0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
A54SX32P-1VQ208M

A54SX32P-1VQ208M

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

  • 描述:

    A54SX32P-1VQ208M - SX Family FPGAs - Actel Corporation

  • 数据手册
  • 价格&库存
A54SX32P-1VQ208M 数据手册
v3.2 SX Family FPGAs ue ™ Leading Edge Performance • • • • 320 MHz Internal Performance 3.7 ns Clock-to-Out (Pin-to-Pin) 0.1 ns Input Setup 0.25 ns Clock Skew Features • • • • • • • • • • 66 MHz PCI CPLD and FPGA Integration Single-Chip Solution 100% Resource Utilization with 100% Pin Locking 3.3 V and 5.0 V Operation with 5.0 V Input Tolerance Very Low Power Consumption Deterministic, User-Controllable Timing Unique In-System Diagnostic and Debug Capability with Silicon Explorer II Boundary Scan Testing in Compliance with IEEE Standard 1149.1 (JTAG) Secure Programming Technology Prevents Reverse Engineering and Design Theft Specifications • • • • 12,000 to 48,000 System Gates Up to 249 User-Programmable I/O Pins Up to 1,080 Flip-Flops 0.35 µ CMOS SX Product Profile Device Capacity Typical Gates System Gates Logic Modules Combinatorial Cells Register Cells (Dedicated Flip-Flops) Maximum User I/Os Clocks JTAG PCI Clock-to-Out Input Setup (external) Speed Grades Temperature Grades Packages (by pin count) PLCC PQFP VQFP TQFP PBGA FBGA A54SX08 8,000 12,000 768 512 256 130 3 Yes – 3.7 ns 0.8 ns Std, –1, –2, –3 C, I, M 84 208 100 144, 176 – 144 A54SX16 16,000 24,000 1,452 924 528 175 3 Yes – 3.9 ns 0.5 ns Std, –1, –2, –3 C, I, M – 208 100 176 – – A54SX16P 16,000 24,000 1,452 924 528 175 3 Yes Yes 4.4 ns 0.5 ns Std, –1, –2, –3 C, I, M – 208 100 144, 176 – – A54SX32 32,000 48,000 2,880 1,800 1,080 249 3 Yes – 4.6 ns 0.1 ns Std, –1, –2, –3 C, I, M – 208 – 144, 176 313, 329 – June 2006 © 2006 Actel Corporation i See the Actel website for the latest version of the datasheet. SX Family FPGAs Ordering Information A54SX16 – P 2 PQ G 208 Application (Temperature Range) Blank = Commercial (0 to +70˚C) I = Industrial (–40 to +85˚C) M = Military (–55 to +125˚C) PP = Pre-production Package Lead Count Lead-Free Packaging Blank = Standard Packaging G = RoHS Compliant Packaging Package Type BG = Ball Grid Array PL = Plastic Leaded Chip Carrier PQ = Plastic Quad Flat Pack TQ = Thin (1.4 mm) Quad Flat Pack VQ = Very Thin (1.0 mm) Quad Flat Pack FG = Fine Pitch Ball Grid Array (1.0 mm) Speed Grade Blank = Standard Speed –1 = Approximately 15% Faster than Standard –2 = Approximately 25% Faster than Standard –3 = Approximately 35% Faster than Standard Blank = Not PCI Compliant P = PCI Compliant Part Number A54SX08 = 12,000 System Gates A54SX16 = 24,000 System Gates A54SX16P = 24,000 System Gates A54SX32 = 48,000 System Gates Plastic Device Resources User I/Os (including clock buffers) Device A54SX08 A54SX16 A54SX16P A54SX32 PLCC 84-Pin 69 – – – VQFP 100-Pin 81 81 81 – PQFP 208-Pin 130 175 175 174 TQFP 144-Pin 113 – 113 113 TQFP 176-Pin 128 147 147 147 PBGA 313-Pin – – – 249 PBGA 329-Pin – – – 249 FBGA 144-Pin 111 – – – Note: Package Definitions (Consult your local Actel sales representative for product availability): PLCC = Plastic Leaded Chip Carrier PQFP = Plastic Quad Flat Pack TQFP = Thin Quad Flat Pack VQFP = Very Thin Quad Flat Pack PBGA = Plastic Ball Grid Array FBGA = Fine Pitch (1.0 mm) Ball Grid Array ii v3.2 SX Family FPGAs Table of Contents SX Family FPGAs General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 SX Family Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 3.3 V / 5 V Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 PCI Compliance for the SX Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9 A54SX16P AC Specifications for (PCI Operation) . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10 A54SX16P DC Specifications (3.3 V PCI Operation) . . . . . . . . . . . . . . . . . . . . . . . . 1-12 A54SX16P AC Specifications (3.3 V PCI Operation) . . . . . . . . . . . . . . . . . . . . . . . . 1-13 Power-Up Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15 Power-Down Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15 Evaluating Power in SX Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16 SX Timing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23 Package Pin Assignments 84-Pin PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 208-Pin PQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 144-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 176-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 100-Pin VQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 313-Pin PBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16 329-Pin PBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19 144-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23 Datasheet Information List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 International Traffic in Arms Regulations (ITAR) and Export Administration Regulations (EAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 v3.2 iii SX Family FPGAs SX Family FPGAs General Description The Actel SX family of FPGAs features a sea-of-modules architecture that delivers device performance and integration levels not currently achieved by any other FPGA architecture. SX devices greatly simplify design time, enable dramatic reductions in design costs and power consumption, and further decrease time to market for performance-intensive applications. The Actel SX architecture features two types of logic modules, the combinatorial cell (C-cell) and the register cell (R-cell), each optimized for fast and efficient mapping of synthesized logic functions. The routing and interconnect resources are in the metal layers above the logic modules, providing optimal use of silicon. This enables the entire floor of the device to be spanned with an uninterrupted grid of fine-grained, synthesis-friendly logic modules (or “sea-of-modules”), which reduces the distance signals have to travel between logic modules. To minimize signal propagation delay, SX devices employ both local and general routing resources. The high-speed local routing resources (DirectConnect and FastConnect) enable very fast local signal propagation that is optimal for fast counters, state machines, and datapath logic. The general system of segmented routing tracks allows any logic module in the array to be connected to any other logic or I/O module. Within this system, propagation delay is minimized by limiting the number of antifuse interconnect elements to five (90 percent of connections typically use only three antifuses). The unique local and general routing structure featured in SX devices gives fast and predictable performance, allows 100 percent pin-locking with full logic utilization, enables concurrent PCB development, reduces design time, and allows designers to achieve performance goals with minimum effort. Further complementing SX’s flexible routing structure is a hardwired, constantly loaded clock network that has been tuned to provide fast clock propagation with minimal clock skew. Additionally, the high performance of the internal logic has eliminated the need to embed latches or flip-flops in the I/O cells to achieve fast clockto-out or fast input setup times. SX devices have easy to use I/O cells that do not require HDL instantiation, facilitating design reuse and reducing design and verification time. SX Family Architecture The SX family architecture was designed to satisfy nextgeneration performance and integration requirements for production-volume designs in a broad range of applications. Programmable Interconnect Element The SX family provides efficient use of silicon by locating the routing interconnect resources between the Metal 2 (M2) and Metal 3 (M3) layers (Figure 1-1 on page 1-2). This completely eliminates the channels of routing and interconnect resources between logic modules (as implemented on SRAM FPGAs and previous generations of antifuse FPGAs), and enables the entire floor of the device to be spanned with an uninterrupted grid of logic modules. Interconnection between these logic modules is achieved using The Actel patented metal-to-metal programmable antifuse interconnect elements, which are embedded between the M2 and M3 layers. The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection. The extremely small size of these interconnect elements gives the SX family abundant routing resources and provides excellent protection against design pirating. Reverse engineering is virtually impossible because it is extremely difficult to distinguish between programmed and unprogrammed antifuses, and there is no configuration bitstream to intercept. Additionally, the interconnect elements (i.e., the antifuses and metal tracks) have lower capacitance and lower resistance than any other device of similar capacity, leading to the fastest signal propagation in the industry. Logic Module Design The SX family architecture is described as a “sea-ofmodules” architecture because the entire floor of the device is covered with a grid of logic modules with virtually no chip area lost to interconnect elements or routing. The Actel SX family provides two types of logic modules, the register cell (R-cell) and the combinatorial cell (C-cell). v3.2 1-1 SX Family FPGAs The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and clock enable (using the S0 and S1 lines) control signals (Figure 1-2). The R-cell registers feature programmable clock polarity selectable on a register-by-register basis. This provides additional flexibility while allowing mapping of synthesized functions into the SX FPGA. The clock source for the R-cell can be chosen from either the hardwired clock or the routed clock. Routing Tracks Metal 3 Amorphous Silicon/ Dielectric Antifuse Tungsten Plug Via Tungsten Plug Via Metal 2 Metal 1 Tungsten Plug Contact Silicon Substrate Figure 1-1 • SX Family Interconnect Elements Routed Data Input S0 S1 PSETB Direct Connect Input D Q Y HCLK CLKA, CLKB, Internal Logic CKS Figure 1-2 • R-Cell CLRB CKP The C-cell implements a range of combinatorial functions up to 5-inputs (Figure 1-3 on page 1-3). Inclusion of the DB input and its associated inverter function dramatically increases the number of combinatorial functions that can be implemented in a single module from 800 options in previous architectures to more than 4,000 in the SX architecture. An example of the improved flexibility enabled by the inversion capability is the ability to integrate a 3-input exclusive-OR function into a single C-cell. This facilitates construction of 9-bit parity-tree functions with 2 ns propagation delays. At the same time, the C-cell structure is extremely synthesis friendly, simplifying the overall design and reducing synthesis time. 1 -2 v3.2 SX Family FPGAs Chip Architecture The SX family chip architecture provides a unique approach to module organization and chip routing that delivers the best register/logic mix for a wide variety of new and emerging applications. Module Organization Actel has arranged all C-cell and R-cell logic modules into horizontal banks called clusters. There are two types of clusters: Type 1 contains two C-cells and one R-cell, while Type 2 contains one C-cell and two R-cells. To increase design efficiency and device performance, Actel has further organized these modules into SuperClusters (Figure 1-4). SuperCluster 1 is a two-wide grouping of Type 1 clusters. SuperCluster 2 is a two-wide group containing one Type 1 cluster and one Type 2 cluster. SX devices feature more SuperCluster 1 modules than SuperCluster 2 modules because designers typically require significantly more combinatorial logic than flipflops. D0 D1 Y D2 D3 Sa Sb DB A0 B0 A1 B1 Figure 1-3 • C-Cell R-Cell D0 Routed Data Input S0 S1 PSETB Direct Connect Input HCLK CLKA, CLKB, Internal Logic CKS CKP CLRB DB D2 D Q Y D3 D1 C-Cell Y Sa Sb A0 B0 A1 B1 Cluster 1 Cluster 2 Cluster 2 Cluster 1 Type 1 SuperCluster Figure 1-4 • Cluster Organization Type 2 SuperCluster v3.2 1-3 SX Family FPGAs Routing Resources Clusters and SuperClusters can be connected through the use of two innovative local routing resources called FastConnect and DirectConnect, which enable extremely fast and predictable interconnection of modules within clusters and SuperClusters (Figure 1-5 and Figure 1-6). This routing architecture also dramatically reduces the number of antifuses required to complete a circuit, ensuring the highest possible performance. DirectConnect • No antifuses • 0.1 ns routing delay FastConnect • One antifuse • 0.4 ns routing delay Routing Segments • Typically 2 antifuses • Max. 5 antifuses Figure 1-5 • DirectConnect and FastConnect for Type 1 SuperClusters DirectConnect • No antifuses • 0.1 ns routing delay FastConnect • One antifuse • 0.4 ns routing delay Routing Segments • Typically 2 antifuses • Max. 5 antifuses Figure 1-6 • DirectConnect and FastConnect for Type 2 SuperClusters 1 -4 v3.2 SX Family FPGAs DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring Rcell in a given SuperCluster. DirectConnect uses a hardwired signal path requiring no programmable interconnection to achieve its fast signal propagation time of less than 0.1 ns. FastConnect enables horizontal routing between any two logic modules within a given SuperCluster and vertical routing with the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering maximum pin-to-pin propagation of 0.4 ns. In addition to DirectConnect and FastConnect, the architecture makes use of two globally oriented routing resources known as segmented routing and high-drive routing. The Actel segmented routing structure provides a variety of track lengths for extremely fast routing between SuperClusters. The exact combination of track lengths and antifuses within each path is chosen by the 100 percent automatic place-and-route software to minimize signal propagation delays. The Actel high-drive routing structure provides three clock networks. The first clock, called HCLK, is hardwired from the HCLK buffer to the clock select multiplexer (MUX) in each R-cell. This provides a fast propagation path for the clock signal, enabling the 3.7 ns clock-to-out (pin-to-pin) performance of the SX devices. The hardwired clock is tuned to provide clock skew as low as 0.25 ns. The remaining two clocks (CLKA, CLKB) are global clocks that can be sourced from external pins or from internal logic signals within the SX device. Performance The combination of architectural features described above enables SX devices to operate with internal clock frequencies exceeding 300 MHz, enabling very fast execution of even complex logic functions. Thus, the SX family is an optimal platform upon which to integrate the functionality previously contained in multiple CPLDs. In addition, designs that previously would have required a gate array to meet performance goals can now be integrated into an SX device with dramatic improvements in cost and time to market. Using timingdriven place-and-route tools, designers can achieve highly deterministic device performance. With SX devices, designers do not need to use complicated performance-enhancing design techniques such as the use of redundant logic to reduce fanout on critical nets or the instantiation of macros in HDL code to achieve high performance. I/O Modules Each I/O on an SX device can be configured as an input, an output, a tristate output, or a bidirectional pin. Even without the inclusion of dedicated I/O registers, these I/Os, in combination with array registers, can achieve clock-to-out (pad-to-pad) timing as fast as 3.7 ns. I/O cells that have embedded latches and flip-flops require instantiation in HDL code; this is a design complication not encountered in SX FPGAs. Fast pin-topin timing ensures that the device will have little trouble interfacing with any other device in the system, which in turn enables parallel design of system components and reduces overall design time. Other Architectural Features Technology The Actel SX family is implemented on a high-voltage twin-well CMOS process using 0.35 µ design rules. The metal-to-metal antifuse is made up of a combination of amorphous silicon and dielectric material with barrier metals and has a programmed ("on" state) resistance of 25 Ω with a capacitance of 1.0 fF for low signal impedance. Table 1-1 • Device A54SX08 A54SX16 A54SX32 A54SX16-P* Supply Voltages VCCA 3.3 V VCCI 3.3 V VCCR 5.0 V Power Requirements The SX family supports 3.3 V operation and is designed to tolerate 5.0 V inputs. (Table 1-1). Power consumption is extremely low due to the very short distances signals are required to travel to complete a circuit. Power requirements are further reduced because of the small number of low-resistance antifuses in the path. The antifuse architecture does not require active circuitry to hold a charge (as do SRAM or EPROM), making it the lowest power architecture on the market. Maximum Input Tolerance 5.0 V Maximum Output Drive 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 5.0 V 3.3 V 5.0 V 5.0 V 3.3 V 5.0 V 5.0 V 3.3 V 3.3 V 5.0 V Note: *A54SX16-P has three different entries because it is capable of both a 3.3 V and a 5.0 V drive. v3.2 1-5 SX Family FPGAs Boundary Scan Testing (BST) All SX devices are IEEE 1149.1 compliant. SX devices offer superior diagnostic and testing capabilities by providing Boundary Scan Testing (BST) and probing capabilities. These functions are controlled through the special test pins in conjunction with the program fuse. The functionality of each pin is described in Table 1-2. In the dedicated test mode, TCK, TDI, and TDO are dedicated pins and cannot be used as regular I/Os. In flexible mode, TMS should be set HIGH through a pull-up resistor of 10 kΩ. TMS can be pulled LOW to initiate the test sequence. The program fuse determines whether the device is in dedicated or flexible mode. The default (fuse not blown) is flexible mode. Table 1-2 • Boundary Scan Pin Functionality Program Fuse Not Blown (Flexible Mode) Development Tool Support The SX family of FPGAs is fully supported by both the Actel Libero® Integrated Design Environment (IDE) and Designer FPGA Development software. Actel Libero IDE is a design management environment, seamlessly integrating design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Synplify® for Actel from Synplicity®, ViewDraw® for Actel from Mentor Graphics®, ModelSim® HDL Simulator from Mentor Graphics, WaveFormer Lite™ from SynaptiCAD™, and Designer software from Actel. Refer to the Libero IDE flow diagram (located on the Actel website) for more information. Actel Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can select and lock package pins while only minimally impacting the results of place-and-route. Additionally, the back-annotation flow is compatible with all the major simulators, and the simulation results can be cross-probed with Silicon Explorer II, Actel integrated verification and logic analysis tool. Another tool included in the Designer software is the SmartGen core generator, which easily creates popular and commonly used logic functions for implementation into your schematic or HDL design. Actel Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys®, and Cadence® Design Systems. The Designer software is available for both the Windows® and UNIX® operating systems. Program Fuse Blown (Dedicated Test Mode) TCK, TDI, TDO are dedicated TCK, TDI, TDO are flexible and BST pins. may be used as I/Os. No need for pull-up resistor for Use a pull-up resistor of 10 kΩ TMS on TMS. Dedicated Test Mode In Dedicated mode, all JTAG pins are reserved for BST; designers cannot use them as regular I/Os. An internal pull-up resistor is automatically enabled on both TMS and TDI pins, and the TMS pin will function as defined in the IEEE 1149.1 (JTAG) specification. To select Dedicated mode, users need to reserve the JTAG pins in Actel's Designer software by checking the "Reserve JTAG" box in "Device Selection Wizard" (Figure 1-7). JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O. Refer to the Table 1-5 on page 1-8 for detailed specifications. Probe Circuit Control Pins The Silicon Explorer II tool uses the boundary scan ports (TDI, TCK, TMS, and TDO) to select the desired nets for verification. The selected internal nets are assigned to the PRA/PRB pins for observation. Figure 1-8 on page 1-7 illustrates the interconnection between Silicon Explorer II and the FPGA to perform in-circuit verification. Design Considerations The TDI, TCK, TDO, PRA, and PRB pins should not be used as input or bidirectional ports. Because these pins are active during probing, critical signals input through these pins are not available while probing. In addition, the Security Fuse should not be programmed because doing so disables the Probe Circuitry. Figure 1-7 • Device Selection Wizard 1 -6 v3.2 SX Family FPGAs 16 Channels TDI TCK TMS TDO SX FPGA Serial Connection Silicon Explorer II PRA PRB Figure 1-8 • Probe Setup Programming Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon Sculptor II are compact, robust, single-site and multi-site device programmer for the PC. With standalone software, Silicon Sculptor II allows concurrent programming of multiple units from the same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are programmed. Silicon Sculptor II also provides extensive hardware self-testing capability. The procedure for programming an SX device using Silicon Sculptor II are as follows: 1. Load the .AFM file 2. Select the device to be programmed 3. Begin programming When the design is ready to go to production, Actel offers device volume-programming services either through distribution partners or via in-house programming from the factory. For more details on programming SX devices, refer to the Programming Antifuse Devices application note and the Silicon Sculptor II User's Guide. 3.3 V / 5 V Operating Conditions Table 1-3 • Symbol VCCR 2 Absolute Maximum Ratings1 Parameter DC Supply Voltage3 Limits –0.3 to + 6.0 –0.3 to + 4.0 –0.3 to + 4.0 –0.3 to + 6.0 –0.5 to + 5.5 –0.5 to + 3.6 –30 to + 5.0 –65 to +150 Units V V V V V V mA °C VCCA2 VCCI2 VCCI VI VO IIO TSTG Notes: 2 DC Supply Voltage DC Supply Voltage (A54SX08, A54SX16, A54SX32) DC Supply Voltage (A54SX16P) Input Voltage Output Voltage I/O Source Sink Current3 Storage Temperature 1. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the Recommended Operating Conditions. 2. VCCR in the A54SX16P must be greater than or equal to VCCI during power-up and power-down sequences and during normal operation. 3. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCC + 0.5 V or less than GND – 0.5 V, the internal protection diodes will forward-bias and can draw excessive current. v3.2 1-7 SX Family FPGAs Table 1-4 • Parameter Recommended Operating Conditions Commercial 0 to + 70 ±10 ±5 Industrial –40 to + 85 ±10 ±10 Military –55 to +125 ±10 ±10 Units °C %VCC %VCC Temperature Range* 3.3 V Power Supply Tolerance 5.0 V Power Supply Tolerance Note: *Ambient temperature (TA) is used for commercial and industrial; case temperature (TC) is used for military. Table 1-5 • Electrical Specifications Commercial Symbol VOH Parameter (IOH = –20 µA) (CMOS) (IOH = –8 mA) (TTL) (IOH = –6 mA) (TTL) VOL (IOL= 20 µA) (CMOS) (IOL = 12 mA) (TTL) (IOL = 8 mA) (TTL) VIL VIH tR , tF CIO ICC ICC(D) Input Transition Time tR, tF CIO I/O Capacitance Standby Current, ICC ICC(D) IDynamic VCC Supply Current 2.0 50 10 4.0 0.8 2.0 50 10 4.0 0.10 0.50 0.50 0.8 V V ns pF mA Min. (VCCI – 0.1) 2.4 Max. VCCI VCCI 2.4 VCCI V Industrial Min. (VCCI – 0.1) Max. VCCI Units V See "Evaluating Power in SX Devices" on page 1-16. 1 -8 v3.2 SX Family FPGAs PCI Compliance for the SX Family The SX family supports 3.3 V and 5.0 V PCI and is compliant with the PCI Local Bus Specification Rev. 2.1. Table 1-6 • Symbol VCCA VCCR VCCI VIH VIL IIH IIL VOH VOL CIN CCLK CIDSEL Notes: 1. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs. 2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull-up must have 6 mA; the latter include, FRAME#, IRDY#, TRDY#, DEVSEL#, STOP#, SERR#, PERR#, LOCK#, and, when used, AD[63::32], C/BE[7::4]#, PAR64, REQ64#, and ACK64#. 3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK). 4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx]. A54SX16P DC Specifications (5.0 V PCI Operation) Parameter Supply Voltage for Array Supply Voltage required for Internal Biasing Supply Voltage for I/Os Input High Voltage 1 Condition Min. 3.0 4.75 4.75 2.0 –0.5 Max. 3.6 5.25 5.25 VCC + 0.5 0.8 70 –70 Units V V V V V µA µA V Input Low Voltage1 Input High Leakage Current Input Low Leakage Current Output High Voltage Output Low Voltage2 Input Pin Capacitance3 VIN = 2.7 VIN = 0.5 IOUT = –2 mA IOUT = 3 mA, 6 mA 2.4 0.55 10 5 12 8 V pF pF pF CLK Pin Capacitance IDSEL Pin Capacitance4 v3.2 1-9 SX Family FPGAs A54SX16P AC Specifications for (PCI Operation) Table 1-7 • Symbol IOH(AC) A54SX16P AC Specifications for (PCI Operation) Parameter Switching Current High Condition 0 < VOUT ≤ 1.41 1.4 ≤ VOUT < 2.4 3.1 < VOUT < (Test Point) IOL(AC) Switching Current High VOUT = 3.1 3 1, 2 Min. –44 –44 + (VOUT – 1.4)/0.024 Max. Units mA mA VCC1, 3 EQ 1-1 on page 1-11 –142 95 mA mA VOUT ≥ 2.21 2.2 > VOUT > 0.55 0.71 > VOUT > 0 3 1 1, 3 VOUT /0.023 EQ 1-2 on page 1-11 206 –25 + (VIN + 1) /0.015 mA mA mA 5 5 V/ns V/ns (Test Point) ICL slewR slewF Notes: Low Clamp Current Output Rise Slew Rate Output Fall Slew Rate VOUT = 0.71 –5 < VIN ≤ –1 0.4 V to 2.4 V 2.4 V to 0.4 V load4 load4 1 1 1. Refer to the V/I curves in Figure 1-9 on page 1-11. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half-size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. “Switching Current High” specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs. 2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up. 3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B) are provided with the respective diagrams in Figure 1-9 on page 1-11. The equation defined maxima should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver. 4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur, and should ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs. Pin 1/2 in. max. Output Buffer 1 kΩ 10 pF VCC 1 kΩ 1 -1 0 v3.2 SX Family FPGAs Figure 1-9 shows the 5.0 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P device. 0.50 0.45 0.40 0.35 0.30 Current (A) 0.25 0.20 0.15 0.10 0.05 0 –0.05 –0.10 –0.15 –0.20 Voltage Out Figure 1-9 • 5.0 V PCI Curve for A54SX16P Device PCI IOL Maximum SX PCI IOL PCI IOL Mininum 1 PCI IOH Mininum 2 3 4 5 6 SX PCI IOH PCI IOH Maximum IOH = 11.9 × (VOUT – 5.25) × (VOUT + 2.45) for VCC > VOUT > 3.1 V EQ 1-1 IOL = 78.5 × VOUT × (4.4 – VOUT) for 0 V < VOUT < 0.71 V EQ 1-2 v3.2 1-11 SX Family FPGAs A54SX16P DC Specifications (3.3 V PCI Operation) Table 1-8 • Symbol VCCA VCCR VCCI VIH VIL IIPU IIL VOH VOL CIN CCLK CIDSEL Notes: 1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated network. Applications sensitive to static power utilization should assure that the input buffer is conducting minimum current at this input voltage. 2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs. 3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK). 4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx]. A54SX16P DC Specifications (3.3 V PCI Operation) Parameter Supply Voltage for Array Supply Voltage required for Internal Biasing Supply Voltage for I/Os Input High Voltage Input Low Voltage Input Pull-up Voltage 1 2 Condition Min. 3.0 3.0 3.0 0.5VCC –0.5 0.7VCC Max. 3.6 3.6 3.6 VCC + 0.5 0.3VCC Units V V V V V V Input Leakage Current Output High Voltage Output Low Voltage Input Pin 0 < VIN < VCC IOUT = –500 µA IOUT = 1500 µA 0.9VCC ±10 µA V 0.1VCC 10 5 12 8 V pF pF pF Capacitance3 CLK Pin Capacitance IDSEL Pin Capacitance4 1 -1 2 v3.2 SX Family FPGAs A54SX16P AC Specifications (3.3 V PCI Operation) Table 1-9 • A54SX16P AC Specifications (3.3 V PCI Operation) Condition 0 < VOUT ≤ 0.3VCC1 0.3VCC ≤ VOUT < 0.7VCC < VOUT < (Test Point) Switching Current High IOL(AC) (Test Point) ICL ICH slewR slewF Notes: 1. Refer to the V/I curves in Figure 1-10 on page 1-14. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST# which are system outputs. “Switching Current High” specification are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD# which are open drain outputs. 2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C and D) are provided with the respective diagrams in Figure 1-10 on page 1-14. The equation defined maxima should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver. 3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs. Low Clamp Current High Clamp Current Output Rise Slew Output Fall Slew Rate3 VOUT = 0.7VCC2 0.1VCC1 1, 2 Symbol Parameter Switching Current High IOH(AC) Min. Max. Units mA 0.9VCC1 VCC1, 2 –12VCC –17.1 + (VCC – VOUT) EQ 1-3 on page 1-14 –32VCC mA mA mA VCC > VOUT ≥ 0.6VCC1 0.6VCC > VOUT > 0.18VCC2 –25 + (VIN + 1)/0.015 25 + (VIN – VOUT – 1)/0.015 1 1 4 4 16VCC 26.7VOUT EQ 1-4 on page 1-14 38VCC mA mA 0.18VCC > VOUT > 0 VOUT = –3 < VIN ≤ –1 –3 < VIN ≤ –1 mA mA V/ns V/ns 0.2VCC to 0.6VCC load 0.6VCC to 0.2VCC load Rate3 Pin Output Buffer 1 kΩ 1/2 in. max. 10 pF VCC 1 kΩ v3.2 1-13 SX Family FPGAs Figure 1-10 shows the 3.3 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P device. 0.50 0.45 0.40 0.35 0.30 Current (A) 0.25 0.20 0.15 0.10 0.05 0 –0.05 –0.10 –0.15 –0.20 Voltage Out Figure 1-10 • 3.3 V PCI Curve for A54SX16P Device PCI IOL Maximum SX PCI IOL PCI IOL Minimum SX PCI IOH 1 PCI IOH Minimum 2 3 4 PCI IOH Maximum 5 6 IOH = (98.0/VCC) × (VOUT – VCC) × (VOUT + 0.4VCC) for VCC > VOUT > 0.7 VCC EQ 1-3 IOL = (256/VCC) × VOUT × (VCC – VOUT) for 0 V < VOUT < 0.18 VCC EQ 1-4 1 -1 4 v3.2 SX Family FPGAs Power-Up Sequencing Table 1-10 • Power-Up Sequencing VCCA VCCR VCCI Power-Up Sequence Comments A54SX08, A54SX16, A54SX32 3.3 V 5.0 V 3.3 V 5.0 V First 3.3 V Second 3.3 V First 5.0 V Second A54SX16P 3.3 V 3.3 V 3.3 V 5.0 V 3.3 V 3.3 V 3.3 V Only 5.0 V First 3.3 V Second 3.3 V First 5.0 V Second 3.3 V 5.0 V 5.0 V 5.0 V First 3.3 V Second 3.3 V First 5.0 V Second Note: No inputs should be driven (high or low) before completion of power-up. No possible damage to device No possible damage to device Possible damage to device No possible damage to device No possible damage to device No possible damage to device Possible damage to device Power-Down Sequencing Table 1-11 • Power-Down Sequencing VCCA VCCR VCCI Power-Down Sequence Comments A54SX08, A54SX16, A54SX32 3.3 V 5.0 V 3.3 V 5.0 V First 3.3 V Second 3.3 V First 5.0 V Second A54SX16P 3.3 V 3.3 V 3.3 V 5.0 V 3.3 V 3.3 V 3.3 V Only 5.0 V First 3.3 V Second 3.3 V First 5.0 V Second 3.3 V 5.0 V 5.0 V 5.0 V First 3.3 V Second 3.3 V First 5.0 V Second No possible damage to device Possible damage to device No possible damage to device No possible damage to device No possible damage to device Possible damage to device No possible damage to device Note: No inputs should be driven (high or low) after the beginning of the power-down sequence. v3.2 1-15 SX Family FPGAs Evaluating Power in SX Devices A critical element of system reliability is the ability of electronic devices to safely dissipate the heat generated during operation. The thermal characteristics of a circuit depend on the device and package used, the operating temperature, the operating current, and the system's ability to dissipate heat. You should complete a power evaluation early in the design process to help identify potential heat-related problems in the system and to prevent the system from exceeding the device’s maximum allowed junction temperature. The actual power dissipated by most applications is significantly lower than the power the package can dissipate. However, a thermal analysis should be performed for all projects. To perform a power evaluation, follow these steps: 1. Estimate the application. power consumption of the AC Power Dissipation The power dissipation of the SX Family is usually dominated by the dynamic power dissipation. Dynamic power dissipation is a function of frequency, equivalent capacitance, and power supply voltage. The AC power dissipation is defined in EQ 1-7 and EQ 1-8. PAC = PModule + PRCLKA Net + PRCLKB Net + PHCLK Net + POutput Buffer + PInput Buffer EQ 1-7 PAC = VCCA2 × [(m × CEQM × fm)Module + (n × CEQI × fn)Input Buffer+ (p × (CEQO + CL) × fp)Output Buffer + (0.5 × (q1 × CEQCR × fq1) + (r1 × fq1))RCLKA + (0.5 × (q2 × CEQCR × fq2)+ (r2 × fq2))RCLKB + (0.5 × (s1 × CEQHV × fs1) + (CEQHF × fs1))HCLK] EQ 1-8 Definition of Terms Used in Formula m n p q1 q2 x y r1 r2 s1 CEQM CEQI CEQO CEQCR CEQHV CEQHF CL fm fn fp fq1 fq2 fs1 = = = = = = = = = = = = = = = = = = = = = = = Number of logic modules switching at fm Number of input buffers switching at fn Number of output buffers switching at fp Number of clock loads on the first routed array clock Number of clock loads on the second routed array clock Number of I/Os at logic low Number of I/Os at logic high Fixed capacitance due to first routed array clock Fixed capacitance due to second routed array clock Number of clock loads on the dedicated array clock Equivalent capacitance of logic modules in pF Equivalent capacitance of input buffers in pF Equivalent capacitance of output buffers in pF Equivalent capacitance of routed array clock in pF Variable capacitance of dedicated array clock Fixed capacitance of dedicated array clock Output lead capacitance in pF Average logic module switching rate in MHz Average input buffer switching rate in MHz Average output buffer switching rate in MHz Average first routed array clock rate in MHz Average second routed array clock rate in MHz Average dedicated array clock rate in MHz 2. Calculate the maximum power allowed for the device and package. 3. Compare the estimated power and maximum power values. Estimating Power Consumption The total power dissipation for the SX family is the sum of the DC power dissipation and the AC power dissipation. Use EQ 1-5 to calculate the estimated power consumption of your application. PTotal = PDC + PAC EQ 1-5 DC Power Dissipation The power due to standby current is typically a small component of the overall power. The Standby power is shown in Table 1-12 for commercial, worst-case conditions (70°C). Table 1-12 • Standby Power ICC 4 mA VCC 3.6 V Power 14.4 mW The DC power dissipation is defined in EQ 1-6. PDC = (Istandby) × VCCA + (Istandby) × VCCR + (Istandby) × VCCI + xVOL × IOL + y(VCCI – VOH) × VOH EQ 1-6 1 -1 6 v3.2 SX Family FPGAs Table 1-13 devices. shows capacitance values for various Guidelines for Calculating Power Consumption The power consumption guidelines are meant to represent worst-case scenarios so that they can be generally used to predict the upper limits of power dissipation. These guidelines are shown in Table 1-14. Table 1-13 • Capacitance Values for Devices A54SX08 A54SX16 A54SX16P A54SX32 CEQM (pF) CEQI (pF) CEQO (pF) CEQCR (pF) CEQHV CEQHF r1 (pF) r2 (pF) 4.0 3.4 4.7 1.6 0.615 60 87 87 4.0 3.4 4.7 1.6 0.615 96 138 138 4.0 3.4 4.7 1.6 0.615 96 138 138 4.0 3.4 4.7 1.6 0.615 140 171 171 Sample Power Calculation One of the designs used to characterize the SX family was a 528 bit serial-in, serial-out shift register. The design utilized 100 percent of the dedicated flip-flops of an A54SX16P device. A pattern of 0101… was clocked into the device at frequencies ranging from 1 MHz to 200 MHz. Shifting in a series of 0101… caused 50 percent of the flip-flops to toggle from low to high at every clock cycle. Table 1-14 • Power Consumption Guidelines Description Power Consumption Guideline 20% of modules # inputs/4 # outputs/4 20% of register cells 20% of register cells 35 pF f/10 f/5 f/10 f/2 f/2 f 20% of regular modules Logic Modules (m) Inputs Switching (n) Outputs Switching (p) First Routed Array Clock Loads (q1) Second Routed Array Clock Loads (q2) Load Capacitance (CL) Average Logic Module Switching Rate (fm) Average Input Switching Rate (fn) Average Output Switching Rate (fp) Average First Routed Array Clock Rate (fq1) Average Second Routed Array Clock Rate (fq2) Average Dedicated Array Clock Rate (fs1) Dedicated Clock Array Clock Loads (s1) Follow the steps below to estimate power consumption. The values provided for the sample calculation below are for the shift register design above. This method for estimating power consumption is conservative and the actual power consumption of your design may be less than the estimated power consumption. The total power dissipation for the SX family is the sum of the AC power dissipation and the DC power dissipation. PTotal = PAC (dynamic power) + PDC (static power) EQ 1-9 AC Power Dissipation PAC = PModule + PRCLKA Net + PRCLKB Net + PHCLK Net + POutput Buffer + PInput Buffer EQ 1-10 PAC = VCCA × [(m × CEQM × fm)Module + (n × CEQI × fn)Input Buffer+ (p × (CEQO + CL) × fp)Output Buffer + (0.5 (q1 × CEQCR × fq1) + (r1 × fq1))RCLKA + (0.5 (q2 × CEQCR × fq2)+ (r2 × fq2))RCLKB + (0.5 (s1 × CEQHV × fs1) + (CEQHF × fs1))HCLK] EQ 1-11 2 v3.2 1-17 SX Family FPGAs Step 1: Define Terms Used in Formula VCCA Module Number of logic modules switching at fm (Used 50%) Average logic modules switching rate fm (MHz) (Guidelines: f/10) Module capacitance CEQM (pF) Input Buffer Number of input buffers switching at fn Average input switching rate fn (MHz) (Guidelines: f/5) Input buffer capacitance CEQI (pF) Output Buffer Number of output buffers switching at fp p Average output buffers switching rate fp(MHz) (Guidelines: f/10) Output buffers buffer capacitance CEQO (pF) Output Load capacitance CL (pF) RCLKA Number of Clock loads q1 Capacitance of routed array clock (pF) Average clock rate (MHz) Fixed capacitance (pF) RCLKB Number of Clock loads q2 Capacitance of routed array clock (pF) Average clock rate (MHz) Fixed capacitance (pF) HCLK Number of Clock loads Variable capacitance of dedicated array clock (pF) Fixed capacitance of dedicated array clock (pF) Average clock rate (MHz) s1 0 CEQHV 0.61 5 CEQHF fs1 96 0 q2 CEQCR fq2 r2 0 1.6 0 138 q1 CEQCR fq1 r1 528 1.6 200 138 fp CEQO CL 1 20 4.7 35 n fn CEQI 1 40 3.4 m fm CEQM 264 20 4.0 3.3 Step 2: Calculate Dynamic Power Consumption VCCA × VCCA 10.89 0.02112 m × fm × CEQM n × fn × CEQI 0.000136 p × fp × (CEQO+CL) 0.000794 0.11208 0.5 (q1 × CEQCR × fq1) + (r1 × fq1) 0.5(q2 × CEQCR × fq2) + (r2 × fq2) 0 0.5 (s1 × CEQHV × fs1) + (CEQHF × fs1) 0 PAC = 1.461 W Step 3: Calculate DC Power Dissipation DC Power Dissipation PDC = (Istandby) × VCCA + (Istandby) × VCCR + (Istandby) × VCCI + X × VOL × IOL + Y(VCCI – VOH) × VOH EQ 1-12 For a rough estimate of DC Power Dissipation, only use PDC = (Istandby) × VCCA. The rest of the formula provides a very small number that can be considered negligible. PDC = (Istandby) × VCCA PDC = .55 mA × 3.3 V PDC = 0.001815 W Step 4: Calculate Total Power Consumption PTotal = PAC + PDC PTotal = 1.461 + 0.001815 PTotal = 1.4628 W Step 5: Compare Estimated Power Consumption against Characterized Power Consumption The estimated total power consumption for this design is 1.46 W. The characterized power consumption for this design at 200 MHz is 1.0164 W. 1 -1 8 v3.2 SX Family FPGAs Figure 1-11 shows the characterized power dissipation numbers for the shift register design using frequencies ranging from 1 MHz to 200 MHz. 1200 Power Dissipation mW 1000 800 600 400 200 0 0 20 40 60 80 100 120 140 160 180 200 Frequency MHz Figure 1-11 • Power Dissipation Junction Temperature (TJ) The temperature that you select in Designer Series software is the junction temperature, not ambient temperature. This is an important distinction because the heat generated from dynamic power consumption is usually hotter than the ambient temperature. Use the equation below to calculate junction temperature. Junction Temperature = ΔT + Ta EQ 1-13 P = Power calculated from Consumption section Estimating Power θja = Junction to ambient of package. θja numbers are located in the "Package Thermal Characteristics" section. Package Thermal Characteristics The device junction to case thermal characteristic is θjc, and the junction to ambient air characteristic is θja. The thermal characteristics for θja are shown with two different air flow rates. The maximum junction temperature is 150 °C. A sample calculation of the absolute maximum power dissipation allowed for a TQFP 176-pin package at commercial temperature and still air is as follows: Where: Ta = Ambient Temperature ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θja × P 150°C – 70°C Max. junction temp. (°C) – Max. ambient temp. (°C) Maximum Power Allowed = ------------------------------------------------------------------------------------------------------------------------------------ = ----------------------------------- = 2.86 W 28°C/W θ ja (°C/W) EQ 1-14 v3.2 1-19 SX Family FPGAs Table 1-15 • Package Thermal Characteristics Package Type Plastic Leaded Chip Carrier (PLCC) Thin Quad Flat Pack (TQFP) Thin Quad Flat Pack (TQFP) Very Thin Quad Flatpack (VQFP) Plastic Quad Flat Pack (PQFP) without Heat Spreader Plastic Quad Flat Pack (PQFP) with Heat Spreader Plastic Ball Grid Array (PBGA) Plastic Ball Grid Array (PBGA) Plastic Ball Grid Array (PBGA) Fine Pitch Ball Grid Array (FBGA) Note: SX08 does not have a heat spreader. Table 1-16 • Temperature and Voltage Derating Factors* Junction Temperature VCCA 3.0 3.3 3.6 –55 0.75 0.70 0.66 –40 0.78 0.73 0.69 0 0.87 0.82 0.77 25 0.89 0.83 0.78 70 1.00 0.93 0.87 85 1.04 0.97 0.92 125 1.16 1.08 1.02 Pin Count 84 144 176 100 208 208 272 313 329 144 θjc 12 11 11 10 8 3.8 3 3 3 3.8 θja Still Air 32 32 28 38 30 20 20 23 18 38.8 θja 300 ft/min. 22 24 21 32 23 17 14.5 17 13.5 26.7 Units °C/W °C/W °C/W °C/W °C/W °C/W °C/W °C/W °C/W °C/W Note: *Normalized to worst-case commercial, TJ = 70°C, VCCA = 3.0 V 1 -2 0 v3.2 SX Family FPGAs SX Timing Model Input Delays I/O Module tINY = 1.5 ns Internal Delays Combinatorial Cell tIRD2 = 0.6 ns tDHL = 1.6 ns tPD = 0.6 ns tRD1 = 0.3 ns tRD4 = 1.0 ns tRD8 = 1.9 ns Predicted Routing Delays Output Delays I/O Module I/O Module tDLH = 1.6 ns Register Cell Register Cell D Q D Q tRD1 = 0.3 ns tSUD = 0.5 ns tHD = 0.0 ns Routed Clock tRCO = 0.8 ns tRCKH = 1.5 ns (100% Load) FMAX = 250 MHz Hardwired Clock tHCKH = 1.0 ns FHMAX = 320 MHz tRCO = 0.8 ns tRD1 = 0.3 ns tENZH = 2.3 ns Note: Values shown for A54SX08-3, worst-case commercial conditions. Figure 1-12 • SX Timing Model Hardwired Clock External Setup = tINY + tIRD1 + tSUD – tHCKH = 1.5 + 0.3 + 0.5 – 1.0 = 1.3 ns EQ 1-15 Routed Clock External Setup = tINY + tIRD1 + tSUD – tRCKH = 1.5 + 0.3 + 0.5 – 1.5 = 0.8 ns EQ 1-17 Clock-to-Out (Pin-to-Pin) = tHCKH + tRCO + tRD1 + tDHL = 1.0 + 0.8 + 0.3 + 1.6 = 3.7 ns EQ 1-16 Clock-to-Out (Pin-to-Pin) = tRCKH + tRCO + tRD1 + tDHL = 1.52+ 0.8 + 0.3 + 1.6 = 4.2 ns EQ 1-18 v3.2 1-21 SX Family FPGAs E D TRIBUFF PAD To AC Test Loads (shown below) VCC In Out VOL tDLH 50% 50% VOH 1.5 V tDHL GND 1.5 V VCC En Out 50% 50% VCC 1.5 V VOL tENZL tENLZ GND 10% En Out GND VCC 50% 50% VOH 1.5 V tENZH GND 90% tENHZ Figure 1-13 • Output Buffer Delays Load 1 (used to measure propagation delay) To Output Under Test 35 pF To Output Under Test Load 2 (used to measure enable delays) VCC GND Load 2 (used to measure disable delays) VCC GND R to VCC for tPLZ R to GND for tPHZ R = 1 kΩ 35 pF To Output Under Test R to VCC for tPLZ R to GND for tPHZ R = 1 kΩ 35 pF Figure 1-14 • AC Test Loads PAD INBUF Y VCC S, A ,or B S A B Y 50% 50% GND 50% tPD GND tPD VCC 50% In Out GND 3V 1.5 V 1.5 V VCC 50% tINY VCC 0V 50% tINY Out GND Out 50% tPD 50% tPD Figure 1-15 • Input Buffer Delays Figure 1-16 • C-Cell Delays 1 -2 2 v3.2 SX Family FPGAs Register Cell Timing Characteristics D PRESET CLR Q CLK (positive edge triggered) tHD D tSUD CLK tHPWH' RPWH tHP tHPWL' RPWL tRCO Q tCLR CLR PRESET tWASYN tPRESET Figure 1-17 • Flip-Flops Timing Characteristics Timing characteristics for SX devices fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all SX family members. Internal routing delays are device-dependent. Design dependency means actual delays are not determined until after placement and routing of the user’s design is complete. Delay values may then be determined by using the DirectTime Analyzer utility or performing simulation with post-layout delays. Long Tracks Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically up to 6 percent of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout (FO = 24) routing delays in the datasheet specifications section. Critical Nets and Typical Nets Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timecritical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6% of the nets in a design may be designated as critical, while 90% of the nets in a design are typical. Timing Derating SX devices are manufactured in a CMOS process. Therefore, device performance varies according to temperature, voltage, and process variations. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing. v3.2 1-23 SX Family FPGAs A54SX08 Timing Characteristics Table 1-17 • A54SX08 Timing Characteristics (Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA,VCCI = 3.0 V, TJ = 70°C) '–3' Speed Parameter Description Min. Max. C-Cell Propagation Delays1 tPD tDC tFC tRD1 tRD2 tRD3 tRD4 tRD8 tRD12 tRCO tCLR tPRESET tSUD tHD tWASYN tINYH tINYL tIRD1 tIRD2 tIRD3 tIRD4 tIRD8 tIRD12 Note: 1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment. Internal Array Module Delays2 0.1 0.3 0.3 0.6 0.8 1.0 1.9 2.8 0.1 0.4 0.4 0.7 0.9 1.2 2.2 3.2 0.1 0.4 0.4 0.8 1.0 1.4 2.5 3.7 0.1 0.5 0.5 0.9 1.2 1.6 2.9 4.3 ns ns ns ns ns ns ns ns 0.6 0.7 0.8 0.9 ns '–2' Speed Min. Max. '–1' Speed Min. Max. 'Std' Speed Min. Max. Units Predicted Routing FO = 1 Routing Delay, Direct Connect FO = 1 Routing Delay, Fast Connect FO = 1 Routing Delay FO = 2 Routing Delay FO = 3 Routing Delay FO = 4 Routing Delay FO = 8 Routing Delay FO = 12 Routing Delay R-Cell Timing Sequential Clock-to-Q Asynchronous Clear-to-Q Asynchronous Preset-to-Q Flip-Flop Data Input Set-Up Flip-Flop Data Input Hold Asynchronous Pulse Width 0.5 0.0 1.4 0.8 0.5 0.7 0.5 0.0 1.6 1.1 0.6 0.8 0.7 0.0 1.8 1.2 0.7 0.9 0.8 0.0 2.1 1.4 0.8 1.0 ns ns ns ns ns ns Input Module Propagation Delays Input Data Pad-to-Y HIGH Input Data Pad-to-Y LOW 1.5 1.5 1.7 1.7 1.9 1.9 2.2 2.2 ns ns Input Module Predicted Routing Delays2 FO = 1 Routing Delay FO = 2 Routing Delay FO = 3 Routing Delay FO = 4 Routing Delay FO = 8 Routing Delay FO = 12 Routing Delay 0.3 0.6 0.8 1.0 1.9 2.8 0.4 0.7 0.9 1.2 2.2 3.2 0.4 0.8 1.0 1.4 2.5 3.7 0.5 0.9 1.2 1.6 2.9 4.3 ns ns ns ns ns ns 1 -2 4 v3.2 SX Family FPGAs Table 1-17 • A54SX08 Timing Characteristics (Continued) (Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA,VCCI = 3.0 V, TJ = 70°C) '–3' Speed Parameter Description Min. Max. '–2' Speed Min. Max. '–1' Speed Min. Max. 'Std' Speed Min. Max. Units Dedicated (Hardwired) Array Clock Network tHCKH tHCKL tHPWH tHPWL tHCKSW tHP fHMAX tRCKH tRCKL tRCKH tRCKL tRCKH tRCKL tRPWH tRPWL tRCKSW tRCKSW tRCKSW tDLH tDHL tENZL tENZH tENLZ Note: 1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment. Input LOW to HIGH (pad to R-Cell input) Input HIGH to LOW (pad to R-Cell input) Minimum Pulse Width HIGH Minimum Pulse Width LOW Maximum Skew Minimum Period Maximum Frequency 2.7 350 1.4 1.4 0.1 3.1 320 1.0 1.0 1.6 1.6 0.2 3.6 280 1.1 1.2 1.8 1.8 0.2 4.2 240 1.3 1.4 2.1 2.1 0.2 1.5 1.6 ns ns ns ns ns ns MHz Routed Array Clock Networks Input LOW to HIGH (light load) (pad to R-Cell input) Input HIGH to LOW (light load) (pad to R-Cell Input) Input LOW to HIGH (50% load) (pad to R-Cell input) Input HIGH to LOW (50% load) (pad to R-Cell input) Input LOW to HIGH (100% load) (pad to R-Cell input) Input HIGH to LOW (100% load) (pad to R-Cell input) Min. Pulse Width HIGH Min. Pulse Width LOW Maximum Skew (light load) Maximum Skew (50% load) Maximum Skew (100% load) 2.1 2.1 0.1 0.3 0.3 1.3 1.4 1.4 1.5 1.5 1.5 2.4 2.4 0.2 0.3 0.3 1.5 1.6 1.7 1.7 1.7 1.8 2.7 2.7 0.2 0.4 0.4 1.7 1.8 1.9 2.0 1.9 2.0 3.2 3.2 0.2 0.4 0.4 2.0 2.1 2.2 2.3 2.2 2.3 ns ns ns ns ns ns ns ns ns ns ns TTL Output Module Timing1 Data-to-Pad LOW to HIGH Data-to-Pad HIGH to LOW Enable-to-Pad, Z to L Enable-to-Pad, Z to H Enable-to-Pad, L to Z 1.6 1.6 2.1 2.3 1.4 1.9 1.9 2.4 2.7 1.7 2.1 2.1 2.8 3.1 1.9 2.5 2.5 3.2 3.6 2.2 ns ns ns ns ns v3.2 1-25 SX Family FPGAs A54SX16 Timing Characteristics Table 1-18 • A54SX16 Timing Characteristics (Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA ,VCCI = 3.0 V, TJ = 70°C) '–3' Speed Parameter Description Min. Max. C-Cell Propagation Delays1 tPD tDC tFC tRD1 tRD2 tRD3 tRD4 tRD8 tRD12 tRCO tCLR tPRESET tSUD tHD tWASYN tINYH tINYL tIRD1 tIRD2 tIRD3 tIRD4 tIRD8 tIRD12 Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment. 3. Delays based on 35 pF loading, except tENZL and tENZH. For tENZL and tENZH, the loading is 5 pF. Internal Array Module Delays2 0.1 0.3 0.3 0.6 0.8 1.0 1.9 2.8 0.1 0.4 0.4 0.7 0.9 1.2 2.2 3.2 0.1 0.4 0.4 0.8 1.0 1.4 2.5 3.7 0.1 0.5 0.5 0.9 1.2 1.6 2.9 4.3 ns ns ns ns ns ns ns ns 0.6 0.7 0.8 0.9 ns '–2' Speed Min. Max. '–1' Speed Min. Max. 'Std' Speed Min. Max. Units Predicted Routing FO = 1 Routing Delay, Direct Connect FO = 1 Routing Delay, Fast Connect FO = 1 Routing Delay FO = 2 Routing Delay FO = 3 Routing Delay FO = 4 Routing Delay FO = 8 Routing Delay FO = 12 Routing Delay R-Cell Timing Sequential Clock-to-Q Asynchronous Clear-to-Q Asynchronous Preset-to-Q Flip-Flop Data Input Set-Up Flip-Flop Data Input Hold Asynchronous Pulse Width 0.5 0.0 1.4 0.8 0.5 0.7 0.5 0.0 1.6 1.1 0.6 0.8 0.7 0.0 1.8 1.2 0.7 0.9 0.8 0.0 2.1 1.4 0.8 1.0 ns ns ns ns ns ns Input Module Propagation Delays Input Data Pad-to-Y HIGH Input Data Pad-to-Y LOW 1.5 1.5 1.7 1.7 1.9 1.9 2.2 2.2 ns ns Predicted Input Routing Delays2 FO = 1 Routing Delay FO = 2 Routing Delay FO = 3 Routing Delay FO = 4 Routing Delay FO = 8 Routing Delay FO = 12 Routing Delay 0.3 0.6 0.8 1.0 1.9 2.8 0.4 0.7 0.9 1.2 2.2 3.2 0.4 0.8 1.0 1.4 2.5 3.7 0.5 0.9 1.2 1.6 2.9 4.3 ns ns ns ns ns ns 1 -2 6 v3.2 SX Family FPGAs Table 1-18 • A54SX16 Timing Characteristics (Continued) (Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA ,VCCI = 3.0 V, TJ = 70°C) '–3' Speed Parameter Description Min. Max. '–2' Speed Min. Max. '–1' Speed Min. Max. 'Std' Speed Min. Max. Units Dedicated (Hardwired) Array Clock Network tHCKH tHCKL tHPWH tHPWL tHCKSW tHP fHMAX tRCKH tRCKL tRCKH tRCKL tRCKH tRCKL tRPWH tRPWL tRCKSW tRCKSW tRCKSW tDLH tDHL tENZL tENZH tENLZ tENHZ Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment. 3. Delays based on 35 pF loading, except tENZL and tENZH. For tENZL and tENZH, the loading is 5 pF. Input LOW to HIGH (pad to R-Cell input) Input HIGH to LOW (pad to R-Cell input) Minimum Pulse Width HIGH Minimum Pulse Width LOW Maximum Skew Minimum Period Maximum Frequency 2.7 350 1.4 1.4 0.2 3.1 320 1.2 1.2 1.6 1.6 0.2 3.6 280 1.4 1.4 1.8 1.8 0.3 4.2 240 1.5 1.6 2.1 2.1 0.3 1.8 1.9 ns ns ns ns ns ns MHz Routed Array Clock Networks Input LOW to HIGH (light load) (pad to R-Cell input) Input HIGH to LOW (light load) (pad to R-Cell input) Input LOW to HIGH (50% load) (pad to R-Cell input) Input HIGH to LOW (50% load) (pad to R-Cell input) Input LOW to HIGH (100% load) (pad to R-Cell input) Input HIGH to LOW (100% load) (pad to R-Cell input) Min. Pulse Width HIGH Min. Pulse Width LOW Maximum Skew (light load) Maximum Skew (50% load) Maximum Skew (100% load) 2.1 2.1 0.5 0.5 0.5 1.6 1.8 1.8 2.0 1.8 2.0 2.4 2.4 0.5 0.6 0.6 1.8 2.0 2.1 2.2 2.1 2.2 2.7 2.7 0.5 0.7 0.7 2.1 2.3 2.5 2.5 2.4 2.5 3.2 3.2 0.7 0.8 0.8 2.5 2.7 2.8 3.0 2.8 3.0 ns ns ns ns ns ns ns ns ns ns ns TTL Output Module Timing3 Data-to-Pad LOW to HIGH Data-to-Pad HIGH to LOW Enable-to-Pad, Z to L Enable-to-Pad, Z to H Enable-to-Pad, L to Z Enable-to-Pad, H to Z 1.6 1.6 2.1 2.3 1.4 1.3 1.9 1.9 2.4 2.7 1.7 1.5 2.1 2.1 2.8 3.1 1.9 1.7 2.5 2.5 3.2 3.6 2.2 2.0 ns ns ns ns ns ns v3.2 1-27 SX Family FPGAs A54SX16P Timing Characteristics Table 1-19 • A54SX16P Timing Characteristics (Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA ,VCCI = 3.0 V, TJ = 70°C) '–3' Speed Parameter Description Min. Max. C-Cell Propagation Delays1 tPD Internal Array Module 2 '–2' Speed Min. Max. '–1' Speed Min. Max. 'Std' Speed Min. Max. Units 0.6 0.7 0.8 0.9 ns Predicted Routing Delays tDC tFC tRD1 tRD2 tRD3 tRD4 tRD8 tRD12 FO = 1 Routing Delay, Direct Connect FO = 1 Routing Delay, Fast Connect FO = 1 Routing Delay FO = 2 Routing Delay FO = 3 Routing Delay FO = 4 Routing Delay FO = 8 Routing Delay FO = 12 Routing Delay 0.1 0.3 0.3 0.6 0.8 1.0 1.9 2.8 0.1 0.4 0.4 0.7 0.9 1.2 2.2 3.2 0.1 0.4 0.4 0.8 1.0 1.4 2.5 3.7 0.1 0.5 0.5 0.9 1.2 1.6 2.9 4.3 ns ns ns ns ns ns ns ns R-Cell Timing tRCO tCLR tPRESET tSUD tHD tWASYN Sequential Clock-to-Q Asynchronous Clear-to-Q Asynchronous Preset-to-Q Flip-Flop Data Input Set-Up Flip-Flop Data Input Hold Asynchronous Pulse Width 0.5 0.0 1.4 0.9 0.5 0.7 0.5 0.0 1.6 1.1 0.6 0.8 0.7 0.0 1.8 1.3 0.7 0.9 0.8 0.0 2.1 1.4 0.8 1.0 ns ns ns ns ns ns Input Module Propagation Delays tINYH tINYL Input Data Pad-to-Y HIGH Input Data Pad-to-Y LOW 2 1.5 1.5 1.7 1.7 1.9 1.9 2.2 2.2 ns ns Predicted Input Routing Delays tIRD1 tIRD2 tIRD3 tIRD4 tIRD8 tIRD12 Note: FO = 1 Routing Delay FO = 2 Routing Delay FO = 3 Routing Delay FO = 4 Routing Delay FO = 8 Routing Delay 0.3 0.6 0.8 1.0 1.9 2.8 0.4 0.7 0.9 1.2 2.2 3.2 0.4 0.8 1.0 1.4 2.5 3.7 0.5 0.9 1.2 1.6 2.9 4.3 ns ns ns ns ns ns FO = 12 Routing Delay 1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment. 3. Delays based on 10 pF loading. 1 -2 8 v3.2 SX Family FPGAs Table 1-19 • A54SX16P Timing Characteristics (Continued) (Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA ,VCCI = 3.0 V, TJ = 70°C) '–3' Speed Parameter Description Min. Max. '–2' Speed Min. Max. '–1' Speed Min. Max. 'Std' Speed Min. Max. Units Dedicated (Hardwired) Array Clock Network tHCKH tHCKL tHPWH tHPWL tHCKSW tHP fHMAX Input LOW to HIGH (pad to R-Cell input) Input HIGH to LOW (pad to R-Cell input) Minimum Pulse Width HIGH Minimum Pulse Width LOW Maximum Skew Minimum Period Maximum Frequency 2.7 350 1.4 1.4 0.2 3.1 320 1.2 1.2 1.6 1.6 0.2 3.6 280 1.4 1.4 1.8 1.8 0.3 4.2 240 1.5 1.6 2.1 2.1 0.3 1.8 1.9 ns ns ns ns ns ns MHz Routed Array Clock Networks tRCKH tRCKL tRCKH tRCKL tRCKH tRCKL tRPWH tRPWL tRCKSW tRCKSW tRCKSW Input LOW to HIGH (light load) (pad to R-Cell input) Input HIGH to LOW (Light Load) (pad to R-Cell input) Input LOW to HIGH (50% load) (pad to R-Cell input) Input HIGH to LOW (50% load) (pad to R-Cell input) Input LOW to HIGH (100% load) (pad to R-Cell input) Input HIGH to LOW (100% load) (pad to R-Cell input) Min. Pulse Width HIGH Min. Pulse Width LOW Maximum Skew (light load) Maximum Skew (50% load) Maximum Skew (100% load) 2.1 2.1 0.5 0.5 0.5 1.6 1.8 1.8 2.0 1.8 2.0 2.4 2.4 0.5 0.6 0.6 1.8 2.0 2.1 2.2 2.1 2.2 2.7 2.7 0.5 0.7 0.7 2.1 2.3 2.5 2.5 2.4 2.5 3.2 3.2 0.7 0.8 0.8 2.5 2.7 2.8 3.0 2.8 3.0 ns ns ns ns ns ns ns ns ns ns ns TTL Output Module Timing tDLH tDHL tENZL tENZH tENLZ tENHZ Note: 1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment. 3. Delays based on 10 pF loading. Data-to-Pad LOW to HIGH Data-to-Pad HIGH to LOW Enable-to-Pad, Z to L Enable-to-Pad, Z to H Enable-to-Pad, L to Z Enable-to-Pad, H to Z 2.4 2.3 3.0 3.3 2.3 2.8 2.8 2.9 3.4 3.8 2.7 3.2 3.1 3.2 3.9 4.3 3.0 3.7 3.7 3.8 4.6 5.0 3.5 4.3 ns ns ns ns ns ns v3.2 1-29 SX Family FPGAs Table 1-19 • A54SX16P Timing Characteristics (Continued) (Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA ,VCCI = 3.0 V, TJ = 70°C) '–3' Speed Parameter Description Min. Max. '–2' Speed Min. Max. '–1' Speed Min. Max. 'Std' Speed Min. Max. Units TTL/PCI Output Module Timing tDLH tDHL tENZL tENZH tENLZ tENHZ Data-to-Pad LOW to HIGH Data-to-Pad HIGH to LOW Enable-to-Pad, Z to L Enable-to-Pad, Z to H Enable-to-Pad, L to Z Enable-to-Pad, H to Z 3 1.5 1.9 2.3 1.5 2.7 2.9 1.7 2.2 2.6 1.7 3.1 3.3 2.0 2.4 3.0 1.9 3.5 3.7 2.3 2.9 3.5 2.3 4.1 4.4 ns ns ns ns ns ns PCI Output Module Timing tDLH tDHL tENZL tENZH tENLZ tENHZ Data-to-Pad LOW to HIGH Data-to-Pad HIGH to LOW Enable-to-Pad, Z to L Enable-to-Pad, Z to H Enable-to-Pad, L to Z Enable-to-Pad, H to Z 1.8 1.7 0.8 1.2 1.0 1.1 2.0 2.0 1.0 1.2 1.1 1.3 2.3 2.2 1.1 1.5 1.3 1.5 2.7 2.6 1.3 1.8 1.5 1.7 ns ns ns ns ns ns TTL Output Module Timing tDLH tDHL tENZL tENZH tENLZ tENHZ Note: 1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment. 3. Delays based on 10 pF loading. Data-to-Pad LOW to HIGH Data-to-Pad HIGH to LOW Enable-to-Pad, Z to L Enable-to-Pad, Z to H Enable-to-Pad, L to Z Enable-to-Pad, H to Z 2.1 2.0 2.5 3.0 2.3 2.9 2.5 2.3 2.9 3.5 2.7 3.3 2.8 2.6 3.2 3.9 3.1 3.7 3.3 3.1 3.8 4.6 3.6 4.4 ns ns ns ns ns ns 1 -3 0 v3.2 SX Family FPGAs A54SX32 Timing Characteristics Table 1-20 • A54SX32 Timing Characteristics (Worst-Case Commercial Conditions, VCCR= 4.75 V, VCCA,VCCI = 3.0 V, TJ = 70°C) '–3' Speed Parameter Description Min. Max. C-Cell Propagation Delays1 tPD tDC tFC tRD1 tRD2 tRD3 tRD4 tRD8 tRD12 tRCO tCLR tPRESET tSUD tHD tWASYN tINYH tINYL tIRD1 tIRD2 tIRD3 tIRD4 tIRD8 tIRD12 Note: 1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment. 3. Delays based on 35 pF loading, except tENZL and tENZH. For tENZL and tENZH the loading is 5 pF. Internal Array Module Delays2 0.1 0.3 0.3 0.7 1.0 1.4 2.7 4.0 0.1 0.4 0.4 0.8 1.2 1.6 3.1 4.7 0.1 0.4 0.4 0.9 1.4 1.8 3.5 5.3 0.1 0.5 0.5 1.0 1.6 2.1 4.1 6.2 ns ns ns ns ns ns ns ns 0.6 0.7 0.8 0.9 ns '–2' Speed Min. Max. '–1' Speed Min. Max. 'Std' Speed Min. Max. Units Predicted Routing FO = 1 Routing Delay, Direct Connect FO = 1 Routing Delay, Fast Connect FO = 1 Routing Delay FO = 2 Routing Delay FO = 3 Routing Delay FO = 4 Routing Delay FO = 8 Routing Delay FO = 12 Routing Delay R-Cell Timing Sequential Clock-to-Q Asynchronous Clear-to-Q Asynchronous Preset-to-Q Flip-Flop Data Input Set-Up Flip-Flop Data Input Hold Asynchronous Pulse Width 0.5 0.0 1.4 0.8 0.5 0.7 0.6 0.0 1.6 1.1 0.6 0.8 0.7 0.0 1.8 1.3 0.7 0.9 0.8 0.0 2.1 1.4 0.8 1.0 ns ns ns ns ns ns Input Module Propagation Delays Input Data Pad-to-Y HIGH Input Data Pad-to-Y LOW 1.5 1.5 1.7 1.7 1.9 1.9 2.2 2.2 ns ns Predicted Input Routing Delays2 FO = 1 Routing Delay FO = 2 Routing Delay FO = 3 Routing Delay FO = 4 Routing Delay FO = 8 Routing Delay FO = 12 Routing Delay 0.3 0.7 1.0 1.4 2.7 4.0 0.4 0.8 1.2 1.6 3.1 4.7 0.4 0.9 1.4 1.8 3.5 5.3 0.5 1.0 1.6 2.1 4.1 6.2 ns ns ns ns ns ns v3.2 1-31 SX Family FPGAs Table 1-20 • A54SX32 Timing Characteristics (Continued) (Worst-Case Commercial Conditions, VCCR= 4.75 V, VCCA,VCCI = 3.0 V, TJ = 70°C) '–3' Speed Parameter Description Min. Max. '–2' Speed Min. Max. '–1' Speed Min. Max. 'Std' Speed Min. Max. Units Dedicated (Hardwired) Array Clock Network tHCKH tHCKL tHPWH tHPWL tHCKSW tHP fHMAX tRCKH tRCKL tRCKH tRCKL tRCKH tRCKL tRPWH tRPWL tRCKSW tRCKSW tRCKSW tDLH tDHL tENZL tENZH tENLZ tENHZ Note: 1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment. 3. Delays based on 35 pF loading, except tENZL and tENZH. For tENZL and tENZH the loading is 5 pF. Input LOW to HIGH (pad to R-Cell input) Input HIGH to LOW (pad to R-Cell input) Minimum Pulse Width HIGH Minimum Pulse Width LOW Maximum Skew Minimum Period Maximum Frequency 2.7 350 1.4 1.4 0.3 3.1 320 1.9 1.9 1.6 1.6 0.4 3.6 280 2.1 2.1 1.8 1.8 0.4 4.2 240 2.4 2.4 2.1 2.1 0.5 2.8 2.8 ns ns ns ns ns ns MHz Routed Array Clock Networks Input LOW to HIGH (light load) (pad to R-Cell input) Input HIGH to LOW (light load) (pad to R-Cell input) Input LOW to HIGH (50% load) (pad to R-Cell input) Input HIGH to LOW (50% load) (pad to R-Cell input) Input LOW to HIGH (100% load) (pad to R-Cell input) Input HIGH to LOW (100% load) (pad to R-Cell input) Min. Pulse Width HIGH Min. Pulse Width LOW Maximum Skew (light load) Maximum Skew (50% load) Maximum Skew (100% load) 2.1 2.1 0.85 1.23 1.30 2.4 2.4 2.7 2.7 2.7 2.8 2.4 2.4 0.98 1.4 1.5 2.7 2.7 3.0 3.1 3.1 3.2 2.7 2.7 1.1 1.6 1.7 3.0 3.1 3.5 3.6 3.5 3.6 3.2 3.2 1.3 1.9 2.0 3.5 3.6 4.1 4.2 4.1 4.3 ns ns ns ns ns ns ns ns ns ns ns TTL Output Module Timing3 Data-to-Pad LOW to HIGH Data-to-Pad HIGH to LOW Enable-to-Pad, Z to L Enable-to-Pad, Z to H Enable-to-Pad, L to Z Enable-to-Pad, H to Z 1.6 1.6 2.1 2.3 1.4 1.3 1.9 1.9 2.4 2.7 1.7 1.5 2.1 2.1 2.8 3.1 1.9 1.7 2.5 2.5 3.2 3.6 2.2 2.0 ns ns ns ns ns ns 1 -3 2 v3.2 SX Family FPGAs Pin Description CLKA/B Clock A and B TCK Test Clock These pins are 3.3 V / 5.0 V PCI/TTL clock inputs for clock distribution networks. The clock input is buffered prior to clocking the R-cells. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating. (For A54SX72A, these clocks can be configured as bidirectional.) GND Ground Test clock input for diagnostic probe and device programming. In flexible mode, TCK becomes active when the TMS pin is set LOW (refer to Table 1-2 on page 1-6). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state. TDI Test Data Input LOW supply voltage. HCLK Dedicated (hardwired) Array Clock This pin is the 3.3 V / 5.0 V PCI/TTL clock input for sequential modules. This input is directly wired to each R-cell and offers clock speeds independent of the number of R-cells being driven. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating. I/O Input/Output Serial input for boundary scan testing and diagnostic probe. In flexible mode, TDI is active when the TMS pin is set LOW (refer to Table 1-2 on page 1-6). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state. TDO Test Data Output The I/O pin functions as an input, output, tristate, or bidirectional buffer. Based on certain configurations, input and output levels are compatible with standard TTL, LVTTL, 3.3 V PCI or 5.0 V PCI specifications. Unused I/O pins are automatically tristated by the Designer Series software. NC No Connection Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set LOW (refer to Table 1-2 on page 1-6). This pin functions as an I/O when the boundary scan state machine reaches the “logic reset” state. TMS Test Mode Select This pin is not connected to circuitry within the device. PRA, I/O Probe A The Probe A pin is used to output data from any userdefined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when verification has been completed. The pin’s probe capabilities can be permanently disabled to protect programmed design confidentiality. PRB, I/O Probe B The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO). In flexible mode when the TMS pin is set LOW, the TCK, TDI, and TDO pins are boundary scan pins (refer to Table 1-2 on page 1-6). Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the "logic reset" state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The "logic reset" state is reached 5 TCK cycles after the TMS pin is set HIGH. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications. VCCI Supply Voltage Supply voltage for I/Os. See Table 1-1 on page 1-5. VCCA Supply Voltage The Probe B pin is used to output data from any node within the device. This diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when verification has been completed. The pin’s probe capabilities can be permanently disabled to protect programmed design confidentiality. Supply voltage for Array. See Table 1-1 on page 1-5. VCCR Supply Voltage Supply voltage for input tolerance (required for internal biasing). See Table 1-1 on page 1-5. v3.2 1-33 54SX Family FPGAs Package Pin Assignments 84-Pin PLCC 1 84 84-Pin PLCC Figure 2-1 • 84-Pin PLCC (Top View) Note For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html. v3.2 2-1 54SX Family FPGAs 84-Pin PLCC Pin Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 A54SX08 Function VCCR GND VCCA PRA, I/O I/O I/O VCCI I/O I/O I/O TCK, I/O TDI, I/O I/O I/O I/O TMS I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GND VCCI I/O I/O I/O I/O I/O I/O I/O 84-Pin PLCC Pin Number 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 A54SX08 Function I/O I/O I/O I/O PRB, I/O VCCA GND VCCR I/O HCLK I/O I/O I/O I/O I/O I/O TDO, I/O I/O I/O I/O I/O I/O I/O VCCA VCCI GND I/O I/O I/O I/O I/O I/O VCCA GND I/O 84-Pin PLCC Pin Number 71 72 73 74 75 76 77 78 79 80 81 82 83 84 A54SX08 Function I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O CLKA CLKB 2 -2 v3.2 54SX Family FPGAs 208-Pin PQFP 208 1 208-Pin PQFP Figure 2-2 • 208-Pin PQFP (Top View) Note For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html. v3.2 2-3 54SX Family FPGAs 208-Pin PQFP A54SX08 Function GND TDI, I/O I/O NC I/O NC I/O I/O I/O I/O TMS VCCI I/O NC I/O I/O NC I/O I/O NC I/O I/O NC I/O VCCR GND VCCA GND I/O I/O NC I/O I/O I/O NC I/O A54SX16, A54SX16P Function GND TDI, I/O I/O I/O I/O I/O I/O I/O I/O I/O TMS VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCR GND VCCA GND I/O I/O I/O I/O I/O I/O I/O I/O A54SX32 Function GND TDI, I/O I/O I/O I/O I/O I/O I/O I/O I/O TMS VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCR GND VCCA GND I/O I/O I/O I/O I/O I/O I/O I/O 208-Pin PQFP A54SX08 Function I/O I/O NC VCCI VCCA I/O I/O I/O I/O I/O I/O NC I/O NC I/O GND I/O I/O I/O I/O I/O I/O I/O VCCI NC I/O I/O NC I/O I/O NC I/O I/O NC I/O I/O A54SX16, A54SX16P Function I/O I/O I/O VCCI VCCA I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GND I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O A54SX32 Function I/O I/O I/O VCCI VCCA I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GND I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O NC* I/O I/O I/O I/O I/O I/O I/O Pin Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Pin Number 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65* 66 67 68 69 70 71 72 Note: * Note that Pin 65 in the A54SX32—PQ208 is a no connect (NC). 2 -4 v3.2 54SX Family FPGAs 208-Pin PQFP A54SX08 Function NC I/O NC PRB, I/O GND VCCA GND VCCR I/O HCLK I/O I/O NC I/O I/O NC I/O I/O NC I/O I/O NC I/O I/O NC VCCI I/O I/O I/O I/O TDO, I/O I/O GND NC I/O NC A54SX16, A54SX16P Function I/O I/O I/O PRB, I/O GND VCCA GND VCCR I/O HCLK I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O TDO, I/O I/O GND I/O I/O I/O A54SX32 Function I/O I/O I/O PRB, I/O GND VCCA GND VCCR I/O HCLK I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O TDO, I/O I/O GND I/O I/O I/O 208-Pin PQFP A54SX08 Function I/O I/O I/O I/O I/O VCCA VCCI NC I/O I/O NC I/O I/O NC I/O I/O NC I/O I/O I/O GND VCCA GND VCCR I/O I/O NC I/O I/O NC I/O I/O NC I/O NC I/O A54SX16, A54SX16P Function I/O I/O I/O I/O I/O VCCA VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GND VCCA GND VCCR I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O A54SX32 Function I/O I/O I/O I/O I/O VCCA VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GND VCCA GND VCCR I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O Pin Number 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 Pin Number 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 Note: * Note that Pin 65 in the A54SX32—PQ208 is a no connect (NC). v3.2 2-5 54SX Family FPGAs 208-Pin PQFP A54SX08 Function VCCA GND I/O VCCI I/O I/O I/O I/O I/O I/O NC NC GND I/O I/O I/O I/O I/O I/O VCCI I/O I/O NC I/O I/O NC I/O I/O NC I/O I/O NC I/O I/O I/O CLKA A54SX16, A54SX16P Function VCCA GND I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O GND I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O CLKA A54SX32 Function VCCA GND I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O GND I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O CLKA 208-Pin PQFP A54SX08 Function CLKB VCCR GND VCCA GND PRA, I/O I/O I/O NC I/O I/O NC I/O I/O NC I/O I/O NC I/O I/O VCCI NC NC I/O NC I/O I/O TCK, I/O A54SX16, A54SX16P Function CLKB VCCR GND VCCA GND PRA, I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O TCK, I/O A54SX32 Function CLKB VCCR GND VCCA GND PRA, I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O TCK, I/O Pin Number 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 Pin Number 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 Note: * Note that Pin 65 in the A54SX32—PQ208 is a no connect (NC). 2 -6 v3.2 54SX Family FPGAs 144-Pin TQFP 144 1 144-Pin TQFP Figure 2-3 • 144-Pin TQFP (Top View) Note For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html. v3.2 2-7 54SX Family FPGAs 144-Pin TQFP Pin Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 A54SX08 Function GND TDI, I/O I/O I/O I/O I/O I/O I/O TMS VCCI GND I/O I/O I/O I/O I/O I/O I/O VCCR VCCA I/O I/O I/O I/O I/O I/O I/O GND VCCI VCCA I/O I/O I/O I/O I/O GND A54SX16P Function GND TDI, I/O I/O I/O I/O I/O I/O I/O TMS VCCI GND I/O I/O I/O I/O I/O I/O I/O VCCR VCCA I/O I/O I/O I/O I/O I/O I/O GND VCCI VCCA I/O I/O I/O I/O I/O GND A54SX32 Function GND TDI, I/O I/O I/O I/O I/O I/O I/O TMS VCCI GND I/O I/O I/O I/O I/O I/O I/O VCCR VCCA I/O I/O I/O I/O I/O I/O I/O GND VCCI VCCA I/O I/O I/O I/O I/O GND Pin Number 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 144-Pin TQFP A54SX08 Function I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O PRB, I/O I/O VCCA GND VCCR I/O HCLK I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O TDO, I/O I/O A54SX16P Function I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O PRB, I/O I/O VCCA GND VCCR I/O HCLK I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O TDO, I/O I/O A54SX32 Function I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O PRB, I/O I/O VCCA GND VCCR I/O HCLK I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O TDO, I/O I/O 2 -8 v3.2 54SX Family FPGAs 144-Pin TQFP Pin Number 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 A54SX08 Function GND I/O I/O I/O I/O I/O VCCA VCCI GND I/O I/O I/O I/O I/O I/O I/O VCCA VCCR I/O I/O I/O I/O I/O I/O I/O VCCA GND I/O GND VCCI I/O I/O I/O I/O I/O I/O A54SX16P Function GND I/O I/O I/O I/O I/O VCCA VCCI GND I/O I/O I/O I/O I/O I/O I/O VCCA VCCR I/O I/O I/O I/O I/O I/O I/O VCCA GND I/O GND VCCI I/O I/O I/O I/O I/O I/O A54SX32 Function GND I/O I/O I/O I/O I/O VCCA VCCI GND I/O I/O I/O I/O I/O I/O I/O VCCA VCCR I/O I/O I/O I/O I/O I/O I/O VCCA GND I/O GND VCCI I/O I/O I/O I/O I/O I/O Pin Number 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 144-Pin TQFP A54SX08 Function GND I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O CLKA CLKB VCCR GND VCCA I/O PRA, I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O TCK, I/O A54SX16P Function GND I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O CLKA CLKB VCCR GND VCCA I/O PRA, I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O TCK, I/O A54SX32 Function GND I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O CLKA CLKB VCCR GND VCCA I/O PRA, I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O TCK, I/O v3.2 2-9 54SX Family FPGAs 176-Pin TQFP 176 1 176-Pin TQFP Figure 2-4 • 176-Pin TQFP (Top View) Note For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html. 2 -1 0 v3.2 54SX Family FPGAs 176-Pin TQFP A54SX08 Function GND TDI, I/O NC I/O I/O I/O I/O I/O I/O TMS VCCI NC I/O I/O I/O I/O I/O I/O I/O I/O GND VCCA GND I/O I/O I/O I/O I/O I/O I/O I/O VCCI VCCA I/O A54SX16, A54SX16P Function GND TDI, I/O I/O I/O I/O I/O I/O I/O I/O TMS VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O GND VCCA GND I/O I/O I/O I/O I/O I/O I/O I/O VCCI VCCA I/O A54SX32 Function GND TDI, I/O I/O I/O I/O I/O I/O I/O I/O TMS VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O GND VCCA GND I/O I/O I/O I/O I/O I/O I/O I/O VCCI VCCA I/O 176-Pin TQFP A54SX08 Function I/O I/O I/O I/O I/O NC I/O NC I/O GND I/O I/O I/O I/O I/O I/O I/O VCCI I/O NC I/O I/O NC I/O I/O I/O I/O I/O I/O PRB, I/O GND VCCA VCCR I/O A54SX16, A54SX16P Function I/O I/O I/O I/O I/O I/O I/O I/O I/O GND I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O PRB, I/O GND VCCA VCCR I/O A54SX32 Function I/O I/O I/O I/O I/O I/O I/O I/O I/O GND I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O PRB, I/O GND VCCA VCCR I/O Pin Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Pin Number 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 v3.2 2-11 54SX Family FPGAs 176-Pin TQFP A54SX08 Function HCLK I/O I/O I/O I/O I/O I/O I/O I/O I/O NC I/O NC VCCI I/O I/O I/O I/O TDO, I/O I/O GND NC NC I/O I/O I/O I/O I/O I/O VCCA VCCI I/O I/O I/O A54SX16, A54SX16P Function HCLK I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O TDO, I/O I/O GND I/O I/O I/O I/O I/O I/O I/O I/O VCCA VCCI I/O I/O I/O A54SX32 Function HCLK I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O TDO, I/O I/O GND I/O I/O I/O I/O I/O I/O I/O I/O VCCA VCCI I/O I/O I/O 176-Pin TQFP A54SX08 Function I/O I/O I/O I/O I/O GND VCCA GND I/O I/O I/O I/O I/O I/O I/O NC I/O NC NC VCCA GND VCCI I/O I/O I/O I/O I/O I/O NC NC GND I/O I/O I/O A54SX16, A54SX16P Function I/O I/O I/O I/O I/O GND VCCA GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCA GND VCCI I/O I/O I/O I/O I/O I/O I/O I/O GND I/O I/O I/O A54SX32 Function I/O I/O I/O I/O I/O GND VCCA GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCA GND VCCI I/O I/O I/O I/O I/O I/O I/O I/O GND I/O I/O I/O Pin Number 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 Pin Number 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 2 -1 2 v3.2 54SX Family FPGAs 176-Pin TQFP A54SX08 Function I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O CLKA CLKB VCCR GND VCCA A54SX16, A54SX16P Function I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O CLKA CLKB VCCR GND VCCA A54SX32 Function I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O CLKA CLKB VCCR GND VCCA 176-Pin TQFP A54SX08 Function PRA, I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O NC VCCI I/O NC NC NC I/O I/O TCK, I/O A54SX16, A54SX16P Function PRA, I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O TCK, I/O A54SX32 Function PRA, I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O TCK, I/O Pin Number 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 Pin Number 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 v3.2 2-13 54SX Family FPGAs 100-Pin VQFP 100 1 100-Pin VQFP Figure 2-5 • 100-Pin VQFP (Top View) Note For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html. 2 -1 4 v3.2 54SX Family FPGAs 100-Pin VQFP Pin Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 A54SX08 Function GND TDI, I/O I/O I/O I/O I/O TMS VCCI GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O PRB, I/O A54SX16, A54SX16P Function GND TDI, I/O I/O I/O I/O I/O TMS VCCI GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O PRB, I/O Pin Number 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 100-Pin VQFP A54SX08 Function VCCA GND VCCR I/O HCLK I/O I/O I/O I/O VCCI I/O I/O I/O I/O TDO, I/O I/O GND I/O I/O I/O I/O I/O VCCA VCCI I/O I/O I/O I/O I/O I/O I/O I/O VCCA GND A54SX16, A54SX16P Function VCCA GND VCCR I/O HCLK I/O I/O I/O I/O VCCI I/O I/O I/O I/O TDO, I/O I/O GND I/O I/O I/O I/O I/O VCCA VCCI I/O I/O I/O I/O I/O I/O I/O I/O VCCA GND Pin Number 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 100-Pin VQFP A54SX08 Function GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O CLKA CLKB VCCR VCCA GND PRA, I/O I/O I/O I/O I/O I/O I/O I/O TCK, I/O A54SX16, A54SX16P Function GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O CLKA CLKB VCCR VCCA GND PRA, I/O I/O I/O I/O I/O I/O I/O I/O TCK, I/O v3.2 2-15 54SX Family FPGAs 313-Pin PBGA 1 A B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE 1 Figure 2-6 • 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 A B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 313-Pin PBGA (Top View) Note For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html. 2 -1 6 v3.2 54SX Family FPGAs 313-Pin PBGA Pin Number A1 A3 A5 A7 A9 A11 A13 A15 A17 A19 A21 A23 A25 AA1 AA3 AA5 AA7 AA9 AA11 AA13 AA15 AA17 AA19 AA21 AA23 AA25 AB2 AB4 AB6 AB8 AB10 AB12 AB14 AB16 AB18 AB20 AB22 AB24 AC1 AC3 A54SX32 Function GND NC I/O I/O I/O I/O VCCR I/O I/O I/O I/O NC GND I/O I/O NC I/O NC I/O I/O I/O I/O I/O I/O NC I/O NC NC I/O I/O I/O I/O I/O I/O VCCI NC I/O I/O I/O I/O 313-Pin PBGA Pin Number AC5 AC7 AC9 AC11 AC13 AC15 AC17 AC19 AC21 AC23 AC25 AD2 AD4 AD6 AD8 AD10 AD12 AD14 AD16 AD18 AD20 AD22 AD24 AE1 AE3 AE5 AE7 AE9 AE11 AE13 AE15 AE17 AE19 AE21 AE23 AE25 B2 B4 B6 B8 A54SX32 Function I/O I/O I/O I/O VCCR I/O I/O I/O I/O I/O NC GND I/O VCCI I/O I/O PRB, I/O I/O I/O I/O I/O NC I/O NC I/O I/O I/O I/O I/O VCCA I/O I/O I/O I/O TDO, I/O GND TCK, I/O I/O I/O I/O 313-Pin PBGA Pin Number B10 B12 B14 B16 B18 B20 B22 B24 C1 C3 C5 C7 C9 C11 C13 C15 C17 C19 C21 C23 C25 D2 D4 D6 D8 D10 D12 D14 D16 D18 D20 D22 D24 E1 E3 E5 E7 E9 E11 E13 A54SX32 Function I/O I/O I/O I/O I/O I/O I/O I/O TDI, I/O I/O NC I/O I/O I/O VCCI I/O I/O VCCI I/O I/O NC I/O NC I/O I/O I/O I/O I/O I/O I/O I/O I/O NC I/O NC I/O I/O I/O I/O VCCA 313-Pin PBGA Pin Number E15 E17 E19 E21 E23 E25 F2 F4 F6 F8 F10 F12 F14 F16 F18 F20 F22 F24 G1 G3 G5 G7 G9 G11 G13 G15 G17 G19 G21 G23 G25 H2 H4 H6 H8 H10 H12 H14 H16 H18 A54SX32 Function I/O I/O I/O I/O I/O I/O I/O I/O NC I/O NC I/O I/O NC I/O I/O I/O I/O I/O TMS I/O I/O VCCI I/O CLKB I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O PRA, I/O I/O I/O NC v3.2 2-17 54SX Family FPGAs 313-Pin PBGA Pin Number H20 H22 H24 J1 J3 J5 J7 J9 J11 J13 J15 J17 J19 J21 J23 J25 K2 K4 K6 K8 K10 K12 K14 K16 K18 K20 K22 K24 L1 L3 L5 L7 L9 L11 L13 L15 L17 L19 L21 L23 A54SX32 Function I/O VCCI I/O I/O I/O I/O NC I/O I/O CLKA I/O I/O I/O GND I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O VCCA I/O I/O I/O I/O I/O I/O I/O I/O GND I/O I/O I/O I/O I/O 313-Pin PBGA Pin Number L25 M2 M4 M6 M8 M10 M12 M14 M16 M18 M20 M22 M24 N1 N3 N5 N7 N9 N11 N13 N15 N17 N19 N21 N23 N25 P2 P4 P6 P8 P10 P12 P14 P16 P18 P20 P22 P24 R1 R3 A54SX32 Function I/O I/O I/O I/O I/O I/O GND GND VCCI I/O I/O I/O I/O I/O VCCA VCCR I/O VCCI GND GND GND I/O I/O I/O VCCR VCCA I/O I/O I/O I/O I/O GND GND I/O I/O NC I/O I/O I/O I/O 313-Pin PBGA Pin Number R5 R7 R9 R11 R13 R15 R17 R19 R21 R23 R25 T2 T4 T6 T8 T10 T12 T14 T16 T18 T20 T22 T24 U1 U3 U5 U7 U9 U11 U13 U15 U17 U19 U21 U23 U25 V2 V4 V6 V8 A54SX32 Function I/O I/O I/O I/O GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O HCLK I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCA I/O I/O I/O 313-Pin PBGA Pin Number V10 V12 V14 V16 V18 V20 V22 V24 W1 W3 W5 W7 W9 W11 W13 W15 W17 W19 W21 W23 W25 Y2 Y4 Y6 Y8 Y10 Y12 Y14 Y16 Y18 Y20 Y22 Y24 A54SX32 Function I/O I/O I/O NC I/O I/O VCCA VCCI I/O I/O I/O NC I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O NC I/O NC 2 -1 8 v3.2 54SX Family FPGAs 329-Pin PBGA 1 A B C D E F G H J K L M N P R T U V W Y AA AB AC 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Figure 2-7 • 329-Pin PBGA (Top View) Note For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html. v3.2 2-19 54SX Family FPGAs 329-Pin PBGA Pin Number A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 AA1 AA2 AA3 AA4 AA5 AA6 AA7 AA8 AA9 AA10 AA11 AA12 A54SX32 Function GND GND VCCI NC I/O I/O VCCI NC I/O I/O I/O I/O CLKB I/O I/O I/O I/O I/O I/O I/O NC VCCI GND VCCI I/O GND I/O I/O I/O I/O I/O I/O I/O I/O I/O 329-Pin PBGA Pin Number AA13 AA14 AA15 AA16 AA17 AA18 AA19 AA20 AA21 AA22 AA23 AB1 AB2 AB3 AB4 AB5 AB6 AB7 AB8 AB9 AB10 AB11 AB12 AB13 AB14 AB15 AB16 AB17 AB18 AB19 AB20 AB21 AB22 AB23 AC1 A54SX32 Function I/O I/O I/O I/O I/O I/O I/O TDO, I/O VCCI I/O VCCI I/O GND I/O I/O I/O I/O I/O I/O I/O I/O PRB, I/O I/O HCLK I/O I/O I/O I/O I/O I/O I/O I/O GND I/O GND 329-Pin PBGA Pin Number AC2 AC3 AC4 AC5 AC6 AC7 AC8 AC9 AC10 AC11 AC12 AC13 AC14 AC15 AC16 AC17 AC18 AC19 AC20 AC21 AC22 AC23 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 A54SX32 Function VCCI NC I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O NC I/O I/O I/O I/O I/O NC VCCI GND VCCI GND I/O I/O I/O I/O I/O I/O I/O I/O I/O PRA, I/O CLKA 329-Pin PBGA Pin Number B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 D1 D2 A54SX32 Function I/O I/O I/O I/O I/O I/O I/O I/O GND VCCI NC TDI, I/O GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI GND NC I/O I/O 2 -2 0 v3.2 54SX Family FPGAs 329-Pin PBGA Pin Number D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 E1 E2 E3 E4 E20 E21 E22 E23 F1 F2 F3 F4 F20 F21 A54SX32 Function I/O TCK, I/O I/O I/O I/O I/O I/O I/O VCCA VCCR I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCI I/O I/O I/O I/O I/O I/O I/O I/O TMS I/O I/O I/O I/O 329-Pin PBGA Pin Number F22 F23 G1 G2 G3 G4 G20 G21 G22 G23 H1 H2 H3 H4 H20 H21 H22 H23 J1 J2 J3 J4 J20 J21 J22 J23 K1 K2 K3 K4 K10 K11 K12 K13 K14 A54SX32 Function I/O I/O I/O I/O I/O I/O I/O I/O I/O GND I/O I/O I/O I/O VCCA I/O I/O I/O NC I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GND GND GND GND GND 329-Pin PBGA Pin Number K20 K21 K22 K23 L1 L2 L3 L4 L10 L11 L12 L13 L14 L20 L21 L22 L23 M1 M2 M3 M4 M10 M11 M12 M13 M14 M20 M21 M22 M23 N1 N2 N3 N4 N10 A54SX32 Function I/O I/O I/O I/O I/O I/O I/O VCCR GND GND GND GND GND VCCR I/O I/O NC I/O I/O I/O VCCA GND GND GND GND GND VCCA I/O I/O VCCI I/O I/O I/O I/O GND 329-Pin PBGA Pin Number N11 N12 N13 N14 N20 N21 N22 N23 P1 P2 P3 P4 P10 P11 P12 P13 P14 P20 P21 P22 P23 R1 R2 R3 R4 R20 R21 R22 R23 T1 T2 T3 T4 T20 T21 A54SX32 Function GND GND GND GND NC I/O I/O I/O I/O I/O I/O I/O GND GND GND GND GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O v3.2 2-21 54SX Family FPGAs 329-Pin PBGA Pin Number T22 T23 U1 U2 U3 U4 U20 U21 U22 U23 V1 V2 V3 A54SX32 Function I/O I/O I/O I/O VCCA I/O I/O VCCA I/O I/O VCCI I/O I/O 329-Pin PBGA Pin Number V4 V20 V21 V22 V23 W1 W2 W3 W4 W20 W21 W22 A54SX32 Function I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O 329-Pin PBGA Pin Number W23 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 A54SX32 Function NC NC I/O I/O GND I/O I/O I/O I/O I/O I/O I/O 329-Pin PBGA Pin Number Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y20 Y21 Y22 Y23 A54SX32 Function VCCA VCCR I/O I/O I/O I/O I/O I/O GND I/O I/O I/O 2 -2 2 v3.2 54SX Family FPGAs 144-Pin FBGA 1 A B C D E F G H J K L M 2 3 4 5 6 7 8 9 10 11 12 Figure 2-8 • 144-Pin FBGA (Top View) Note For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html. v3.2 2-23 54SX Family FPGAs 144-Pin FBGA Pin Number A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 A54SX08 Function I/O I/O I/O I/O VCCA GND CLKA I/O I/O I/O I/O I/O I/O GND I/O I/O I/O I/O CLKB I/O I/O I/O GND I/O I/O I/O TCK, I/O I/O I/O PRA, I/O I/O I/O I/O I/O I/O I/O 144-Pin FBGA Pin Number D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 A54SX08 Function I/O VCCI TDI, I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O TMS VCCI VCCI VCCI VCCA I/O GND I/O I/O I/O VCCR I/O GND GND GND VCCI I/O GND I/O I/O 144-Pin FBGA Pin Number G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 A54SX08 Function I/O GND I/O I/O GND GND GND VCCI I/O I/O I/O I/O I/O I/O I/O I/O VCCA VCCA VCCI VCCI VCCA I/O I/O VCCR I/O I/O I/O I/O I/O PRB, I/O I/O I/O I/O I/O I/O VCCA 144-Pin FBGA Pin Number K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 A54SX08 Function I/O I/O I/O I/O I/O I/O GND I/O I/O GND I/O I/O GND I/O I/O I/O I/O I/O HCLK I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCA I/O I/O I/O TDO, I/O I/O 2 -2 4 v3.2 54SX Family FPGAs Datasheet Information List of Changes The following table lists critical changes that were made in the current version of the document. Previous Version Changes in Current Version (v3.2) v3.1 (June 2003) The "Ordering Information" was updated to include RoHS information. The Product Plan was removed since all products have been released. Information concerning the TRST pin in the "Probe Circuit Control Pins" section was removed. The "Dedicated Test Mode" section is new. The "Programming" section is new. A note was added to the "Power-Up Sequencing" table. A note was added to the "Power-Down Sequencing" table. The 3.3 V comments were updated for the following devices: A54SX08, A54SX16, A54SX32. U11 and U13 were added to the "313-Pin PBGA" table. v3.0.1 Storage temperature in Table 1-3 was updated. Table 1-1 was updated. Page 1-ii N/A 1-6 1-6 1-7 1-15 1-15 2-17 1-7 1-5 Datasheet Categories In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet Supplement." The definitions of these categories are as follows: Product Brief The product brief is a summarized version of a datasheet (advanced or production) containing general product information. This brief gives an overview of specific device and family information. Advanced This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. Unmarked (production) This datasheet version contains information that is considered to be final. Datasheet Supplement The datasheet supplement gives specific device information for a derivative family that differs from the general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and for specifications that do not differ between the two families. International Traffic in Arms Regulations (ITAR) and Export Administration Regulations (EAR) The products described in this datasheet are subject to the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR). They may require an approved export license prior to their export. An export can include a release or disclosure to a foreign national inside or outside the United States. v3.2 3-1 Actel and the Actel logo are registered trademarks of Actel Corporation. All other trademarks are the property of their owners. www.actel.com Actel Corporation 2061 Stierlin Court Mountain View, CA 94043-4655 USA Phone 650.318.4200 Fax 650.318.4600 Actel Europe Ltd. Dunlop House, Riverside Way Camberley, Surrey GU15 3YL United Kingdom Phone +44 (0) 1276 401 450 Fax +44 (0) 1276 401 490 Actel Japan www.jp.actel.com EXOS Ebisu Bldg. 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan Phone +81.03.3445.7671 Fax +81.03.3445.7668 Actel Hong Kong www.actel.com.cn Suite 2114, Two Pacific Place 88 Queensway, Admiralty Hong Kong Phone +852 2185 6460 Fax +852 2185 6488 5172137-5/6.06
A54SX32P-1VQ208M 价格&库存

很抱歉,暂时无法提供与“A54SX32P-1VQ208M”相匹配的价格&库存,您可以联系我们找货

免费人工找货