch with
enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the Microsemi ProASIC family
of third-generation architecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy.
Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming.
Maximum core utilization is possible for virtually any design.
VersaTiles
The ProASIC3 core consists of VersaTiles, which have been enhanced beyond the ProASICPLUS® core tiles. The
ProASIC3 VersaTile supports the following:
•
All 3-input logic functions—LUT-3 equivalent
•
Latch with clear or set
•
D-flip-flop with clear or set
•
Enable D-flip-flop with clear or set
Refer to Figure 1-3 for VersaTile configurations.
LUT-3 Equivalent
X1
X2
X3
LUT-3
Y
D-Flip-Flop with Clear or Set
Data
CLK
CLR
Y
D-FF
Enable D-Flip-Flop with Clear or Set
Data
CLK
Y
D-FF
Enable
CLR
Figure 1-3 •
VersaTile Configurations
R ev i si o n 1 8
1-4
ProASIC3 Device Family Overview
User Nonvolatile FlashROM
ProASIC3 devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in
diverse system applications:
•
Internet protocol addressing (wireless or fixed)
•
System calibration settings
•
Device serialization and/or inventory control
•
Subscription-based business models (for example, set-top boxes)
•
Secure key storage for secure communications algorithms
•
Asset management/tracking
•
Date stamping
•
Version management
The FlashROM is written using the standard ProASIC3 IEEE 1532 JTAG programming interface. The core can be
individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load
data over public networks (except in the A3P015 and A3P030 devices), as in security keys stored in the FlashROM for
a user design.
The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either
through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be
programmed from the JTAG interface and cannot be programmed from the internal logic array.
The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a
synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes
within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank,
and the four least significant bits (LSBs) of the FlashROM address define the byte.
The ProASIC3 development software solutions, Libero® System-on-Chip (SoC) and Designer, have extensive support
for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a
unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data
for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive
programming file support is also included to allow for easy programming of large numbers of parts with differing
FlashROM contents.
SRAM and FIFO
ProASIC3 devices (except the A3P015 and A3P030 devices) have embedded SRAM blocks along their north and
south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18,
512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured
with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream.
The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG
macro (except in A3P015 and A3P030 devices).
In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be
configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are
programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in
addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for
generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create
larger configurations.
PLL and CCC
ProASIC3 devices provide designers with very flexible clock conditioning capabilities. Each member of the ProASIC3
family contains six CCCs. One CCC (center west side) has a PLL. The A3P015 and A3P030 devices do not have a
PLL.
The six CCC blocks are located at the four corners and the centers of the east and west sides.
All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as
clock spine access.
The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the
CCC that have dedicated connections to the CCC block.
1 -5
R evis i o n 18
ProASIC3 Flash Family FPGAs
The CCC block has these key features:
•
Wide input frequency range (fIN_CCC) = 1.5 MHz to 350 MHz
•
Output frequency range (fOUT_CCC) = 0.75 MHz to 350 MHz
•
Clock delay adjustment via programmable and fixed delays from –7.56 ns to +11.12 ns
•
2 programmable delay types for clock skew minimization
•
Clock frequency synthesis (for PLL only)
Additional CCC specifications:
•
Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration
(for PLL only).
•
Output duty cycle = 50% ± 1.5% or better (for PLL only)
•
Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used
(for PLL only)
•
Maximum acquisition time = 300 µs (for PLL only)
•
Low power consumption of 5 mW
•
Exceptional tolerance to input period jitter— allowable input jitter is up to 1.5 ns (for PLL only)
•
Four precise phases; maximum misalignment between adjacent phases of 40 ps × (350 MHz / fOUT_CCC) (for
PLL only)
Global Clocking
ProASIC3 devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support
described above, there is a comprehensive global clock distribution network.
Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global
networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The
VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high fanout nets.
R ev i si o n 1 8
1-6
ProASIC3 Device Family Overview
I/Os with Advanced I/O Standards
The ProASIC3 family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.5 V, 1.8 V, 2.5 V, and
3.3 V). ProASIC3 FPGAs support many different I/O standards—single-ended and differential.
The I/Os are organized into banks, with two or four banks per device. The configuration of these banks determines the
I/O standards supported (Table 1-1).
Table 1-1 • I/O Standards Supported
I/O Standards Supported
I/O Bank Type
Device and Bank Location
LVTTL/
LVCMOS PCI/PCI-X
LVPECL, LVDS,
B-LVDS, M-LVDS
Advanced
East and west Banks of A3P250 and
larger devices
Standard Plus
North and south banks of A3P250 and
larger devices
Not supported
Not
supported
Not supported
All banks of A3P060 and A3P125
Standard
All banks of A3P015 and A3P030
Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the
following:
•
Single-Data-Rate applications
•
Double-Data-Rate applications—DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications
ProASIC3 banks for the A3P250 device and above support LVPECL, LVDS, B-LVDS and M-LVDS. B-LVDS and MLVDS can support up to 20 loads.
Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a poweredup system.
Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system
is powered up, while the component itself is powered down, or when power supplies are floating.
Wide Range I/O Support
ProASIC3 devices support JEDEC-defined wide range I/O operation. ProASIC3 supports the JESD8-B specification,
covering both 3 V and 3.3 V supplies, for an effective operating range of 2.7 V to 3.6 V.
Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or
move to less costly components with greater tolerances. Wide range eases I/O bank management and provides
enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage
applications.
Specifying I/O States During Programming
You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files
generated from Designer v8.5 or greater. See the FlashPro User’s Guide for more information.
Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of
Pin Numbers only.
1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
2. From the FlashPro GUI, click PDB Configuration. A FlashPoint – Programming File Generator window appears.
3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming
dialog box.
4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os
you wish to modify (Figure 1-4 on page 1-8).
5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins,
or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:
1 – I/O is set to drive out logic High
1 -7
R evis i o n 18
ProASIC3 Flash Family FPGAs
0 – I/O is set to drive out logic Low
Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and
then held at that value during programming
Z -Tristate: I/O is tristated
Figure 1-4 •
I/O States During Programming Window
6. Click OK to return to the FlashPoint – Programming File Generator window.
Note: I/O States During programming are saved to the ADB and resulting programming files after completing
programming file generation.
R ev i si o n 1 8
1-8
2 – ProASIC3 DC and Switching Characteristics
General Specifications
Operating Conditions
Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any
other conditions beyond those listed under the Recommended Operating Conditions specified in
Table 2-2 on page 2-2 is not implied.
Table 2-1 •
Symbol
Absolute Maximum Ratings
Parameter
Limits
Units
VCC
DC core supply voltage
–0.3 to 1.65
V
VJTAG
JTAG DC voltage
–0.3 to 3.75
V
VPUMP
Programming voltage
–0.3 to 3.75
V
VCCPLL Analog power supply (PLL)
–0.3 to 1.65
V
VCCI
DC I/O output buffer supply voltage
–0.3 to 3.75
V
VMV
DC I/O input buffer supply voltage
–0.3 to 3.75
V
VI
I/O input voltage
–0.3 V to 3.6 V
V
(when I/O hot insertion mode is enabled)
–0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower
(when I/O hot-insertion mode is disabled)
TSTG 2
Storage temperature
–65 to +150
°C
TJ 2
Junction temperature
+125
°C
Notes:
1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may
undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.
2. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on
page 3-1 for further information.
3. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-3, and for recommended operating
limits, refer to Table 2-2 on page 2-2.
R ev i si o n 1 8
2-1
ProASIC3 Flash Family FPGAs
Table 2-2 •
Recommended Operating Conditions 1
Parameters 1
Symbol
TJ
Commercial
Junction temperature
3
0 to 85
VCC
1.5 V DC core supply voltage
VJTAG
JTAG DC voltage
VPUMP
Programming voltage
VCCI and
VMV 5
Industrial
-40 to 100
2
Units
°C
1.425 to 1.575
1.425 to 1.575
V
1.4 to 3.6
1.4 to 3.6
V
3.15 to 3.45
3.15 to 3.45
V
0 to 3.6
0 to 3.6
V
Analog power supply (PLL)
1.425 to 1.575
1.425 to 1.575
V
1.5 V DC supply voltage
1.425 to 1.575
1.425 to 1.575
V
1.8 V DC supply voltage
1.7 to 1.9
1.7 to 1.9
V
2.5 V DC supply voltage
2.3 to 2.7
2.3 to 2.7
V
3.0 to 3.6
3.0 to 3.6
V
2.7 to 3.6
2.7 to 3.6
V
2.375 to 2.625
2.375 to 2.625
V
3.0 to 3.6
3.0 to 3.6
V
Programming Mode
Operation 4
VCCPLL
2
3.3 V DC supply voltage
3.3 V wide range DC supply
voltage 6
LVDS/B-LVDS/M-LVDS differential I/O
LVPECL differential I/O
Notes:
1. All parameters representing voltages are measured with respect to GND unless otherwise specified.
2. Software Default Junction Temperature Range in the Libero® System-on-Chip (SoC) software is set to 0°C to +70°C for
commercial, and -40°C to +85°C for industrial. To ensure targeted reliability standards are met across the full range of
junction temperatures, Microsemi recommends using custom settings for temperature range before running timing and
power analysis tools. For more information regarding custom settings, refer to the New Project Dialog Box in the Libero
SoC Online Help.
3. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O
standard are given in Table 2-18 on page 2-19.
4. VPUMP can be left floating during operation (not programming mode).
5. VMV and VCCI should be at the same voltage within a given I/O bank. VMV pins must be connected to the
corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.
6. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation.
R ev i si o n 1 8
2-2
ProASIC3 DC and Switching Characteristics
70
102.7
85
100
43.8
20.0
105
15.6
110
12.3
115
9.7
120
125
7.7
6.2
130
5.0
135
140
4.0
3.3
145
150
2.7
2.2
Years
Tj (°C)
110
100
90
80
70
60
50
40
30
20
10
0
HTR
Lifetime
(yrs)
70
85 100 105 110 115 120 125 130 135 140 145 150
Temperature (ºC)
Note: HTR time is the period during which you would not expect a verify failure due to flash cell leakage.
Figure 2-1 • High-Temperature Data Retention (HTR)
Table 2-3 •
Product
Grade
Flash Programming Limits – Retention, Storage and Operating Temperature1
Programming Program Retention
Cycles
(biased/unbiased)
Maximum Storage
Temperature TSTG (°C)
Maximum Operating
Junction Temperature TJ (°C)2
Commercial
500
20 years
110
100
Industrial
500
20 years
110
100
1.
2.
This is a stress rating only; functional operation at any condition other than those indicated is not implied.
These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating
conditions and absolute limits.
Table 2-4 •
Overshoot and Undershoot Limits 1
VCCI and VMV
2.7 V or less
3V
Average VCCI–GND Overshoot or Undershoot
Duration as a Percentage of Clock Cycle2
Maximum Overshoot/
Undershoot2
10%
1.4 V
5%
1.49 V
10%
1.1 V
5%
1.19 V
3.3 V
10%
0.79 V
5%
0.88 V
3.6 V
10%
0.45 V
5%
0.54 V
Notes:
1. Based on reliability requirements at 85°C.
2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the
maximum overshoot/undershoot has to be reduced by 0.15 V.
3. This table does not provide PCI overshoot/undershoot limits.
2 -3
R evis i o n 18
ProASIC3 Flash Family FPGAs
I/O Power-Up and Supply Voltage Thresholds for Power-On Reset
(Commercial and Industrial)
Sophisticated power-up management circuitry is designed into every ProASIC®3 device. These circuits ensure easy
transition from the powered-off state to the powered-up state of the device. The many different supplies can power up
in any sequence with minimized current spikes or surges.
In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-2
on page 2-5.
There are five regions to consider during power-up.
ProASIC3 I/Os are activated only if ALL of the following three conditions are met:
1. VCC and VCCI are above the minimum specified trip points (Figure 2-2 on page 2-5).
2. VCCI > VCC – 0.75 V (typical)
3. Chip is in the operating mode.
VCCI Trip Point:
Ramping up: 0.6 V < trip_point_up < 1.2 V
Ramping down: 0.5 V < trip_point_down < 1.1 V
VCC Trip Point:
Ramping up: 0.6 V < trip_point_up < 1.1 V
Ramping down: 0.5 V < trip_point_down < 1 V
VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in
hysteresis prevents undesirable power-up oscillations and current surges. Note the following:
•
During programming, I/Os become tristated and weakly pulled up to VCCI.
•
JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.
PLL Behavior at Brownout Condition
Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper power-up behavior.
Power ramp-up should be monotonic at least until VCC and VCCPLLX exceed brownout activation levels. The VCC
activation level is specified as 1.1 V worst-case (see Figure 2-2 on page 2-5 for more details).
When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V ± 0.25 V), the PLL
output lock signal goes low and/or the output clock is lost. Refer to the "Power-Up/Down Behavior of Low Power Flash
Devices" chapter of the ProASIC3 FPGA Fabric User’s Guide for information on clock and lock recovery.
Internal Power-Up Activation Sequence
1. Core
2. Input buffers
Output buffers, after 200 ns delay from input buffer activation.
Thermal Characteristics
Introduction
The temperature variable in the Microsemi Designer software refers to the junction temperature, not the ambient
temperature. This is an important distinction because dynamic and static power consumption cause the chip junction
to be higher than the ambient temperature.
EQ can be used to calculate junction temperature.
TJ = Junction Temperature = T + TA
where:
TA = Ambient Temperature
T = Temperature gradient between junction (silicon) and ambient T = ja * P
ja = Junction-to-ambient of the package. ja numbers are located in Table 2-5 on page 2-6.
P = Power dissipation
R ev i si o n 1 8
2-4
ProASIC3 DC and Switching Characteristics
VCC = VCCI + VT
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)
VCC
VCC = 1.575 V
Region 4: I/O
buffers are ON.
I/Os are functional
(except differential
but slower because VCCI
is below specification. For the
same reason, input buffers do not
meet VIH / VIL levels, and output
buffers do not meet VOH / VOL levels.
Region 1: I/O Buffers are OFF
Region 5: I/O buffers are ON
and power supplies are within
specification.
I/Os meet the entire datasheet
and timer specifications for
speed, VIH / VIL, VOH / VOL,
etc.
VCC = 1.425 V
Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs)
but slower because VCCI / VCC are below
specification. For the same reason, input
buffers do not meet VIH / VIL levels, and
output buffers do not meet VOH / VOL levels.
Activation trip point:
Va = 0.85 V ± 0.25 V
Deactivation trip point:
Vd = 0.75 V ± 0.25 V
Region 1: I/O buffers are OFF
Activation trip point:
Va = 0.9 V ± 0.3 V
Deactivation trip point:
Vd = 0.8 V ± 0.3 V
Figure 2-2 •
Region 3: I/O buffers are ON.
I/Os are functional; I/O DC
specifications are met,
but I/Os are slower because
the VCC is below specification.
Min VCCI datasheet specification
voltage at a selected I/O
standard; i.e., 1.425 V or 1.7 V
or 2.3 V or 3.0 V
VCCI
I/O State as a Function of VCCI and VCC Voltage Levels
Package Thermal Characteristics
The device junction-to-case thermal resistivity is jc and the junction-to-ambient air thermal resistivity is ja. The
thermal characteristics for ja are shown for two air flow rates.
2 -5
R evis i o n 18
ProASIC3 Flash Family FPGAs
The absolute maximum junction temperature is 100°C. EQ 1 shows a sample calculation of the absolute maximum
power dissipation allowed for a 484-pin FBGA package at commercial temperature and in still air.
Max. junction temp. (C) – Max. ambient temp. (C) 100C – 70C
·
Maximum Power Allowed = ------------------------------------------------------------------------------------------------------------------------------------------ = ------------------------------------- = 1.463 W
ja (C/W)
20.5C/W
EQ 1
Table 2-5 •
Package Thermal Resistivities
ja
Package Type
Device
Pin Count
jc
Still Air
200 ft/min
500 ft/min
Units
Quad Flat No Lead
A3P030
132
0.4
21.4
16.8
15.3
°C/W
A3P060
132
0.3
21.2
16.6
15.0
°C/W
A3P125
132
0.2
21.1
16.5
14.9
°C/W
A3P250
132
0.1
21.0
16.4
14.8
°C/W
Very Thin Quad Flat Pack (VQFP)
All devices
100
10.0
35.3
29.4
27.1
°C/W
Thin Quad Flat Pack (TQFP)
All devices
144
11.0
33.5
28.0
25.7
°C/W
Plastic Quad Flat Pack (PQFP)
All devices
208
8.0
26.1
22.5
20.8
°C/W
*
144
3.8
26.9
22.9
21.5
°C/W
See note*
256
3.8
26.6
22.8
21.5
°C/W
See note*
484
3.2
20.5
17.0
15.9
°C/W
A3P1000
144
6.3
31.6
26.2
24.2
°C/W
A3P1000
256
6.6
28.1
24.4
22.7
°C/W
A3P1000
484
8.0
23.3
19.0
16.7
°C/W
Fine Pitch Ball Grid Array (FBGA)
See note
Note: *This information applies to all ProASIC3 devices except the A3P1000. Detailed device/package thermal
information will be available in future revisions of the datasheet.
Temperature and Voltage Derating Factors
Table 2-6 •
Temperature and Voltage Derating Factors for Timing Delays
(normalized to TJ = 70°C, VCC = 1.425 V)
Array Voltage VCC
(V)
Junction Temperature (°C)
–40°C
0°C
25°C
70°C
85°C
100°C
1.425
0.88
0.93
0.95
1.00
1.02
1.04
1.500
0.83
0.88
0.90
0.95
0.96
0.98
1.575
0.80
0.84
0.87
0.91
0.93
0.94
R ev i si o n 1 8
2-6
ProASIC3 DC and Switching Characteristics
Calculating Power Dissipation
Quiescent Supply Current
Table 2-7 •
Quiescent Supply Current Characteristics
A3P015 A3P030 A3P060 A3P125 A3P250 A3P400 A3P600 A3P1000
Typical (25°C)
2 mA
2 mA
2 mA
2 mA
3 mA
3 mA
5 mA
8 mA
Max. (Commercial)
10 mA
10 mA
10 mA
10 mA
20 mA
20 mA
30 mA
50 mA
Max. (Industrial)
15 mA
15 mA
15 mA
15 mA
30 mA
30 mA
45 mA
75 mA
Note: IDD Includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static
contribution, which is shown in Table 2-11 and Table 2-12 on page 2-9.
Power per I/O Pin
Table 2-8 •
Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings
Applicable to Advanced I/O Banks
VMV (V)
Static Power
PDC2 (mW) 1
Dynamic Power
PAC9 (µW/MHz) 2
3.3 V LVTTL / 3.3 V LVCMOS
3.3
–
16.22
3
Single-Ended
3.3 V LVCMOS Wide Range
3.3
–
16.22
2.5 V LVCMOS
2.5
–
5.12
1.8 V LVCMOS
1.8
–
2.13
1.5 V LVCMOS (JESD8-11)
1.5
–
1.45
3.3 V PCI
3.3
–
18.11
3.3 V PCI-X
3.3
–
18.11
LVDS
2.5
2.26
1.20
LVPECL
3.3
5.72
1.87
Differential
Notes:
1. PDC2 is the static power (where applicable) measured on VMV.
2. PAC9 is the total dynamic power measured on VCC and VMV.
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B
specification.
Table 2-9 •
Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings
Applicable to Standard Plus I/O Banks
VMV (V)
Static Power
PDC2 (mW) 1
Dynamic Power
PAC9 (µW/MHz) 2
3.3 V LVTTL / 3.3 V LVCMOS
3.3
–
16.23
3.3 V LVCMOS Wide Range3
3.3
–
16.23
Single-Ended
Notes:
1. PDC2 is the static power (where applicable) measured on VMV.
2. PAC9 is the total dynamic power measured on VCC and VMV.
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B
specification.
2 -7
R evis i o n 18
ProASIC3 Flash Family FPGAs
Table 2-9 •
Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings
Applicable to Standard Plus I/O Banks
VMV (V)
Static Power
PDC2 (mW) 1
Dynamic Power
PAC9 (µW/MHz) 2
2.5 V LVCMOS
2.5
–
5.14
1.8 V LVCMOS
1.8
–
2.13
1.5 V LVCMOS (JESD8-11)
1.5
–
1.48
3.3 V PCI
3.3
–
18.13
3.3 V PCI-X
3.3
–
18.13
Notes:
1. PDC2 is the static power (where applicable) measured on VMV.
2. PAC9 is the total dynamic power measured on VCC and VMV.
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B
specification.
Table 2-10 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings
Applicable to Standard I/O Banks
VMV (V)
Static Power
PDC2 (mW) 1
Dynamic Power
PAC9 (µW/MHz) 2
3.3 V LVTTL / 3.3 V LVCMOS
3.3
–
17.24
3
3.3 V LVCMOS Wide Range
3.3
–
17.24
2.5 V LVCMOS
2.5
–
5.19
1.8 V LVCMOS
1.8
–
2.18
1.5 V LVCMOS (JESD8-11)
1.5
–
1.52
Single-Ended
Notes:
1. PDC2 is the static power (where applicable) measured on VMV.
2. PAC9 is the total dynamic power measured on VCC and VMV.
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B
specification.
R ev i si o n 1 8
2-8
ProASIC3 DC and Switching Characteristics
Table 2-11 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1
Applicable to Advanced I/O Banks
CLOAD (pF)
VCCI (V)
Static Power
PDC3 (mW)2
Dynamic Power
PAC10 (µW/MHz)3
3.3 V LVTTL / 3.3 V LVCMOS
35
3.3
–
468.67
4
35
3.3
–
468.67
2.5 V LVCMOS
35
2.5
–
267.48
1.8 V LVCMOS
35
1.8
–
149.46
1.5 V LVCMOS
(JESD8-11)
35
1.5
–
103.12
3.3 V PCI
10
3.3
–
201.02
3.3 V PCI-X
10
3.3
–
201.02
LVDS
–
2.5
7.74
88.92
LVPECL
–
3.3
19.54
166.52
Single-Ended
3.3 V LVCMOS Wide Range
Differential
Notes:
1.
2.
3.
4.
Dynamic power consumption is given for standard load and software default drive strength and output slew.
PDC3 is the static power (where applicable) measured on VCCI.
PAC10 is the total dynamic power measured on VCC and VCCI.
All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
Table 2-12 • Summary of I/O Output Buffer Power (Per Pin) – Default I/O Software Settings1
Applicable to Standard Plus I/O Banks
CLOAD (pF)
VCCI (V)
Static Power
PDC3 (mW)2
Dynamic Power
PAC10 (µW/MHz)3
3.3 V LVTTL / 3.3 V LVCMOS
35
3.3
–
452.67
3.3 V LVCMOS Wide Range4
35
3.3
–
452.67
2.5 V LVCMOS
35
2.5
–
258.32
1.8 V LVCMOS
35
1.8
–
133.59
1.5 V LVCMOS (JESD8-11)
35
1.5
–
92.84
3.3 V PCI
10
3.3
–
184.92
3.3 V PCI-X
10
3.3
–
184.92
Single-Ended
Notes:
1.
2.
3.
4.
2 -9
Dynamic power consumption is given for standard load and software default drive strength and output slew.
PDC3 is the static power (where applicable) measured on VMV.
PAC10 is the total dynamic power measured on VCC and VMV.
All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
R evis i o n 18
ProASIC3 Flash Family FPGAs
Table 2-13 • Summary of I/O Output Buffer Power (Per Pin) – Default I/O Software Settings 1
Applicable to Standard I/O Banks
CLOAD (pF)
VCCI (V)
Static Power
PDC3 (mW) 2
Dynamic Power
PAC10 (µW/MHz) 3
3.3 V LVTTL / 3.3 V LVCMOS
35
3.3
–
431.08
4
35
3.3
–
431.08
2.5 V LVCMOS
35
2.5
–
247.36
1.8 V LVCMOS
35
1.8
–
128.46
1.5 V LVCMOS (JESD8-11)
35
1.5
–
89.46
Single-Ended
3.3 V LVCMOS Wide Range
Notes:
1.
2.
3.
4.
Dynamic power consumption is given for standard load and software default drive strength and output slew.
PDC3 is the static power (where applicable) measured on VCCI.
PAC10 is the total dynamic power measured on VCC and VCCI.
All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
R ev i si o n 1 8
2-10
ProASIC3 DC and Switching Characteristics
Power Consumption of Various Internal Resources
Table 2-14 • Different Components Contributing to Dynamic Power Consumption in ProASIC3 Devices
A3P015
A3P030
A3P060
A3P125
A3P250
A3P400
Definition
A3P600
Parameter
A3P1000
Device Specific Dynamic Contributions
(µW/MHz)
PAC1
Clock contribution of a Global Rib
14.50 12.80 12.80 11.00 11.00 9.30
9.30 9.30
PAC2
Clock contribution of a Global Spine
2.48
0.41 0.41
PAC3
Clock contribution of a VersaTile row
0.81
PAC4
Clock contribution of a VersaTile used as a
sequential module
0.12
PAC5
First contribution of a VersaTile used as a
sequential module
0.07
PAC6
Second contribution of a VersaTile used as a
sequential module
0.29
PAC7
Contribution of a VersaTile used as a
combinatorial Module
0.29
PAC8
Average contribution of a routing net
0.70
PAC9
Contribution of an I/O input pin (standard
dependent)
See Table 2-8 on page 2-7 through
Table 2-10 on page 2-8.
PAC10
Contribution of an I/O output pin (standard
dependent)
See Table 2-11 on page 2-9 through
Table 2-13 on page 2-10.
PAC11
Average contribution of a RAM block during a
read operation
25.00
PAC12
Average contribution of a RAM block during a
write operation
30.00
PAC13
Dynamic contribution for PLL
2.60
1.85
1.35
1.58
0.81
0.81
Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi Power
spreadsheet calculator or SmartPower tool in Libero SoC software.
2 -1 1
R evi s i o n 18
ProASIC3 Flash Family FPGAs
Table 2-15 • Different Components Contributing to the Static Power Consumption in ProASIC3 Devices
PDC1
Array static power in Active mode
PDC2
I/O input pin static power (standard-dependent)
See Table 2-8 on page 2-7 through
Table 2-10 on page 2-8.
PDC3
I/O output pin static power (standard-dependent)
See Table 2-11 on page 2-9 through
Table 2-13 on page 2-10.
PDC4
Static PLL contribution
PDC5
Bank quiescent power (VCCI-dependent)
A3P015
A3P030
A3P060
A3P125
A3P250
A3P600
Parameter
A3P400
Device Specific Static Power (mW)
A3P1000
Definition
See Table 2-7 on page 2-7.
2.55 mW
See Table 2-7 on page 2-7.
Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi Power
spreadsheet calculator or SmartPower tool in Libero SoC software.
Power Calculation Methodology
This section describes a simplified method to estimate power consumption of an application. For more accurate and
detailed power estimations, use the SmartPower tool in Libero SoC software.
The power calculation methodology described below uses the following variables:
•
The number of PLLs as well as the number and the frequency of each output clock generated
•
The number of combinatorial and sequential cells used in the design
•
The internal clock frequencies
•
The number and the standard of I/O pins used in the design
•
The number of RAM blocks used in the design
•
Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-16 on page 2-14.
•
Enable rates of output buffers—guidelines are provided for typical applications in Table 2-17 on page 2-14.
•
Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-17 on
page 2-14. The calculation should be repeated for each clock domain defined in the design.
Methodology
Total Power Consumption—PTOTAL
PTOTAL = PSTAT + PDYN
PSTAT is the total static power consumption.
PDYN is the total dynamic power consumption.
Total Static Power Consumption—PSTAT
PSTAT = PDC1 + NINPUTS* PDC2 + NOUTPUTS* PDC3
NINPUTS is the number of I/O input buffers used in the design.
NOUTPUTS is the number of I/O output buffers used in the design.
Total Dynamic Power Consumption—PDYN
PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL
Global Clock Contribution—PCLOCK
PCLOCK = (PAC1 + NSPINE*PAC2 + NROW*PAC3 + NS-CELL* PAC4) * FCLK
NSPINE is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture"
section of the Global Resources chapter in the ProASIC3 FPGA Fabric User's Guide.
NROW is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section
of the Global Resources chapter in the ProASIC3 FPGA Fabric User's Guide.
R ev i si o n 1 8
2-12
ProASIC3 DC and Switching Characteristics
FCLK is the global clock signal frequency.
NS-CELL is the number of VersaTiles used as sequential modules in the design.
PAC1, PAC2, PAC3, and PAC4 are device-dependent.
Sequential Cells Contribution—PS-CELL
PS-CELL = NS-CELL * (PAC5 + 1 / 2 * PAC6) * FCLK
NS-CELL is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is
used, it should be accounted for as 1.
1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on page 2-14.
FCLK is the global clock signal frequency.
Combinatorial Cells Contribution—PC-CELL
PC-CELL = NC-CELL* 1 / 2 * PAC7 * FCLK
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.
1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on page 2-14.
FCLK is the global clock signal frequency.
Routing Net Contribution—PNET
PNET = (NS-CELL + NC-CELL) * 1 / 2 * PAC8 * FCLK
NS-CELL is the number of VersaTiles used as sequential modules in the design.
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.
1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on page 2-14.
FCLK is the global clock signal frequency.
I/O Input Buffer Contribution—PINPUTS
PINPUTS = NINPUTS * 2 / 2 * PAC9 * FCLK
NINPUTS is the number of I/O input buffers used in the design.
2 is the I/O buffer toggle rate—guidelines are provided in Table 2-16 on page 2-14.
FCLK is the global clock signal frequency.
I/O Output Buffer Contribution—POUTPUTS
POUTPUTS = NOUTPUTS * 2 / 2 * 1 * PAC10 * FCLK
NOUTPUTS is the number of I/O output buffers used in the design.
2 is the I/O buffer toggle rate—guidelines are provided in Table 2-16 on page 2-14.
1 is the I/O buffer enable rate—guidelines are provided in Table 2-17 on page 2-14.
FCLK is the global clock signal frequency.
2 -1 3
R evi s i o n 18
ProASIC3 Flash Family FPGAs
RAM Contribution—PMEMORY
PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * 2 + PAC12 * NBLOCK * FWRITE-CLOCK * 3
NBLOCKS is the number of RAM blocks used in the design.
FREAD-CLOCK is the memory read clock frequency.
2 is the RAM enable rate for read operations.
FWRITE-CLOCK is the memory write clock frequency.
3 is the RAM enable rate for write operations—guidelines are provided in Table 2-17 on page 2-14.
PLL Contribution—PPLL
PPLL = PDC4 + PAC13 *FCLKOUT
FCLKOUT is the output clock frequency.1
Guidelines
Toggle Rate Definition
A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a
net is 100%, this means that this net switches at half the clock frequency. Below are some examples:
•
The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the clock
frequency.
•
The average toggle rate of an 8-bit counter is 25%:
–
Bit 0 (LSB) = 100%
–
Bit 1
= 50%
–
Bit 2
= 25%
–
…
–
Bit 7 (MSB) = 0.78125%
–
Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8
Enable Rate Definition
Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate
output buffers are used, the enable rate should be 100%.
Table 2-16 • Toggle Rate Guidelines Recommended for Power Calculation
Component
1
2
Definition
Guideline
Toggle rate of VersaTile outputs
10%
I/O buffer toggle rate
10%
Table 2-17 • Enable Rate Guidelines Recommended for Power Calculation
Component
1
2
3
1.
Definition
Guideline
I/O output buffer enable rate
100%
RAM enable rate for read operations
12.5%
RAM enable rate for write operations
12.5%
The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the PLL, and the
frequency of each output clock. If a PLL is used to generate more than one output clock, include each output clock in the formula by
adding its corresponding contribution (PAC14 * FCLKOUT product) to the total PLL contribution.
R ev i si o n 1 8
2-14
ProASIC3 DC and Switching Characteristics
User I/O Characteristics
Timing Model
I/O Module
(Non-Registered)
Combinational Cell
Combinational Cell
Y
LVPECL (Applicable to
Advanced I/O Banks Only)L
Y
tPD = 0.56 ns
tPD = 0.49 ns
tDP = 1.34 ns
I/O Module
(Non-Registered)
Combinational Cell
Y
LVTTL Output drive strength = 12 mA
High slew rate
tDP = 2.64 ns (Advanced I/O Banks)
tPD = 0.87 ns
I/O Module
(Non-Registered)
Combinational Cell
I/O Module
(Registered)
Y
LVTTL Output drive strength = 8 mA
High slew rate
tDP = 3.66 ns (Advanced I/O Banks)
tPY = 1.05 ns
LVPECL
(Applicable
to Advanced
I/O Banks only)
D
tPD = 0.47 ns
Q
I/O Module
(Non-Registered)
Combinational Cell
Y
tICLKQ = 0.24 ns
tISUD = 0.26 ns
LVCMOS 1.5 V Output drive strength = 4 mA
High slew rate
tDP = 3.97 ns (Advanced I/O Banks)
tPD = 0.47 ns
Input LVTTL
Clock
Register Cell
tPY = 0.76 ns (Advanced I/O Banks)
D
Y
Q
I/O Module
(Non-Registered)
LVDS,
BLVDS,
M-LVDS
(Applicable for
Advanced I/O
Banks only)
Figure 2-3 •
2 -1 5
D
Q
D
tPD = 0.47 ns
tCLKQ = 0.55 ns
tSUD = 0.43 ns
tPY = 1.20 ns
I/O Module
(Registered)
Combinational Cell Register Cell
Q
LVTTL 3.3 V Output drive
strength = 12 mA High slew rate
tDP = 2.64 ns
(Advanced I/O Banks)
tCLKQ = 0.55 ns
tSUD = 0.43 ns
tOCLKQ = 0.59 ns
tOSUD = 0.31 ns
Input LVTTL
Clock
Input LVTTL
Clock
tPY = 0.76 ns
(Advanced I/O Banks)
tPY = 0.76 ns
(Advanced I/O Banks)
Timing Model
Operating Conditions: –2 Speed, Commercial Temperature Range (TJ = 70°C), Worst Case
VCC = 1.425 V
R evi s i o n 18
ProASIC3 Flash Family FPGAs
tPY
tDIN
D
PAD
Q
DIN
Y
CLK
tPY = MAX(tPY(R), tPY(F))
tDIN = MAX(tDIN(R), tDIN(F))
To Array
I/O Interface
VIH
PAD
Vtrip
Vtrip
VIL
VCC
50%
50%
Y
GND
tPY
(F)
tPY
(R)
VCC
50%
DIN
GND
tDIN
(R)
Figure 2-4 •
50%
tDIN
(F)
Input Buffer Timing Model and Delays (Example)
R ev i si o n 1 8
2-16
ProASIC3 DC and Switching Characteristics
tDOUT
tDP
D Q
D
PAD
DOUT
Std
Load
CLK
From Array
tDP = MAX(tDP(R), tDP(F))
tDOUT = MAX(tDOUT(R), tDOUT(F))
I/O Interface
tDOUT
(R)
D
50%
tDOUT
VCC
(F)
50%
0V
VCC
DOUT
50%
50%
0V
VOH
Vtrip
Vtrip
VOL
PAD
tDP
(R)
Figure 2-5 •
2 -1 7
Output Buffer Model and Delays (Example)
R evi s i o n 18
tDP
(F)
ProASIC3 Flash Family FPGAs
tEOUT
D
Q
CLK
E
tZL, tZH, tHZ, tLZ, tZLS, tZHS
EOUT
D
Q
PAD
DOUT
CLK
D
tEOUT = MAX(tEOUT(r), tEOUT(f))
I/O Interface
VCC
D
VCC
50%
tEOUT (F)
50%
E
tEOUT (R)
VCC
50%
EOUT
tZL
PAD
50%
50%
tHZ
Vtrip
tZH
50%
tLZ
VCCI
90% VCCI
Vtrip
VOL
10% VCCI
VCC
D
VCC
E
50%
tEOUT (R)
50%
tEOUT (F)
VCC
EOUT
PAD
50%
50%
tZLS
VOH
Vtrip
Figure 2-6 •
50%
tZHS
Vtrip
VOL
Tristate Output Buffer Timing Model and Delays (Example)
R ev i si o n 1 8
2-18
ProASIC3 DC and Switching Characteristics
Overview of I/O Performance
Summary of I/O DC Input and Output Levels – Default I/O Software Settings
Table 2-18 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and
Industrial Conditions—Software Default Settings
Applicable to Advanced I/O Banks
Equiv.
Software
Default
Drive
Drive Strength Slew Min
I/O Standard Strength Option2 Rate V
VIL
VIH
VOL
VOH
Max
V
Min
V
Max
V
Max
V
Min
V
IOL1 IOH1
mA mA
3.3 V LVTTL /
3.3 V
LVCMOS
12 mA
12 mA
High –0.3
0.8
2
3.6
0.4
2.4
12
12
3.3 V
LVCMOS
Wide Range3
100 µA
12 mA
High –0.3
0.8
2
3.6
0.2
VCCI – 0.2
0.1
0.1
2.5 V
LVCMOS
12 mA
12 mA
High –0.3
0.7
1.7
2.7
0.7
1.7
12
12
1.8 V
LVCMOS
12 mA
12 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 1.9
0.45
VCCI – 0.45
12
12
1.5 V
LVCMOS
12 mA
12 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 1.6 0.25 * VCCI 0.75 * VCCI
12
12
3.3 V PCI
3.3 V PCI-X
Per PCI specifications
Per PCI-X specifications
Notes:
1. Currents are measured at 85°C junction temperature.
2. 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will NOT operate at the
equivalent software default drive strength. These values are for Normal Ranges ONLY.
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
2 -1 9
R evi s i o n 18
ProASIC3 Flash Family FPGAs
Table 2-19 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and
Industrial Conditions—Software Default Settings
Applicable to Standard Plus I/O Banks
Equiv.
Software
Default
Drive
Drive Strength Slew Min
I/O Standard Strength Option2 Rate
V
VIL
VIH
VOL
VOH
Max
V
Min
V
Max
V
Max
V
Min
V
2.4
IOL1 IOH1
mA mA
3.3 V LVTTL / 12 mA
3.3 V
LVCMOS
12 mA
High –0.3
0.8
2
3.6
0.4
100 µA
3.3 V
LVCMOS
Wide Range3
12 mA
High –0.3
0.8
2
3.6
0.2
2.5 V
LVCMOS
12 mA
12 mA
High –0.3
0.7
1.7
2.7
0.7
1.7
12
12
1.8 V
LVCMOS
8 mA
8 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 1.9
0.45
VCCI –
0.45
8
8
1.5 V
LVCMOS
4 mA
4 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 1.6 0.25 * VCCI 0.75 * VCCI
4
4
3.3 V PCI
3.3 V PCI-X
12
12
VCCI – 0.2 0.1
0.1
Per PCI specifications
Per PCI-X specifications
Notes:
1. Currents are measured at 85°C junction temperature.
2. 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will NOT operate at the
equivalent software default drive strength. These values are for Normal Ranges ONLY.
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
R ev i si o n 1 8
2-20
ProASIC3 DC and Switching Characteristics
Table 2-20 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and
Industrial Conditions—Software Default Settings
Applicable to Standard I/O Banks
Equiv.
Software
Default
Drive
Drive Strength Slew Min
I/O Standard Strength Option2 Rate V
3.3 V LVTTL /
3.3 V
LVCMOS
8 mA
VIL
VIH
VOL
VOH
Max
V
Min
V
Max
V
Max
V
Min
V
IOL1 IOH1
mA mA
8 mA
High –0.3
0.8
2
3.6
0.4
2.4
8
8
100 µA
3.3 V
LVCMOS
Wide Range3
8 mA
High –0.3
0.8
2
3.6
0.2
VCCI – 0.2
0.1
0.1
2.5 V
LVCMOS
8 mA
8 mA
High –0.3
0.7
1.7
2.7
0.7
1.7
8
8
1.8 V
LVCMOS
4 mA
4 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 3.6
0.45
VCCI – 0.45
4
4
1.5 V
LVCMOS
2 mA
2 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 3.6
0.25 * VCCI 0.75 * VCCI
2
2
Notes:
1. Currents are measured at 85°C junction temperature.
2. 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will NOT operate at the
equivalent software default drive strength. These values are for Normal Ranges ONLY.
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
Table 2-21 • Summary of Maximum and Minimum DC Input Levels
Applicable to Commercial and Industrial Conditions
Commercial1
Industrial2
IIL3
IIH4
IIL3
IIH4
DC I/O Standards
µA
µA
µA
µA
3.3 V LVTTL / 3.3 V LVCMOS
10
10
15
15
3.3 V LVCMOS Wide Range
10
10
15
15
2.5 V LVCMOS
10
10
15
15
1.8 V LVCMOS
10
10
15
15
1.5 V LVCMOS
10
10
15
15
3.3 V PCI
10
10
15
15
3.3 V PCI-X
10
10
15
15
Notes:
1. Commercial range (0°C < TA < 70°C)
2. Industrial range (–40°C < TA < 85°C)
3. IIL is the input leakage current per I/O pin over recommended operation conditions where
–0.3V < VIN 20 years
0°C
> 20 years
25°C
> 20 years
70°C
5 years
85°C
2 years
100°C
0.5 years
Table 2-36 • I/O Input Rise Time, Fall Time, and Related I/O Reliability
Input Buffer
Input Rise/Fall Time (min)
Input Rise/Fall Time (max)
Reliability
LVTTL/LVCMOS
No requirement
10 ns *
20 years (110°C)
LVDS/B-LVDS/
M-LVDS/LVPECL
No requirement
10 ns *
10 years (100°C)
Note: *The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low,
then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the
rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal
integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into
input signals.
2 -3 1
R evi s i o n 18
ProASIC3 Flash Family FPGAs
Single-Ended I/O Characteristics
3.3 V LVTTL / 3.3 V LVCMOS
Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V applications. It
uses an LVTTL input buffer and push-pull output buffer.
Table 2-37 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
3.3 V LVTTL /
3.3 V LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
mA mA
Max
mA3
Max
mA3
µA4 µA4
Drive Strength
Min
V
Max
V
Min
V
Max
V
Max
V
Min
V
2 mA
–0.3
0.8
2
3.6
0.4
2.4
2
2
27
25
10
10
4 mA
–0.3
0.8
2
3.6
0.4
2.4
4
4
27
25
10
10
6 mA
–0.3
0.8
2
3.6
0.4
2.4
6
6
54
51
10
10
8 mA
–0.3
0.8
2
3.6
0.4
2.4
8
8
54
51
10
10
12 mA
–0.3
0.8
2
3.6
0.4
2.4
12 12
109
103
10
10
16 mA
–0.3
0.8
2
3.6
0.4
2.4
16 16
127
132
10
10
24 mA
–0.3
0.8
2
3.6
0.4
2.4
24 24
181
268
10
10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
Table 2-38 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
3.3 V LVTTL /
3.3 V LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
µA4 µA4
Drive Strength
Min
V
Max
V
Min
V
Max
V
Max
V
Min
V
mA
mA
Max
mA3
Max
mA3
2 mA
–0.3
0.8
2
3.6
0.4
2.4
2
2
27
25
10
10
4 mA
–0.3
0.8
2
3.6
0.4
2.4
4
4
27
25
10
10
6 mA
–0.3
0.8
2
3.6
0.4
2.4
6
6
54
51
10
10
8 mA
–0.3
0.8
2
3.6
0.4
2.4
8
8
54
51
10
10
12 mA
–0.3
0.8
2
3.6
0.4
2.4
12
12
109
103
10
10
16 mA
–0.3
0.8
2
3.6
0.4
2.4
16
16
109
103
10
10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
R ev i si o n 1 8
2-32
ProASIC3 DC and Switching Characteristics
Table 2-39 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard I/O Banks
3.3 V LVTTL /
3.3 V LVCMOS
VIL
VIH
Max
V
Min
V
Max
V
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
Max
V
Min
V
mA mA
Max
mA3
Max
mA3
µA4 µA4
Drive Strength
Min
V
2 mA
–0.3
0.8
2
3.6
0.4
2.4
2
2
25
27
10
10
4 mA
–0.3
0.8
2
3.6
0.4
2.4
4
4
25
27
10
10
6 mA
–0.3
0.8
2
3.6
0.4
2.4
6
6
51
54
10
10
8 mA
–0.3
0.8
2
3.6
0.4
2.4
8
8
51
54
10
10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
R = 1 kΩ
Test Point
Enable Path
Test Point
Datapath
Figure 2-7 •
35 pF
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
AC Loading
Table 2-40 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Input High (V)
Measuring Point* (V)
CLOAD (pF)
3.3
1.4
35
Note: *Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
2 -3 3
R evi s i o n 18
ProASIC3 Flash Family FPGAs
Timing Characteristics
Table 2-41 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.66
7.66
0.04
1.02
0.43
7.80
6.59
2.65
2.61
10.03
8.82
ns
–1
0.56
6.51
0.04
0.86
0.36
6.63
5.60
2.25
2.22
8.54
7.51
ns
–2
0.49
5.72
0.03
0.76
0.32
5.82
4.92
1.98
1.95
7.49
6.59
ns
Std.
0.66
7.66
0.04
1.02
0.43
7.80
6.59
2.65
2.61
10.03
8.82
ns
–1
0.56
6.51
0.04
0.86
0.36
6.63
5.60
2.25
2.22
8.54
7.51
ns
–2
0.49
5.72
0.03
0.76
0.32
5.82
4.92
1.98
1.95
7.49
6.59
ns
Std.
0.66
4.91
0.04
1.02
0.43
5.00
4.07
2.99
3.20
7.23
6.31
ns
–1
0.56
4.17
0.04
0.86
0.36
4.25
3.46
2.54
2.73
6.15
5.36
ns
–2
0.49
3.66
0.03
0.76
0.32
3.73
3.04
2.23
2.39
5.40
4.71
ns
Std.
0.66
4.91
0.04
1.02
0.43
5.00
4.07
2.99
3.20
7.23
6.31
ns
–1
0.56
4.17
0.04
0.86
0.36
4.25
3.46
2.54
2.73
6.15
5.36
ns
–2
0.49
3.66
0.03
0.76
0.32
3.73
3.04
2.23
2.39
5.40
4.71
ns
Std.
0.66
3.53
0.04
1.02
0.43
3.60
2.82
3.21
3.58
5.83
5.06
ns
–1
0.56
3.00
0.04
0.86
0.36
3.06
2.40
2.73
3.05
4.96
4.30
ns
–2
0.49
2.64
0.03
0.76
0.32
2.69
2.11
2.40
2.68
4.36
3.78
ns
Std.
0.66
3.33
0.04
1.02
0.43
3.39
2.56
3.26
3.68
5.63
4.80
ns
–1
0.56
2.83
0.04
0.86
0.36
2.89
2.18
2.77
3.13
4.79
4.08
ns
–2
0.49
2.49
0.03
0.76
0.32
2.53
1.91
2.44
2.75
4.20
3.58
ns
Std.
0.66
3.08
0.04
1.02
0.43
3.13
2.12
3.32
4.06
5.37
4.35
ns
–1
0.56
2.62
0.04
0.86
0.36
2.66
1.80
2.83
3.45
4.57
3.70
ns
–2
0.49
2.30
0.03
0.76
0.32
2.34
1.58
2.48
3.03
4.01
3.25
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
R ev i si o n 1 8
2-34
ProASIC3 DC and Switching Characteristics
Table 2-42 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.66
10.26
0.04
1.02
0.43
10.45
8.90
2.64
2.46
12.68
11.13
ns
–1
0.56
8.72
0.04
0.86
0.36
8.89
7.57
2.25
2.09
10.79
9.47
ns
–2
0.49
7.66
0.03
0.76
0.32
7.80
6.64
1.98
1.83
9.47
8.31
ns
Std.
0.66
10.26
0.04
1.02
0.43
10.45
8.90
2.64
2.46
12.68
11.13
ns
–1
0.56
8.72
0.04
0.86
0.36
8.89
7.57
2.25
2.09
10.79
9.47
ns
–2
0.49
7.66
0.03
0.76
0.32
7.80
6.64
1.98
1.83
9.47
8.31
ns
Std.
0.66
7.27
0.04
1.02
0.43
7.41
6.28
2.98
3.04
9.65
8.52
ns
–1
0.56
6.19
0.04
0.86
0.36
6.30
5.35
2.54
2.59
8.20
7.25
ns
–2
0.49
5.43
0.03
0.76
0.32
5.53
4.69
2.23
2.27
7.20
6.36
ns
Std.
0.66
7.27
0.04
1.02
0.43
7.41
6.28
2.98
3.04
9.65
8.52
ns
–1
0.56
6.19
0.04
0.86
0.36
6.30
5.35
2.54
2.59
8.20
7.25
ns
–2
0.49
5.43
0.03
0.76
0.32
5.53
4.69
2.23
2.27
7.20
6.36
ns
Std.
0.66
5.58
0.04
1.02
0.43
5.68
4.87
3.21
3.42
7.92
7.11
ns
–1
0.56
4.75
0.04
0.86
0.36
4.84
4.14
2.73
2.91
6.74
6.05
ns
–2
0.49
4.17
0.03
0.76
0.32
4.24
3.64
2.39
2.55
5.91
5.31
ns
Std.
0.66
5.21
0.04
1.02
0.43
5.30
4.56
3.26
3.51
7.54
6.80
ns
–1
0.56
4.43
0.04
0.86
0.36
4.51
3.88
2.77
2.99
6.41
5.79
ns
–2
0.49
3.89
0.03
0.76
0.32
3.96
3.41
2.43
2.62
5.63
5.08
ns
Std.
0.66
4.85
0.04
1.02
0.43
4.94
4.54
3.32
3.88
7.18
6.78
ns
–1
0.56
4.13
0.04
0.86
0.36
4.20
3.87
2.82
3.30
6.10
5.77
ns
–2
0.49
3.62
0.03
0.76
0.32
3.69
3.39
2.48
2.90
5.36
5.06
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
2 -3 5
R evi s i o n 18
ProASIC3 Flash Family FPGAs
Table 2-43 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.66
7.20
0.04
1.00
0.43
7.34
6.29
2.27
2.34
9.57
8.52
ns
–1
0.56
6.13
0.04
0.85
0.36
6.24
5.35
1.93
1.99
8.14
7.25
ns
–2
0.49
5.38
0.03
0.75
0.32
5.48
4.69
1.70
1.75
7.15
6.36
ns
Std.
0.66
7.20
0.04
1.00
0.43
7.34
6.29
2.27
2.34
9.57
8.52
ns
–1
0.56
6.13
0.04
0.85
0.36
6.24
5.35
1.93
1.99
8.14
7.25
ns
–2
0.49
5.38
0.03
0.75
0.32
5.48
4.69
1.70
1.75
7.15
6.36
ns
Std.
0.66
4.50
0.04
1.00
0.43
4.58
3.82
2.58
2.88
6.82
6.05
ns
–1
0.56
3.83
0.04
0.85
0.36
3.90
3.25
2.19
2.45
5.80
5.15
ns
–2
0.49
3.36
0.03
0.75
0.32
3.42
2.85
1.92
2.15
5.09
4.52
ns
Std.
0.66
4.50
0.04
1.00
0.43
4.58
3.82
2.58
2.88
6.82
6.05
ns
–1
0.56
3.83
0.04
0.85
0.36
3.90
3.25
2.19
2.45
5.80
5.15
ns
–2
0.49
3.36
0.03
0.75
0.32
3.42
2.85
1.92
2.15
5.09
4.52
ns
Std.
0.66
3.16
0.04
1.00
0.43
3.22
2.58
2.79
3.22
5.45
4.82
ns
–1
0.56
2.69
0.04
0.85
0.36
2.74
2.20
2.37
2.74
4.64
4.10
ns
–2
0.49
2.36
0.03
0.75
0.32
2.40
1.93
2.08
2.41
4.07
3.60
ns
Std.
0.66
3.16
0.04
1.00
0.43
3.22
2.58
2.79
3.22
5.45
4.82
ns
–1
0.56
2.69
0.04
0.85
0.36
2.74
2.20
2.37
2.74
4.64
4.10
ns
–2
0.49
2.36
0.03
0.75
0.32
2.40
1.93
2.08
2.41
4.07
3.60
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
R ev i si o n 1 8
2-36
ProASIC3 DC and Switching Characteristics
Table 2-44 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.66
9.68
0.04
1.00
0.43
9.86
8.42
2.28
2.21
12.09
10.66
ns
–1
0.56
8.23
0.04
0.85
0.36
8.39
7.17
1.94
1.88
10.29
9.07
ns
–2
0.49
7.23
0.03
0.75
0.32
7.36
6.29
1.70
1.65
9.03
7.96
ns
Std.
0.66
9.68
0.04
1.00
0.43
9.86
8.42
2.28
2.21
12.09
10.66
ns
–1
0.56
8.23
0.04
0.85
0.36
8.39
7.17
1.94
1.88
10.29
9.07
ns
–2
0.49
7.23
0.03
0.75
0.32
7.36
6.29
1.70
1.65
9.03
7.96
ns
Std.
0.66
6.70
0.04
1.00
0.43
6.82
5.89
2.58
2.74
9.06
8.12
ns
–1
0.56
5.70
0.04
0.85
0.36
5.80
5.01
2.20
2.33
7.71
6.91
ns
–2
0.49
5.00
0.03
0.75
0.32
5.10
4.40
1.93
2.05
6.76
6.06
ns
Std.
0.66
6.70
0.04
1.00
0.43
6.82
5.89
2.58
2.74
9.06
8.12
ns
–1
0.56
5.70
0.04
0.85
0.36
5.80
5.01
2.20
2.33
7.71
6.91
ns
–2
0.49
5.00
0.03
0.75
0.32
5.10
4.40
1.93
2.05
6.76
6.06
ns
Std.
0.66
5.05
0.04
1.00
0.43
5.14
4.51
2.79
3.08
7.38
6.75
ns
–1
0.56
4.29
0.04
0.85
0.36
4.37
3.84
2.38
2.62
6.28
5.74
ns
–2
0.49
3.77
0.03
0.75
0.32
3.84
3.37
2.09
2.30
5.51
5.04
ns
Std.
0.66
5.05
0.04
1.00
0.43
5.14
4.51
2.79
3.08
7.38
6.75
ns
–1
0.56
4.29
0.04
0.85
0.36
4.37
3.84
2.38
2.62
6.28
5.74
ns
–2
0.49
3.77
0.03
0.75
0.32
3.84
3.37
2.09
2.30
5.51
5.04
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
Table 2-45 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
2 -3 7
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
Std.
0.66
7.07
0.04
1.00
0.43
7.20
6.23
2.07
2.15
ns
–1
0.56
6.01
0.04
0.85
0.36
6.12
5.30
1.76
1.83
ns
–2
0.49
5.28
0.03
0.75
0.32
5.37
4.65
1.55
1.60
ns
Std.
0.66
7.07
0.04
1.00
0.43
7.20
6.23
2.07
2.15
ns
–1
0.56
6.01
0.04
0.85
0.36
6.12
5.30
1.76
1.83
ns
–2
0.49
5.28
0.03
0.75
0.32
5.37
4.65
1.55
1.60
ns
Std.
0.66
4.41
0.04
1.00
0.43
4.49
3.75
2.39
2.69
ns
–1
0.56
3.75
0.04
0.85
0.36
3.82
3.19
2.04
2.29
ns
–2
0.49
3.29
0.03
0.75
0.32
3.36
2.80
1.79
2.01
ns
Std.
0.66
4.41
0.04
1.00
0.43
4.49
3.75
2.39
2.69
ns
–1
0.56
3.75
0.04
0.85
0.36
3.82
3.19
2.04
2.29
ns
R evi s i o n 18
ProASIC3 Flash Family FPGAs
Table 2-45 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard I/O Banks
Drive
Strength
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
–2
0.49
3.29
0.03
0.75
0.32
3.36
2.80
1.79
2.01
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
Table 2-46 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
Std.
0.66
9.46
0.04
1.00
0.43
9.64
8.54
2.07
2.04
ns
–1
0.56
8.05
0.04
0.85
0.36
8.20
7.27
1.76
1.73
ns
–2
0.49
7.07
0.03
0.75
0.32
7.20
6.38
1.55
1.52
ns
Std.
0.66
9.46
0.04
1.00
0.43
9.64
8.54
2.07
2.04
ns
–1
0.56
8.05
0.04
0.85
0.36
8.20
7.27
1.76
1.73
ns
–2
0.49
7.07
0.03
0.75
0.32
7.20
6.38
1.55
1.52
ns
Std.
0.66
6.57
0.04
1.00
0.43
6.69
5.98
2.40
2.57
ns
–1
0.56
5.59
0.04
0.85
0.36
5.69
5.09
2.04
2.19
ns
–2
0.49
4.91
0.03
0.75
0.32
5.00
4.47
1.79
1.92
ns
Std.
0.66
6.57
0.04
1.00
0.43
6.69
5.98
2.40
2.57
ns
–1
0.56
5.59
0.04
0.85
0.36
5.69
5.09
2.04
2.19
ns
–2
0.49
4.91
0.03
0.75
0.32
5.00
4.47
1.79
1.92
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
R ev i si o n 1 8
2-38
ProASIC3 DC and Switching Characteristics
3.3 V LVCMOS Wide Range
Table 2-47 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
3.3 V
Equiv.
LVCMOS
Software
Wide Range Default
Drive
Drive
Strength
Strength
Option1
Min
V
Max
V
Min
V
100 µA
2 mA
–0.3
0.8
100 µA
4 mA
–0.3
100 µA
6 mA
100 µA
100 µA
100 µA
100 µA
IOSL
IOSH
IIL2 IIH3
Max
mA4
Max
mA4
µA5 µA5
VDD – 0.2 100 100
25
27
10 10
0.2
VDD – 0.2 100 100
25
27
10 10
3.6
0.2
VDD – 0.2 100 100
51
54
10 10
2
3.6
0.2
VDD – 0.2 100 100
51
54
10 10
2
3.6
0.2
VDD – 0.2 100 100
103
109
10 10
0.8
2
3.6
0.2
VDD – 0.2 100 100
132
127
10 10
0.8
2
3.6
0.2
VDD – 0.2 100 100
268
181
10 10
VIL
VIH
VOL
VOH
Max
V
Max
V
Min
V
2
3.6
0.2
0.8
2
3.6
–0.3
0.8
2
8 mA
–0.3
0.8
12 mA
–0.3
0.8
16 mA
–0.3
24 mA
–0.3
IOL IOH
µA
µA
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
4. Currents are measured at 85°C junction temperature.
5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
6. Software default selection highlighted in gray.
Table 2-48 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
3.3 V LVCMOS
Wide Range
Equiv.
Software
Default
Drive
Strength
Option1
Min
V
Max
V
Min
V
100 µA
2 mA
–0.3
0.8
100 µA
4 mA
–0.3
100 µA
6 mA
–0.3
100 µA
8 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2
100 100
51
54
10 10
100 µA
12 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2
100 100
103
109
10 10
100 A
16 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2
100 100
103
109
10 10
Drive Strength
VOL
VOH
IOL IOH
IOSL
IOSH
IIL2 IIH3
Max
V
Max
V
Min
V
µA
Max
mA4
Max
mA4
µA5 µA5
2
3.6
0.2
VDD – 0.2
100 100
25
27
10 10
0.8
2
3.6
0.2
VDD – 0.2
100 100
25
27
10 10
0.8
2
3.6
0.2
VDD – 0.2
100 100
51
54
10 10
VIL
VIH
µA
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
4. Currents are measured at 85°C junction temperature.
5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
6. Software default selection highlighted in gray.
2 -3 9
R evi s i o n 18
ProASIC3 Flash Family FPGAs
Table 2-49 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard I/O Banks
3.3 V
LVCMOS
Wide Range
Drive
Strength
Equiv.
Software
VIL
Default
Drive
Max
Strength Min
V
V
Option1
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL2 IIH3
Min
V
µA µA
Max
mA4
Max
mA4
µA5 µA5
Min
V
Max
V
Max
V
100 µA
2 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100 100
25
27
10 10
100 µA
4 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100 100
25
27
10 10
100 µA
6 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100 100
51
54
10 10
100 µA
8 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100 100
51
54
10 10
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
4. Currents are measured at 85°C junction temperature.
5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
6. Software default selection highlighted in gray.
R ev i si o n 1 8
2-40
ProASIC3 DC and Switching Characteristics
Timing Characteristics
Table 2-50 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Drive
Strength
100 µA
100 µA
100 µA
100 µA
100 µA
100 µA
Equiv.
Software
Default
Drive
Strength
Option1
Speed
Grade
tDOUT
4 mA
Std.
0.60
11.84 0.04 1.02
0.43
11.84 10.00 4.10 4.04 15.23 13.40
ns
–1
0.51
10.07 0.04 0.86
0.36
10.07
8.51
3.48 3.44 12.96 11.40
ns
–2
0.45
8.84
0.03 0.76
0.32
8.84
7.47
3.06 3.02 11.38 10.00
ns
Std.
0.60
7.59
0.04 1.02
0.43
7.59
6.18
4.62 4.95 10.98
9.57
ns
–1
0.51
6.45
0.04 0.86
0.36
6.45
5.25
3.93 4.21
9.34
8.14
ns
–2
0.45
5.67
0.03 0.76
0.32
5.67
4.61
3.45 3.70
8.20
7.15
ns
Std.
0.60
7.59
0.04 1.02
0.43
7.59
6.18
4.62 4.95 10.98
9.57
ns
–1
0.51
6.45
0.04 0.86
0.36
6.45
5.25
3.93 4.21
9.34
8.14
ns
–2
0.45
5.67
0.03 0.76
0.32
5.67
4.61
3.45 3.70
8.20
7.15
ns
Std.
0.60
5.46
0.04 1.02
0.43
5.46
4.29
4.97 5.54
8.86
7.68
ns
–1
0.51
4.65
0.04 0.86
0.36
4.65
3.65
4.22 4.71
7.53
6.54
ns
–2
0.45
4.08
0.03 0.76
0.32
4.08
3.20
3.71 4.14
6.61
5.74
ns
Std.
0.60
5.15
0.04 1.02
0.43
5.15
3.89
5.04 5.69
8.55
7.29
ns
–1
0.51
4.38
0.04 0.86
0.36
4.38
3.31
4.29 4.84
7.27
6.20
ns
–2
0.45
3.85
0.03 0.76
0.32
3.85
2.91
3.77 4.25
6.38
5.44
ns
Std.
0.60
4.75
0.04 1.02
0.43
4.75
3.22
5.14 6.28
8.15
6.61
ns
–1
0.51
4.04
0.04 0.86
0.36
4.04
2.74
4.37 5.34
6.93
5.62
ns
–2
0.45
3.55
0.03 0.76
0.32
3.55
2.40
3.84 4.69
6.09
4.94
ns
6 mA
8 mA
12 mA
16 mA
24 mA
tDP
tDIN
tPY tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS Units
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. Software default selection highlighted in gray.
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
2 -4 1
R evi s i o n 18
ProASIC3 Flash Family FPGAs
Table 2-51 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Drive
Strength
100 µA
100 µA
100 µA
100 µA
100 µA
100 µA
Equiv.
Software
Default
Drive
Strength
Option1
Speed
Grade
tDOUT
2 mA
Std.
0.60
15.86 0.04 1.54
0.43
15.86 13.51 4.09 3.80 19.25 16.90
ns
–1
0.51
13.49 0.04 1.31
0.36
13.49 11.49 3.48 3.23 16.38 14.38
ns
–2
0.45
11.84 0.03 1.15
0.32
11.84 10.09 3.05 2.84 14.38 12.62
ns
Std.
0.60
11.25 0.04 1.54
0.43
11.25
9.54
4.61 4.70 14.64 12.93
ns
–1
0.51
9.57
0.04 1.31
0.36
9.57
8.11
3.92 4.00 12.46 11.00
ns
–2
0.45
8.40
0.03 1.15
0.32
8.40
7.12
3.44 3.51 10.93
9.66
ns
Std.
0.60
11.25 0.04 1.54
0.43
11.25
9.54
4.61 4.70 14.64 12.93
ns
–1
0.51
9.57
0.04 1.31
0.36
9.57
8.11
3.92 4.00 12.46 11.00
ns
–2
0.45
8.40
0.03 1.15
0.32
8.40
7.12
3.44 3.51 10.93
9.66
ns
Std.
0.60
8.63
0.04 1.54
0.43
8.63
7.39
4.96 5.28 12.02 10.79
ns
–1
0.51
7.34
0.04 1.31
0.36
7.34
6.29
4.22 4.49 10.23
9.18
ns
–2
0.45
6.44
0.03 1.15
0.32
6.44
5.52
3.70 3.94
8.06
ns
Std.
0.60
8.05
0.04 1.54
0.43
8.05
6.93
5.03 5.43 11.44 10.32
ns
–1
0.51
6.85
0.04 1.31
0.36
6.85
5.90
4.28 4.62
9.74
8.78
ns
–2
0.45
6.01
0.03 1.15
0.32
6.01
5.18
3.76 4.06
8.55
7.71
ns
Std.
0.60
7.50
0.04 1.54
0.43
7.50
6.90
5.13 6.00 10.89 10.29
ns
–1
0.51
6.38
0.04 1.31
0.36
6.38
5.87
4.36 5.11
9.27
8.76
ns
–2
0.45
5.60
0.03 1.15
0.32
5.60
5.15
3.83 4.48
8.13
7.69
ns
4 mA
6 mA
8 mA
16 mA
24 mA
tDP
tDIN
tPY tEOUT
tZL
tZH
tLZ
tHZ
tZLS
8.98
tZHS Units
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
R ev i si o n 1 8
2-42
ProASIC3 DC and Switching Characteristics
Table 2-52 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Drive
Strength
100 µA
100 µA
100 µA
100 µA
100 µA
Equiv.
Software
Default
Drive
Strength
Option1
Speed
Grade
tDOUT
2 mA
Std.
0.60
11.14 0.04 1.52
–1
0.51
9.48
–2
0.45
Std.
4 mA
6 mA
8 mA
16 mA
tDP
tDIN
tPY tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS Units
0.43
11.14
9.54
3.51 3.61 14.53 12.94
ns
0.04 1.29
0.36
9.48
8.12
2.99 3.07 12.36 11.00
ns
8.32
0.03 1.14
0.32
8.32
7.13
2.62 2.70 10.85
9.66
ns
0.60
6.96
0.04 1.52
0.43
6.96
5.79
3.99 4.45 10.35
9.19
ns
–1
0.51
5.92
0.04 1.29
0.36
5.92
4.93
3.39 3.78
8.81
7.82
ns
–2
0.45
5.20
0.03 1.14
0.32
5.20
4.33
2.98 3.32
7.73
6.86
ns
Std.
0.60
6.96
0.04 1.52
0.43
6.96
5.79
3.99 4.45 10.35
9.19
ns
–1
0.51
5.92
0.04 1.29
0.36
5.92
4.93
3.39 3.78
8.81
7.82
ns
–2
0.45
5.20
0.03 1.14
0.32
5.20
4.33
2.98 3.32
7.73
6.86
ns
Std.
0.60
4.89
0.04 1.52
0.43
4.89
3.92
4.31 4.98
8.28
7.32
ns
–1
0.51
4.16
0.04 1.29
0.36
4.16
3.34
3.67 4.24
7.04
6.22
ns
–2
0.45
3.65
0.03 1.14
0.32
3.65
2.93
3.22 3.72
6.18
5.46
ns
Std.
0.60
4.89
0.04 1.52
0.43
4.89
3.92
4.31 4.98
8.28
7.32
ns
–1
0.51
4.16
0.04 1.29
0.36
4.16
3.34
3.67 4.24
7.04
6.22
ns
–2
0.45
3.65
0.03 1.14
0.32
3.65
2.93
3.22 3.72
6.18
5.46
ns
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. Software default selection highlighted in gray.
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
2 -4 3
R evi s i o n 18
ProASIC3 Flash Family FPGAs
Table 2-53 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Drive
Strength
100 µA
100 µA
100 µA
100 µA
100 µA
Equiv.
Software
Default
Drive
Strength
Option1
Speed
Grade
tDOUT
2 mA
Std.
0.60
14.97 0.04 1.52
0.43
14.97 12.79 3.52 3.41 18.36 16.18
ns
–1
0.51
12.73 0.04 1.29
0.36
12.73 10.88 2.99 2.90 15.62 13.77
ns
–2
0.45
11.18 0.03 1.14
0.32
11.18
9.55
2.63 2.55 13.71 12.08
ns
Std.
0.60
10.36 0.04 1.52
0.43
10.36
8.93
3.99 4.24 13.75 12.33
ns
–1
0.51
8.81
0.04 1.29
0.36
8.81
7.60
3.39 3.60 11.70 10.49
ns
–2
0.45
7.74
0.03 1.14
0.32
7.74
6.67
2.98 3.16 10.27
9.21
ns
Std.
0.60
10.36 0.04 1.52
0.43
10.36
8.93
3.99 4.24 13.75 12.33
ns
–1
0.51
8.81
0.04 1.29
0.36
8.81
7.60
3.39 3.60 11.70 10.49
ns
–2
0.45
7.74
0.03 1.14
0.32
7.74
6.67
2.98 3.16 10.27
9.21
ns
Std.
0.60
7.81
0.04 1.52
0.43
7.81
6.85
4.32 4.76 11.20 10.24
ns
–1
0.51
6.64
0.04 1.29
0.36
6.64
5.82
3.67 4.05
9.53
8.71
ns
–2
0.45
5.83
0.03 1.14
0.32
5.83
5.11
3.22 3.56
8.36
7.65
ns
Std.
0.60
7.81
0.04 1.52
0.43
7.81
6.85
4.32 4.76 11.20 10.24
ns
–1
0.51
6.64
0.04 1.29
0.36
6.64
5.82
3.67 4.05
9.53
8.71
ns
–2
0.45
5.83
0.03 1.14
0.32
5.83
5.11
3.22 3.56
8.36
7.65
ns
4 mA
6 mA
8 mA
16 mA
tDP
tDIN
tPY tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS Units
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
R ev i si o n 1 8
2-44
ProASIC3 DC and Switching Characteristics
Table 2-54 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard I/O Banks
Drive
Strength
100 µA
100 µA
100 µA
100 µA
Equiv.
Software
Default
Drive
Strength
Option1
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
2 mA
Std.
0.60
10.93
0.04
1.52
0.43
10.93
9.46
3.20
3.32
ns
–1
0.51
9.29
0.04
1.29
0.36
9.29
8.04
2.72
2.82
ns
–2
0.45
8.16
0.03
1.13
0.32
8.16
7.06
2.39
2.48
ns
Std.
0.60
10.93
0.04
1.52
0.43
10.93
9.46
3.20
3.32
ns
–1
0.51
9.29
0.04
1.29
0.36
9.29
8.04
2.72
2.82
ns
–2
0.45
8.16
0.03
1.13
0.32
8.16
7.06
2.39
2.48
ns
Std.
0.60
6.82
0.04
1.52
0.43
6.82
5.70
3.70
4.16
ns
–1
0.51
5.80
0.04
1.29
0.36
5.80
4.85
3.15
3.54
ns
–2
0.45
5.09
0.03
1.13
0.32
5.09
4.25
2.77
3.11
ns
Std.
0.60
6.82
0.04
1.52
0.43
6.82
5.70
3.70
4.16
ns
–1
0.51
5.80
0.04
1.29
0.36
5.80
4.85
3.15
3.54
ns
–2
0.45
5.09
0.03
1.13
0.32
5.09
4.25
2.77
3.11
ns
4 mA
6 mA
8 mA
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. Software default selection highlighted in gray.
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
2 -4 5
R evi s i o n 18
ProASIC3 Flash Family FPGAs
Table 2-55 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard I/O Banks
Drive
Strength
100 µA
100 µA
100 µA
100 µA
Equiv.
Software
Default
Drive
Strength
Option1
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
2 mA
Std.
0.60
14.64
0.04
1.52
0.43
14.64
12.97
3.21
3.15
ns
–1
0.51
12.45
0.04
1.29
0.36
12.45
11.04
2.73
2.68
ns
–2
0.45
10.93
0.03
1.13
0.32
10.93
9.69
2.39
2.35
ns
Std.
0.60
14.64
0.04
1.52
0.43
14.64
12.97
3.21
3.15
ns
–1
0.51
12.45
0.04
1.29
0.36
12.45
11.04
2.73
2.68
ns
–2
0.45
10.93
0.03
1.13
0.32
10.93
9.69
2.39
2.35
ns
Std.
0.60
10.16
0.04
1.52
0.43
10.16
9.08
3.71
3.98
ns
–1
0.51
8.64
0.04
1.29
0.36
8.64
7.73
3.15
3.39
ns
–2
0.45
7.58
0.03
1.13
0.32
7.58
6.78
2.77
2.97
ns
Std.
0.60
10.16
0.04
1.52
0.43
10.16
9.08
3.71
3.98
ns
–1
0.51
8.64
0.04
1.29
0.36
8.64
7.73
3.15
3.39
ns
–2
0.45
7.58
0.03
1.13
0.32
7.58
6.78
2.77
2.97
ns
4 mA
6 mA
8 mA
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
R ev i si o n 1 8
2-46
ProASIC3 DC and Switching Characteristics
2.5 V LVCMOS
Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V
applications.
Table 2-56 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
2.5 V LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
Drive Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
2 mA
–0.3
0.7
1.7
2.7
0.7
1.7
2
2
18
16
10
10
4 mA
–0.3
0.7
1.7
2.7
0.7
1.7
4
4
18
16
10
10
6 mA
–0.3
0.7
1.7
2.7
0.7
1.7
6
6
37
32
10
10
8 mA
–0.3
0.7
1.7
2.7
0.7
1.7
8
8
37
32
10
10
12 mA
–0.3
0.7
1.7
2.7
0.7
1.7
12 12
74
65
10
10
16 mA
–0.3
0.7
1.7
2.7
0.7
1.7
16 16
87
83
10
10
24 mA
–0.3
0.7
1.7
2.7
0.7
1.7
24 24
124
169
10
10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
Table 2-57 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
2.5 V LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
Drive Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
2 mA
–0.3
0.7
1.7
2.7
0.7
1.7
2
2
18
16
10
10
4 mA
–0.3
0.7
1.7
2.7
0.7
1.7
4
4
18
16
10
10
6 mA
–0.3
0.7
1.7
2.7
0.7
1.7
6
6
37
32
10
10
8 mA
–0.3
0.7
1.7
2.7
0.7
1.7
8
8
37
32
10
10
12 mA
–0.3
0.7
1.7
2.7
0.7
1.7
12
12
74
65
10
10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
2 -4 7
R evi s i o n 18
ProASIC3 Flash Family FPGAs
Table 2-58 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard I/O Banks
2.5 V LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
16
18
Drive Strength
Min.
V
Max.,
V
Min.
V
Max.
V
Max.
V
Min.
V
2 mA
–0.3
0.7
1.7
3.6
0.7
1.7
2
2
10
10
4 mA
–0.3
0.7
1.7
3.6
0.7
1.7
4
4
16
18
10
10
6 mA
–0.3
0.7
1.7
3.6
0.7
1.7
6
6
32
37
10
10
8 mA
–0.3
0.7
1.7
3.6
0.7
1.7
8
8
32
37
10
10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
R = 1 kΩ
Test Point
Enable Path
Test Point
Datapath
Figure 2-8 •
35 pF
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
AC Loading
Table 2-59 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Input High (V)
Measuring Point* (V)
CLOAD (pF)
2.5
1.2
35
Note: *Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
R ev i si o n 1 8
2-48
ProASIC3 DC and Switching Characteristics
Timing Characteristics
Table 2-60 • 2.5 V LVCMOS High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.60
8.66
0.04
1.31
0.43
7.83
8.66
2.68
2.30
10.07
10.90
ns
–1
0.51
7.37
0.04
1.11
0.36
6.66
7.37
2.28
1.96
8.56
9.27
ns
–2
0.45
6.47
0.03
0.98
0.32
5.85
6.47
2.00
1.72
7.52
8.14
ns
Std.
0.60
5.17
0.04
1.31
0.43
5.04
5.17
3.05
3.00
7.27
7.40
ns
–1
0.51
4.39
0.04
1.11
0.36
4.28
4.39
2.59
2.55
6.19
6.30
ns
–2
0.45
3.86
0.03
0.98
0.32
3.76
3.86
2.28
2.24
5.43
5.53
ns
Std.
0.60
5.17
0.04
1.31
0.43
5.04
5.17
3.05
3.00
7.27
7.40
ns
–1
0.51
4.39
0.04
1.11
0.36
4.28
4.39
2.59
2.55
6.19
6.30
ns
–2
0.45
3.86
0.03
0.98
0.32
3.76
3.86
2.28
2.24
5.43
5.53
ns
Std.
0.60
3.56
0.04
1.31
0.43
3.63
3.43
3.30
3.44
5.86
5.67
ns
–1
0.51
3.03
0.04
1.11
0.36
3.08
2.92
2.81
2.92
4.99
4.82
ns
–2
0.45
2.66
0.03
0.98
0.32
2.71
2.56
2.47
2.57
4.38
4.23
ns
Std.
0.60
3.35
0.04
1.31
0.43
3.41
3.06
3.36
3.55
5.65
5.30
ns
–1
0.51
2.85
0.04
1.11
0.36
2.90
2.60
2.86
3.02
4.81
4.51
ns
–2
0.45
2.50
0.03
0.98
0.32
2.55
2.29
2.51
2.65
4.22
3.96
ns
Std.
0.60
3.09
0.04
1.31
0.43
3.15
2.44
3.44
4.00
5.38
4.68
ns
–1
0.51
2.63
0.04
1.11
0.36
2.68
2.08
2.92
3.40
4.58
3.98
ns
–2
0.45
2.31
0.03
0.98
0.32
2.35
1.82
2.57
2.98
4.02
3.49
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
2 -4 9
R evi s i o n 18
ProASIC3 Flash Family FPGAs
Table 2-61 • 2.5 V LVCMOS Low Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.60
11.40
0.04
1.31
0.43
11.22
11.40
2.68
2.20
13.45
13.63
ns
–1
0.51
9.69
0.04
1.11
0.36
9.54
9.69
2.28
1.88
11.44
11.60
ns
–2
0.45
8.51
0.03
0.98
0.32
8.38
8.51
2.00
1.65
10.05
10.18
ns
Std.
0.60
7.96
0.04
1.31
0.43
8.11
7.81
3.05
2.89
10.34
10.05
ns
–1
0.51
6.77
0.04
1.11
0.36
6.90
6.65
2.59
2.46
8.80
8.55
ns
–2
0.45
5.94
0.03
0.98
0.32
6.05
5.84
2.28
2.16
7.72
7.50
ns
Std.
0.60
7.96
0.04
1.31
0.43
8.11
7.81
3.05
2.89
10.34
10.05
ns
–1
0.51
6.77
0.04
1.11
0.36
6.90
6.65
2.59
2.46
8.80
8.55
ns
–2
0.45
5.94
0.03
0.98
0.32
6.05
5.84
2.28
2.16
7.72
7.50
ns
Std.
0.60
6.18
0.04
1.31
0.43
6.29
5.92
3.30
3.32
8.53
8.15
ns
–1
0.51
5.26
0.04
1.11
0.36
5.35
5.03
2.81
2.83
7.26
6.94
ns
–2
0.45
4.61
0.03
0.98
0.32
4.70
4.42
2.47
2.48
6.37
6.09
ns
Std.
0.60
5.76
0.04
1.31
0.43
5.87
5.53
3.36
3.44
8.11
7.76
ns
–1
0.51
4.90
0.04
1.11
0.36
4.99
4.70
2.86
2.92
6.90
6.60
ns
–2
0.45
4.30
0.03
0.98
0.32
4.38
4.13
2.51
2.57
6.05
5.80
ns
Std.
0.60
5.51
0.04
1.31
0.43
5.50
5.51
3.43
3.87
7.74
7.74
ns
–1
0.51
4.68
0.04
1.11
0.36
4.68
4.68
2.92
3.29
6.58
6.59
ns
–2
0.45
4.11
0.03
0.98
0.32
4.11
4.11
2.56
2.89
5.78
5.78
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
R ev i si o n 1 8
2-50
ProASIC3 DC and Switching Characteristics
Table 2-62 • 2.5 V LVCMOS High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.66
8.28
0.04
1.30
0.43
7.41
8.28
2.25
2.07
9.64
10.51
ns
–1
0.56
7.04
0.04
1.10
0.36
6.30
7.04
1.92
1.76
8.20
8.94
ns
–2
0.49
6.18
0.03
0.97
0.32
5.53
6.18
1.68
1.55
7.20
7.85
ns
Std.
0.66
4.85
0.04
1.30
0.43
4.65
4.85
2.59
2.71
6.88
7.09
ns
–1
0.56
4.13
0.04
1.10
0.36
3.95
4.13
2.20
2.31
5.85
6.03
ns
–2
0.49
3.62
0.03
0.97
0.32
3.47
3.62
1.93
2.02
5.14
5.29
ns
Std.
0.66
4.85
0.04
1.30
0.43
4.65
4.85
2.59
2.71
6.88
7.09
ns
–1
0.56
4.13
0.04
1.10
0.36
3.95
4.13
2.20
2.31
5.85
6.03
ns
–2
0.49
3.62
0.03
0.97
0.32
3.47
3.62
1.93
2.02
5.14
5.29
ns
Std.
0.66
3.21
0.04
1.30
0.43
3.27
3.14
2.82
3.11
5.50
5.38
ns
–1
0.56
2.73
0.04
1.10
0.36
2.78
2.67
2.40
2.65
4.68
4.57
ns
–2
0.49
2.39
0.03
0.97
0.32
2.44
2.35
2.11
2.32
4.11
4.02
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
Table 2-63 • 2.5 V LVCMOS Low Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.66
10.84
0.04
1.30
0.43
10.64
10.84
2.26
1.99
12.87
13.08
ns
–1
0.56
9.22
0.04
1.10
0.36
9.05
9.22
1.92
1.69
10.95
11.12
ns
–2
0.49
8.10
0.03
0.97
0.32
7.94
8.10
1.68
1.49
9.61
9.77
ns
Std.
0.66
7.37
0.04
1.30
0.43
7.50
7.36
2.59
2.61
9.74
9.60
ns
–1
0.56
6.27
0.04
1.10
0.36
6.38
6.26
2.20
2.22
8.29
8.16
ns
–2
0.49
5.50
0.03
0.97
0.32
5.60
5.50
1.93
1.95
7.27
7.17
ns
Std.
0.66
7.37
0.04
1.30
0.43
7.50
7.36
2.59
2.61
9.74
9.60
ns
–1
0.56
6.27
0.04
1.10
0.36
6.38
6.26
2.20
2.22
8.29
8.16
ns
–2
0.49
5.50
0.03
0.97
0.32
5.60
5.50
1.93
1.95
7.27
7.17
ns
Std.
0.66
5.63
0.04
1.30
0.43
5.73
5.51
2.83
3.01
7.97
7.74
ns
–1
0.56
4.79
0.04
1.10
0.36
4.88
4.68
2.41
2.56
6.78
6.59
ns
–2
0.49
4.20
0.03
0.97
0.32
4.28
4.11
2.11
2.25
5.95
5.78
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
2 -5 1
R evi s i o n 18
ProASIC3 Flash Family FPGAs
Table 2-64 • 2.5 V LVCMOS High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
Std.
0.66
8.20
0.04
1.29
0.43
7.24
8.20
2.03
1.91
ns
–1
0.56
6.98
0.04
1.10
0.36
6.16
6.98
1.73
1.62
ns
–2
0.49
6.13
0.03
0.96
0.32
5.41
6.13
1.52
1.43
ns
Std.
0.66
8.20
0.04
1.29
0.43
7.24
8.20
2.03
1.91
ns
–1
0.56
6.98
0.04
1.10
0.36
6.16
6.98
1.73
1.62
ns
–2
0.49
6.13
0.03
0.96
0.32
5.41
6.13
1.52
1.43
ns
Std.
0.66
4.77
0.04
1.29
0.43
4.55
4.77
2.38
2.55
ns
–1
0.56
4.05
0.04
1.10
0.36
3.87
4.05
2.03
2.17
ns
–2
0.49
3.56
0.03
0.96
0.32
3.40
3.56
1.78
1.91
ns
Std.
0.66
4.77
0.04
1.29
0.43
4.55
4.77
2.38
2.55
ns
–1
0.56
4.05
0.04
1.10
0.36
3.87
4.05
2.03
2.17
ns
–2
0.49
3.56
0.03
0.96
0.32
3.40
3.56
1.78
1.91
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
Table 2-65 • 2.5 V LVCMOS Low Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
Std.
0.66
11.00
0.04
1.29
0.43
10.37
11.00
2.03
1.83
ns
–1
0.56
9.35
0.04
1.10
0.36
8.83
9.35
1.73
1.56
ns
–2
0.49
8.21
0.03
0.96
0.32
7.75
8.21
1.52
1.37
ns
Std.
0.66
11.00
0.04
1.29
0.43
10.37
11.00
2.03
1.83
ns
–1
0.56
9.35
0.04
1.10
0.36
8.83
9.35
1.73
1.56
ns
–2
0.49
8.21
0.03
0.96
0.32
7.75
8.21
1.52
1.37
ns
Std.
0.66
7.50
0.04
1.29
0.43
7.36
7.50
2.39
2.46
ns
–1
0.56
6.38
0.04
1.10
0.36
6.26
6.38
2.03
2.10
ns
–2
0.49
5.60
0.03
0.96
0.32
5.49
5.60
1.78
1.84
ns
Std.
0.66
7.50
0.04
1.29
0.43
7.36
7.50
2.39
2.46
ns
–1
0.56
6.38
0.04
1.10
0.36
6.26
6.38
2.03
2.10
ns
–2
0.49
5.60
0.03
0.96
0.32
5.49
5.60
1.78
1.84
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
R ev i si o n 1 8
2-52
ProASIC3 DC and Switching Characteristics
1.8 V LVCMOS
Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.8 V
applications. It uses a 1.8 V input buffer and a push-pull output buffer.
Table 2-66 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
1.8 V
LVCMOS
VIL
VIH
VOL
VOH
IOL IOH IOSL
IOSH IIL1 IIH2
mA mA
Max
mA3
Max
mA3 µA4 µA4
Drive
Strength
Min
V
Max
V
Min
V
Max
V
Max
V
Min
V
2 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45
2
2
11
9
10
10
4 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45
4
4
22
17
10
10
6 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45
6
6
44
35
10
10
8 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45
8
8
51
45
10
10
12 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45 12 12
74
91
10
10
16 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45 16 16
74
91
10
10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
Table 2-67 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O I/O Banks
1.8 V
LVCMOS
Drive
Strength
VIL
Min
V
Max
V
VIH
Min
V
Max
V
VOL
VOH
IOL IOH IOSL
Max
V
Min
V
mA mA
Max
mA3
IOSH IIL1 IIH2
Max
mA3
µA4 µA4
2 mA
–0.3
0.35 * VCCI
0.65 * VCCI
3.6
0.45
VCCI – 0.45
2
2
11
9
10
10
4 mA
–0.3
0.35 * VCCI
0.65 * VCCI
3.6
0.45
VCCI – 0.45
4
4
22
17
10
10
6 mA
–0.3
0.35 * VCCI
0.65 * VCCI
3.6
0.45
VCCI – 0.45
6
6
44
35
10
10
8 mA
–0.3
0.35 * VCCI
0.65 * VCCI
3.6
0.45
VCCI – 0.45
8
8
44
35
10
10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN