Features
• 80C52X2 Core (6 Clocks per Instruction)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
– Maximum Core Frequency 48 MHz in X1 Mode, 24 MHz in X2 Mode
– Dual Data Pointer
– Full-duplex Enhanced UART (EUART)
– Three 16-bit Timer/Counters: T0, T1 and T2
– 256 Bytes of Scratchpad RAM
16/32-Kbyte On-chip Flash EEPROM In-System Programming through USB
– Byte and Page (128 bytes) Erase and Write
– 100k Write Cycles
3-KbyteFlash EEPROM for Bootloader
– Byte and Page (128 bytes) Erase and Write
– 100k Write Cycles
1-Kbyte EEPROM Data (
– Byte and Page (128 bytes) Erase and Write
– 100k Write Cycles
On-chip Expanded RAM (ERAM): 1024 Bytes
Integrated Power Monitor (POR/PFD) to Supervise Internal Power Supply
USB 1.1 and 2.0 Full Speed Compliant Module with Interrupt on Transfer Completion
– Endpoint 0 for Control Transfers: 32-byte FIFO
– 6 Programmable Endpoints with In or Out Directions and with Bulk, Interrupt or
Isochronous Transfers
• Endpoint 1, 2, 3: 32-byte FIFO
• Endpoint 4, 5: 2 x 64-byte FIFO with Double Buffering (Ping-pong Mode)
• Endpoint 6: 2 x 512-byte FIFO with Double Buffering (Ping-pong Mode)
– Suspend/Resume Interrupts
– 48 MHz PLL for Full-speed Bus Operation
– Bus Disconnection on Microcontroller Request
5 Channels Programmable Counter Array (PCA) with 16-bit Counter, High-speed
Output, Compare/Capture, PWM and Watchdog Timer Capabilities
Programmable Hardware Watchdog Timer (One-time Enabled with Reset-out): 100 ms
to 3s at 8 MHz
Keyboard Interrupt Interface on Port P1 (8 Bits)
TWI (Two Wire Interface) 400Kbit/s
SPI Interface (Master/Slave Mode)
34 I/O Pins
4 Direct-drive LED Outputs with Programmable Current Sources: 2-6-10 mA Typical
4-level Priority Interrupt System (11 sources)
Idle and Power-down Modes
0 to 24 MHz On-chip Oscillator with Analog PLL for 48 MHz Synthesis
Industrial Temperature Range
Extended Range Power Supply: 2.7V to 5.5V (3.3V to 5.5V required for USB)
Packages: PLCC52, VQFP64, QFN32
8-bit Flash
Microcontroller
with Full Speed
USB Device
AT89C5130A-M
AT89C5131A-M
1. Description
AT89C5130A/31A-M is a high-performance Flash version of the 80C51 single-chip 8-bit microcontrollers with full speed USB functions.
AT89C5130A/31A-M features a full-speed USB module compatible with the USB specifications
Version 1.1 and 2.0. This module integrates the USB transceivers with a 3.3V voltage regulator
and the Serial Interface Engine (SIE) with Digital Phase Locked Loop and 48 MHz clock recovery. USB Event detection logic (Reset and Suspend/Resume) and FIFO buffers supporting the
mandatory control Endpoint (EP0) and up to 6 versatile Endpoints
(EP1/EP2/EP3/EP4/EP5/EP6) with minimum software overhead are also part of the USB
module.
AT89C5130A/31A-M retains the features of the Atmel 80C52 with extended Flash capacity
(16/32-Kbytes), 256 bytes of internal RAM, a 4-level interrupt system, two 16-bit timer/counters
(T0/T1), a full duplex enhanced UART (EUART) and an on-chip oscillator.
In addition, AT89C5130A/31A-M has an on-chip expanded RAM of 1024 bytes (ERAM), a dual
data pointer, a 16-bit up/down Timer (T2), a Programmable Counter Array (PCA), up to 4 programmable LED current sources, a programmable hardware watchdog and a power-on reset.
AT89C5130A/31A-M has two software-selectable modes of reduced activity for further reduction
in power consumption. In the idle mode the CPU is frozen while the timers, the serial ports and
the interrupt system are still operating. In the power-down mode the RAM is saved, the peripheral clock is frozen, but the device has full wake-up capability through USB events or external
interrupts.
2
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
XTAL1
XTAL2
EUART
+
BRG
ALE
RAM
256x8
EEPROM
ERAM
4Kx8
1Kx8
16/32Kx8Flash
(1) (1)
PCA
Timer2
SCK
MISO
MOSI
SDA
SCL
T2
T2EX
CEX
ECI
VDD
VSS
TxD
(1) (1)
(2) (2)
SS
RxD
2. Block Diagram
(1) (1) (1) (1)
(3) (3)
SPI
TWI
C51
CORE
PSEN
CPU
EA
Notes:
D+
D-
KIN [0..7]
P4
P3
P2
P1
P0
INT1
(2) (2)
Regulator
VREF
AVDD
Key Watch USB
Board Dog
AVSS
Parallel I/O Ports & Ext. Bus
Port 0 Port 1 Port 2 Port 3 Port 4
(2) (2)
T1
(2)
INT
Ctrl
INT0
Timer 0
Timer 1
RST
WR
(2)
T0
RD
1. Alternate function of Port 1
2. Alternate function of Port 3
3. Alternate function of Port 4
3
4337K–USB–04/08
3. Pinout Description
Pinout
1 52 51 50 49 48 47
4
P1.0/T2/KIN0
P2.0/A8
2
P1.2/ECI/KIN2
P2.1/A9
3
P1.1/T2EX/KIN1/SS
P2.2/A10
5 4
P1.3/CEX0/KIN3
P1.6/CEX3/KIN6/SCK
P1.5/CEX2/KIN5/MISO
6
P1.4/CEX1/KIN4
P1.7/CEX4/KIN7/MOSI
7
P0.0/AD0
P4.0/SCL
AT89C5130A/31A-M 52-pin PLCC Pinout
P4.1/SDA
8
46
NC
P2.3/A11
9
45
P0.1/AD1
P2.4/A12
10
44
P0.2/AD2
P2.5/A13
11
43
XTAL2
12
42
RST
P0.3/AD3
XTAL1
13
P2.6/A14
P2.7/A15
14
VDD
AVDD
41
VSS
P0.4/AD4
15
40
39
16
38
P0.5/AD5
17
37
P0.6/AD6
UCAP
18
36
P0.7/AD7
AVSS
19
35
P3.6/WR/LED2
P3.0/RxD
20
34
NC
PLCC52
P3.7/RD/LED3
P3.5/T1/LED1
P3.4/T0
P3.3/INT1/LED0
P3.2/INT0
PSEN
P3.1/TxD
ALE
EA
VREF
UVSS
D+
21 22 23 24 25 26 27 28 29 30 31 32 33
PLLF
Figure 3-1.
D-
3.1
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
NC
P1.1/T2EX/KIN1/SS
P1.0/T2/KIN0
P1.2/ECI/KIN2
P1.3/CEX0/KIN3
P0.0/AD0
P1.4/CEX1/KIN4
P2.1/A9
P2.0/A8
P2.2/A10
P1.5/CEX2/KIN5/MISO
P1.6/CEX3/KIN6/SCK
NC
AT89C5130A/31A-M 64-pin VQFP Pinout
P4.1/SDA
P4.0/SCL
P1.7/CEX4/KIN7/MOSI
Figure 3-2.
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
NC
P2.3/A11
1
2
48
47
NC
P2.4/A12
3
46
P0.1/AD1
P2.5/A13
4
45
P0.2/AD2
XTAL2
XTAL1
5
6
44
43
RST
P0.3/AD3
VSS
P2.6/A14
7
42
P2.7/A15
VDD
AVDD
8
9
41
40
UCAP
AVSS
NC
P3.0/RxD
NC
NC
VQFP64
10
39
11
38
37
12
13
36
35
14
15
16
NC
NC
P0.4/AD4
P3.7/RD/LED3
P0.5/AD5
P0.6/AD6
P0.7/AD7
P3.6/WR/LED2
34 NC
33 NC
P3.4/T0
P3.5/T1/LED1
NC
P3.2/INT0
P3.3/INT1/LED0
P3.1/TxD
ALE
PSEN
EA
VREF
UVSS
D-
D+
PLLF
NC
NC
17 18 19 20 21 22 23 24 25 26 27 28 29 30 3132
5
4337K–USB–04/08
P1.2/ECI/KIN2
P1.1/T2EX/KIN1/SS
P1.3/CEX0/KIN3
P1.5/CEX2/KIN5/MISO
P1.4/CEX1/KIN4
P1.7/CEX4/KIN7/MOSI
P1.6/CEX3/KIN6/SCK
AT89C5130A/31A-M 32-pin QFN Pinout
P4.0/SCL
Figure 3-3.
32 31 30 29 28 27 26 25
P4.1/SDA
1
24
P1.0/T2/KIN0
XTAL2
2
23
RST
XTAL1
3
22
NC
VDD
4
21
VSS
UCAP
5
20
NC
AVSS
6
19
P3.7/RD/LED3
P3.0/RxD
7
18
P3.6/WR/LED2
PLLF
8
17
P3.5/T1/LED1
QFN32
P3.4/T0
P3.2/INT0
P3.3/INT1/LED0
UVSS
P3.1/TxD
VREF
D-
D+
9 10 11 12 13 14 15 16
Note : The metal plate can be connected to Vss
3.2
Signals
All the AT89C5130A/31A-M signals are detailed by functionality on Table 3-1 through Table 312.
Table 3-1.
Signal
Name
Type
KIN[7:0)
I
Table 3-2.
6
Keypad Interface Signal Description
Description
Keypad Input Lines
Holding one of these pins high or low for 24 oscillator periods triggers a
keypad interrupt if enabled. Held line is reported in the KBCON register.
Alternate
Function
P1[7:0]
Programmable Counter Array Signal Description
Signal
Name
Type
ECI
I
Description
External Clock Input
Alternate
Function
P1.2
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Signal
Name
Type
Description
Capture External Input
CEX[4:0]
I/O
Compare External Output
Alternate
Function
P1.3
P1.4
P1.5
P1.6
P1.7
Table 3-3.
Serial I/O Signal Description
Signal
Name
Type
RxD
I
Serial Input Port
P3.0
TxD
O
Serial Output Port
P3.1
Table 3-4.
Description
Alternate
Function
Timer 0, Timer 1 and Timer 2 Signal Description
Signal
Name
Type
Description
Alternate
Function
Timer 0 Gate Input
INT0 serves as external run control for timer 0, when selected by GATE0
bit in TCON register.
INT0
I
External Interrupt 0
INT0 input set IE0 in the TCON register. If bit IT0 in this register is set, bits
IE0 are set by a falling edge on INT0. If bit IT0 is cleared, bits IE0 is set by
a low level on INT0.
P3.2
Timer 1 Gate Input
INT1 serves as external run control for Timer 1, when selected by GATE1
bit in TCON register.
P3.3
INT1
I
T0
I
Timer Counter 0 External Clock Input
When Timer 0 operates as a counter, a falling edge on the T0 pin
increments the count.
P3.4
T1
I
Timer/Counter 1 External Clock Input
When Timer 1 operates as a counter, a falling edge on the T1 pin
increments the count.
P3.5
T2
T2EX
External Interrupt 1
INT1 input set IE1 in the TCON register. If bit IT1 in this register is set, bits
IE1 are set by a falling edge on INT1. If bit IT1 is cleared, bits IE1 is set by
a low level on INT1.
I
Timer/Counter 2 External Clock Input
O
Timer/Counter 2 Clock Output
I
Timer/Counter 2 Reload/Capture/Direction Control Input
P1.0
P1.1
7
4337K–USB–04/08
Table 3-5.
LED Signal Description
Signal
Name
LED[3:0]
Table 3-6.
Type
O
Alternate
Function
Description
Direct Drive LED Output
These pins can be directly connected to the Cathode of standard LEDs
without external current limiting resistors. The typical current of each
output can be programmed by software to 2, 6 or 10 mA. Several outputs
can be connected together to get higher drive capabilities.
P3.3
P3.5
P3.6
P3.7
TWI Signal Description
Alternate
Function
Signal
Name
Type
SCL
I/O
SCL: TWI Serial Clock
SCL output the serial clock to slave peripherals.
SCL input the serial clock from master.
P4.0
SDA
I/O
SDA: TWI Serial Data
SCL is the bidirectional TWI data line.
P4.1
Table 3-7.
Description
SPI Signal Description
Signal
Name
Type
SS
I/O
Alternate
Function
Description
SS: SPI Slave Select
P1.1
MISO: SPI Master Input Slave Output line
MISO
I/O
SCK
I/O
MOSI
8
I/O
When SPI is in master mode, MISO receives data from the slave
peripheral. When SPI is in slave mode, MISO outputs data to the master
controller.
SCK: SPI Serial Clock
SCK outputs clock to the slave peripheral or receive clock from the master
P1.5
P1.6
MOSI: SPI Master Output Slave Input line
When SPI is in master mode, MOSI outputs data to the slave peripheral.
When SPI is in slave mode, MOSI receives data from the master controller
P1.7
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Table 3-8.
Ports Signal Description
Signal
Name
P0[7:0]
P1[7:0]
Type
I/O
I/O
Description
Port 0
P0 is an 8-bit open-drain bidirectional I/O port. Port 0
pins that have 1s written to them float and can be used
as high impedance inputs. To avoid any parasitic current
consumption, Floating P0 inputs must be pulled to VDD or
VSS.
Port 1
P1 is an 8-bit bidirectional I/O port with internal pull-ups.
Alternate Function
AD[7:0]
KIN[7:0]
T2
T2EX
ECI
CEX[4:0]
P2[7:0]
I/O
Port 2
P2 is an 8-bit bidirectional I/O port with internal pull-ups.
A[15:8]
LED[3:0]
RxD
TxD
P3[7:0]
I/O
Port 3
P3 is an 8-bit bidirectional I/O port with internal pull-ups.
P4[1:0]
I/O
Port 4
P4 is an 2-bit open drain port.
Table 3-9.
INT0
INT1
T0
T1
WR
RD
SCL
SDA
Clock Signal Description
Signal
Name
Type
XTAL1
I
Input to the on-chip inverting oscillator amplifier
To use the internal oscillator, a crystal/resonator circuit is connected to this
pin. If an external oscillator is used, its output is connected to this pin.
-
XTAL2
O
Output of the on-chip inverting oscillator amplifier
To use the internal oscillator, a crystal/resonator circuit is connected to this
pin. If an external oscillator is used, leave XTAL2 unconnected.
-
PLLF
I
PLL Low Pass Filter input
Receive the RC network of the PLL low pass filter.
-
Description
Alternate
Function
9
4337K–USB–04/08
Table 3-10.
USB Signal Description
Signal
Name
Type
D+
I/O
D-
I/O
VREF
O
Table 3-11.
Alternate
Function
Description
USB Data + signal
-
Set to high level under reset.
USB Data - signal
-
Set to low level under reset.
USB Reference Voltage
Connect this pin to D+ using a 1.5 kΩ resistor to use the Detach function.
-
System Signal Description
Signal
Name
Type
AD[7:0]
I/O
A[15:8]
I/O
Address Bus MSB for external access
RD
I/O
Read Signal
Read signal asserted during external data memory read operation.
Alternate
Function
Description
Multiplexed Address/Data LSB for external access
P0[7:0]
Data LSB for Slave port access (used for 8-bit and 16-bit modes)
P2[7:0]
P3.7
Control input for slave port read access cycles.
WR
I/O
Write Signal
Write signal asserted during external data memory write operation.
P3.6
Control input for slave write access cycles.
RST
O
Reset Input
Holding this pin low for 64 oscillator periods while the oscillator is running
resets the device. The Port pins are driven to their reset conditions when a
voltage lower than VIL is applied, whether or not the oscillator is running.
This pin has an internal pull-up resistor which allows the device to be reset
by connecting a capacitor between this pin and VSS.
Asserting RST when the chip is in Idle mode or Power-down mode returns
the chip to normal operation.
This pin is tied to 0 for at least 12 oscillator periods when an internal reset
occurs ( hardware watchdog or power monitor).
ALE
O
Address Latch Enable Output
The falling edge of ALE strobes the address into external latch. This signal
is active only when reading or writing external memory using MOVX
instructions.
-
PSEN
I/O
Program Strobe Enable / Hardware conditions Input for ISP
Used as input under reset to detect external hardware conditions of ISP
mode.
-
EA
I
-
External Access Enable
Table 3-12.
10
This pin must be held low to force the device to fetch code from external
program memory starting at address 0000h.
-
Power Signal Description
Signal
Name
Type
Description
AVSS
GND
Analog Ground
AVSS is used to supply the on-chip PLL and the USB PAD.
Alternate
Function
-
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Table 3-12.
Power Signal Description (Continued)
Signal
Name
Type
Description
AVDD
PWR
Analog Supply Voltage
AVDD is used to supply the on-chip PLL and the USB PAD.
-
VSS
GND
Digital Ground
VSS is used to supply the buffer ring and the digital core.
-
UVSS
GND
USB Digital Ground
UVSS is used to supply the USB pads.
-
UCAP
PWR
USB Pad Power Capacitor
UCAP must be connect to an external capacitor for USB pad power supply
(for typical application see Figure 4-1 on page 12)
-
VDD
PWR
Digital Supply Voltage
VDD is used to supply the buffer ring on all versions of the device.
It is also used to power the on-chip voltage regulator of the Standard
versions or the digital core of the Low Power versions.
Alternate
Function
-
USB pull-up Controlled Output
VREF
O
VREF is used to control the USB D+ 1.5 kΩ pull up.
The Vref output is in high impedance when the bit DETACH is set in the
USBCON register.
-
11
4337K–USB–04/08
4. Typical Application
4.1
Recommended External components
All the external components described in the figure below must be implemented as close as possible from the microcontroller package.
The following figure represents the typical wiring schematic.
Figure 4-1.
Typical Application
VDD
100nF
VSS
VSS
AVDD
1.5K
VSS
VDD
VDD
USB
100nF
4.7µF
VRef
AT89C5130A/31A-M
VBUS
27R
D+
27R
DGND
D+
DUVSS
VSS
XTAL1
22pF
UCAP
Q
1µF
22pF
+20% VSS
100R
2.2nF
VSS
AVSS
PLLF
VSS
XTAL2
10nF
VSS
VSS
VSS
12
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
4.2
PCB Recommandations
Figure 4-2.
USB Pads
Components must be
close to the
microcontroller
Wires must be routed in Parallel and
must be as short as possible
VRef
D+
D-
USB Connector
If possible, isolate D+ and D- signals from other signals
with ground wires
Figure 4-3.
USB PLL
AVss PLLF
C2
R
microcontroller
C1
Components must be
close to the
Isolate filter components
with a ground wire
13
4337K–USB–04/08
5. Clock Controller
5.1
Introduction
The AT89C5130A/31A-M clock controller is based on an on-chip oscillator feeding an on-chip
Phase Lock Loop (PLL). All the internal clocks to the peripherals and CPU core are generated
by this controller.
The AT89C5130A/31A-M X1 and X2 pins are the input and the output of a single-stage on-chip
inverter (see Figure 5-1) that can be configured with off-chip components as a Pierce oscillator
(see Figure 5-2). Value of capacitors and crystal characteristics are detailed in the section “DC
Characteristics”.
The X1 pin can also be used as input for an external 48 MHz clock.
The clock controller outputs three different clocks as shown in Figure 5-1:
• a clock for the CPU core
• a clock for the peripherals which is used to generate the Timers, PCA, WD, and Port
sampling clocks
• a clock for the USB controller
These clocks are enabled or disabled depending on the power reduction mode as detailed in
Section “Power Management”, page 155.
Figure 5-1.
Oscillator Block Diagram
÷2
0
Peripheral
Clock
1
CPU Core
Clock
PLL
X1
X2
IDL
CKCON.0
PCON.0
0
1
USB
Clock
X2
5.2
EXT48
PD
PLLCON.2
PCON.1
Oscillator
Two types of clock sources can be used for CPU:
• Crystal oscillator on X1 and X2 pins: Up to 32 MHz (Amplifier Bandwidth)
• External clock on X1 pin: Up to 48MHz
14
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
In order to optimize the power consumption, the oscillator inverter is inactive when the PLL output is not selected for the USB device.
Figure 5-2.
Crystal Connection
X1
C1
Q
C2
VSS
5.3
5.3.1
X2
PLL
PLL Description
The AT89C5130A/31A-M PLL is used to generate internal high frequency clock (the USB Clock)
synchronized with an external low-frequency (the Peripheral Clock). The PLL clock is used to
generate the USB interface clock. Figure 5-3 shows the internal structure of the PLL.
The PFLD block is the Phase Frequency Comparator and Lock Detector. This block makes the
comparison between the reference clock coming from the N divider and the reverse clock coming from the R divider and generates some pulses on the Up or Down signal depending on the
edge position of the reverse clock. The PLLEN bit in PLLCON register is used to enable the
clock generation. When the PLL is locked, the bit PLOCK in PLLCON register (see Figure 5-3) is
set.
The CHP block is the Charge Pump that generates the voltage reference for the VCO by injecting or extracting charges from the external filter connected on PLLF pin (see Figure 5-4). Value
of the filter components are detailed in the Section “DC Characteristics”.
The VCO block is the Voltage Controlled Oscillator controlled by the voltage VREF produced by
the charge pump. It generates a square wave signal: the PLL clock.
Figure 5-3.
PLL Block Diagram and Symbol
PLLF
PLLCON.1
PLLEN
N divider
OSC
CLOCK
N3:0
Up
PFLD
CHP
Vref
VCO
USB Clock
Down
PLOCK
PLLCON.0
R divider
R3:0
OSCclk × ( R + 1 )
USBclk = ----------------------------------------------N+1
USB
CLOCK
USB Clock Symbol
15
4337K–USB–04/08
Figure 5-4.
PLL Filter Connection
PLLF
R
C2
C1
VSS
VSS
The typical values are: R = 100 Ω, C1 = 10 nf, C2 = 2.2 nF.
5.3.2
PLL Programming
The PLL is programmed using the flow shown in Figure 5-5. As soon as clock generation is
enabled user must wait until the lock indicator is set to ensure the clock output is stable.
Figure 5-5.
PLL Programming Flow
PLL
Programming
Configure Dividers
N3:0 = xxxxb
R3:0 = xxxxb
Enable PLL
PLLEN = 1
PLL Locked?
LOCK = 1?
5.3.3
Divider Values
To generate a 48 MHz clock using the PLL, the divider values have to be configured following
the oscillator frequency. The typical divider values are shown in Table 5-1.
Table 5-1.
16
Typical Divider Values
Oscillator Frequency
R+1
N+1
PLLDIV
3 MHz
16
1
F0h
6 MHz
8
1
70h
8 MHz
6
1
50h
12 MHz
4
1
30h
16 MHz
3
1
20h
18 MHz
8
3
72h
20 MHz
12
5
B4h
24 MHz
2
1
10h
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
5.4
Oscillator Frequency
R+1
N+1
PLLDIV
32 MHz
3
2
21h
40 MHz
12
10
B9h
Registers
Table 5-2.
CKCON0 (S:8Fh)
Clock Control Register 0
7
6
5
4
3
2
1
0
TWIX2
WDX2
PCAX2
SIX2
T2X2
T1X2
T0X2
X2
Bit
Bit Number Mnemonic Description
7
6
5
4
3
2
1
0
TWIX2
TWI Clock
This control bit is validated when the CPU clock X2 is set. When X2 is low,
this bit has no effect.
Clear to select 6 clock periods per peripheral clock cycle.
Set to select 12 clock periods per peripheral clock cycle.
WDX2
Watchdog Clock
This control bit is validated when the CPU clock X2 is set. When X2 is low,
this bit has no effect.
Clear to select 6 clock periods per peripheral clock cycle.
Set to select 12 clock periods per peripheral clock cycle.
PCAX2
Programmable Counter Array Clock
This control bit is validated when the CPU clock X2 is set. When X2 is low,
this bit has no effect.
Clear to select 6 clock periods per peripheral clock cycle.
Set to select 12 clock periods per peripheral clock cycle.
SIX2
Enhanced UART Clock (Mode 0 and 2)
This control bit is validated when the CPU clock X2 is set. When X2 is low,
this bit has no effect.
Clear to select 6 clock periods per peripheral clock cycle.
Set to select 12 clock periods per peripheral clock cycle.
T2X2
Timer2 Clock
This control bit is validated when the CPU clock X2 is set. When X2 is low,
this bit has no effect.
Clear to select 6 clock periods per peripheral clock cycle.
Set to select 12 clock periods per peripheral clock cycle.
T1X2
Timer1 Clock
This control bit is validated when the CPU clock X2 is set. When X2 is low,
this bit has no effect.
Clear to select 6 clock periods per peripheral clock cycle.
Set to select 12 clock periods per peripheral clock cycle.
T0X2
Timer0 Clock
This control bit is validated when the CPU clock X2 is set. When X2 is low,
this bit has no effect.
Clear to select 6 clock periods per peripheral clock cycle.
Set to select 12 clock periods per peripheral clock cycle.
X2
System Clock Control bit
Clear to select 12 clock periods per machine cycle (STD mode, FCPU = FPER =
FOSC/2).
Set to select 6 clock periods per machine cycle (X2 mode, FCPU = FPER = FOSC).
17
4337K–USB–04/08
Reset Value = 0000 0000b
Table 5-3.
CKCON1 (S:AFh)
Clock Control Register 1
7
6
5
4
3
2
1
0
-
-
-
-
-
-
-
SPIX2
Bit
Bit Number Mnemonic Description
7-1
-
0
SPIX2
Reserved
The value read from this bit is always 0. Do not set this bit.
SPI Clock
This control bit is validated when the CPU clock X2 is set. When X2 is low,
this bit has no effect.
Clear to select 6 clock periods per peripheral clock cycle.
Set to select 12 clock periods per peripheral clock cycle.
Reset Value = 0000 0000b
Table 5-4.
PLLCON (S:A3h)
PLL Control Register
7
6
5
4
3
2
1
0
-
-
-
-
-
EXT48
PLLEN
PLOCK
Bit
Bit Number Mnemonic Description
7-3
-
Reserved
The value read from this bit is always 0. Do not set this bit.
2
EXT48
External 48 MHz Enable Bit
Set this bit to bypass the PLL and disable the crystal oscillator.
Clear this bit to select the PLL output as USB clock and to enable the crystal
oscillator.
1
PLLEN
PLL Enable Bit
Set to enable the PLL.
Clear to disable the PLL.
0
PLOCK
PLL Lock Indicator
Set by hardware when PLL is locked.
Clear by hardware when PLL is unlocked.
Reset Value = 0000 0000b
Table 5-5.
18
PLLDIV (S:A4h)
PLL Divider Register
7
6
5
4
3
2
1
0
R3
R2
R1
R0
N3
N2
N1
N0
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Bit
Bit Number Mnemonic Description
7-4
R3:0
PLL R Divider Bits
3-0
N3:0
PLL N Divider Bits
Reset Value = 0000 0000
19
4337K–USB–04/08
6. SFR Mapping
The Special Function Registers (SFRs) of the AT89C5130A/31A-M fall into the following
categories:
• C51 core registers: ACC, B, DPH, DPL, PSW, SP
• I/O port registers: P0, P1, P2, P3, P4
• Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L,
RCAP2H
• Serial I/O port registers: SADDR, SADEN, SBUF, SCON
• PCA (Programmable Counter Array) registers: CCON, CMOD, CCAPMx, CL, CH, CCAPxH,
CCAPxL (x: 0 to 4)
• Power and clock control registers: PCON
• Hardware Watchdog Timer registers: WDTRST, WDTPRG
• Interrupt system registers: IEN0, IPL0, IPH0, IEN1, IPL1, IPH1
• Keyboard Interface registers: KBE, KBF, KBLS
• LED register: LEDCON
• Two Wire Interface (TWI) registers: SSCON, SSCS, SSDAT, SSADR
• Serial Port Interface (SPI) registers: SPCON, SPSTA, SPDAT
• USB registers: Uxxx (17 registers)
• PLL registers: PLLCON, PLLDIV
• BRG (Baud Rate Generator) registers: BRL, BDRCON
• Flash register: FCON (FCON access is reserved for the Flash API and ISP software)
• EEPROM register: EECON
• Others: AUXR, AUXR1, CKCON0, CKCON1
20
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
The table below shows all SFRs with their address and their reset value.
Table 6-1.
SFR Descriptions
Bit
Addressable
Non-Bit Addressable
0/8
1/9
F8h
UEPINT
0000 0000
CH
CCAP0H
CCAP1H
CCAP2H
CCAP3H
CCAP4H
0000 0000
XXXX XXXX
XXXX XXXX
XXXX XXXX
XXXX XXXX
XXXX XXXX
F0h
B
0000 0000
0000 0000
E8h
E0h
2/A
3/B
4/C
5/D
6/E
7/F
FFh
LEDCON
F7h
CL
CCAP0L
CCAP1L
CCAP2L
CCAP3L
CCAP4L
0000 0000
XXXX XXXX
XXXX XXXX
XXXX XXXX
XXXX XXXX
XXXX XXXX
UBYCTLX
0000 0000
UBYCTHX
0000 0000
ACC
0000 0000
EFh
E7h
CCON
CMOD
CCAPM0
CCAPM1
CCAPM2
CCAPM3
CCAPM4
00X0 0000
00XX X000
X000 0000
X000 0000
X000 0000
X000 0000
X000 0000
D0h
PSW
0000 0000
FCON (1)
XXXX 0000
EECON
XXXX XX00
UEPCONX
1000 0000
UEPRST
0000 0000
C8h
T2CON
0000 0000
T2MOD
XXXX XX00
RCAP2L
0000 0000
RCAP2H
0000 0000
TL2
0000 0000
TH2
0000 0000
UEPSTAX
0000 0000
UEPDATX
0000 0000
CFh
UEPIEN
0000 0000
SPCON
SPSTA
SPDAT
0001 0100
0000 0000
XXXX XXXX
USBADDR
1000 0000
UEPNUM
0000 0000
C7h
UFNUMH
0000 0000
USBCON
0000 0000
USBINT
0000 0000
USBIEN
0000 0000
D8h
C0h
B8h
B0h
A8h
A0h
98h
90h
88h
80h
Note:
P4
XXXX 1111
DFh
D7h
IPL0
SADEN
X000 000
0000 0000
UFNUML
0000 0000
P3
IEN1
X0XX X000
IPL1
IPH1
IPH0
X0XX X000
X0XX X000
X000 0000
1111 1111
BFh
IEN0
SADDR
CKCON1
0000 0000
0000 0000
0000 0000
P2
AUXR1
1111 1111
XXXX X0X0
PLLCON
XXXX XX00
PLLDIV
0000 0000
WDTRST
WDTPRG
XXXX XXXX
XXXX X000
SCON
SBUF
BRL
BDRCON
KBLS
KBE
KBF
0000 0000
XXXX XXXX
0000 0000
XXX0 0000
0000 0000
0000 0000
0000 0000
P1
SSCON
SSCS
SSDAT
SSADR
1111 1111
0000 0000
1111 1000
1111 1111
1111 1110
AUXR
XX0X 0000
TCON
TMOD
TL0
TL1
TH0
TH1
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
P0
1111 1111
SP
0000 0111
DPL
0000 0000
DPH
0000 0000
0/8
1/9
2/A
3/B
6/E
A7h
97h
CKCON0
0000 0000
PCON
5/D
AFh
9Fh
00X1 0000
4/C
B7h
8Fh
87h
7/F
1. FCON access is reserved for the Flash API and ISP software.
Reserved
21
4337K–USB–04/08
The Special Function Registers (SFRs) of the AT89C5131 fall into the following categories:
Table 6-2.
C51 Core SFRs
Mnemonic
Add
Name
ACC
E0h
Accumulator
B
F0h
B Register
PSW
D0h
Program Status
Word
SP
81h
DPL
82h
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Stack Pointer
LSB of SPX
Data Pointer
Low byte
LSB of DPTR
DPH
83h
Data Pointer
High byte
MSB of DPTR
Table 6-3.
Table 6-4.
I/O Port SFRs
Mnemonic
Add
Name
P0
80h
Port 0
P1
90h
Port 1
P2
A0h
Port 2
P3
B0h
Port 3
P4
C0h
Port 4 (2bits)
Timer SFR’s
Mnemonic
Add
Name
TH0
8Ch
Timer/Counter 0 High byte
TL0
8Ah
Timer/Counter 0 Low byte
TH1
8Dh
Timer/Counter 1 High byte
TL1
8Bh
Timer/Counter 1 Low byte
TH2
CDh
Timer/Counter 2 High byte
TL2
CCh
Timer/Counter 2 Low byte
TCON
88h
TMOD
22
7
6
5
4
3
2
1
0
Timer/Counter 0 and 1
control
TF1
TR1
TF0
TR0
IE1
IT1
IE0
IT0
89h
Timer/Counter 0 and 1
Modes
GATE1
C/T1#
M11
M01
GATE0
C/T0#
M10
M00
T2CON
C8h
Timer/Counter 2 control
TF2
EXF2
RCLK
TCLK
EXEN2
TR2
C/T2#
CP/RL2#
T2MOD
C9h
Timer/Counter 2 Mode
T2OE
DCEN
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Table 6-4.
Timer SFR’s (Continued)
Mnemonic
Add
Name
RCAP2H
CBh
Timer/Counter 2
Reload/Capture High byte
RCAP2L
CAh
Timer/Counter 2
Reload/Capture Low byte
WDTRST
A6h
WatchDog Timer Reset
WDTPRG
A7h
WatchDog Timer Program
Table 6-5.
Add
Name
SCON
98h
Serial Control
SBUF
99h
Serial Data Buffer
SADEN
B9h
Slave Address Mask
SADDR
A9h
Slave Address
5
4
3
2
1
0
S2
S1
S0
7
6
5
4
3
2
1
0
FE/SM0
SM1
SM2
REN
TB8
RB8
TI
RI
7
6
5
4
3
2
1
0
BRR
TBCK
RBCK
SPD
SRC
Baud Rate Generator SFR’s
Mnemonic
Add
Name
BRL
9Ah
Baud Rate Reload
BDRCON
9Bh
Baud Rate Control
Table 6-7.
6
Serial I/O Port SFR’s
Mnemonic
Table 6-6.
7
PCA SFR’s
Mnemonic
Add
Name
CCON
D8h
PCA Timer/Counter Control
CMOD
D9h
PCA Timer/Counter Mode
CL
E9h
PCA Timer/Counter Low byte
CH
F9h
PCA Timer/Counter High byte
CCAPM
1
DAh
PCA Timer/Counter Mode 0
ECOM0
CAPP0
CAPN0
CCAPM
2
DBh
PCA Timer/Counter Mode 1
ECOM1
CAPP1
CAPN1
DCh
PCA Timer/Counter Mode 2
ECOM2
CAPP2
DDh
PCA Timer/Counter Mode 3
ECOM3
DEh
PCA Timer/Counter Mode 4
ECOM4
7
6
CF
CR
CIDL
WDTE
5
4
3
2
1
0
CCF4
CCF3
CCF2
CCF1
CCF0
CPS1
CPS0
ECF
MAT0
TOG0
PWM0
ECCF0
MAT1
TOG1
PWM1
ECCF1
CAPN2
MAT2
TOG2
PWM2
ECCF2
CAPP3
CAPN3
MAT3
TOG3
PWM3
ECCF3
CAPP4
CAPN4
MAT4
TOG4
PWM4
ECCF4
CCAPM
0
CCAPM
3
CCAPM
4
23
4337K–USB–04/08
Table 6-7.
PCA SFR’s
Mnemonic
Add
Name
CCAP0
H
PCA Compare Capture Module 0
H
CCAP1
H
FAh
CCAP2
H
FCh
CCAP3
H
FBh
FDh
FEh
CCAP4
H
7
6
5
4
3
2
1
0
PCA Compare Capture Module 1
H
CCAP0H7 CCAP0H6 CCAP0H5 CCAP0H4 CCAP0H3 CCAP0H2 CCAP0H1 CCAP0H0
PCA Compare Capture Module 2
H
CCAP2H7 CCAP2H6 CCAP2H5 CCAP2H4 CCAP2H3 CCAP2H2 CCAP2H1 CCAP2H0
PCA Compare Capture Module 3
H
CCAP1H7 CCAP1H6 CCAP1H5 CCAP1H4 CCAP1H3 CCAP1H2 CCAP1H1 CCAP1H0
CCAP3H7 CCAP3H6 CCAP3H5 CCAP3H4 CCAP3H3 CCAP3H2 CCAP3H1 CCAP3H0
CCAP4H7 CCAP4H6 CCAP4H5 CCAP4H4 CCAP4H3 CCAP4H2 CCAP4H1 CCAP4H0
PCA Compare Capture Module 4
H
PCA Compare Capture Module 0
L
CCAP0L EAh
CCAP1L EBh
CCAP2L ECh
CCAP3L EDh
CCAP4L EEh
PCA Compare Capture Module 1
L
CCAP0L7
CCAP0L6 CCAP0L5
CCAP0L4
CCAP0L3
CCAP0L2
CCAP0L1
CCAP0L0
PCA Compare Capture Module 2
L
CCAP1L7
CCAP1L6 CCAP1L5
CCAP1L4
CCAP1L3
CCAP1L2
CCAP1L1
CCAP1L0
CCAP2L7
CCAP2L6 CCAP2L5
CCAP2L4
CCAP2L3
CCAP2L2
CCAP2L1
CCAP2L0
CCAP3L7
CCAP3L6 CCAP3L5
CCAP3L4
CCAP3L3
CCAP3L2
CCAP3L1
CCAP3L0
CCAP4L7
CCAP4L6 CCAP4L5
CCAP4L4
CCAP4L3
CCAP4L2
CCAP4L1
CCAP4L0
PCA Compare Capture Module 3
L
PCA Compare Capture Module 4
L
Table 6-8.
Interrupt SFR’s
Mnemonic
Add
Name
IEN0
A8h
Interrupt Enable Control 0
IEN1
B1h
Interrupt Enable Control 1
EUSB
IPL0
B8h
Interrupt Priority Control Low 0
PPCL
PT2L
PSL
IPH0
B7h
Interrupt Priority Control High 0
PPCH
PT2H
PSH
IPL1
B2h
Interrupt Priority Control Low 1
IPH1
B3h
Interrupt Priority Control High 1
Table 6-9.
24
6
5
4
3
2
1
0
EA
EC
ET2
ES
ET1
EX1
ET0
EX0
ESPI
ETWI
EKB
PT1L
PX1L
PT0L
PX0L
PT1H
PX1H
PT0H
PX0H
PUSBL
PSPIL
PTWIL
PKBL
PUSBH
PSPIH
PTWIH
PKBH
PLL SFRs
Mnemonic
Add
Name
PLLCON
A3h
PLL Control
PLLDIV
A4h
PLL Divider
Table 6-10.
7
7
6
R3
5
R2
4
R1
3
R0
N3
2
1
0
EXT48
PLLEN
PLOCK
N2
N1
N0
Keyboard SFRs
Mnemonic
Add
Name
7
6
5
4
3
2
1
0
KBF
9Eh
Keyboard Flag
Register
KBF7
KBF6
KBF5
KBF4
KBF3
KBF2
KBF1
KBF0
KBE
9Dh
Keyboard Input Enable
Register
KBE7
KBE6
KBE5
KBE4
KBE3
KBE2
KBE1
KBE0
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Table 6-10.
Keyboard SFRs
Mnemonic
Add
Name
KBLS
9Ch
Keyboard Level
Selector Register
Table 6-11.
7
6
5
4
3
2
1
0
KBLS7
KBLS6
KBLS5
KBLS4
KBLS3
KBLS2
KBLS1
KBLS0
7
6
5
4
3
2
1
0
TWI SFRs
Mnemonic
Add
Name
SSCON
93h
Synchronous Serial
Control
CR2
SSIE
STA
STO
SI
AA
CR1
CR0
SSCS
94h
Synchronous Serial
Control-Status
SC4
SC3
SC2
SC1
SC0
-
-
-
SSDAT
95h
Synchronous Serial
Data
SD7
SD6
SD5
SD4
SD3
SD2
SD1
SD0
SSADR
96h
Synchronous Serial
Address
A7
A6
A5
A4
A3
A2
A1
A0
7
6
5
4
3
2
1
0
Table 6-12.
SPI SFRs
Mnemonic
Add
Name
SPCON
C3h
Serial Peripheral
Control
SPR2
SPEN
SSDIS
MSTR
CPOL
CPHA
SPR1
SPR0
SPSTA
C4h
Serial Peripheral
Status-Control
SPIF
WCOL
SSERR
MODF
-
-
-
-
SPDAT
C5h
Serial Peripheral Data
R7
R6
R5
R4
R3
R2
R1
R0
Table 6-13.
USB SFR’s
Mnemonic
Add
Name
7
6
5
4
3
2
1
0
USBCON
BCh
USB Global Control
USBE
SUSPCLK
SDRMWU
P
DETACH
UPRSM
RMWUPE
CONFG
FADDEN
USBADDR
C6h
USB Address
FEN
UADD6
UADD5
UADD4
UADD3
UADD2
UADD1
UADD0
USBINT
BDh
USB Global Interrupt
-
-
WUPCPU
EORINT
SOFINT
-
-
SPINT
USBIEN
BEh
USB Global Interrupt
Enable
-
-
EWUPCP
U
EEORINT
ESOFINT
-
-
ESPINT
UEPNUM
C7h
USB Endpoint Number
-
-
-
-
EPNUM3
EPNUM2
EPNUM1
EPNUM0
UEPCONX
D4h
USB Endpoint X Control
EPEN
-
-
-
DTGL
EPDIR
EPTYPE1
EPTYPE0
UEPSTAX
CEh
USB Endpoint X Status
DIR
RXOUTB1
STALLRQ
TXRDY
STLCRC
RXSETUP
RXOUTB0
TXCMP
UEPRST
D5h
USB Endpoint Reset
-
EP6RST
EP5RST
EP4RST
EP3RST
EP2RST
EP1RST
EP0RST
UEPINT
F8h
USB Endpoint Interrupt
-
EP6INT
EP5INT
EP4INT
EP3INT
EP2INT
EP1INT
EP0INT
UEPIEN
C2h
USB Endpoint Interrupt
Enable
-
EP6INTE
EP5INTE
EP4INTE
EP3INTE
EP2INTE
EP1INTE
EP0INTE
UEPDATX
CFh
USB Endpoint X FIFO
Data
FDAT7
FDAT6
FDAT5
FDAT4
FDAT3
FDAT2
FDAT1
FDAT0
25
4337K–USB–04/08
Table 6-13.
USB SFR’s
Mnemonic
Add
Name
7
6
5
4
3
2
1
0
UBYCTLX
E2h
USB Byte Counter Low
(EP X)
BYCT7
BYCT6
BYCT5
BYCT4
BYCT3
BYCT2
BYCT1
BYCT0
UBYCTHX
E3h
USB Byte Counter High
(EP X)
-
-
-
-
-
BYCT10
BYCT9
BYCT8
UFNUML
BAh
USB Frame Number
Low
FNUM7
FNUM6
FNUM5
FNUM4
FNUM3
FNUM2
FNUM1
FNUM0
UFNUMH
BBh
USB Frame Number
High
-
-
CRCOK
CRCERR
-
FNUM10
FNUM9
FNUM8
Table 6-14.
26
Other SFR’s
Mnemonic
Add
Name
7
6
5
4
3
2
1
0
PCON
87h
Power Control
SMOD1
SMOD0
-
POF
GF1
GF0
PD
IDL
AUXR
8Eh
Auxiliary Register 0
DPU
-
M0
-
XRS1
XRS2
EXTRAM
A0
AUXR1
A2h
Auxiliary Register 1
-
-
ENBOOT
-
GF3
-
-
DPS
CKCON0
8Fh
Clock Control 0
TWIX2
WDX2
PCAX2
SIX2
T2X2
T1X2
T0X2
X2
CKCON1
AFh
Clock Control 1
-
-
-
-
-
-
-
SPIX2
LEDCON
F1h
LED Control
FCON
D1h
Flash Control
EECON
D2h
EEPROM Contol
LED3
LED2
LED1
LED0
FPL3
FPL2
FPL1
FPL0
FPS
FMOD1
FMOD0
FBUSY
EEPL3
EEPL2
EEPL1
EEPL0
-
-
EEE
EEBUSY
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
7. Dual Data Pointer Register
The additional data pointer can be used to speed up code execution and reduce code size.
The dual DPTR structure is a way by which the chip will specify the address of an external data
memory location. There are two 16-bit DPTR registers that address the external memory, and a
single bit called DPS = AUXR1.0 (see Table 7-1) that allows the program code to switch
between them (see Figure 7-1).
Figure 7-1.
Use of Dual Pointer
External Data Memory
7
0
DPS
DPTR1
DPTR0
AUXR1(A2H)
DPH(83H) DPL(82H)
Table 7-1.
AUXR1 Register
AUXR1- Auxiliary Register 1(0A2h)
7
6
5
4
3
2
1
0
-
-
ENBOOT
-
GF3
0
-
DPS
Bit
Bit
Number
Mnemonic
7
-
Reserved
The value read from this bit is indeterminate. Do not set this bit.
6
-
Reserved
The value read from this bit is indeterminate. Do not set this bit.
5
ENBOOT
Description
Enable Boot Flash
Cleared to disable boot ROM.
Set to map the boot ROM between F800h - 0FFFFh.
Reserved
The value read from this bit is indeterminate. Do not set this bit.
4
-
3
GF3
2
0
Always cleared.
1
-
Reserved
The value read from this bit is indeterminate. Do not set this bit.
0
DPS
This bit is a general-purpose user flag.
Data Pointer Selection
Cleared to select DPTR0.
Set to select DPTR1.
Reset Value = XX[BLJB]X X0X0b
Not bit addressable
a. Bit 2 stuck at 0; this allows to use INC AUXR1 to toggle DPS without changing GF3.
27
4337K–USB–04/08
ASSEMBLY LANGUAGE
; Block move using dual data pointers
; Modifies DPTR0, DPTR1, A and PSW
; note: DPS exits opposite of entry state
; unless an extra INC AUXR1 is added
;
00A2 AUXR1 EQU 0A2H
;
0000 909000MOV DPTR,#SOURCE ; address of SOURCE
0003 05A2 INC AUXR1 ; switch data pointers
0005 90A000 MOV DPTR,#DEST ; address of DEST
0008 LOOP:
0008 05A2 INC AUXR1 ; switch data pointers
000A E0 MOVX A,@DPTR ; get a byte from SOURCE
000B A3 INC DPTR ; increment SOURCE address
000C 05A2 INC AUXR1 ; switch data pointers
000E F0 MOVX @DPTR,A ; write the byte to DEST
000F A3 INC DPTR ; increment DEST address
0010 70F6JNZ LOOP ; check for 0 terminator
0012 05A2 INC AUXR1 ; (optional) restore DPS
INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR.
However, note that the INC instruction does not directly force the DPS bit to a particular state,
but simply toggles it. In simple routines, such as the block move example, only the fact that DPS
is toggled in the proper sequence matters, not its actual value. In other words, the block move
routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.
28
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
8. Program/Code Memory
The AT89C5130A/31A-M implement 16/ 32 Kbytes of on-chip program/code memory. Figure 81 shows the split of internal and external program/code memory spaces depending on the
product.
The Flash memory increases EPROM and ROM functionality by in-circuit electrical erasure and
programming. Thanks to the internal charge pump, the high voltage needed for programming or
erasing Flash cells is generated on-chip using the standard VDD voltage. Thus, the Flash Memory can be programmed using only one voltage and allows In- application Software
Programming commonly known as IAP. Hardware programming mode is also available using
specific programming tool.
Figure 8-1.
Program/Code Memory Organization
FFFFh
FFFFh
32 Kbytes
External Code
48 Kbytes
External Code
4000h
3FFFh
8000h
7FFFh
32 Kbytes
Flash
16 Kbytes
Flash
0000h
0000h
AT89C5130A
Note:
8.1
8.1.1
AT89C5131A
If the program executes exclusively from on-chip code memory (not from external memory),
beware of executing code from the upper byte of on-chip memory (3FFFh/7FFFh) and thereby
disrupting I/O Ports 0 and 2 due to external prefetch. Fetching code constant from this location
does not affect Ports 0 and 2.
External Code Memory Access
Memory Interface
The external memory interface comprises the external bus (Port 0 and Port 2) as well as the bus
control signals (PSEN, and ALE).
Figure 8-2 shows the structure of the external address bus. P0 carries address A7:0 while P2
carries address A15:8. Data D7:0 is multiplexed with A7:0 on P0. Table 8-1 describes the external memory interface signals.
29
4337K–USB–04/08
Figure 8-2.
External Code Memory Interface Structure
Flash
EPROM
AT89C5130A
AT89C5131
A15:8
P2
A15:8
ALE
P0
AD7:0
Latch
A7:0
A7:0
D7:0
PSEN
Table 8-1.
8.1.2
OE
External Data Memory Interface Signals
Signal
Name
Type
Alternate
Function
A15:8
O
Address Lines
Upper address lines for the external bus.
P2.7:0
AD7:0
I/O
Address/Data Lines
Multiplexed lower address lines and data for the external memory.
P0.7:0
ALE
O
Address Latch Enable
ALE signals indicates that valid address information are available on lines
AD7:0.
-
PSEN
O
Program Store Enable Output
This signal is active low during external code fetch or external code read
(MOVC instruction).
-
Description
External Bus Cycles
This section describes the bus cycles the AT89C5130A/31A-M executes to fetch code (see
Figure 8-3) in the external program/code memory.
External memory cycle takes 6 CPU clock periods. This is equivalent to 12 oscillator clock periods in standard mode or 6 oscillator clock periods in X2 mode. For further information on X2
mode (see the clock Section).
For simplicity, the accompanying figure depicts the bus cycle waveforms in idealized form and
do not provide precise timing information.
Figure 8-3.
External Code Fetch Waveforms
CPU Clock
ALE
PSEN
P0 D7:0
P2 PCH
30
PCL
D7:0
PCH
PCL
D7:0
PCH
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
8.2
Flash Memory Architecture
AT89C5130A/31A-M features two on-chip Flash memories:
• Flash memory FM0:
containing 32 Kbytes of program memory (user space) organized into 128-byte pages,
• Flash memory FM1:
3 Kbytes for bootloader and Application Programming Interfaces (API).
The FM0 supports both parallel programming and Serial In-System Programming (ISP) whereas
FM1 supports only parallel programming by programmers. The ISP mode is detailed in the “InSystem Programming” section.
All Read/Write access operations on Flash memory by user application are managed by a set of
API described in the “In-System Programming” section.
Figure 8-4.
Flash Memory Architecture
3 Kbytes
Flash Memory
Boot Space
Hardware Security (1 Byte)
Extra Row (128 Bytes)
Column Latches (128 Bytes)
FM1
3FFFh for
AT89C5130A
for 16 KB
16/32 KB
FFFFh
F400h
FM1 mapped between FFFFh and
F400h when bit ENBOOT is set in
AUXR1 register
Flash Memory
User Space
7FFFh for
AT89C5131A
for 32 KB
FM0
0000h
8.2.1
FM0 Memory Architecture
The Flash memory is made up of 4 blocks (see Figure 8-4):
1. The memory array (user space) 32 Kbytes
2. The Extra Row
3. The Hardware security bits
4. The column latch registers
8.2.1.1
User Space
This space is composed of a 16/32 Kbytes Flash memory organized in 128/256 pages of 128
bytes. It contains the user’s application code.
8.2.1.2
Extra Row (XRow)
This row is a part of FM0 and has a size of 128 bytes. The extra row contains information for
bootloader usage (see 9-3 “Software Registers” on page 41)
8.2.1.3
Hardware Security Space
The hardware security space is a part of FM0 and has a size of 1 byte.
The 4 MSB can be read/written by software. The 4 LSB can only be read by software and written
by hardware in parallel mode.
31
4337K–USB–04/08
8.2.1.4
8.3
Column Latches
The column latches, also part of FM0, have a size of full page (128 bytes).
The column latches are the entrance buffers of the three previous memory locations (user array,
XRow and Hardware security byte).
Overview of FM0 Operations
The CPU interfaces to the Flash memory through the FCON register and AUXR1 register.
These registers are used to:
• Map the memory spaces in the adressable space
• Launch the programming of the memory spaces
• Get the status of the Flash memory (busy/not busy)
• Select the Flash memory FM0/FM1.
8.3.1
Mapping of the Memory Space
By default, the user space is accessed by MOVC instruction for read only. The column latches
space is made accessible by setting the FPS bit in FCON register. Writing is possible from
0000h to 3FFFH/7FFFh, address bits 6 to 0 are used to select an address within a page while
bits 14 to 7 are used to select the programming address of the page.
Setting this bit takes precedence on the EXTRAM bit in AUXR register.
The other memory spaces (user, extra row, hardware security) are made accessible in the code
segment by programming bits FMOD0 and FMOD1 in FCON register in accordance with
Table 8-2. A MOVC instruction is then used for reading these spaces.
Table 8-2.
8.3.2
32
FM0 Blocks Select Bits
FMOD1
FMOD0
FM0 Adressable Space
0
0
User (0000h-FFFFh)
0
1
Extra Row(FF80h-FFFFh)
1
0
Hardware Security (0000h)
1
1
reserved
Launching Programming
FPL3:0 bits in FCON register are used to secure the launch of programming. A specific
sequence must be written in these bits to unlock the write protection and to launch the programming. This sequence is 5 followed by A. Table 8-3 summarizes the memory spaces to program
according to FMOD1:0 bits.
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Table 8-3.
Programming Spaces
Write to FCON
FPL3:0
FPS
FMOD1
FMOD0
Operation
5
X
0
0
No action
A
X
0
0
Write the column latches in user
space
5
X
0
1
No action
A
X
0
1
Write the column latches in extra row
space
5
X
1
0
No action
A
X
1
0
Write the fuse bits space
5
X
1
1
No action
A
X
1
1
No action
User
Extra Row
Security
Space
Reserved
The Flash memory enters a busy state as soon as programming is launched. In this state, the
memory is not available for fetching code. Thus to avoid any erratic execution during programming, the CPU enters Idle mode. Exit is automatically performed at the end of programming.
Note:
8.3.3
Interrupts that may occur during programming time must be disabled to avoid any spurious exit of
the idle mode.
Status of the Flash Memory
The bit FBUSY in FCON register is used to indicate the status of programming.
FBUSY is set when programming is in progress.
8.3.4
Selecting FM0/FM1
The bit ENBOOT in AUXR1 register is used to choose between FM0 and FM1 mapped up to
F800h.
8.3.5
Loading the Column Latches
Any number of data from 1 byte to 128 bytes can be loaded in the column latches. This provides
the capability to program the whole memory by byte, by page or by any number of bytes in a
page.
When programming is launched, an automatic erase of the locations loaded in the column
latches is first performed, then programming is effectively done. Thus, no page or block erase is
needed and only the loaded data are programmed in the corresponding page.
The following procedure is used to load the column latches and is summarized in Figure 8-5:
• Map the column latch space by setting FPS bit.
• Load the DPTR with the address to load.
• Load Accumulator register with the data to load.
• Execute the MOVX @DPTR, A instruction.
• If needed loop the three last instructions until the page is completely loaded.
33
4337K–USB–04/08
Figure 8-5.
Column Latches Loading Procedure
Column Latches
Loading
Column Latches Mapping
FPS = 1
Data Load
DPTR = Address
ACC = Data
Exec: MOVX @DPTR, A
Last Byte
to load?
Data memory Mapping
FPS = 0
8.3.6
8.3.6.1
Programming the Flash Spaces
User
The following procedure is used to program the User space and is summarized in Figure 8-6:
• Load data in the column latches from address 0000h to 7FFFh(1).
• Disable the interrupts.
• Launch the programming by writing the data sequence 50h followed by A0h in FCON
register.
The end of the programming indicated by the FBUSY flag cleared.
• Enable the interrupts.
Note:
8.3.6.2
1. The last page address used when loading the column latch is the one used to select the page
programming address.
Extra Row
The following procedure is used to program the Extra Row space and is summarized in Figure 86:
• Load data in the column latches from address FF80h to FFFFh.
• Disable the interrupts.
• Launch the programming by writing the data sequence 52h followed by A2h in FCON
register.
The end of the programming indicated by the FBUSY flag cleared.
• Enable the interrupts.
34
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Figure 8-6.
Flash and Extra Row Programming Procedure
Flash Spaces
Programming
Column Latches Loading
see Figure 8-5
Disable IT
EA = 0
Launch Programming
FCON = 5xh
FCON = Axh
FBusy
Cleared?
Erase Mode
FCON = 00h
End Programming
Enable IT
EA = 1
8.3.6.3
Hardware Security
The following procedure is used to program the Hardware Security space and is summarized in
Figure 8-7:
• Set FPS and map Hardware byte (FCON = 0x0C)
• Disable the interrupts.
• Load DPTR at address 0000h.
• Load Accumulator register with the data to load.
• Execute the MOVX @DPTR, A instruction.
• Launch the programming by writing the data sequence 54h followed by A4h in FCON
register.
The end of the programming indicated by the FBusy flag cleared.
• Enable the interrupts.
35
4337K–USB–04/08
Figure 8-7.
Hardware Programming Procedure
Flash Spaces
Programming
FCON = 0Ch
Data Load
DPTR = 00h
ACC = Data
Exec: MOVX @DPTR, A
Disable IT
EA = 0
Launch Programming
FCON = 54h
FCON = A4h
FBusy
Cleared?
Erase Mode
FCON = 00h
End Programming
Enable IT
EA = 1
8.3.7
8.3.7.1
Reading the Flash Spaces
User
The following procedure is used to read the User space and is summarized in Figure 8-8:
• Map the User space by writing 00h in FCON register.
• Read one byte in Accumulator by executing MOVC A, @A+DPTR with A = 0 & DPTR =
0000h to FFFFh.
8.3.7.2
Extra Row
The following procedure is used to read the Extra Row space and is summarized in Figure 8-8:
• Map the Extra Row space by writing 02h in FCON register.
• Read one byte in Accumulator by executing MOVC A, @A+DPTR with A = 0 & DPTR =
FF80h to FFFFh.
36
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
8.3.7.3
Hardware Security
The following procedure is used to read the Hardware Security space and is summarized in
Figure 8-8:
• Map the Hardware Security space by writing 04h in FCON register.
• Read the byte in Accumulator by executing MOVC A, @A+DPTR with A = 0 & DPTR =
0000h.
Figure 8-8.
Reading Procedure
Flash Spaces Reading
Flash Spaces Mapping
FCON = 00000xx0b
Data Read
DPTR = Address
ACC = 0
Exec: MOVC A, @A+DPTR
Erase Mode
FCON = 00h
8.4
Registers
Table 8-4.
FCON (S:D1h)
Flash Control Register
7
6
5
4
3
2
1
0
FPL3
FPL2
FPL1
FPL0
FPS
FMOD1
FMOD0
FBUSY
Bit
Bit Number Mnemonic Description
7-4
FPL3:0
3
FPS
2-1
FMOD1:0
0
FBUSY
Programming Launch Command Bits
Write 5Xh followed by AXh to launch the programming according to FMOD1:0.
(see Table 8-3.)
Flash Map Program Space
Set to map the column latch space in the data memory space.
Clear to re-map the data memory space.
Flash Mode
See Table 8-2 or Table 8-3.
Flash Busy
Set by hardware when programming is in progress.
Clear by hardware when programming is done.
Can not be cleared by software.
Reset Value = 0000 0000b
37
4337K–USB–04/08
9. Flash EEPROM Memory
9.1
General Description
The Flash memory increases EPROM functionality with in-circuit electrical erasure and programming. It contains 16/32 Kbytes of program memory organized in 128/256 pages of 128 bytes,
respectively. This memory is both parallel and serial In-System Programmable (ISP). ISP allows
devices to alter their own program memory in the actual end product under software control. A
default serial loader (bootloader) program allows ISP of the Flash.
The programming does not require 12V external programming voltage. The necessary high programming voltage is generated on-chip using the standard VCC pins of the microcontroller.
9.2
Features
• Flash EEPROM internal program memory.
• Boot vector allows user-provided Flash loader code to reside anywhere in the Flash memory
space. This configuration provides flexibility to the user.
• Default loader in Boot EEPROM allows programming via the serial port without the need of a
user provided loader.
• Up to 64K bytes external program memory if the internal program memory is disabled (EA =
0).
• Programming and erase voltage with standard power supply.
• Read/Program/Erase:
• Byte-wise read (without wait state).
• Byte or page erase and programming (10 ms).
• Typical programming time (32 Kbytes) in 4.5 sec.
• Parallel programming with 87C51 compatible hardware interface to programmer.
• Programmable security for the code in the Flash.
• 100K write cycles for code memory
• 1K write cycles for configuration bits (BLJB, X2, OSCON1, OSCON0)
• 10 years data retention
9.3
Flash Programming and Erasure
The 16/32 Kbytes Flash is programmed by bytes or by pages of 128 bytes. It is not necessary to
erase a byte or a page before programming. The programming of a byte or a page includes a
self erase before programming.
There are three methods of programming the Flash memory:
1. The on-chip ISP bootloader may be invoked which will use low level routines to program the pages. The interface used for serial downloading of Flash is the USB.
2. The Flash may be programmed or erased in the end-user application by calling lowlevel routines through a common entry point in the Boot Flash.
3. The Flash may be programmed using the parallel method.
The bootloader and the Application Programming Interface (API) routines are located in the
Flash Bootloader.
38
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
9.4
Flash Registers and Memory Map
The AT89C5130A/31A-M Flash memory uses several registers:
• Hardware register can be accessed with a parallel programmer.Some bits of the hardware
register can be changed, also, by API (i.e. X2 and BLJB bits of Hardware security Byte) or
ISP.
• Software registers are in a special page of the Flash memory which can be accessed through
the API or with the parallel programming modes. This page, called “Extra Flash Memory”, is
not in the internal Flash program memory addressing space.
9.4.1
Hardware Registers
The only hardware register of the AT89C5130A/31A-M is called Hardware Security Byte (HSB).
Table 9-1.
Hardware Security Byte (HSB)
7
6
5
4
3
2
1
0
X2
BLJB
OSCON1
OSCON0
-
LB2
LB1
LB0
Bit
Bit
Number
Mnemonic
7
X2
Description
X2 Mode
Cleared to force X2 mode (6 clocks per instruction)
Set to force X1 mode, Standard Mode (Default).
Bootloader Jump Bit
6
BLJB
Set this bit to start the user’s application on next reset at address 0000h.
Cleared this bit to start the bootloader at address F400h (default).
Oscillator Control Bits
These two bits are used to control the oscillator in order to reduce consumption.
5-4
9.4.1.1
OSCON1 OSCON0 Description
OSCON1-0 1 1 The oscillator is configured to run from 0 to 32 MHz
1 0 The oscillator is configured to run from 0 to 16 MHz
0 1 The oscillator is configured to run from 0 to 8 MHz
0 0 This configuration shouldn’t be set
3
-
2-0
LB2-0
Reserved
User Memory Lock Bits
See Table 9-2
Bootloader Jump Bit (BLJB)
One bit of the HSB, the BLJB bit, is used to force the boot address:
• When this bit is set the boot address is 0000h.
• When this bit is reset the boot address is F400h. By default, this bit is cleared and the ISP is
enabled.
9.4.1.2
Flash Memory Lock Bits
The three lock bits provide different levels of protection for the on-chip code and data, when programmed as shown in Table 9-2.
39
4337K–USB–04/08
Table 9-2.
Program Lock bits
Program Lock Bits
Notes:
Security level
LB0
LB1
LB2
Protection Description
1
U
U
U
No program lock features enabled.
2
P
U
U
MOVC instruction executed from external
program memory is disabled from fetching code
bytes from any internal memory, EA is sampled
and latched on reset, and further parallel
programming of the Flash and of the EEPROM
(boot and Xdata) is disabled. ISP and software
programming with API are still allowed.
3
X
P
U
Same as 2, also verify through parallel
programming interface is disabled and serial
programming ISP is still allowed.
4
X
X
P
Same as 3, also external execution is disabled.
1. U: unprogrammed or “one” level.
2. P: programmed or “zero” level.
3. X: don’t care
4. WARNING: Security level 2 and 3 should only be programmed after verification.
These security bits protect the code access through the parallel programming interface. They
are set by default to level 4. The code access through the ISP is still possible and is controlled
by the “software security bits” which are stored in the extra Flash memory accessed by the ISP
firmware.
To load a new application with the parallel programmer, a chip erase must be done first. This will
set the HSB in its inactive state and will erase the Flash memory. The part reference can always
be read using Flash parallel programming modes.
9.4.1.3
Default Values
The default value of the HSB provides parts ready to be programmed with ISP:
• BLJB: Cleared to force ISP operation.
• X2: Set to force X1 mode (Standard Mode)
• OSCON1-0: Set to start with 32 MHz oscillator configuration value.
• LB2-0: Security level four to protect the code from a parallel access with maximum security.
9.4.2
Software Registers
Several registers are used, in factory and by parallel programmers, to make copies of hardware
registers contents. These values are used by Atmel ISP (see Section “In-System Programming
(ISP)”).
These registers are in the “Extra Flash Memory” part of the Flash memory. This block is also
called ”XAF” or eXtra Array Flash. They are accessed in the following ways:
• Commands issued by the parallel memory programmer.
• Commands issued by the ISP software.
• Calls of API issued by the application software.
Several software registers are described in Table 9-3.
40
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Table 9-3.
Software Registers
Address
Mnemonic
Description
Default value
01
SBV
Software Boot Vector
FFh
–
00
BSB
Boot Status Byte
0FFh
–
05
SSB
Software Security Byte
FFh
–
30
–
Copy of the Manufacturer
Code
58h
Atmel
31
–
Copy of the Device ID #1:
Family Code
D7h
C51 X2, Electrically
Erasable
60
–
Copy of the Device ID #2:
Memories
F7h
AT89C5130A/31A-M 32
Kbyte
61
–
Copy of the Device ID #3:
Name
DFh
AT89C5130A/31A-M 32
Kbyte, revision 0
After programming the part by ISP, the BSB must be cleared (00h) in order to allow the application to boot at 0000h.
The content of the Software Security Byte (SSB) is described in Table 9-4 and Table 9-5.
To assure code protection from a parallel access, the HSB must also be at the required level.
Table 9-4.
Software Security Byte (SSB)
7
6
5
4
3
2
1
0
-
-
-
-
-
-
LB1
LB0
Bit
Bit
Number
Mnemonic
7
-
Reserved
Do not clear this bit.
6
-
Reserved
Do not clear this bit.
5
-
Reserved
Do not clear this bit.
4
-
Reserved
Do not clear this bit.
3
-
Reserved
Do not clear this bit.
2
-
Reserved
Do not clear this bit.
1-0
LB1-0
Description
User Memory Lock Bits
See Table 9-5
The two lock bits provide different levels of protection for the on-chip code and data, when programmed as shown to Table 9-5.
41
4337K–USB–04/08
Table 9-5.
Program Lock Bits of the SSB
Program Lock Bits
Notes:
Security
Level
LB0
LB1
1
U
U
No program lock features enabled.
2
P
U
ISP programming of the Flash is disabled.
3
P
P
Same as 2, also verify through ISP programming interface is disabled.
Protection Description
1. U: unprogrammed or "one" level.
2. P: programmed or “zero” level.
3. WARNING: Security level 2 and 3 should only be programmed after Flash and code
verification.
9.5
Flash Memory Status
AT89C5130A/31A-M parts are delivered with the ISP boot in the Flash memory. After ISP or parallel programming, the possible contents of the Flash memory are summarized in Figure 9-1:
Figure 9-1.
Flash Memory Possible Contents
3FFFh AT89C5130A-M
7FFFh AT89C5131A-M
Virgin
Application
Virgin
or
Application
Application
Dedicated
ISP
Virgin
or
Application
Virgin
or
Application
Dedicated
ISP
0000h
Default
9.6
After ISP
After ISP
After parallel
programming
After parallel
programming
After parallel
programming
Memory Organization
In the AT89C5130A/31A-M, the lowest 16/32K of the 64 Kbyte program memory address space
is filled by internal Flash.
When the EA is pin high, the processor fetches instructions from internal program Flash. Bus
expansion for accessing program memory from 16/32K upward is automatic since external
instruction fetches occur automatically when the program counter exceeds 3FFFh (16K) or
7FFFh (32K). If the EA pin is tied low, all program memory fetches are from external memory. If
all storage is on chip, then byte location 3FFFh (16K) or 7FFFh (32K) should be left vacant to
prevent and undesired pre-fetch from external program memory address 4000h (16K) or 8000h
(32K).
42
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
10. EEPROM Data Memory
10.1
Description
The 1-Kbyte on-chip EEPROM memory block is located at addresses 0000h to 03FFh of the
ERAM memory space and is selected by setting control bits in the EECON register.
A read in the EEPROM memory is done with a MOVX instruction.
A physical write in the EEPROM memory is done in two steps: write data in the column latches
and transfer of all data latches into an EEPROM memory row (programming).
The number of data written on the page may vary from 1 to 128 bytes (the page size). When programming, only the data written in the column latch is programmed and a ninth bit is used to
obtain this feature. This provides the capability to program the whole memory by bytes, by page
or by a number of bytes in a page. Indeed, each ninth bit is set when the writing the corresponding byte in a row and all these ninth bits are reset after the writing of the complete EEPROM row.
10.2
Write Data in the Column Latches
Data is written by byte to the column latches as for an external RAM memory. Out of the 11
address bits of the data pointer, the 4 MSBs are used for page selection (row) and 7 are used for
byte selection. Between two EEPROM programming sessions, all the addresses in the column
latches must stay on the same page, meaning that the 4 MSB must not be changed.
The following procedure is used to write to the column latches:
• Set bit EEE of EECON register
• Load DPTR with the address to write
• Store A register with the data to be written
• Execute a MOVX @DPTR, A
• If needed, loop the three last instructions until the end of a 128 bytes page
10.3
Programming
The EEPROM programming consists on the following actions:
• Writing one or more bytes of one page in the column latches. Normally, all bytes must belong
to the same page; if not, the first page address will be latched and the others discarded.
• Launching programming by writing the control sequence (52h followed by A2h) to the
EECON register.
• EEBUSY flag in EECON is then set by hardware to indicate that programming is in progress
and that the EEPROM segment is not available for reading.
• The end of programming is indicated by a hardware clear of the EEBUSY flag.
10.4
Read Data
The following procedure is used to read the data stored in the EEPROM memory:
• Set bit EEE of EECON register
• Stretch the MOVX to accommodate the slow access time of the column latch (Set bit M0 of
AUXR register)
• Load DPTR with the address to read
• Execute a MOVX A, @DPTR
43
4337K–USB–04/08
10.5
Registers
Table 10-1.
EECON (S:0D2h)
EECON Register
7
6
5
4
3
2
1
0
EEPL3
EEPL2
EEPL1
EEPL0
-
-
EEE
EEBUSY
Bit Number
Bit
Mnemonic
7-4
EEPL3-0
Programming Launch command bits
Write 5Xh followed by AXh to EEPL to launch the programming.
3
-
Reserved
The value read from this bit is indeterminate. Do not set this bit.
2
-
Reserved
The value read from this bit is indeterminate. Do not set this bit.
1
0
EEE
EEBUSY
Description
Enable EEPROM Space bit
Set to map the EEPROM space during MOVX instructions (Write in the column
latches)
Clear to map the ERAM space during MOVX.
Programming Busy flag
Set by hardware when programming is in progress.
Cleared by hardware when programming is done.
Cannot be set or cleared by software.
Reset Value = XXXX XX00b
Not bit addressable
44
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
11. In-System Programming (ISP)
With the implementation of the User Space (FM0) and the Boot Space (FM1) in Flash technology the AT89C5130A/31A-M allows the system engineer the development of applications with a
very high level of flexibility. This flexibility is based on the possibility to alter the customer program at any stages of a product’s life:
• Before mounting the chip on the PCB, FM0 flash can be programmed with the application
code. FM1 is always preprogrammed by Atmel with a USB bootloader.(1)
• Once the chip is mounted on the PCB, it can be programmed by serial mode via the USB
bus.
Note:
1. The user can also program his own bootloader in FM1.
This ISP allows code modification over the total lifetime of the product.
Besides the default Bootloaders Atmel provide customers all the needed Application-Programming-Interfaces (API) which are needed for the ISP. The API are located in the Boot memory.
This allow the customer to have a full use of the 32-Kbyte user memory.
11.1
Flash Programming and Erasure
There are three methods for programming the Flash memory:
• The Atmel bootloader located in FM1 is activated by the application. Low level API routines
(located in FM1)will be used to program FM0. The interface used for serial downloading to
FM0 is the USB. API can be called also by user’s bootloader located in FM0 at [SBV]00h.
• A further method exist in activating the Atmel boot loader by hardware activation. See the
Section “Hardware Registers”.
• The FM0 can be programmed also by the parallel mode using a programmer.
45
4337K–USB–04/08
Figure 11-1. Flash Memory Mapping
FFFFh
F400h
3FFFh
7FFFh
Custom
Bootloader
[SBV]00h
Custom
Bootloader
32K Bytes
Flash Memory
Flash Memory
FM0
0000h
FM0
0000h
C5130A
11.2.1
FM1 Mapped between F400h and FFFFh
when API Called
[SBV]00h
16K Bytes
11.2
3K Bytes IAP
Bootloader
FM1
C5131A
Boot Process
Software Boot Process Example
Many algorithms can be used for the software boot process. Below are descriptions of the different flags and Bytes.
Boot Loader Jump bit (BLJB):
- This bit indicates if on RESET the user wants to jump to this application at address @0000h on
FM0 or execute the boot loader at address @F400h on FM1.
- BLJB = 0 (i.e. bootloader FM1 executed after a reset) is the default Atmel factory programming.
-To read or modify this bit, the APIs are used.
Boot Vector Address (SBV):
- This byte contains the MSB of the user boot loader address in FM0.
- The default value of SBV is FFh (no user boot loader in FM0).
- To read or modify this byte, the APIs are used.
Extra Byte (EB) & Boot Status Byte (BSB):
- These Bytes are reserved for customer use.
- To read or modify these Bytes, the APIs are used.
46
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Figure 11-2. Hardware Boot Process Algorithm
bit ENBOOT in AUXR1 Register
Is Initialized with BLJB Inverted.
RESET
Hardware
Example, if BLJB=0, ENBOOT
is set (=1) during reset, thus the
bootloader is executed after the
reset.
ENBOOT = 0
PC = 0000h
BLJB == 0
?
Software
ENBOOT = 1
PC = F400h
11.3
Application
in FM0
Bootloader
in FM1
Application-Programming-Interface
Several Application Program Interface (API) calls are available for use by an application program to permit selective erasing and programming of Flash pages. All calls are made by
functions.
All these APIs are described in detail in the following document on the Atmel web site.
– Datasheet Bootloader USB AT89C5131.
11.4
XROW Bytes
The EXTRA ROW (XROW) includes 128 bytes. Some of these bytes are used for specific purpose in conjonction with the bootloader.
Table 11-1.
XROW Mapping
Description
Default Value
Address
Copy of the Manufacturer Code
58h
30h
Copy of the Device ID#1: Family code
D7h
31h
Copy of the Device ID#2: Memories size and type
BBh
60h
47
4337K–USB–04/08
Description
Copy of the Device ID#3: Name and Revision
11.5
Default Value
Address
FFh
61h
Hardware Conditions
It is possible to force the controller to execute the bootloader after a Reset with hardware conditions. Depending on the product type (low pin count or high pin count package), there are two
methods to apply the hardware conditions.
11.5.1
High Pin Count Hardware Conditions (PLCC52, QFP64)
For high pin count packages, the hardware conditons (EA = 1, PSEN = 0) are sampled during
the RESET rising edge to force the on-chip bootloader execution (See Figure 27-5 on page
172). In this way the bootloader can be carried out regardless of the user Flash memory content.
It is recommended to pull the PSEN pin down to ground though a 1K resistor to prevent the
PSEN pin from being damaged (see Figure 11-3 below).
Figure 11-3. ISP Hardware conditions
VCC
VCC
VCC
EA
ALE
Unconnected
C2
RST
XTAL2
Bootloader
GND
Crystal
XTAL1
/PSEN
GND
C1
1K
GND
GND
VSS
GND
As PSEN is an output port in normal operating mode (running user application or bootloader
code) after reset, it is recommended to release PSEN after rising edge of reset signal.
To ensure correct microcontroller startup, the PSEN pin should not be tied to ground during
power-on (see Figure 11-4 below).
48
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Figure 11-4. Hardware conditions typical sequence during power-on.
VCC
PSEN
RST
11.5.2
Low Pin Count Hardware Conditions (QFN32)
Low pin count products do not have PSEN signal, thus for these products, the bootloader is
always executed after reset thanks to the BLJB bit. The Hardware Condition are detected at the
begining of the bootloader execution from reset.
The default factory Hardware Condition is assigned to port P1.
• P1 must be equal to FEh
In order to offer the best flexibility, the user can define its own Hardware Condition on one of the
following Ports:
• Port1
• Port3
• Port4 (only bit0 and bit1)
The Hardware Condition configuration are stored in three bytes called P1_CF, P3_CF, P4_CF.
These bytes can be modified by the user through a set of API or through an ISP command.
Note:
1. The BLJB must be at 0 (programmed) to be able to restart the bootloader.
2. BLJB can always be changed by the means of API, whether it's a low or high pin count package.But for a low pin count version, if BLJB=1, no ISP via the Bootloader is further possible
(because the HW conditions are never evaluated, as described in the USB Bootloader
Datasheet). To go back to ISP, BLJB needs to be changed by a parallel programmer(or by the
APIs).
See a detailed description in the applicable Document.
– Datasheet Bootloader USB AT89C5131.
49
4337K–USB–04/08
12. On-chip Expanded RAM (ERAM)
The AT89C5130A/31A-M provides additional Bytes of random access memory (RAM) space for
increased data parameters handling and high level language usage.
AT89C5130A/31A-M devices have expanded RAM in external data space; maximum size and
location are described in Table 12-1.
Table 12-1.
Description of Expanded RAM
Address
Part Number
ERAM Size
Start
End
AT89C5130A/31A-M
1024
00h
3FFh
The AT89C5130A/31A-M has on-chip data memory which is mapped into the following four separate segments.
1. The Lower 128 bytes of RAM (addresses 00h to 7Fh) are directly and indirectly
addressable.
2. The Upper 128 bytes of RAM (addresses 80h to FFh) are indirectly addressable only.
3. The Special Function Registers, SFRs, (addresses 80h to FFh) are directly addressable only.
4. The expanded RAM bytes are indirectly accessed by MOVX instructions, and with the
EXTRAM bit cleared in the AUXR register (see Table 12-1)
The lower 128 bytes can be accessed by either direct or indirect addressing. The Upper 128
bytes can be accessed by indirect addressing only. The Upper 128 bytes occupy the same
address space as the SFR. That means they have the same address, but are physically separate from SFR space.
Figure 12-1. Internal and External Data Memory Address
0FFh or 3FFh(*)
0FFh
0FFh
Upper
128 bytes
Internal
RAM
indirect accesses
ERAM
80h
0FFFFh
Special
Function
Register
direct accesses
External
Data
Memory
80h
7Fh
Lower
128 bytes
Internal
RAM
direct or indirect
accesses
00
00
00FFh up to 03FFh (*)
0000
(*) Depends on XRS1..0
When an instruction accesses an internal location above address 7Fh, the CPU knows whether
the access is to the upper 128 bytes of data RAM or to SFR space by the addressing mode used
in the instruction.
50
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
• Instructions that use direct addressing access SFR space. For example: MOV 0A0H, # data,
accesses the SFR at location 0A0h (which is P2).
• Instructions that use indirect addressing access the Upper 128 bytes of data RAM. For
example: MOV atR0, # data where R0 contains 0A0h, accesses the data byte at address
0A0h, rather than P2 (whose address is 0A0h).
• The ERAM bytes can be accessed by indirect addressing, with EXTRAM bit cleared and
MOVX instructions. This part of memory which is physically located on-chip, logically
occupies the first bytes of external data memory. The bits XRS0 and XRS1 are used to hide a
part of the available ERAM as explained in Table 12-1. This can be useful if external
peripherals are mapped at addresses already used by the internal ERAM.
• With EXTRAM = 0, the ERAM is indirectly addressed, using the MOVX instruction in
combination with any of the registers R0, R1 of the selected bank or DPTR. An access to
ERAM will not affect ports P0, P2, P3.6 (WR) and P3.7 (RD). For example, with EXTRAM =
0, MOVX atR0, # data where R0 contains 0A0H, accesses the ERAM at address 0A0H rather
than external memory. An access to external data memory locations higher than the
accessible size of the ERAM will be performed with the MOVX DPTR instructions in the same
way as in the standard 80C51, with P0 and P2 as data/address busses, and P3.6 and P3.7
as write and read timing signals. Accesses to ERAM above 0FFH can only be done by the
use of DPTR.
• With EXTRAM = 1, MOVX @Ri and MOVX @DPTR will be similar to the standard 80C51.
MOVX at Ri will provide an eight-bit address multiplexed with data on Port0 and any output
port pins can be used to output higher order address bits. This is to provide the external
paging capability. MOVX @DPTR will generate a sixteen-bit address. Port2 outputs the highorder eight address bits (the contents of DPH) while Port0 multiplexes the low-order eight
address bits (DPL) with data. MOVX at Ri and MOVX @DPTR will generate either read or
write signals on P3.6 (WR) and P3.7 (RD).
The stack pointer (SP) may be located anywhere in the 256 bytes RAM (lower and upper RAM)
internal data memory. The stack may not be located in the ERAM.
The M0 bit allows to stretch the ERAM timings; if M0 is set, the read and write pulses are
extended from 6 to 30 clock periods. This is useful to access external slow peripherals.
Table 12-2.
AUXR Register
AUXR - Auxiliary Register (8Eh)
7
6
5
4
3
2
1
0
DPU
-
M0
-
XRS1
XRS0
EXTRAM
AO
Bit
Bit
Number
Mnemonic
7
DPU
6
-
Description
Disable Weak Pull Up
Cleared to enabled weak pull up on standard Ports.
Set to disable weak pull up on standard Ports.
Reserved
The value read from this bit is indeterminate. Do not set this bit
51
4337K–USB–04/08
Bit
Bit
Number
Mnemonic
Description
Pulse length
5
M0
Cleared to stretch MOVX control: the RD and the WR pulse length is 6 clock
periods (default).
Set to stretch MOVX control: the RD and the WR pulse length is 30 clock
periods.
4
-
3
XRS1
2
1
XRS0
EXTRAM
Reserved
The value read from this bit is indeterminate. Do not set this bit
ERAM Size
XRS1XRS0
0
0
ERAM size
256 bytes
0
1
512 bytes
1
0
768 bytes
1
1
1024 bytes (default)
EXTRAM bit
Cleared to access internal ERAM using MOVX at Ri at DPTR.
Set to access external memory.
0
AO
ALE Output bit
Cleared, ALE is emitted at a constant rate of 1/6 the oscillator frequency (or
1/3 if X2 mode is used) (default).
Set, ALE is active only when a MOVX or MOVC instruction is used.
Reset Value = 0X0X 1100b
Not bit addressable
52
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
13. Timer 2
The Timer 2 in the AT89C5130A/31A-M is the standard C52 Timer 2. It is a 16-bit timer/counter:
the count is maintained by two cascaded eight-bit timer registers, TH2 and TL2. It is controlled
by T2CON (Table 13-1) and T2MOD (Table 13-2) registers. Timer 2 operation is similar to Timer
0 and Timer 1. C/T2 selects FOSC/12 (timer operation) or external pin T2 (counter operation) as
the timer clock input. Setting TR2 allows TL2 to be incremented by the selected input.
Timer 2 has 3 operating modes: capture, auto reload and Baud Rate Generator. These modes
are selected by the combination of RCLK, TCLK and CP/RL2 (T2CON).
Refer to the Atmel 8-bit microcontroller hardware documentation for the description of Capture
and Baud Rate Generator Modes.
Timer 2 includes the following enhancements:
• Auto-reload mode with up or down counter
• Programmable Clock-output
13.1
Auto-reload Mode
The Auto-reload mode configures Timer 2 as a 16-bit timer or event counter with automatic
reload. If DCEN bit in T2MOD is cleared, Timer 2 behaves as in 80C52 (refer to the Atmel 8-bit
microcontroller hardware description). If DCEN bit is set, Timer 2 acts as an Up/down
timer/counter as shown in Figure 13-1. In this mode the T2EX pin controls the direction of count.
When T2EX is high, Timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag
and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and
RCAP2L registers to be loaded into the timer registers TH2 and TL2.
When T2EX is low, Timer 2 counts down. Timer underflow occurs when the count in the timer
registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh into the timer registers.
The EXF2 bit toggles when Timer 2 overflows or underflows according to the direction of the
count. EXF2 does not generate any interrupt. This bit can be used to provide 17-bit resolution.
53
4337K–USB–04/08
Figure 13-1. Auto-reload Mode Up/Down Counter (DCEN = 1)
FCLK PERIPH
:6
0
1
T2
C/T2
TR2
T2CON
T2CON
(DOWN COUNTING RELOAD VALUE) T2EX:
FFh
(8-bit)
FFh
(8-bit)
if DCEN = 1, 1 = UP
if DCEN = 1, 0 = DOWN
if DCEN = 0, up counting
TOGGLE T2CON
EXF2
TL2
(8-bit)
TH2
(8-bit)
TF2
T2CON
RCAP2L
(8-bit)
Timer 2
INTERRUPT
RCAP2H
(8-bit)
(UP COUNTING RELOAD VALUE)
13.2
Programmable Clock Output
In the Clock-out mode, Timer 2 operates as a 50%-duty-cycle, programmable clock generator
(See Figure 13-2). The input clock increments TL2 at frequency FCLK PERIPH/2. The timer repeatedly counts to overflow from a loaded value. At overflow, the contents of RCAP2H and RCAP2L
registers are loaded into TH2 and TL2. In this mode, Timer 2 overflows do not generate interrupts. The following formula gives the Clock-out frequency as a function of the system oscillator
frequency and the value in the RCAP2H and RCAP2L registers
F CLKPERIPH
Clock – OutFrequency = ---------------------------------------------------------------------------------------4 × ( 65536 – RCAP2H ⁄ RCAP2L )
For a 16 MHz system clock, Timer 2 has a programmable frequency range of 61 Hz
(FCLK PERIPH/216) to 4 MHz (FCLK PERIPH/4). The generated clock signal is brought out to T2 pin
(P1.0).
Timer 2 is programmed for the Clock-out mode as follows:
• Set T2OE bit in T2MOD register.
• Clear C/T2 bit in T2CON register.
• Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L
registers.
• Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value
or a different one depending on the application.
• To start the timer, set TR2 run control bit in T2CON register.
54
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
It is possible to use Timer 2 as a baud rate generator and a clock generator simultaneously. For
this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.
Figure 13-2. Clock-out Mode C/T2 = 0
FCLK PERIPH
TR2
T2CON
TL2
(8-bit)
TH2
(8-bit)
OVERFLOW
RCAP2L
(8-bit)
RCAP2H
(8-bit)
Toggle
T2
Q
D
T2OE
T2MOD
T2EX
EXF2
EXEN2
T2CON
Timer 2
INTERRUPT
T2CON
55
4337K–USB–04/08
Table 13-1.
T2CON Register
T2CON - Timer 2 Control Register (C8h)
7
6
5
4
3
2
1
0
TF2
EXF2
RCLK
TCLK
EXEN2
TR2
C/T2#
CP/RL2#
Bit
Bit
Number
Mnemonic
7
TF2
Description
Timer 2 overflow Flag
Must be cleared by software.
Set by hardware on Timer 2 overflow, if RCLK = 0 and TCLK = 0.
6
EXF2
Timer 2 External Flag
Set when a capture or a reload is caused by a negative transition on T2EX pin if
EXEN2 = 1.
When set, causes the CPU to vector to Timer 2 interrupt routine when Timer 2 interrupt
is enabled.
Must be cleared by software. EXF2 doesn’t cause an interrupt in Up/down counter
mode (DCEN = 1).
5
RCLK
Receive Clock bit
Cleared to use Timer 1 overflow as receive clock for serial port in mode 1 or 3.
Set to use Timer 2 overflow as receive clock for serial port in mode 1 or 3.
4
TCLK
Transmit Clock bit
Cleared to use Timer 1 overflow as transmit clock for serial port in mode 1 or 3.
Set to use Timer 2 overflow as transmit clock for serial port in mode 1 or 3.
3
EXEN2
2
TR2
1
0
Timer 2 External Enable bit
Cleared to ignore events on T2EX pin for Timer 2 operation.
Set to cause a capture or reload when a negative transition on T2EX pin is detected, if
Timer 2 is not used to clock the serial port.
Timer 2 Run control bit
Cleared to turn off Timer 2.
Set to turn on Timer 2.
C/T2#
Timer/Counter 2 select bit
Cleared for timer operation (input from internal clock system: FCLK PERIPH).
Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for
clock out mode.
CP/RL2#
Timer 2 Capture/Reload bit
If RCLK = 1 or TCLK = 1, CP/RL2# is ignored and timer is forced to Auto-reload on
Timer 2 overflow.
Cleared to Auto-reload on Timer 2 overflows or negative transitions on T2EX pin if
EXEN2 = 1.
Set to capture on negative transitions on T2EX pin if EXEN2 = 1.
Reset Value = 0000 0000b
Bit addressable
56
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Table 13-2.
T2MOD Register
T2MOD - Timer 2 Mode Control Register (C9h)
7
6
5
4
3
2
1
0
-
-
-
-
-
-
T2OE
DCEN
Bit
Bit
Number
Mnemonic
7
-
Reserved
The value read from this bit is indeterminate. Do not set this bit.
6
-
Reserved
The value read from this bit is indeterminate. Do not set this bit.
5
-
Reserved
The value read from this bit is indeterminate. Do not set this bit.
4
-
Reserved
The value read from this bit is indeterminate. Do not set this bit.
3
-
Reserved
The value read from this bit is indeterminate. Do not set this bit.
2
-
Reserved
The value read from this bit is indeterminate. Do not set this bit.
1
T2OE
Timer 2 Output Enable bit
Cleared to program P1.0/T2 as clock input or I/O port.
Set to program P1.0/T2 as clock output.
0
DCEN
Down Counter Enable bit
Cleared to disable Timer 2 as up/down counter.
Set to enable Timer 2 as up/down counter.
Description
Reset Value = XXXX XX00b
Not bit addressable
57
4337K–USB–04/08
14. Programmable Counter Array (PCA)
The PCA provides more timing capabilities with less CPU intervention than the standard
timer/counters. Its advantages include reduced software overhead and improved accuracy. The
PCA consists of a dedicated timer/counter which serves as the time base for an array of five
compare/capture modules. Its clock input can be programmed to count any one of the following
signals:
÷6
• Peripheral clock frequency (FCLK PERIPH) ÷ 2
• Peripheral clock frequency (FCLK PERIPH)
• Timer 0 overflow
• External input on ECI (P1.2)
Each compare/capture modules can be programmed in any one of the following modes:
• rising and/or falling edge capture,
• software timer
• high-speed output, or
• pulse width modulator
Module 4 can also be programmed as a watchdog timer (see Section "PCA Watchdog Timer",
page 68).
When the compare/capture modules are programmed in the capture mode, software timer, or
high speed output mode, an interrupt can be generated when the module executes its function.
All five modules plus the PCA timer overflow share one interrupt vector.
The PCA timer/counter and compare/capture modules share Port 1 for external I/O. These pins
are listed below. If the port pin is not used for the PCA, it can still be used for standard I/O.
PCA Component
External I/O Pin
16-bit Counter
P1.2/ECI
16-bit Module 0
P1.3/CEX0
16-bit Module 1
P1.4/CEX1
16-bit Module 2
P1.5/CEX2
16-bit Module 3
P1.6/CEX3
16-bit Module 4
P1.7/CEX4
The PCA timer is a common time base for all five modules (see Figure 14-1). The timer count
source is determined from the CPS1 and CPS0 bits in the CMOD register (Table 14-1) and can
be programmed to run at:
• 1/6 the peripheral clock frequency (FCLK PERIPH).
• 1/2 the peripheral clock frequency (FCLK PERIPH).
• The Timer 0 overflow
• The input on the ECI pin (P1.2)
58
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Figure 14-1. PCA Timer/Counter
To PCA
modules
FCLK PERIPH/6
overflow
FCLK PERIPH/2
CH
T0 OVF
It
CL
16 Bit Up Counter
P1.2
CIDL
WDTE
CF
CR
CPS1
CPS0
ECF
CMOD
0xD9
CCF2
CCF1
CCF0
CCON
0xD8
Idle
Table 14-1.
CCF4 CCF3
CMOD Register
CMOD - PCA Counter Mode Register (D9h)
7
6
5
4
3
2
1
0
CIDL
WDTE
-
-
-
CPS1
CPS0
ECF
Bit
Bit
Number
Mnemonic
7
CIDL
Description
Counter Idle Control
Cleared to program the PCA Counter to continue functioning during idle Mode.
Set to program PCA to be gated off during idle.
Watchdog Timer Enable
6
WDTE
Cleared to disable Watchdog Timer function on PCA Module 4.
Set to enable Watchdog Timer function on PCA Module 4.
5
-
Reserved
The value read from this bit is indeterminate. Do not set this bit.
4
-
Reserved
The value read from this bit is indeterminate. Do not set this bit.
3
-
Reserved
The value read from this bit is indeterminate. Do not set this bit.
2
CPS1
1
CPS0
0
ECF
PCA Count Pulse Select
CPS1CPS0
0
0
Selected PCA input
Internal clock fCLK PERIPH/6
0
1
1
Internal clock fCLK PERIPH/2
Timer 0 Overflow
External clock at ECI/P1.2 pin (max rate = fCLK PERIPH/ 4)
1
0
1
PCA Enable Counter Overflow Interrupt
Cleared to disable CF bit in CCON to inhibit an interrupt.
Set to enable CF bit in CCON to generate an interrupt.
59
4337K–USB–04/08
Reset Value = 00XX X000b
Not bit addressable
The CMOD register includes three additional bits associated with the PCA (See Figure 14-1 and
Table 14-1).
• The CIDL bit allows the PCA to stop during idle mode.
• The WDTE bit enables or disables the watchdog function on module 4.
• The ECF bit when set causes an interrupt and the PCA overflow flag CF (in the CCON SFR)
to be set when the PCA timer overflows.
The CCON register contains the run control bit for the PCA and the flags for the PCA timer (CF)
and each module (see Table 14-2).
• Bit CR (CCON.6) must be set by software to run the PCA. The PCA is shut off by clearing this
bit.
• Bit CF: The CF bit (CCON.7) is set when the PCA counter overflows and an interrupt will be
generated if the ECF bit in the CMOD register is set. The CF bit can only be cleared by
software.
• Bits 0 through 4 are the flags for the modules (bit 0 for module 0, bit 1 for module 1, etc.) and
are set by hardware when either a match or a capture occurs. These flags can only be
cleared by software.
Table 14-2.
CCON Register
CCON - PCA Counter Control Register (D8h)
7
6
5
4
3
2
1
0
CF
CR
–
CCF4
CCF3
CCF2
CCF1
CCF0
Bit
Bit
Number
Mnemonic
7
CF
6
CR
5
–
4
CCF4
3
CCF3
2
CCF2
Description
PCA Counter Overflow flag
Set by hardware when the counter rolls over. CF flags an interrupt if bit ECF in CMOD is set.
CF may be set by either hardware or software but can only be cleared by software.
PCA Counter Run control bit
Must be cleared by software to turn the PCA counter off.
Set by software to turn the PCA counter on.
Reserved
The value read from this bit is indeterminate. Do not set this bit.
PCA Module 4 interrupt flag
Must be cleared by software.
Set by hardware when a match or capture occurs.
PCA Module 3 interrupt flag
Must be cleared by software.
Set by hardware when a match or capture occurs.
PCA Module 2 interrupt flag
60
Must be cleared by software.
Set by hardware when a match or capture occurs.
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Bit
Bit
Number
Mnemonic
1
CCF1
0
CCF0
Description
PCA Module 1 Interrupt Flag
Must be cleared by software.
Set by hardware when a match or capture occurs.
PCA Module 0 Interrupt Flag
Must be cleared by software.
Set by hardware when a match or capture occurs.
Reset Value = 000X 0000b
Not bit addressable
The watchdog timer function is implemented in module 4 (See Figure 14-4).
The PCA interrupt system is shown in Figure 14-2.
Figure 14-2. PCA Interrupt System
CF
CR
CCF4 CCF3 CCF2 CCF1 CCF0
CCON
0xD8
PCA Timer/Counter
Module 0
Module 1
To Interrupt
priority decoder
Module 2
Module 3
Module 4
CMOD.0
ECF
ECCFn CCAPMn.0
IE.6
EC
IE.7
EA
PCA Modules: each one of the five compare/capture modules has six possible functions. It can
perform:
• 16-bit capture, positive-edge triggered
• 16-bit capture, negative-edge triggered
• 16-bit capture, both positive and negative-edge triggered
• 16-bit Software Timer
• 16-bit High-speed Output
• 8-bit Pulse Width Modulator
In addition, module 4 can be used as a Watchdog Timer.
Each module in the PCA has a special function register associated with it. These registers are:
CCAPM0 for module 0, CCAPM1 for module 1, etc. (see Table 14-3). The registers contain the
bits that control the mode that each module will operate in.
61
4337K–USB–04/08
• The ECCF bit (CCAPMn.0 where n = 0, 1, 2, 3, or 4 depending on the module) enables the
CCF flag in the CCON SFR to generate an interrupt when a match or compare occurs in the
associated module.
• PWM (CCAPMn.1) enables the pulse width modulation mode.
• The TOG bit (CCAPMn.2) when set causes the CEX output associated with the module to
toggle when there is a match between the PCA counter and the module's capture/compare
register.
• The match bit MAT (CCAPMn.3) when set will cause the CCFn bit in the CCON register to be
set when there is a match between the PCA counter and the module's capture/compare
register.
• The next two bits CAPN (CCAPMn.4) and CAPP (CCAPMn.5) determine the edge that a
capture input will be active on. The CAPN bit enables the negative edge, and the CAPP bit
enables the positive edge. If both bits are set both edges will be enabled and a capture will
occur for either transition.
• The last bit in the register ECOM (CCAPMn.6) when set enables the comparator function.
Table 14-4 shows the CCAPMn settings for the various PCA functions.
Table 14-3. CCAPMn Registers (n = 0-4)
CCAPM0 - PCA Module 0 Compare/Capture Control Register (0DAh)
CCAPM1 - PCA Module 1 Compare/Capture Control Register (0DBh)
CCAPM2 - PCA Module 2 Compare/Capture Control Register (0DCh)
CCAPM3 - PCA Module 3 Compare/Capture Control Register (0DDh)
CCAPM4 - PCA Module 4 Compare/Capture Control Register (0DEh)
7
6
5
4
3
2
1
0
-
ECOMn
CAPPn
CAPNn
MATn
TOGn
PWMn
ECCFn
Bit
Bit
Number
Mnemonic
7
-
6
ECOMn
Description
Reserved
The value read from this bit is indeterminate. Do not set this bit.
Enable Comparator
Cleared to disable the comparator function.
Set to enable the comparator function.
Capture Positive
5
CAPPn
4
CAPNn
Cleared to disable positive edge capture.
Set to enable positive edge capture.
Capture Negative
Cleared to disable negative edge capture.
Set to enable negative edge capture.
Match
3
MATn
When MATn = 1, a match of the PCA counter with this module's compare/capture
register causes the
CCFn bit in CCON to be set, flagging an interrupt.
Toggle
2
62
TOGn
When TOGn = 1, a match of the PCA counter with this module's compare/capture
register causes the CEXn pin to toggle.
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Bit
Bit
Number
Mnemonic
1
PWMn
Description
Pulse Width Modulation Mode
Cleared to disable the CEXn pin to be used as a pulse width modulated output.
Set to enable the CEXn pin to be used as a pulse width modulated output.
Enable CCF Interrupt
0
ECCFn
Cleared to disable compare/capture flag CCFn in the CCON register to generate an
interrupt.
Set to enable compare/capture flag CCFn in the CCON register to generate an
interrupt.
Reset Value = X000 0000b
Not bit addressable
Table 14-4.
PCA Module Modes (CCAPMn Registers)
ECOMn
CAPPn
CAPNn
MATn
TOGn
PWMm ECCFn Module Function
0
0
0
0
0
0
0
No Operation
X
1
0
0
0
0
X
16-bit capture by a positive-edge
trigger on CEXn
X
0
1
0
0
0
X
16-bit capture by a negative trigger
on CEXn
X
1
1
0
0
0
X
16-bit capture by a transition on
CEXn
1
0
0
1
0
0
X
16-bit Software Timer/Compare
mode.
1
0
0
1
1
0
X
16-bit High Speed Output
1
0
0
0
0
1
0
8-bit PWM
1
0
0
1
X
0
X
Watchdog Timer (module 4 only)
There are two additional registers associated with each of the PCA modules. They are CCAPnH
and CCAPnL and these are the registers that store the 16-bit count when a capture occurs or a
compare should occur. When a module is used in the PWM mode these registers are used to
control the duty cycle of the output (see Table 14-5 and Table 14-6)
Table 14-5. CCAPnH Registers (n = 0-4)
CCAP0H - PCA Module 0 Compare/Capture Control Register High (0FAh)
CCAP1H - PCA Module 1 Compare/Capture Control Register High (0FBh)
CCAP2H - PCA Module 2 Compare/Capture Control Register High (0FCh)
CCAP3H - PCA Module 3 Compare/Capture Control Register High (0FDh)
CCAP4H - PCA Module 4 Compare/Capture Control Register High (0FEh)
7
6
5
4
3
2
1
0
-
-
-
-
-
-
-
-
Bit
Bit
Number
Mnemonic
7-0
-
Description
PCA Module n Compare/Capture Control
CCAPnH Value
63
4337K–USB–04/08
Reset Value = XXXX XXXXb
Not bit addressable
Table 14-6. CCAPnL Registers (n = 0-4)
CCAP0L - PCA Module 0 Compare/Capture Control Register Low (0EAh)
CCAP1L - PCA Module 1 Compare/Capture Control Register Low (0EBh)
CCAP2L - PCA Module 2 Compare/Capture Control Register Low (0ECh)
CCAP3L - PCA Module 3 Compare/Capture Control Register Low (0EDh)
CCAP4L - PCA Module 4 Compare/Capture Control Register Low (0EEh)
7
6
5
4
3
2
1
0
-
-
-
-
-
-
-
-
Bit
Bit
Number
Mnemonic
7-0
-
Description
PCA Module n Compare/Capture Control
CCAPnL Value
Reset Value = XXXX XXXXb
Not bit addressable
Table 14-7. CH Register
CH - PCA Counter Register High (0F9h)
7
6
5
4
3
2
1
0
-
-
-
-
-
-
-
-
Bit
Bit
Number
Mnemonic
Description
7-0
-
PCA counter
CH Value
Reset Value = 0000 0000b
Not bit addressable
Table 14-8. CL Register
CL - PCA Counter Register Low (0E9h)
7
6
5
4
3
2
1
0
-
-
-
-
-
-
-
-
Bit
Bit
Number
Mnemonic
7-0
-
Description
PCA Counter
CL Value
Reset Value = 0000 0000b
Not bit addressable
64
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
14.1
PCA Capture Mode
To use one of the PCA modules in the capture mode either one or both of the CCAPM bits
CAPN and CAPP for that module must be set. The external CEX input for the module (on port 1)
is sampled for a transition. When a valid transition occurs the PCA hardware loads the value of
the PCA counter registers (CH and CL) into the module's capture registers (CCAPnL and
CCAPnH). If the CCFn bit for the module in the CCON SFR and the ECCFn bit in the CCAPMn
SFR are set then an interrupt will be generated (see Figure 14-3).
Figure 14-3. PCA Capture Mode
CF
CR
CCF4 CCF3 CCF2 CCF1 CCF0 CCON
0xD8
PCA IT
PCA Counter/Timer
Cex.n
CH
CL
CCAPnH
CCAPnL
Capture
ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn CCAPMn, n = 0 to 4
0xDA to 0xDE
14.2
16-bit Software Timer/Compare Mode
The PCA modules can be used as software timers by setting both the ECOM and MAT bits in
the modules CCAPMn register. The PCA timer will be compared to the module's capture registers and when a match occurs an interrupt will occur if the CCFn (CCON SFR) and the ECCFn
(CCAPMn SFR) bits for the module are both set (see Figure 14-4).
65
4337K–USB–04/08
Figure 14-4. PCA Compare Mode and PCA Watchdog Timer
CCON
CF
Write to
CCAPnL
CR
CCF4 CCF3 CCF2 CCF1 CCF0
0xD8
Reset
PCA IT
Write to
CCAPnH
1
CCAPnH
0
CCAPnL
Enable
Match
16-bit Comparator
CH
RESET(1)
CL
PCA Counter/Timer
ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn
CIDL
Note:
WDTE
CPS1 CPS0
ECF
CCAPMn, n = 0 to 4
0xDA to 0xDE
CMOD
0xD9
1. Only for Module 4
Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen. Writing to CCAPnH will set the ECOM bit.
Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn’t occur
while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user
software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be
controlled by accessing to CCAPMn register.
14.3
High Speed Output Mode
In this mode, the CEX output (on port 1) associated with the PCA module will toggle each time a
match occurs between the PCA counter and the module's capture registers. To activate this
mode the TOG, MAT, and ECOM bits in the module's CCAPMn SFR must be set (see
Figure 14-5).
A prior write must be done to CCAPnL and CCAPnH before writing the ECOMn bit.
66
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Figure 14-5. PCA High-speed Output Mode
CCON
CF
CR
CCF4 CCF3 CCF2 CCF1 CCF0
0xD8
Write to
CCAPnL Reset
PCA IT
Write to
CCAPnH
1
CCAPnH
0
CCAPnL
Enable
16-bit Comparator
CH
Match
CL
CEXn
PCA counter/timer
ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn
CCAPMn, n = 0 to 4
0xDA to 0xDE
Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen.
Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn’t occur
while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user
software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be
controlled by accessing to CCAPMn register.
14.4
Pulse Width Modulator Mode
All of the PCA modules can be used as PWM outputs. Figure 14-6 shows the PWM function.
The frequency of the output depends on the source for the PCA timer. All of the modules will
have the same frequency of output because they all share the PCA timer. The duty cycle of each
module is independently variable using the module's capture register CCAPLn. When the value
of the PCA CL SFR is less than the value in the module's CCAPLn SFR the output will be low,
when it is equal to or greater than the output will be high. When CL overflows from FF to 00,
CCAPLn is reloaded with the value in CCAPHn. This allows updating the PWM without glitches.
The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM
mode.
67
4337K–USB–04/08
Figure 14-6. PCA PWM Mode
CCAPnH
Overflow
CCAPnL
“0”
Enable
8-bit Comparator
CEXn
<
≥
“1”
CL
PCA Counter/Timer
ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn
CCAPMn, n = 0 to 4
0xDA to 0xDE
14.5
PCA Watchdog Timer
An on-board watchdog timer is available with the PCA to improve the reliability of the system
without increasing chip count. Watchdog timers are useful for systems that are susceptible to
noise, power glitches, or electrostatic discharge. Module 4 is the only PCA module that can be
programmed as a watchdog. However, this module can still be used for other modes if the
watchdog is not needed. Figure 14-4 shows a diagram of how the watchdog works. The user
pre-loads a 16-bit value in the compare registers. Just like the other compare modes, this 16-bit
value is compared to the PCA timer value. If a match is allowed to occur, an internal reset will be
generated. This will not cause the RST pin to be driven low.
In order to hold off the reset, the user has three options:
1. Periodically change the compare value so it will never match the PCA timer
2. Periodically change the PCA timer value so it will never match the compare values, or
3. Disable the watchdog by clearing the WDTE bit before a match occurs and then reenable it
The first two options are more reliable because the watchdog timer is never disabled as in option
#3. If the program counter ever goes astray, a match will eventually occur and cause an internal
reset. The second option is also not recommended if other PCA modules are being used.
Remember, the PCA timer is the time base for all modules; changing the time base for other
modules would not be a good idea. Thus, in most applications the first solution is the best option.
This watchdog timer won’t generate a reset out on the reset pin.
68
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
15. Serial I/O Port
The serial I/O port in the AT89C5130A/31A-M is compatible with the serial I/O port in the 80C52.
It provides both synchronous and asynchronous communication modes. It operates as an Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex modes (modes 1, 2
and 3). Asynchronous transmission and reception can occur simultaneously and at different
baud rates.
Serial I/O port includes the following enhancements:
• Framing error detection
• Automatic address recognition
15.1
Framing Error Detection
Framing bit error detection is provided for the three asynchronous modes (modes 1, 2 and 3). To
enable the framing bit error detection feature, set SMOD0 bit in PCON register (see Figure 151).
Figure 15-1. Framing Error Block Diagram
SM0/FE
SM1
SM2
REN
TB8
RB8
TI
RI
SCON (98h)
Set FE Bit if Stop Bit is 0 (framing error) (SMOD0 = 1)
SM0 to UART Mode Control (SMOD0 = 0)
SMOD1 SMOD0
-
POF
GF1
GF0
PD
PCON (87h)
IDL
To UART Framing Error Control
When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit.
An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by
two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register (See Table
15-1) bit is set.
Software may examine FE bit after each reception to check for data errors. Once set, only software or a reset can clear FE bit. Subsequently received frames with valid stop bits cannot clear
FE bit. When FE feature is enabled, RI rises on stop bit instead of the last data bit (See Figure
15-2 and Figure 15-3).
Figure 15-2. UART Timings in Mode 1
RXD
D0
Start
Bit
D1
D2
D3
D4
Data Byte
D5
D6
D7
Stop
Bit
RI
SMOD0 = X
FE
SMOD0 = 1
69
4337K–USB–04/08
Figure 15-3. UART Timings in Modes 2 and 3
RXD
D0
Start
Bit
D1
D2
D3
D4
Data Byte
D5
D6
D7
D8
Ninth Stop
Bit
Bit
RI
SMOD0 = 0
RI
SMOD0 = 1
FE
SMOD0 = 1
15.2
Automatic Address Recognition
The automatic address recognition feature is enabled when the multiprocessor communication
feature is enabled (SM2 bit in SCON register is set).
Implemented in hardware, automatic address recognition enhances the multiprocessor communication feature by allowing the serial port to examine the address of each incoming command
frame. Only when the serial port recognizes its own address, the receiver sets RI bit in SCON
register to generate an interrupt. This ensures that the CPU is not interrupted by command
frames addressed to other devices.
If desired, you may enable the automatic address recognition feature in mode 1. In this configuration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the received
command frame address matches the device’s address and is terminated by a valid stop bit.
To support automatic address recognition, a device is identified by a given address and a broadcast address.
Note:
15.2.1
The multiprocessor communication and automatic address recognition features cannot be
enabled in mode 0 (i.e., setting SM2 bit in SCON register in mode 0 has no effect).
Given Address
Each device has an individual address that is specified in SADDR register; the SADEN register
is a mask byte that contains don’t care bits (defined by zeros) to form the device’s given
address. The don’t care bits provide the flexibility to address one or more slaves at a time. The
following example illustrates how a given address is formed.
To address a device by its individual address, the SADEN mask byte must be 1111 1111b.
For example:
SADDR0101 0110b
SADEN1111 1100b
Given0101 01XXb
The following is an example of how to use given addresses to address different slaves:
Slave A:SADDR1111 0001b
SADEN1111 1010b
Given1111 0X0Xb
Slave B:SADDR1111 0011b
SADEN1111 1001b
Given1111 0XX1b
70
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Slave C:SADDR1111 0011b
SADEN1111 1101b
Given1111 00X1b
The SADEN byte is selected so that each slave may be addressed separately.
For slave A, bit 0 (the LSB) is a don’t care bit; for slaves B and C, bit 0 is a 1. To communicate
with slave A only, the master must send an address where bit 0 is clear (e.g. 1111 0000b).
For slave A, bit 1 is a 1; for slaves B and C, bit 1 is a don’t care bit. To communicate with slaves
B and C, but not slave A, the master must send an address with bits 0 and 1 both set (e.g. 1111
0011b).
To communicate with slaves A, B and C, the master must send an address with bit 0 set, bit 1
clear, and bit 2 clear (e.g. 1111 0001b).
15.2.2
Broadcast Address
A broadcast address is formed from the logical OR of the SADDR and SADEN registers with
zeros defined as don’t care bits, e.g.:
SADDR0101 0110b
SADEN1111 1100b
Broadcast = SADDR OR SADEN1111 111Xb
The use of don’t care bits provides flexibility in defining the broadcast address, in most applications, a broadcast address is FFh. The following is an example of using broadcast addresses:
Slave A:SADDR1111 0001b
SADEN1111 1010b
Broadcast1111 1X11b,
Slave B:SADDR1111 0011b
SADEN1111 1001b
Broadcast1111 1X11B,
Slave C:SADDR = 1111 0011b
SADEN1111 1101b
Broadcast1111 1111b
For slaves A and B, bit 2 is a don’t care bit; for slave C, bit 2 is set. To communicate with all of
the slaves, the master must send an address FFh. To communicate with slaves A and B, but not
slave C, the master can send and address FBh.
15.2.3
Reset Addresses
On reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and broadcast
addresses are XXXX XXXXb (all don’t care bits). This ensures that the serial port will reply to any
address, and so, that it is backwards compatible with the 80C51 microcontrollers that do not
support automatic address recognition.
71
4337K–USB–04/08
SADEN - Slave Address Mask Register (B9h)
7
6
5
4
3
2
1
0
4
3
2
1
0
Reset Value = 0000 0000b
Not bit addressable
SADDR - Slave Address Register (A9h)
7
6
5
Reset Value = 0000 0000b
Not bit addressable
15.3
Baud Rate Selection for UART for Mode 1 and 3
The Baud Rate Generator for transmit and receive clocks can be selected separately via the
T2CON and BDRCON registers.
Figure 15-4. Baud Rate Selection
TIMER1
TIMER2
0
TIMER_BRG_RX
0
1
/ 16
Rx Clock
1
RCLK
RBCK
INT_BRG
TIMER1
TIMER2
0
1
TIMER_BRG_TX
0
1
/ 16
Tx Clock
TCLK
INT_BRG
72
TBCK
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
15.3.1
15.3.2
Baud Rate Selection Table for UART
TCLK
RCLK
TBCK
RBCK
Clock Source
Clock Source
(T2CON)
(T2CON)
(BDRCON)
(BDRCON)
UART Tx
UART Rx
0
0
0
0
Timer 1
Timer 1
1
0
0
0
Timer 2
Timer 1
0
1
0
0
Timer 1
Timer 2
1
1
0
0
Timer 2
Timer 2
X
0
1
0
INT_BRG
Timer 1
X
1
1
0
INT_BRG
Timer 2
0
X
0
1
Timer 1
INT_BRG
1
X
0
1
Timer 2
INT_BRG
X
X
1
1
INT_BRG
INT_BRG
Internal Baud Rate Generator (BRG)
When the internal Baud Rate Generator is used, the Baud Rates are determined by the BRG
overflow depending on the BRL reload value, the value of SPD bit (Speed Mode) in BDRCON
register and the value of the SMOD1 bit in PCON register.
Figure 15-5. Internal Baud Rate
Peripheral Clock
auto reload counter
overflow
BRG
0
/6
/2
0
1
INT_BRG
1
BRL
SPD
SMOD1
BRR
• The baud rate for UART is token by formula:
2SMOD1 x FCLK PERIPH
Baud_Rate =
2x6
(1-SPD)
2SMOD1 x FCLK PERIPH
(BRL) = 256 2x6
Table 15-1.
x 16 x [256 - (BRL)]
(1-SPD)
x 16 x Baud_Rate
SCON Register – SCON Serial Control Register (98h)
7
6
5
4
3
2
1
0
FE/SM0
SM1
SM2
REN
TB8
RB8
TI
RI
73
4337K–USB–04/08
Bit
Bit
Number
Mnemonic
FE
Description
Framing Error bit (SMOD0 = 1)
Clear to reset the error state, not cleared by a valid stop bit.
Set by hardware when an invalid stop bit is detected.
SMOD0 must be set to enable access to the FE bit
7
SM0
Serial port Mode bit 0
Refer to SM1 for serial port mode selection.
SMOD0 must be cleared to enable access to the SM0 bit
6
SM1
Serial port Mode bit 1
SM0SM1Mode DescriptionBaud Rate
0 0
0
Shift RegisterFCPU PERIPH/6
0 1
1
8-bit UARTVariable
1 0
2
9-bit UARTFCPU PERIPH/32 or/16
1
1
3
9-bit UARTVariable
5
SM2
Serial port Mode 2 bit/Multiprocessor Communication Enable bit
Clear to disable multiprocessor communication feature.
Set to enable multiprocessor communication feature in mode 2 and 3, and eventually
mode 1. This bit should be cleared in mode 0.
4
REN
Reception Enable bit
Clear to disable serial reception.
Set to enable serial reception.
3
TB8
Transmitter Bit 8/Ninth bit to Transmit in Modes 2 and 3
2
RB8
Clear to transmit a logic 0 in the 9th bit.
Set to transmit a logic 1 in the 9th bit.
Receiver Bit 8/Ninth bit received in modes 2 and 3
Cleared by hardware if 9th bit received is a logic 0.
Set by hardware if 9th bit received is a logic 1.
In mode 1, if SM2 = 0, RB8 is the received stop bit. In mode 0 RB8 is not used.
1
0
TI
Transmit Interrupt flag
Clear to acknowledge interrupt.
Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit
in the other modes.
RI
Receive Interrupt flag
Clear to acknowledge interrupt.
Set by hardware at the end of the 8th bit time in mode 0, see Figure 15-2. and Figure 153. in the other modes.
Reset Value = 0000 0000b
Bit addressable
74
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Example of computed value when X2 = 1, SMOD1 = 1, SPD = 1
FOSC = 16.384 MHz
Baud Rates
FOSC = 24 MHz
BRL
Error (%)
BRL
Error (%)
115200
247
1.23
243
0.16
57600
238
1.23
230
0.16
38400
229
1.23
217
0.16
28800
220
1.23
204
0.16
19200
203
0.63
178
0.16
9600
149
0.31
100
0.16
4800
43
1.23
-
-
Example of computed value when X2 = 0, SMOD1 = 0, SPD = 0
FOSC = 16.384 MHz
FOSC = 24 MHz
Baud Rates
BRL
Error (%)
BRL
Error (%)
4800
247
1.23
243
0.16
2400
238
1.23
230
0.16
1200
220
1.23
202
3.55
600
185
0.16
152
0.16
The baud rate generator can be used for mode 1 or 3 (refer to Figure 15-4.), but also for mode 0
for UART, thanks to the bit SRC located in BDRCON register (Table 15-4.)
15.4
UART Registers
SADEN - Slave Address Mask Register for UART (B9h)
7
6
5
4
3
2
1
0
–
–
–
–
–
–
–
–
Reset Value = 0000 0000b
SADDR - Slave Address Register for UART (A9h)
7
6
5
4
3
2
1
0
–
–
–
–
–
–
–
–
Reset Value = 0000 0000b
SBUF - Serial Buffer Register for UART (99h)
7
6
5
4
3
2
1
0
–
–
–
–
–
–
–
–
Reset Value = XXXX XXXXb
75
4337K–USB–04/08
BRL - Baud Rate Reload Register for the internal baud rate generator, UART (9Ah)
7
6
5
4
3
2
1
0
–
–
–
–
–
–
–
–
Reset Value = 0000 0000b
Table 15-2. T2CON Register
T2CON - Timer 2 Control Register (C8h)
7
6
5
4
3
2
1
0
TF2
EXF2
RCLK
TCLK
EXEN2
TR2
C/T2#
CP/RL2#
Bit
Bit
Number
Mnemonic
7
TF2
Description
Timer 2 overflow Flag
Must be cleared by software.
Set by hardware on Timer 2 overflow, if RCLK = 0 and TCLK = 0.
6
EXF2
Timer 2 External Flag
Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2
= 1.
When set, causes the CPU to vector to Timer 2 interrupt routine when Timer 2 interrupt is
enabled.
Must be cleared by software. EXF2 doesn’t cause an interrupt in Up/down counter mode
(DCEN = 1)
5
RCLK
Receive Clock bit for UART
Cleared to use Timer 1 overflow as receive clock for serial port in mode 1 or 3.
Set to use Timer 2 overflow as receive clock for serial port in mode 1 or 3.
4
TCLK
Transmit Clock bit for UART
Cleared to use Timer 1 overflow as transmit clock for serial port in mode 1 or 3.
Set to use Timer 2 overflow as transmit clock for serial port in mode 1 or 3.
Timer 2 External Enable bit
Cleared to ignore events on T2EX pin for Timer 2 operation.
Set to cause a capture or reload when a negative transition on T2EX pin is detected, if
Timer 2 is not used to clock the serial port.
3
EXEN2
2
TR2
1
C/T2#
Timer/Counter 2 select bit
Cleared for timer operation (input from internal clock system: FCLK PERIPH).
Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock
out mode.
CP/RL2#
Timer 2 Capture/Reload bit
If RCLK = 1 or TCLK = 1, CP/RL2# is ignored and timer is forced to Auto-reload on Timer
2 overflow.
Cleared to Auto-reload on Timer 2 overflows or negative transitions on T2EX pin if
EXEN2 = 1.
Set to capture on negative transitions on T2EX pin if EXEN2 = 1.
0
Timer 2 Run control bit
Cleared to turn off Timer 2.
Set to turn on Timer 2.
Reset Value = 0000 0000b
Bit addressable
76
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Table 15-3. PCON Register
PCON - Power Control Register (87h)
7
6
5
4
3
2
1
0
SMOD1
SMOD0
-
POF
GF1
GF0
PD
IDL
Bit
Bit
Number
Mnemonic
7
SMOD1
6
SMOD0
5
-
Description
Serial port Mode bit 1 for UART
Set to select double baud rate in mode 1, 2 or 3.
Serial port Mode bit 0 for UART
Cleared to select SM0 bit in SCON register.
Set to select FE bit in SCON register.
Reserved
The value read from this bit is indeterminate. Do not set this bit.
4
POF
Power-Off Flag
Cleared to recognize next reset type.
Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by
software.
3
GF1
General-purpose Flag
Cleared by user for general-purpose usage.
Set by user for general-purpose usage.
2
GF0
General-purpose Flag
Cleared by user for general-purpose usage.
Set by user for general-purpose usage.
1
PD
Power-down Mode Bit
Cleared by hardware when reset occurs.
Set to enter power-down mode.
0
IDL
Idle Mode Bit
Cleared by hardware when interrupt or reset occurs.
Set to enter idle mode.
Reset Value = 00X1 0000b
Not bit addressable
Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn’t affect
the value of this bit.
Table 15-4. BDRCON Register
BDRCON - Baud Rate Control Register (9Bh)
7
6
5
4
3
2
1
0
-
-
-
BRR
TBCK
RBCK
SPD
SRC
77
4337K–USB–04/08
Bit
Number
Bit
Mnemonic
7
-
Reserved
The value read from this bit is indeterminate. Do not set this bit
6
-
Reserved
The value read from this bit is indeterminate. Do not set this bit
5
-
Reserved
The value read from this bit is indeterminate. Do not set this bit.
4
BRR
Baud Rate Run Control bit
Cleared to stop the internal Baud Rate Generator.
Set to start the internal Baud Rate Generator.
3
TBCK
Transmission Baud rate Generator Selection bit for UART
Cleared to select Timer 1 or Timer 2 for the Baud Rate Generator.
Set to select internal Baud Rate Generator.
2
RBCK
Reception Baud Rate Generator Selection bit for UART
Cleared to select Timer 1 or Timer 2 for the Baud Rate Generator.
Set to select internal Baud Rate Generator.
1
SPD
0
SRC
Description
Baud Rate Speed Control bit for UART
Cleared to select the SLOW Baud Rate Generator.
Set to select the FAST Baud Rate Generator.
Baud Rate Source select bit in Mode 0 for UART
Cleared to select FOSC/12 as the Baud Rate Generator (FCLK PERIPH/6 in X2 mode).
Set to select the internal Baud Rate Generator for UARTs in mode 0.
Reset Value = XXX0 0000b
Not bit addressable
78
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
16. Interrupt System
16.1
Overview
The AT89C5130A/31A-M has a total of 11 interrupt vectors: two external interrupts (INT0 and
INT1), three timer interrupts (timers 0, 1 and 2), the serial port interrupt, SPI interrupt, Keyboard
interrupt, USB interrupt and the PCA global interrupt. These interrupts are shown in Figure 16-1.
Figure 16-1. Interrupt Control System
High priority
interrupt
IPH, IPL
TCON.0
IT0
3
INT0
IE0
0
3
TF0
TCON.2
0
IT1
3
INT1
IE1
0
3
Interrupt
Polling
Sequence, Decreasing From
High-to-Low Priority
TF1
0
3
PCA IT
0
RI
TI
3
TF2
EXF2
3
0
0
3
KBD IT
0
3
TWI IT
0
3
SPI IT
0
3
USBINT
UEPINT
0
Individual Enable
Global Disable
Low Priority
Interrupt
Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit
in the Interrupt Enable register (Table 16-2). This register also contains a global disable bit,
which must be cleared to disable all interrupts at once.
79
4337K–USB–04/08
Each interrupt source can also be individually programmed to one out of four priority levels by
setting or clearing a bit in the Interrupt Priority register (Table 16-3.) and in the Interrupt Priority
High register (Table 16-4). Table 16-1. shows the bit values and priority levels associated with
each combination.
16.2
Registers
The PCA interrupt vector is located at address 0033H, the SPI interrupt vector is located at
address 004BH and Keyboard interrupt vector is located at address 003BH. All other vectors
addresses are the same as standard C52 devices.
Table 16-1.
Priority Level Bit Values
IPH.x
IPL.x
Interrupt Level Priority
0
0
0 (Lowest)
0
1
1
1
0
2
1
1
3 (Highest)
A low-priority interrupt can be interrupted by a high priority interrupt, but not by another low-priority interrupt. A high-priority interrupt can’t be interrupted by any other interrupt source.
If two interrupt requests of different priority levels are received simultaneously, the request of
higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each
priority level there is a second priority structure determined by the polling sequence.
Table 16-2. IEN0 Register
IEN0 - Interrupt Enable Register (A8h)
80
7
6
5
4
3
2
1
0
EA
EC
ET2
ES
ET1
EX1
ET0
EX0
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Bit
Bit
Number
Mnemonic
7
EA
6
EC
Description
Enable All interrupt bit
Cleared to disable all interrupts.
Set to enable all interrupts.
PCA interrupt enable bit
Cleared to disable.
Set to enable.
5
ET2
Timer 2 overflow interrupt Enable bit
Cleared to disable Timer 2 overflow interrupt.
Set to enable Timer 2 overflow interrupt.
4
ES
Serial port Enable bit
Cleared to disable serial port interrupt.
Set to enable serial port interrupt.
3
ET1
Timer 1 overflow interrupt Enable bit
Cleared to disable Timer 1 overflow interrupt.
Set to enable Timer 1 overflow interrupt.
2
EX1
External interrupt 1 Enable bit
Cleared to disable external interrupt 1.
Set to enable external interrupt 1.
1
ET0
Timer 0 overflow interrupt Enable bit
Cleared to disable timer 0 overflow interrupt.
Set to enable timer 0 overflow interrupt.
0
EX0
External interrupt 0 Enable bit
Cleared to disable external interrupt 0.
Set to enable external interrupt 0.
Reset Value = 0000 0000b
Bit addressable
Table 16-3. IPL0 Register
IPL0 - Interrupt Priority Register (B8h)
7
6
5
4
3
2
1
0
-
PPCL
PT2L
PSL
PT1L
PX1L
PT0L
PX0L
81
4337K–USB–04/08
Bit
Bit
Number
Mnemonic
7
-
6
PPCL
PCA interrupt Priority bit
Refer to PPCH for priority level.
5
PT2L
Timer 2 overflow interrupt Priority bit
Refer to PT2H for priority level.
4
PSL
Serial port Priority bit
Refer to PSH for priority level.
3
PT1L
Timer 1 overflow interrupt Priority bit
Refer to PT1H for priority level.
2
PX1L
External interrupt 1 Priority bit
Refer to PX1H for priority level.
1
PT0L
Timer 0 overflow interrupt Priority bit
Refer to PT0H for priority level.
0
PX0L
External interrupt 0 Priority bit
Refer to PX0H for priority level.
Description
Reserved
The value read from this bit is indeterminate. Do not set this bit.
Reset Value = X000 0000b
Bit addressable
Table 16-4. IPH0 Register
IPH0 - Interrupt Priority High Register (B7h)
82
7
6
5
4
3
2
1
0
-
PPCH
PT2H
PSH
PT1H
PX1H
PT0H
PX0H
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Bit
Bit
Number
Mnemonic
7
-
6
5
4
3
2
1
0
Description
Reserved
The value read from this bit is indeterminate. Do not set this bit.
PPCH
PCA interrupt Priority high bit.
PPCH
PPCL
Priority Level
0
0
Lowest
0
1
1
0
1
1
Highest
PT2H
Timer 2 overflow interrupt Priority High bit
PT2H
PT2L
Priority Level
0
0
Lowest
0
1
1
0
1
1
Highest
PSH
Serial port Priority High bit
PSH
PSL
Priority Level
0
0
Lowest
0
1
1
0
1
1
Highest
PT1H
Timer 1 overflow interrupt Priority High bit
PT1H
PT1L
Priority Level
0
0
Lowest
0
1
1
0
1
1
Highest
PX1H
External interrupt 1 Priority High bit
PX1H
PX1L
Priority Level
0
0
Lowest
0
1
1
0
1
1
Highest
PT0H
Timer 0 overflow interrupt Priority High bit
PT0H
PT0L
Priority Level
0
0
Lowest
0
1
1
0
1
1
Highest
PX0H
External interrupt 0 Priority High bit
PX0H
PX0L
Priority Level
0
0
Lowest
0
1
1
0
1
1
Highest
Reset Value = X000 0000b
Not bit addressable
Table 16-5.
IEN1 Register
83
4337K–USB–04/08
IEN1 - Interrupt Enable Register (B1h)
7
6
5
4
3
2
1
0
-
EUSB
-
-
-
ESPI
ETWI
EKB
Bit
Bit
Number
Mnemonic
7
-
6
EUSB
5
-
Reserved
4
-
Reserved
3
-
Reserved
2
ESPI
SPI interrupt Enable bit
Cleared to disable SPI interrupt.
Set to enable SPI interrupt.
1
ETWI
TWI interrupt Enable bit
Cleared to disable TWI interrupt.
Set to enable TWI interrupt.
0
EKB
Keyboard interrupt Enable bit
Cleared to disable keyboard interrupt.
Set to enable keyboard interrupt.
Description
Reserved
USB Interrupt Enable bit
84
Cleared to disable USB interrupt.
Set to enable USB interrupt.
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Reset Value = X0XX X000b
Not bit addressable
Table 16-6. IPL1 Register
IPL1 - Interrupt Priority Register (B2h)
7
6
5
4
3
2
1
0
-
PUSBL
-
-
-
PSPIL
PTWIL
PKBDL
Bit
Bit
Number
Mnemonic
7
-
6
PUSBL
5
-
Reserved
The value read from this bit is indeterminate. Do not set this bit.
4
-
Reserved
The value read from this bit is indeterminate. Do not set this bit.
3
-
Reserved
The value read from this bit is indeterminate. Do not set this bit.
2
PSPIL
SPI Interrupt Priority bit
Refer to PSPIH for priority level.
1
PTWIL
TWI Interrupt Priority bit
Refer to PTWIH for priority level.
0
PKBL
Keyboard Interrupt Priority bit
Refer to PKBH for priority level.
Description
Reserved
The value read from this bit is indeterminate. Do not set this bit.
USB Interrupt Priority bit
Refer to PUSBH for priority level.
Reset Value = X0XX X000b
Not bit addressable
85
4337K–USB–04/08
Table 16-7. IPH1 Register
IPH1 - Interrupt Priority High Register (B3h)
7
6
5
4
3
2
1
0
-
PUSBH
-
-
-
PSPIH
PTWIH
PKBH
Bit
Bit
Number
Mnemonic
7
-
Description
Reserved
The value read from this bit is indeterminate. Do not set this bit.
USB Interrupt Priority High bit
PUSBH PUSBL Priority Level
0
0
Lowest
0
1
1
0
1
1
Highest
6
PUSBH
5
-
Reserved
The value read from this bit is indeterminate. Do not set this bit.
4
-
Reserved
The value read from this bit is indeterminate. Do not set this bit.
3
-
Reserved
The value read from this bit is indeterminate. Do not set this bit.
2
1
0
PSPIH
SPI Interrupt Priority High bit
PSPIH
PSPIL
Priority Level
0
0
Lowest
0
1
1
0
1
1
Highest
PTWIH
TWI Interrupt Priority High bit
PTWIH PTWIL Priority Level
0
0
Lowest
0
1
1
0
1
1
Highest
PKBH
Keyboard Interrupt Priority High bit
PKBH
PKBL
Priority Level
0
0
Lowest
0
1
1
0
1
1
Highest
Reset Value = X0XX X000b
Not bit addressable
86
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
16.3
Interrupt Sources and Vector Addresses
Table 16-8.
Vector Table
Polling
Priority
Interrupt
Source
0
0
Reset
1
1
INT0
IE0
0003h
2
2
Timer 0
TF0
000Bh
3
3
INT1
IE1
0013h
4
4
Timer 1
IF1
001Bh
5
6
UART
RI+TI
0023h
6
7
Timer 2
TF2+EXF2
002Bh
7
5
PCA
CF + CCFn (n = 0-4)
0033h
8
8
Keyboard
KBDIT
003Bh
9
9
TWI
TWIIT
0043h
10
10
SPI
SPIIT
004Bh
11
11
0053h
12
12
005Bh
13
13
0063h
14
14
15
15
USB
Interrupt
Request
Vector
Number
Address
0000h
UEPINT + USBINT
006Bh
0073h
87
4337K–USB–04/08
17. Keyboard Interface
17.1
Introduction
The AT89C5130A/31A-M implements a keyboard interface allowing the connection of a 8 x n
matrix keyboard. It is based on 8 inputs with programmable interrupt capability on both high or
low level. These inputs are available as an alternate function of P1 and allow to exit from idle
and power down modes.
17.2
Description
The keyboard interface communicates with the C51 core through 3 special function registers:
KBLS, the Keyboard Level Selection register (Table 17-3), KBE, The Keyboard interrupt Enable
register (Table 17-2), and KBF, the Keyboard Flag register (Table 17-1).
17.2.1
Interrupt
The keyboard inputs are considered as 8 independent interrupt sources sharing the same interrupt vector. An interrupt enable bit (KBD in IE1) allows global enable or disable of the keyboard
interrupt (see Figure 17-1). As detailed in Figure 17-2 each keyboard input has the capability to
detect a programmable level according to KBLS.x bit value. Level detection is then reported in
interrupt flags KBF.x that can be masked by software using KBE.x bits.
This structure allow keyboard arrangement from 1 by n to 8 by n matrix and allow usage of P1
inputs for other purpose.
Figure 17-1. Keyboard Interface Block Diagram
P1.0
Input Circuitry
P1.1
Input Circuitry
P1.2
Input Circuitry
P1.3
Input Circuitry
P1.4
Input Circuitry
P1.5
Input Circuitry
P1.6
Input Circuitry
P1.7
Input Circuitry
KBDIT
Keyboard Interface
Interrupt Request
KBD
IE1.0
Figure 17-2. Keyboard Input Circuitry
Vcc
0
P1:x
KBF.x
1
Internal Pull-up
88
KBE.x
KBLS.x
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
17.2.2
17.3
Power Reduction Mode
P1 inputs allow exit from idle and power down modes as detailed in section “Power-down Mode”.
Registers
Table 17-1. KBF Register
KBF - Keyboard Flag Register (9Eh)
7
6
5
4
3
2
1
0
KBF7
KBF6
KBF5
KBF4
KBF3
KBF2
KBF1
KBF0
Bit Number
Bit
Mnemonic
Description
7
6
5
4
3
2
1
0
KBF7
Keyboard line 7 flag
Set by hardware when the Port line 7 detects a programmed level. It generates a
Keyboard interrupt request if the KBKBIE.7 bit in KBIE register is set.
Cleared by hardware when reading KBF SFR by software.
KBF6
Keyboard line 6 flag
Set by hardware when the Port line 6 detects a programmed level. It generates a
Keyboard interrupt request if the KBIE.6 bit in KBIE register is set.
Cleared by hardware when reading KBF SFR by software.
KBF5
Keyboard line 5 flag
Set by hardware when the Port line 5 detects a programmed level. It generates a
Keyboard interrupt request if the KBIE.5 bit in KBIE register is set.
Cleared by hardware when reading KBF SFR by software.
KBF4
Keyboard line 4 flag
Set by hardware when the Port line 4 detects a programmed level. It generates a
Keyboard interrupt request if the KBIE.4 bit in KBIE register is set.
Cleared by hardware when reading KBF SFR by software.
KBF3
Keyboard line 3 flag
Set by hardware when the Port line 3 detects a programmed level. It generates a
Keyboard interrupt request if the KBIE.3 bit in KBIE register is set.
Cleared by hardware when reading KBF SFR by software.
KBF2
Keyboard line 2 flag
Set by hardware when the Port line 2 detects a programmed level. It generates a
Keyboard interrupt request if the KBIE.2 bit in KBIE register is set.
Cleared by hardware when reading KBF SFR by software.
KBF1
Keyboard line 1 flag
Set by hardware when the Port line 1 detects a programmed level. It generates a
Keyboard interrupt request if the KBIE.1 bit in KBIE register is set.
Cleared by hardware when reading KBF SFR by software.
KBF0
Keyboard line 0 flag
Set by hardware when the Port line 0 detects a programmed level. It generates a
Keyboard interrupt request if the KBIE.0 bit in KBIE register is set.
Cleared by hardware when reading KBF SFR by software.
Reset Value = 0000 0000b
89
4337K–USB–04/08
Table 17-2. KBE Register
KBE - Keyboard Input Enable Register (9Dh)
7
6
5
4
3
2
1
0
KBE7
KBE6
KBE5
KBE4
KBE3
KBE2
KBE1
KBE0
Bit
Number
Bit
Mnemonic
Description
7
KBE7
Keyboard line 7 Enable bit
Cleared to enable standard I/O pin.
Set to enable KBF.7 bit in KBF register to generate an interrupt request.
6
KBE6
Keyboard line 6 Enable bit
Cleared to enable standard I/O pin.
Set to enable KBF.6 bit in KBF register to generate an interrupt request.
5
KBE5
Keyboard line 5 Enable bit
Cleared to enable standard I/O pin.
Set to enable KBF.5 bit in KBF register to generate an interrupt request.
4
KBE4
Keyboard line 4 Enable bit
Cleared to enable standard I/O pin.
Set to enable KBF.4 bit in KBF register to generate an interrupt request.
3
KBE3
Keyboard line 3 Enable bit
Cleared to enable standard I/O pin.
Set to enable KBF.3 bit in KBF register to generate an interrupt request.
2
KBE2
Keyboard line 2 Enable bit
Cleared to enable standard I/O pin.
Set to enable KBF.2 bit in KBF register to generate an interrupt request.
1
KBE1
Keyboard line 1 Enable bit
Cleared to enable standard I/O pin.
Set to enable KBF.1 bit in KBF register to generate an interrupt request.
0
KBE0
Keyboard line 0 Enable bit
Cleared to enable standard I/O pin.
Set to enable KBF.0 bit in KBF register to generate an interrupt request.
Reset Value = 0000 0000b
90
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Table 17-3. KBLS Register
KBLS-Keyboard Level Selector Register (9Ch)
7
6
5
4
3
2
1
0
KBLS7
KBLS6
KBLS5
KBLS4
KBLS3
KBLS2
KBLS1
KBLS0
Bit Number
Bit
Mnemonic
Description
7
KBLS7
Keyboard line 7 Level Selection bit
Cleared to enable a low level detection on Port line 7.
Set to enable a high level detection on Port line 7.
6
KBLS6
Keyboard line 6 Level Selection bit
Cleared to enable a low level detection on Port line 6.
Set to enable a high level detection on Port line 6.
5
KBLS5
Keyboard line 5 Level Selection bit
Cleared to enable a low level detection on Port line 5.
Set to enable a high level detection on Port line 5.
4
KBLS4
Keyboard line 4 Level Selection bit
Cleared to enable a low level detection on Port line 4.
Set to enable a high level detection on Port line 4.
3
KBLS3
Keyboard line 3 Level Selection bit
Cleared to enable a low level detection on Port line 3.
Set to enable a high level detection on Port line 3.
2
KBLS2
Keyboard line 2 Level Selection bit
Cleared to enable a low level detection on Port line 2.
Set to enable a high level detection on Port line 2.
1
KBLS1
Keyboard line 1 Level Selection bit
Cleared to enable a low level detection on Port line 1.
Set to enable a high level detection on Port line 1.
0
KBLS0
Keyboard line 0 Level Selection bit
Cleared to enable a low level detection on Port line 0.
Set to enable a high level detection on Port line 0.
Reset Value = 0000 0000b
91
4337K–USB–04/08
18. Programmable LED
AT89C5130A/31A-M have up to 4 programmable LED current sources, configured by the register LEDCON.
Table 18-1. LEDCON Register
LEDCON (S:F1h) LED Control Register
7
6
5
LED3
Bit Number
7:6
5:4
3:2
1:0
4
LED2
Bit
Mnemonic
3
2
LED1
1
0
LED0
Description
LED3
Port
0
0
1
1
LED3
0
1
0
1
Configuration
Standard C51 Port
2 mA current source when P3.7 is low
4 mA current source when P3.7 is low
10 mA current source when P3.7 is low
LED2
Port
0
0
1
1
/LED2
0
1
0
1
Configuration
Standard C51 Port
2 mA current source when P3.6 is low
4 mA current source when P3.6 is low
10 mA current source when P3.6 is low
LED1
Port/
0
0
1
1
LED1
0
1
0
1
Configuration
Standard C51 Port
2 mA current source when P3.5 is low
4 mA current source when P3.5 is low
10 mA current source when P3.5 is low
LED0
Port/
0
0
1
1
LED0
0
1
0
1
Configuration
Standard C51 Port
2 mA current source when P3.3 is low
4 mA current source when P3.3 is low
10 mA current source when P3.3 is low
Reset Value = 00h
92
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
19. Serial Peripheral Interface (SPI)
The Serial Peripheral Interface module (SPI) allows full-duplex, synchronous, serial communication between the MCU and peripheral devices, including other MCUs.
19.1
Features
Features of the SPI module include the following:
• Full-duplex, three-wire synchronous transfers
• Master or Slave operation
• Eight programmable Master clock rates
• Serial clock with programmable polarity and phase
• Master mode fault error flag with MCU interrupt capability
• Write collision flag protection
19.2
Signal Description
Figure 19-1 shows a typical SPI bus configuration using one Master controller and many Slave
peripherals. The bus is made of three wires connecting all the devices:
Figure 19-1. SPI Master/Slaves Interconnection
Slave 1
MISO
MOSI
SCK
SS
MISO
MOSI
SCK
SS
VDD
Slave 4
Slave 3
MISO
MOSI
SCK
SS
0
1
2
3
MISO
MOSI
SCK
SS
MISO
MOSI
SCK
SS
PORT
Master
Slave 2
The Master device selects the individual Slave devices by using four pins of a parallel port to
control the four SS pins of the Slave devices.
19.2.1
Master Output Slave Input (MOSI)
This 1-bit signal is directly connected between the Master Device and a Slave Device. The MOSI
line is used to transfer data in series from the Master to the Slave. Therefore, it is an output signal from the Master, and an input signal to a Slave. A byte (8-bit word) is transmitted most
significant bit (MSB) first, least significant bit (LSB) last.
19.2.2
Master Input Slave Output (MISO)
This 1-bit signal is directly connected between the Slave Device and a Master Device. The MISO
line is used to transfer data in series from the Slave to the Master. Therefore, it is an output signal from the Slave, and an input signal to the Master. A byte (8-bit word) is transmitted most
significant bit (MSB) first, least significant bit (LSB) last.
93
4337K–USB–04/08
19.2.3
SPI Serial Clock (SCK)
This signal is used to synchronize the data movement both in and out the devices through their
MOSI and MISO lines. It is driven by the Master for eight clock cycles which allows to exchange
one byte on the serial lines.
19.2.4
Slave Select (SS)
Each Slave peripheral is selected by one Slave Select pin (SS). This signal must stay low for any
message for a Slave. It is obvious that only one Master (SS high level) can drive the network.
The Master may select each Slave device by software through port pins (Figure 19-1). To prevent bus conflicts on the MISO line, only one slave should be selected at a time by the Master
for a transmission.
In a Master configuration, the SS line can be used in conjunction with the MODF flag in the SPI
Status register (SPSTA) to prevent multiple masters from driving MOSI and SCK (see
Section “Error Conditions”, page 98).
A high level on the SS pin puts the MISO line of a Slave SPI in a high-impedance state.
The SS pin could be used as a general-purpose if the following conditions are met:
• The device is configured as a Master and the SSDIS control bit in SPCON is set. This kind of
configuration can be found when only one Master is driving the network and there is no way
that the SS pin could be pulled low. Therefore, the MODF flag in the SPSTA will never be
set(1).
• The Device is configured as a Slave with CPHA and SSDIS control bits set(2) This kind of
configuration can happen when the system comprises one Master and one Slave only.
Therefore, the device should always be selected and there is no reason that the Master uses
the SS pin to select the communicating Slave device.
Notes:
1. Clearing SSDIS control bit does not clear MODF.
2. Special care should be taken not to set SSDIS control bit when CPHA =’0’ because in this
mode, the SS is used to start the transmission.
19.2.5
Baud Rate
In Master mode, the baud rate can be selected from a baud rate generator which is controlled by
three bits in the SPCON register: SPR2, SPR1 and SPR0. The Master clock is chosen from one
of seven clock rates resulting from the division of the internal clock by 4, 8, 16, 32, 64 or 128.
Table 19-1 gives the different clock rates selected by SPR2:SPR1:SPR0:
Table 19-1.
94
SPI Master Baud Rate Selection
SPR2
SPR1
SPR0
Clock Rate
Baud Rate Divisor (BD)
0
0
0
Don’t Use
No BRG
0
0
1
FCLK PERIPH/4
4
0
1
0
FCLK PERIPH/8
8
0
1
1
FCLK PERIPH/16
16
1
0
0
FCLK PERIPH/32
32
1
0
1
FCLK PERIPH/64
64
1
1
0
FCLK PERIPH/128
128
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
19.3
SPR2
SPR1
SPR0
Clock Rate
Baud Rate Divisor (BD)
1
1
1
Don’t Use
No BRG
Functional Description
Figure 19-2 shows a detailed structure of the SPI module.
Figure 19-2. SPI Module Block Diagram
Internal Bus
SPDAT
Shift Register
FCLK PERIPH
Clock
Divider
/4
/8
/16
/32
/64
/128
7
6
5
4
3
2
1
0
Receive Data Register
Pin
Control
Logic
Clock
Logic
MOSI
MISO
M
S
Clock
Select
SCK
SS
SPR2 SPEN SSDIS MSTR CPOL CPHA SPR1 SPR0
SPCON
SPI
Control
SPI Interrupt Request
8-bit bus
1-bit signal
SPSTA
SPIF
19.3.1
WCOL SSERR MODF
-
-
-
-
Operating Modes
The Serial Peripheral Interface can be configured as one of the two modes: Master mode or
Slave mode. The configuration and initialization of the SPI module is made through one register:
• The Serial Peripheral CONtrol register (SPCON)
Once the SPI is configured, the data exchange is made using:
• SPCON
• The Serial Peripheral STAtus register (SPSTA)
• The Serial Peripheral DATa register (SPDAT)
During an SPI transmission, data is simultaneously transmitted (shifted out serially) and
received (shifted in serially). A serial clock line (SCK) synchronizes shifting and sampling on the
two serial data lines (MOSI and MISO). A Slave Select line (SS) allows individual selection of a
Slave SPI device; Slave devices that are not selected do not interfere with SPI bus activities.
95
4337K–USB–04/08
When the Master device transmits data to the Slave device via the MOSI line, the Slave device
responds by sending data to the Master device via the MISO line. This implies full-duplex transmission with both data out and data in synchronized with the same clock (Figure 19-3).
Figure 19-3. Full-duplex Master/Slave Interconnection
8-bit Shift Register
SPI
Clock Generator
MISO
MISO
MOSI
MOSI
SCK
SS
Master MCU
8-bit Shift Register
SCK
VDD
SS
VSS
Slave MCU
19.3.1.1
Master Mode
The SPI operates in Master mode when the Master bit, MSTR (1), in the SPCON register is set.
Only one Master SPI device can initiate transmissions. Software begins the transmission from a
Master SPI module by writing to the Serial Peripheral Data Register (SPDAT). If the shift register
is empty, the byte is immediately transferred to the shift register. The byte begins shifting out on
MOSI pin under the control of the serial clock, SCK. Simultaneously, another byte shifts in from
the Slave on the Master’s MISO pin. The transmission ends when the Serial Peripheral transfer
data flag, SPIF, in SPSTA becomes set. At the same time that SPIF becomes set, the received
byte from the Slave is transferred to the receive data register in SPDAT. Software clears SPIF
by reading the Serial Peripheral Status register (SPSTA) with the SPIF bit set, and then reading
the SPDAT.
19.3.1.2
Slave Mode
The SPI operates in Slave mode when the Master bit, MSTR (2) , in the SPCON register is
cleared. Before a data transmission occurs, the Slave Select pin, SS, of the Slave device must
be set to’0’. SS must remain low until the transmission is complete.
In a Slave SPI module, data enters the shift register under the control of the SCK from the Master SPI module. After a byte enters the shift register, it is immediately transferred to the receive
data register in SPDAT, and the SPIF bit is set. To prevent an overflow condition, Slave software
must then read the SPDAT before another byte enters the shift register (3). A Slave SPI must
complete the write to the SPDAT (shift register) at least one bus cycle before the Master SPI
starts a transmission. If the write to the data register is late, the SPI transmits the data already in
the shift register from the previous transmission.
19.3.2
96
Transmission Formats
Software can select any of four combinations of serial clock (SCK) phase and polarity using two
bits in the SPCON: the Clock POLarity (CPOL (4)) and the Clock PHAse (CPHA4). CPOL defines
the default SCK line level in idle state. It has no significant effect on the transmission format.
CPHA defines the edges on which the input data are sampled and the edges on which the
1.
The SPI module should be configured as a Master before it is enabled (SPEN set). Also the Master SPI should be configured before the Slave SPI.
2.
The SPI module should be configured as a Slave before it is enabled (SPEN set).
3.
The maximum frequency of the SCK for an SPI configured as a Slave is FCLK PERIPH/2.
4.
Before writing to the CPOL and CPHA bits, the SPI should be disabled (SPEN =’0’).
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
output data are shifted (Figure 19-4 and Figure 19-5). The clock phase and polarity should be
identical for the Master SPI device and the communicating Slave device.
Figure 19-4. Data Transmission Format (CPHA = 0)
SCK cycle number
1
2
3
4
5
6
7
8
MSB
bit6
bit5
bit4
bit3
bit2
bit1
LSB
bit6
bit5
bit4
bit3
bit2
bit1
LSB
SPEN (internal)
SCK (CPOL = 0)
SCK (CPOL = 1)
MOSI (from Master)
MISO (from Slave)
MSB
SS (to Slave)
Capture point
Figure 19-5. Data Transmission Format (CPHA = 1)
1
2
3
4
5
6
7
8
MOSI (from Master)
MSB
bit6
bit5
bit4
bit3
bit2
bit1
LSB
MISO (from Slave)
MSB
bit6
bit5
bit4
bit3
bit2
bit1
SCK cycle number
SPEN (internal)
SCK (CPOL = 0)
SCK (CPOL = 1)
LSB
SS (to Slave)
Capture point
Figure 19-6. CPHA/SS Timing
MISO/MOSI
Byte 1
Byte 2
Byte 3
Master SS
Slave SS
(CPHA = 0)
Slave SS
(CPHA = 1)
As shown in Figure 19-5, the first SCK edge is the MSB capture strobe. Therefore the Slave
must begin driving its data before the first SCK edge, and a falling edge on the SS pin is used to
start the transmission. The SS pin must be toggled high and then low between each byte transmitted (Figure 19-2).
Figure 19-6 shows an SPI transmission in which CPHA is’1’. In this case, the Master begins driving its MOSI pin on the first SCK edge. Therefore the Slave uses the first SCK edge as a start
transmission signal. The SS pin can remain low between transmissions (Figure 19-1). This format may be preferable in systems having only one Master and only one Slave driving the MISO
data line.
97
4337K–USB–04/08
19.3.3
19.3.3.1
Error Conditions
The following flags in the SPSTA signal SPI error conditions:
Mode Fault (MODF)
Mode Fault error in Master mode SPI indicates that the level on the Slave Select (SS) pin is
inconsistent with the actual mode of the device. MODF is set to warn that there may have a
multi-master conflict for system control. In this case, the SPI system is affected in the following
ways:
• An SPI receiver/error CPU interrupt request is generated,
• The SPEN bit in SPCON is cleared. This disable the SPI,
• The MSTR bit in SPCON is cleared
When SS DISable (SSDIS) bit in the SPCON register is cleared, the MODF flag is set when the
SS signal becomes “0”.
However, as stated before, for a system with one Master, if the SS pin of the Master device is
pulled low, there is no way that another Master attempt to drive the network. In this case, to prevent the MODF flag from being set, software can set the SSDIS bit in the SPCON register and
therefore making the SS pin as a general-purpose I/O pin.
Clearing the MODF bit is accomplished by a read of SPSTA register with MODF bit set, followed
by a write to the SPCON register. SPEN Control bit may be restored to its original set state after
the MODF bit has been cleared.
19.3.3.2
Write Collision (WCOL)
A Write Collision (WCOL) flag in the SPSTA is set when a write to the SPDAT register is done
during a transmit sequence.
WCOL does not cause an interruption, and the transfer continues uninterrupted.
Clearing the WCOL bit is done through a software sequence of an access to SPSTA and an
access to SPDAT.
19.3.3.3
Overrun Condition
An overrun condition occurs when the Master device tries to send several data bytes and the
Slave devise has not cleared the SPIF bit issuing from the previous data byte transmitted. In this
case, the receiver buffer contains the byte sent after the SPIF bit was last cleared. A read of the
SPDAT returns this byte. All others bytes are lost.
This condition is not detected by the SPI peripheral.
19.3.4
Interrupts
Two SPI status flags can generate a CPU interrupt requests:
Table 19-2.
SPI Interrupts
Flag
Request
SPIF (SP Data Transfer)
SPI Transmitter Interrupt request
MODF (Mode Fault)
SPI Receiver/Error Interrupt Request (if SSDIS = “0”)
Serial Peripheral data transfer flag, SPIF: This bit is set by hardware when a transfer has been
completed. SPIF bit generates transmitter CPU interrupt requests.
98
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Mode Fault flag, MODF: This bit becomes set to indicate that the level on the SS is inconsistent
with the mode of the SPI. MODF with SSDIS reset, generates receiver/error CPU interrupt
requests.
Figure 19-7 gives a logical view of the above statements.
Figure 19-7. SPI Interrupt Requests Generation
SPIF
SPI Transmitter
CPU Interrupt Request
SPI
CPU Interrupt Request
MODF
SPI Receiver/Error
CPU Interrupt Request
SSDIS
19.3.5
Registers
There are three registers in the module that provide control, status and data storage functions. These registers are
describes in the following paragraphs.
19.3.5.1
Serial Peripheral Control Register (SPCON)
• The Serial Peripheral Control Register does the following:
– Selects one of the Master clock rates
– Configure the SPI module as Master or Slave
– Selects serial clock polarity and phase
– Enables the SPI module
– Frees the SS pin for a general-purpose
Table 19-3 describes this register and explains the use of each bit.
Table 19-3.
SPCON Register
7
6
5
4
3
2
1
0
SPR2
SPEN
SSDIS
MSTR
CPOL
CPHA
SPR1
SPR0
Bit
Number
Bit Mnemonic
7
SPR2
6
SPEN
Description
Serial Peripheral Rate 2
Bit with SPR1 and SPR0 define the clock rate.
Serial Peripheral Enable
Cleared to disable the SPI interface.
Set to enable the SPI interface.
SS Disable
5
SSDIS
4
MSTR
Cleared to enable SS in both Master and Slave modes.
Set to disable SS in both Master and Slave modes. In Slave mode, this bit has no
effect if CPHA = “0”.
Serial Peripheral Master
Cleared to configure the SPI as a Slave.
Set to configure the SPI as a Master.
Clock Polarity
3
CPOL
Cleared to have the SCK set to “0” in idle state.
Set to have the SCK set to “1” in idle state.
99
4337K–USB–04/08
Bit
Number
Bit Mnemonic
2
CPHA
Description
Clock Phase
Cleared to have the data sampled when the SCK leaves the idle state (see CPOL).
Set to have the data sampled when the SCK returns to idle state (see CPOL).
SPR2 SPR1 SPR0 Serial Peripheral Rate
1
000Reserved
SPR1
00 1FCLK PERIPH/4
010 FCLK PERIPH/8
011FCLK PERIPH/16
100FCLK PERIPH/32
0
10 1FCLK PERIPH/64
SPR0
110FCLK PERIPH/128
1 11Reserved
Reset Value = 0001 0100b
Not bit addressable
19.3.5.2
Serial Peripheral Status Register (SPSTA)
The Serial Peripheral Status Register contains flags to signal the following conditions:
• Data transfer complete
• Write collision
• Inconsistent logic level on SS pin (mode fault error)
Table 19-4 describes the SPSTA register and explains the use of every bit in the register.
Table 19-4. SPSTA Register
SPSTA - Serial Peripheral Status and Control register (0C4H)
7
6
5
4
3
2
1
0
SPIF
WCOL
SSERR
MODF
-
-
-
-
Bit Number
Bit
Mnemonic
Description
Serial Peripheral data transfer flag
7
SPIF
Cleared by hardware to indicate data transfer is in progress or has been approved by a
clearing sequence.
Set by hardware to indicate that the data transfer has been completed.
Write Collision flag
6
WCOL
Cleared by hardware to indicate that no collision has occurred or has been approved by a
clearing sequence.
Set by hardware to indicate that a collision has been detected.
Synchronous Serial Slave Error flag
5
SSERR
Set by hardware when SS is deasserted before the end of a received data.
Cleared by disabling the SPI (clearing SPEN bit in SPCON).
100
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Bit Number
Bit
Mnemonic
Description
Mode Fault
4
MODF
Cleared by hardware to indicate that the SS pin is at appropriate logic level, or has been
approved by a clearing sequence.
Set by hardware to indicate that the SS pin is at inappropriate logic level.
3
-
2
-
1
-
0
-
Reserved
The value read from this bit is indeterminate. Do not set this bit
Reserved
The value read from this bit is indeterminate. Do not set this bit
Reserved
The value read from this bit is indeterminate. Do not set this bit.
Reserved
The value read from this bit is indeterminate. Do not set this bit.
Reset Value = 00X0 XXXXb
Not Bit addressable
19.3.5.3
Serial Peripheral Data Register (SPDAT)
The Serial Peripheral Data Register (Table 19-5) is a read/write buffer for the receive data register. A write to SPDAT places data directly into the shift register. No transmit buffer is available in
this model.
A Read of the SPDAT returns the value located in the receive buffer and not the content of the
shift register.
Table 19-5. SPDAT Register
SPDAT - Serial Peripheral Data Register (0C5H)
7
6
5
4
3
2
1
0
R7
R6
R5
R4
R3
R2
R1
R0
Reset Value = Indeterminate
R7:R0: Receive data bits
SPCON, SPSTA and SPDAT registers may be read and written at any time while there is no ongoing exchange. However, special care should be taken when writing to them while a transmission is on-going:
• Do not change SPR2, SPR1 and SPR0
• Do not change CPHA and CPOL
• Do not change MSTR
• Clearing SPEN would immediately disable the peripheral
• Writing to the SPDAT will cause an overflow
101
4337K–USB–04/08
20. Two Wire Interface (TWI)
This section describes the 2-wire interface. The 2-wire bus is a bi-directional 2-wire serial communication standard. It is designed primarily for simple but efficient integrated circuit (IC) control.
The system is comprised of two lines, SCL (Serial Clock) and SDA (Serial Data) that carry information between the ICs connected to them. The serial data transfer is limited to 400 Kbit/s in
standard mode. Various communication configuration can be designed using this bus. Figure
20-1 shows a typical 2-wire bus configuration. All the devices connected to the bus can be master and slave.
Figure 20-1. 2-wire Bus Configuration
device1
device2
device3
...
deviceN
SCL
SDA
102
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
Figure 20-2. Block Diagram
8
Address Register
SSADR
Comparator
Input
Filter
SDA
Output
Stage
SSDAT
ACK
Shift Register
Arbitration &
Sink Logic
Input
Filter
SCL
Output
Stage
Timing &
Control
logic
FCLK PERIPH/4
Internal Bus
8
Interrupt
Serial clock
generator
Timer 1
overflow
SSCON
Control Register
7
Status
Bits
SSCS
Status
Decoder
Status Register
8
103
4337K–USB–04/08
20.1
Description
The CPU interfaces to the 2-wire logic via the following four 8-bit special function registers: the
Synchronous Serial Control register (SSCON; Table 20-10), the Synchronous Serial Data register (SSDAT; Table 20-11), the Synchronous Serial Control and Status register (SSCS; Table 2012) and the Synchronous Serial Address register (SSADR Table 20-13).
SSCON is used to enable the TWI interface, to program the bit rate (see Table 20-3), to enable
slave modes, to acknowledge or not a received data, to send a START or a STOP condition on
the 2-wire bus, and to acknowledge a serial interrupt. A hardware reset disables the TWI
module.
SSCS contains a status code which reflects the status of the 2-wire logic and the 2-wire bus.
The three least significant bits are always zero. The five most significant bits contains the status
code. There are 26 possible status codes. When SSCS contains F8h, no relevant state information is available and no serial interrupt is requested. A valid status code is available in SSCS one
machine cycle after SI is set by hardware and is still present one machine cycle after SI has
been reset by software. to Table 20-9. give the status for the master modes and miscellaneous
states.
SSDAT contains a byte of serial data to be transmitted or a byte which has just been received. It
is addressable while it is not in process of shifting a byte. This occurs when 2-wire logic is in a
defined state and the serial interrupt flag is set. Data in SSDAT remains stable as long as SI is
set. While data is being shifted out, data on the bus is simultaneously shifted in; SSDAT always
contains the last byte present on the bus.
SSADR may be loaded with the 7-bit slave address (7 most significant bits) to which the TWI
module will respond when programmed as a slave transmitter or receiver. The LSB is used to
enable general call address (00h) recognition.
Figure 20-3 shows how a data transfer is accomplished on the 2-wire bus.
Figure 20-3. Complete Data Transfer on 2-wire Bus
MSB
SDA
acknowledgement
signal from receiver
acknowledgement
signal from receiver
SCL
1
2
S
start
condition
7
8
9
ACK
1
2
3-8
9
ACK
clock line held low
while interrupts are serviced
P
stop
condition
The four operating modes are:
• Master Transmitter
• Master Receiver
• Slave transmitter
• Slave receiver
Data transfer in each mode of operation is shown in Table to Table 20-9 and Figure 20-4. to
Figure 20-7.. These figures contain the following abbreviations:
S
104
: START condition
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
R
: Read bit (high level at SDA)
W
: Write bit (low level at SDA)
A:
Acknowledge bit (low level at SDA)
A: Not acknowledge bit (high level at SDA)
Data: 8-bit data byte
P
: STOP condition
In Figure 20-4 to Figure 20-7, circles are used to indicate when the serial interrupt flag is set.
The numbers in the circles show the status code held in SSCS. At these points, a service routine
must be executed to continue or complete the serial transfer. These service routines are not critical since the serial transfer is suspended until the serial interrupt flag is cleared by software.
When the serial interrupt routine is entered, the status code in SSCS is used to branch to the
appropriate service routine. For each status code, the required software action and details of the
following serial transfer are given in Table to Table 20-9.
20.1.1
Master Transmitter Mode
In the master transmitter mode, a number of data bytes are transmitted to a slave receiver
(Figure 20-4). Before the master transmitter mode can be entered, SSCON must be initialised as
follows:
Table 20-1.
SSCON Initialization
CR2
SSIE
STA
STO
SI
AA
CR1
CR0
bit rate
1
0
0
0
X
bit rate
bit rate
CR0, CR1 and CR2 define the internal serial bit rate if external bit rate generator is not used.
SSIE must be set to enable TWI. STA, STO and SI must be cleared.
The master transmitter mode may now be entered by setting the STA bit. The 2-wire logic will
now test the 2-wire bus and generate a START condition as soon as the bus becomes free.
When a START condition is transmitted, the serial interrupt flag (SI bit in SSCON) is set, and the
status code in SSCS will be 08h. This status must be used to vector to an interrupt routine that
loads SSDAT with the slave address and the data direction bit (SLA+W).
When the slave address and the direction bit have been transmitted and an acknowledgement
bit has been received, SI is set again and a number of status code in SSCS are possible. There
are 18h, 20h or 38h for the master mode and also 68h, 78h or B0h if the slave mode was
enabled (AA=logic 1). The appropriate action to be taken for each of these status code is
detailed in Table . This scheme is repeated until a STOP condition is transmitted.
SSIE, CR2, CR1 and CR0 are not affected by the serial transfer and are referred to Table 7 to
Table 11. After a repeated START condition (state 10h) the TWI module may switch to the master receiver mode by loading SSDAT with SLA+R.
20.1.2
Master Receiver Mode
In the master receiver mode, a number of data bytes are received from a slave transmitter
(Figure 20-5). The transfer is initialized as in the master transmitter mode. When the START
condition has been transmitted, the interrupt routine must load SSDAT with the 7-bit slave
105
4337K–USB–04/08
address and the data direction bit (SLA+R). The serial interrupt flag SI must then be cleared
before the serial transfer can continue.
When the slave address and the direction bit have been transmitted and an acknowledgement
bit has been received, the serial interrupt flag is set again and a number of status code in SSCS
are possible. There are 40h, 48h or 38h for the master mode and also 68h, 78h or B0h if the
slave mode was enabled (AA=logic 1). The appropriate action to be taken for each of these status code is detailed in Table . This scheme is repeated until a STOP condition is transmitted.
SSIE, CR2, CR1 and CR0 are not affected by the serial transfer and are referred to Table 7 to
Table 11. After a repeated START condition (state 10h) the TWI module may switch to the master transmitter mode by loading SSDAT with SLA+W.
20.1.3
Slave Receiver Mode
In the slave receiver mode, a number of data bytes are received from a master transmitter
(Figure 20-6). To initiate the slave receiver mode, SSADR and SSCON must be loaded as
follows:
Table 20-2.
A6
SSADR: Slave Receiver Mode Initialization
A5
A4
A3
A2
A1
A0
GC
own slave address
The upper 7 bits are the address to which the TWI module will respond when addressed by a
master. If the LSB (GC) is set the TWI module will respond to the general call address (00h);
otherwise it ignores the general call address.
Table 20-3.
SSCON: Slave Receiver Mode Initialization
CR2
SSIE
STA
STO
SI
AA
CR1
CR0
bit rate
1
0
0
0
1
bit rate
bit rate
CR0, CR1 and CR2 have no effect in the slave mode. SSIE must be set to enable the TWI. The
AA bit must be set to enable the own slave address or the general call address acknowledgement. STA, STO and SI must be cleared.
When SSADR and SSCON have been initialised, the TWI module waits until it is addressed by
its own slave address followed by the data direction bit which must be at logic 0 (W) for the TWI
to operate in the slave receiver mode. After its own slave address and the W bit have been
received, the serial interrupt flag is set and a valid status code can be read from SSCS. This status code is used to vector to an interrupt service routine.The appropriate action to be taken for
each of these status code is detailed in Table . The slave receiver mode may also be entered if
arbitration is lost while TWI is in the master mode (states 68h and 78h).
If the AA bit is reset during a transfer, TWI module will return a not acknowledge (logic 1) to SDA
after the next received data byte. While AA is reset, the TWI module does not respond to its own
slave address. However, the 2-wire bus is still monitored and address recognition may be
resume at any time by setting AA. This means that the AA bit may be used to temporarily isolate
the module from the 2-wire bus.
106
AT89C5130A/31A-M
4337K–USB–04/08
AT89C5130A/31A-M
20.1.4
Slave Transmitter Mode
In the slave transmitter mode, a number of data bytes are transmitted to a master receiver
(Figure 20-7). Data transfer is initialized as in the slave receiver mode. When SSADR and
SSCON have been initialized, the TWI module waits until it is addressed by its own slave
address followed by the data direction bit which must be at logic 1 (R) for TWI to operate in the
slave transmitter mode. After its own slave address and the R bit have been received, the serial
interrupt flag is set and a valid status code can be read from SSCS. This status code is used to
vector to an interrupt service routine. The appropriate action to be taken for each of these status
code is detailed in Table . The slave transmitter mode may also be entered if arbitration is lost
while the TWI module is in the master mode.
If the AA bit is reset during a transfer, the TWI module will transmit the last byte of the transfer
and enter state C0h or C8h. the TWI module is switched to the not addressed slave mode and
will ignore the master receiver if it continues the transfer. Thus the master receiver receives all
1’s as serial data. While AA is reset, the TWI module does not respond to its own slave address.
However, the 2-wire bus is still monitored and address recognition may be resume at any time
by setting AA. This means that the AA bit may be used to temporarily isolate the TWI module
from the 2-wire bus.
20.1.5
Miscellaneous States
There are two SSCS codes that do not correspond to a define TWI hardware state (Table 20-9 ).
These codes are discuss hereafter.
Status F8h indicates that no relevant information is available because the serial interrupt flag is
not set yet. This occurs between other states and when the TWI module is not involved in a
serial transfer.
Status 00h indicates that a bus error has occurred during a TWI serial transfer. A bus error is
caused when a START or a STOP condition occurs at an illegal position in the format frame.
Examples of such illegal positions happen during the serial transfer of an address byte, a data
byte, or an acknowledge bit. When a bus error occurs, SI is set. To recover from a bus error, the
STO flag must be set and SI must be cleared. This causes the TWI module to enter the not
addressed slave mode and to clear the STO flag (no other bits in SSCON are affected). The
SDA and SCL lines are released and no STOP condition is transmitted.
20.2
Notes
The TWI module interfaces to the external 2-wire bus via two port pins: SCL (serial clock line)
and SDA (serial data line). To avoid low level asserting on these lines when the TWI module is
enabled, the output latches of SDA and SLC must be set to logic 1.
Table 20-4.
Bit Frequency Configuration
Bit Frequency ( kHz)
CR2
CR1
CR0
FOSCA= 12 MHz
FOSCA = 16 MHz
FOSCA divided by
0
0
0
47
62.5
256
0
0
1
53.5
71.5
224
0
1
0
62.5
83
192
0
1
1
75
100
160
107
4337K–USB–04/08
Bit Frequency ( kHz)
CR2
CR1
CR0
FOSCA= 12 MHz
FOSCA = 16 MHz
FOSCA divided by
1
0
0
-
-
Unused
1
0
1
100
133.3
120
1
1
0
200
266.6
60
1
1
1
0.5